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Abstract

Nitrogen and Phosphorus (P) are essential nutrients for sustaining life on Earth and have
been increasingly applied in global agriculture to meet the growing demand for food
production. Quantifying the spatial and temporal dynamics of nutrient inputs to the
terrestrial biosphere is crucial for analyzing nutrient flows in crop-livestock systems,
managing nutrient resources sustainably, and mitigating nutrient-related environmental
impacts. Here, built upon our previous work mapping global nitrogen inputs (History
of anthropogenic Nitrogen inputs, HaNi), this study presents the History of
anthropogenic P inputs (HaPi) dataset, a comprehensive quantification of human-driven
P fluxes to terrestrial ecosystems. HaPi covers the period from 1860 to 2020 and has a
spatial resolution of 5 arc-minutes (about 10 km at the equator) with an annual time-
step. This harmonized dataset integrates seven components, including P fertilizer
application on croplands and pastures, manure P application on croplands and pastures,
manure P deposition on pastures and rangelands, and atmospheric P deposition. The
results reveal that the global total P input increased from 3.8 Tg yr ! in the 1860s to 40.9
Tg yr! in the 2010s, with mineral fertilizer and livestock manure contributing equally
to the increase. Regional patterns have shifted significantly over the study period, with
China, South Asia, and Brazil surpassing Europe and the USA as the regions with the
highest P inputs in recent decades. Furthermore, mineral fertilizers dominate P inputs
in most industrialized countries in the Northern Hemisphere, whereas manure P remains
the primary source in many countries of the Southern Hemisphere. The HaPi dataset
improves P mass budget calculations and provides essential forcing data for empirical
or mechanistic models, supporting critical research in agricultural nutrient management,
water quality control, and assessments of the coupled human-Earth system. The dataset

is available at https://doi.org/10.6084/m9.figshare.29930279.v1 (Bian et al., 2025).
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1 Introduction

The global nitrogen and phosphorus (P) cycle has been unprecedently disturbed in the
Anthropocene, posing significant risks to planetary boundaries and societal
sustainability (Steffen et al., 2015). Driven by rising food demand, mining of phosphate
rocks for mineral P fertilizers and livestock feed has significantly increased (Cordell et
al., 2009). Anthropogenic activities have substantially intensified global P flows,
contributing to half of global agricultural soil P uptake in recent decades (Demay et al.,
2023) and tripling the P mobilization in the land-water continuum (Yuan et al., 2018).
However, agriculture’s growing demand for mineral P fertilizers raises critical concerns
regarding the depletion of non-renewable phosphate rock reserves. Moreover, the
unevenly distributed phosphate rock resources and potential geopolitical conflicts
threaten the resilience of agricultural systems (Barbieri et al., 2022; Elser and Bennett,
2011). To mitigate these challenges, a better understanding of the spatial and temporal
distribution of P supply and demand would support improved assessment of future P

requirements for crop and livestock production (Sattari et al., 2012).

The historical and current management of anthropogenic P in croplands and livestock
production has resulted in serious environmental issues. In particular, the global P flux
from terrestrial to aquatic ecosystems has been amplified by inefficient agricultural
applications, which accelerated P losses to rivers, lakes, and oceans via water transport.
Generally, P is the major limiting nutrient for phytoplankton growth in freshwaters,
since its easy adsorption to particles reduces its biological availability (Conley et al.,
2009). However, worldwide mineral P fertilizer applications and related runoff have
resulted in elevated levels of bioavailable P in freshwaters, causing widespread
eutrophication and ecological damage to freshwater systems (Carpenter, 2005; Fink et
al., 2018). Beyond contemporary P inputs, legacy P accumulated in soils from historical
fertilizer and manure applications continues to leach into aquatic environments. This
reduces the efficacy of long-term conservation efforts aimed at improving water quality

(Stackpoole et al., 2019). Spatial-temporal patterns of agricultural legacy P and
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associated water pollution are fundamentally driven by historical fertilizer and manure
applications. Consequently, understanding the quantity, sources, and trends of P
pollution is useful information needed for advancing effective water quality

management strategies.

To address the challenges of food security and environmental issues related to
anthropogenic P use, accurately quantifying global anthropogenic P inputs since the
pre-industrial era is critical for evaluating historical trajectories of soil P fertility, P use
efficiency (PUE), and P pollution. Many efforts have been carried out to develop global
P input datasets (Lu and Tian, 2017; Lun et al., 2018; Ringeval et al., 2024). The Food
and Agriculture Organization (FAO) and the International Fertilizer Association (IFA)
provide widely adopted country-level mineral P fertilizer data in agricultural land (FAO,
2024). This data has been used to evaluate P budgets and surpluses at the country level.
For example, Zou et al. (2022) used FAO P fertilizer data to evaluate national P budget
and PUE. However, FAO’s manure data only covers national nitrogen excretion,
necessitating estimation of manure P via N:P ratios. For spatially explicit modeling,
several gridded datasets have emerged. Mueller et al. (2012) generated crop-specific P
fertilizer maps at a global scale circa 2000. Bouwman et al. (2013) developed gridded
P fertilizer and livestock manure data by combining FAO fertilizer use, animal
production data, and multiple ancillary datasets. This P input dataset has been applied
in the IMAGE-Global Nutrient Model to assess global soil P pools, crop uptake, and
riverine P fluxes (Beusen et al., 2016). More recently, gridded data of P application rates
for 173 crops, at 5 km resolution and the year 2020, have been published (Nguyen et
al., 2024). Furthermore, Lu and Tian (2017) developed an annual global P fertilizer

dataset from 1961 to 2013 at a resolution of 0.5°x0.5°, based on the IFA national P

fertilizer statistics. Bouwman’s dataset and Lu’s P fertilizer data have been used to
develop the global dataset on P in agricultural soil, GPASOIL-v0 (Ringeval et al., 2017)
and GPASOIL-v1 (Ringeval et al., 2024), respectively. GPASOIL-v1 also provides
manure P application rates on cropland and pasture based on a global constant N:P ratio

and spatially explicit manure N data developed by Xu et al. (2018) and Zhang et al.
4
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(2017). Nevertheless, inconsistencies exist in temporal coverage, spatial resolution,
spatial allocation algorithms, and the baseline land use data among different P input
datasets, which may propagate uncertainties in assessments of soil P fertility, legacy P
accumulation and its environmental impacts. To resolve these issues, we propose to
reconstruct a harmonized History of Anthropogenic Phosphorus Inputs (HaPi) dataset,
which will integrate available FAO statistics, historical land use, grid-level manure N:P

ratios, and atmospheric P deposition within a consistent spatiotemporal framework.

In our recent study, we have developed the History of anthropogenic Nitrogen inputs
(HaNi) dataset, which consists of N fertilizer, manure N, and atmospheric N inputs on
cropland, pasture, and rangeland (i.e., grassland) from 1860 to 2020 (Tian et al., 2022).
Since its publication, HaNi has been widely adopted to estimate global N>O emission
(Tian et al., 2024), NH3 concentrations (Ma et al., 2025) and emissions, and N loading
(Dai et al., 2023). Complementary to the HaNi data, the HaPi dataset provides P
fertilizer/manure application to cropland, P fertilizer/manure application to pasture,
manure P deposition on pasture/rangeland, and atmospheric P deposition. The HaPi
dataset advances over previous datasets in five aspects: (1) the impact of dynamic crop
rotation is considered when allocating P fertilizer on cropland; (2) the annual spatial-
explicit manure N:P ratio data is developed to generate manure P data based on manure
N inputs; (3) all P inputs are at an annual step from 1860 to 2020 and a high spatial
resolution of 5 arc-min; (4) beyond agricultural land, P inputs to all terrestrial
ecosystems are estimated; and (5) consistent baseline land use maps are used when
allocating fertilizer and manure P to cropland, pasture, and rangeland. The HaPi dataset
is anticipated to improve P mass budget calculation and serve as forcing data for
empirical or mechanistic models, thereby supporting diverse research on soil fertility,

water pollution, P resource sustainability, and food security, etc.
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2 Methods

2.1 Fertilizer application on cropland and pasture

The fertilizer P application maps are developed by allocating country-level inventory
data into grid cells according to land use maps, crop rotation maps, and crop-specific
fertilizer application data (Table 1). Annual national P fertilizer inputs on agricultural
land during 1961-2020 were obtained from FAOSTAT (2024). We first separated total
P fertilizer use into P application on cropland and pasture by assuming fractions of P
used for cropland and pasture are the same as those of N fertilizer, following the method
used in Zou et al. (2022). The fraction data were adopted from Einarsson et al. (2021)
and Lassaletta et al. (2014). Then, the country-level P fertilizer data were spatially

distributed with cropland and pasture maps following the workflow in Figure 1.

To determine the P fertilizer application on cropland, we considered 18 dominant crop
types (wheat, maize, rice, barley, millet, sorghum, soybean, sunflower, potato, cassava,
sugarcane, sugar beet, oil palm, rapeseed, groundnut, cotton, and rye) and crop-specific
harvested areas to generate crop-area-weighted average of P fertilizer application in

each grid during 1961-2020, which is calculated as follows:

F _ Zi(pcrop,i,ZOOOXAHi.y) 1
crop,y,.g — ZiAHiy ( )

where Fqpy,4 18 the crop-area-weighted average of P fertilizer application rate in a

cropland grid g (g P m cropland yr'!) in year y, Feropiy and AH;, are P fertilizer
application rate (g P m2) and harvested area (m?), respectively, for crop type i in year
V. Ferop,iz000 used a fixed value derived from the global crop-specific P fertilizer
application data circa 2000 (at a resolution of 5-arcmin) developed by Mueller et al.
(2012). The crop distribution maps for individual years were derived by allocating FAO
statistics for crop-specific harvested area into grids using the Dissever algorithm
(Malone et al., 2012), which is a general spatial downscaling method using fine-

resolution covariate data. Specifically, the covariate data included climate variables
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(temperature and precipitation) (Fick and Hijmans, 2017), soil information (FAO and
IIASA, 2023), and topography. In each year, crop-specific distribution from SPAM2010
(Yu et al., 2020) was used to start an interactive training process to obtain a stable
machine learning model that link gridded crop fractions to covariates, with a constraint
that all crop areas in a grid cell in a growing season could not exceed the total available

land area of that grid.

Then we calculated the potential P fertilizer application on cropland in a specific

country and used it to divide the corresponding FAO statistics:

o FAOcrop,y,j (2)
crop,y,j Zg:?f in country ](—Fcrop,y,g XACy,j,g)

R

Pfercropy,jg = Feropy.g X Reropyj @

where Rgropy,; Tepresents the regulation ratio (unitless) for the year y and country j,
FAO¢rop,y,; is the national total P fertilizer usage (g P yr'!) on cropland, AC, j 4 is the
cropland area (m?) for the year y and grid g of the country. The historical land use data
(cropland, pasture, rangeland) covers 1860-2020 and has an annual time-step and a 5
arcmin spatial resolution, developed by reconciling the HYDE 3.2 and LUHvV2 datasets
(Hurtt et al., 2020; Klein Goldewijk et al., 2017; Tian et al., 2022). The P fertilizer in
cropland grid g of the country j in year y, Pfer.,, (gP m2 yr'!), was then calculated

as the product of Fipop59 and Reropy ;-

The earliest year of P fertilizer statistics that the FAO database provides is 1961. Prior
to the widespread adoption of phosphate rock as a fertilizer in the 1940s, guano—
accumulated bird droppings over millennia—and human excreta were utilized as
fertilizers for food crops. The historical P fertilizer data during 1860-1960 were
generated based on data reported by Cordell et al. (2009), which provide global total P
fertilizer usage estimates back to 1800. Annual relative change rates of global P
fertilizer were first calculated based on the estimates from Cordell et al. (2009). These

change rates were then applied to the spatially explicit P fertilizer distribution in the

7
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reference year of 1961 to reconstruct annual global P fertilizer maps for the period
1860-1960. This approach assumes that temporal dynamics of P fertilizer data before

1961 were primarily driven by global-scale trends.

Crop-specific P fertilizer Crop distribution and

application rate per unit crop area rotation maps
Cropland area maps Gridded data of crop-area-weighted average
(HYDE 3.2/LUHv2) of P fertilizer application rate

L |

National P fertilizer

National total P application on cropland
fertilizer use from FAO

‘ Gridded P fertilizer application rate on cropland |

Figure 1. Workflow of developing data for P fertilizer application on cropland. The
blue box represents the annual data during 1961-2020, and the orange box represents

the static variable.

Table 1. Main data sources utilized in HaPi development

Data Data Source Dataset Reference
Products
Fertilizer FAOSTAT Annual country-level P fertilizer FAOSTAT (2024)

to land from 1961 to 2020;

Crop-specific harvested area

EARTHSTAT Fertilizer rates for major crops Mueller et al. (2012)

SPAM2010 Crop distribution maps Yu et al. (2020)
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205

206

207

208

209

Hyde3.2/LUHvV2 Cropland, Pasture, and rangeland Hurtt et al. (2020);
area from 1860 to 2019 Klein Goldewijk et

al. (2017)

Cordell et al. Global total P fertilizer usage Cordell et al. (2009)

(2009) from 1860 to 1960
Manure HaNi Manure Nitrogen inputs from Tian et al. (2022)
1860 to 2020
GLW3 Livestock distribution maps Gilbert et al. (2018)
FAOSTAT Annual country-level livestock FAOSTAT (2024)

statistics from 1961 to 2020

Lun et al. (2018) Animal-specific manure P:N Lun etal. (2018)

ratios
Atmospheric HEMCO Natural P emissions (mineral Meng et al. (2021);
deposition dust, sea-salt aerosols, and Weng etal. (2020);
volcanic eruptions) Carn (2019)
EDGAR Anthropogenic P emissions Crippa et al. (2023)
GFED v4 P emissions from wildfire Randerson et al.
(2015)
ERAS Climate  data  (temperature, Mufioz-Sabater et al.

precipitation, wind speed, etc.) (2021)

MERRA2 Aerosol Optical Thickness Randles et al. (2017)

GIMMS LAI4g Leaf area index Cao et al. (2023)

2.2 Manure application on cropland/pasture and deposition on pasture/rangeland

The grid-level manure P inputs, including manure application on cropland, manure
application on pasture, manure deposition on pasture, and manure deposition on

rangeland, were generated by multiplying the corresponding manure N inputs from
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HaNi (Tian et al., 2022) and manure P:N ratios (Figure 2):
Pman,, ; = Nman,, ; X RPN, 4 (E))

where Pman, , and Nman, , indicate the P and N manure application or deposition
on grid g in year y, respectively. The HaNi dataset offers global manure input data on
cropland, pasture, and rangeland during 1860-2020 at a resolution of 5 arcmin. RPN,, ;4

represents the manure P:N ratio in grid g.

__ ZtAPNy (xAnumy, g ¢

RPN,, , = ————= 5
.9 Yt Anumy g ¢ ( )
LFAO, ¢ i
Anum,, ,, = GLMnum, ; X —== L4 6
V.9t g,t Z;q in countrijLMnumg't ( )

The annual grid-level manure P:N ratios RPN,, jwere estimated as the animal-number
weighted sum of these animal-specific P:N ratios within grids. We obtained manure
P:N ratios APN,,; for each animal species ¢ from Lun et al. (2018). Livestock
distribution data Anum,, ;; were calculated using national FAO livestock statistics
and the Global Livestock of the World 3 (GLW3) database (Gilbert et al., 2018). GLW3
provides global livestock populations GLMnumg, at a 5-arcmin resolution for cattle,
buffaloes, horses, sheep, goats, pigs, chickens, and ducks, but the data are available for
a single reference year. Therefore, the annual country-level livestock population data
LFAO,,; ; from FAOSTAT were employed to extend the GLW3 dataset into a time
series of livestock distribution maps spanning from 1961 to 2020 following the method
used in equations 2-3. Based on this approach, a spatially explicit manure P:N ratio
dataset covering the period 1961-2020 was constructed and subsequently used to

estimate manure P inputs from corresponding N inputs.
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Manure N inputs Manure N inputs Manure N inputs Grid-level manure
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ratios

for cropland for pasture for rangeland N:P ratio map
\ \ y |
A 2
Manure P Manure P Manure P Manure P
application on application on deposition on deposition on
cropland pasture pasture rangeland

I

]

Grid-level manure P inputs

231

232 Figure 2. Workflow of developing manure P input data. The blue box represents the
233 annual data during 1961-2020, and the orange box represents the static variable.

234

235 2.3 Atmospheric P deposition

236 Atmospheric P deposition originates from both natural and anthropogenic sources and
237  was estimated by combining a P emission inventory, an atmospheric chemical model,
238  and an algorithm (Figure 3 and Table 1). Natural P emissions primarily comprise dust,
239  seasalt, Primary Biological Aerosol Particles (PBAPs), volcanoes, and wildfires. In this
240  study, emissions from dust, sea salt, and volcanoes were derived from the GEOS-Chem
241  HEMCO data (Meng et al., 2021; Weng et al., 2020; Carn, 2019; Carn et al., 2015; Ge
242  etal., 2016). PBAPs emissions were estimated by utilizing specific humidity data and
243  LAI data according to the method used in Myriokefalitakis et al. (2016). Wildfire
244  emission data were sourced from the GFED4 dataset (Randerson et al., 2015).
245  Meanwhile, anthropogenic emissions were estimated using monthly sector-specific
246  data from the EDGAR database (Crippa et al., 2023). By integrating all the emission
247  sources, we developed a global atmospheric P emission inventory, which was
248  subsequently used as input for the GEOS-Chem model (Feng et al., 2021; Li et al., 2024)
249  to simulate global atmospheric P deposition from 2001 to 2019. GEOS-Chem is a global
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three-dimensional atmospheric chemical model driven by meteorological inputs
provided by the Goddard Earth Observing System (GEOS) of the NASA Global
Modeling and Assimilation Office. It has been widely applied to address various

atmospheric composition issues. The modeled P deposition by GEOS-Chem was at a

resolution of 2.5°x2°.

To obtain the atmospheric P deposition at a high resolution, the dissever algorithm
(Malone et al.,, 2012; Roudier et al., 2017), which is a mass-conserving spatial

downscaling method, was applied to the GEOS-Chem outputs. First, the coarse

resolution P deposition data was resampled to 0.1°x0.1°; Second, the dissever

algorithm was used to iteratively train an XGBoost model for eight different regions,
including Africa, Asia excluding China and India, China, Europe, India, North America,
Oceania, and South America, to retrieve resampled P deposition and fine-resolution
environmental variables. These environmental variables included ERAS climate factors
(wind components, temperature, surface net solar radiation, surface pressure, and
monthly total precipitation) (Mufioz-Sabater et al., 2021), LAI (Cao et al., 2023),
Aerosol Optical Thickness (AOT, Randles et al., 2017), and P emission data. The
iterative model training process was terminated when the improvement in performance
between successive generations fell below a predefined threshold. Model performance
was assessed using the Mean Absolute Error (MAE; unit: g ha™'), calculated for each
model’s target region across all terrestrial grid cells using the test dataset. The
convergence threshold for MAE was initially set to 0.001 g ha™'. Using this approach,
we generated global atmospheric P deposition estimates at a spatial resolution of 0.1°
for the period 2000-2019. To ensure consistency with the HaPi dataset, the 0.1° data
were subsequently resampled to a 5 arc-min resolution and temporally extended back

to 1900 using annual P deposition change rates derived from Ringeval et al. (2024).
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Figure 3. Workflow of developing atmospheric P input data. Where PBAPs represent
Primary Biological Aerosol Particles. Prec refers to precipitation. T2m indicates the 2-
meter air temperature, while T2m max and T2m min refer to the maximum and
minimum air temperatures at 2-meter height. U10 and V10 denote the eastward and
northward wind speeds at 10-meter height, respectively. AOT stands for Aerosol
Optical Thickness. SP represents Surface Pressure, and SSRD refers to Surface Solar

Radiation Downwards.
3 Results
3.1 Global total P inputs

Global anthropogenic P inputs have undergone dramatic changes since the Industrial
Revolution, increasing from 3.8 Tg P yr! in the 1860s to 40.9 Tg P yr! in the 2010s, a
nearly 11-fold increase (Figure 4). The most rapid acceleration occurred between 1945
and 1989, coinciding with post-war agricultural intensification. The amplified usage of
mineral fertilizer and livestock manure P contributed nearly equally, over the study
period, i.e., 52% and 46% of the increase in TP inputs to the terrestrial biosphere,
respectively. The composition of P inputs shifted significantly over this period (Table
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2). Prior to the 1980s, livestock manure accounted for over half of total P (TP) inputs.
However, by the 2010s, mineral fertilizer P in TP inputs surpassed manure P for the first
time. Atmospheric P deposition, while relatively stable, declined from 50% to only 6%
of TP inputs from the 1860s to the 2010s, due to the marked increase in anthropogenic
inputs. The intensified application of P fertilizer on cropland was the primary driver

behind the increased TP inputs after 1945.

Regionally, the TP inputs initially increased in Europe and eastern USA between the
1860s and the 1910s, primarily due to enhanced manure inputs (Figures 5-6).
Subsequently, P input hotspots emerged in Europe, driven by the rising use of P fertilizer.
Europe (5.1 Tg P yr!) and the USA (2.8 Tg P yr'!) were the top two regions with the
highest P inputs in the 1960s. After the 1980s, TP inputs in Europe declined quickly,
while leveling off in the USA. By the 2010s, new hotspots emerged in eastern China,
northern India, southern Brazil, and eastern Africa, sourcing from the widespread
application of mineral P fertilizer and the expansion of livestock production in these
regions. Notably, TP inputs in China began to decrease around 2010, whereas inputs in
South Asia and Brazil maintained growth trends. Livestock manure remains the
dominant P source in most regions of the South Hemisphere (Africa, South America,
Oceania), while P fertilizer plays a more important role in industrialized regions of the
North Hemisphere (Asia, Europe, North America). In addition to Europe, TP inputs in
Russia, Korea, and Japan (KAJ), and Central Asia (CAS) also declined substantially,
largely due to the reduction in P fertilizer usage. Manure P inputs continued to increase
in Africa, South/Southeast Asia, and Central America (CAM), but have shifted to a

decreasing trend in Oceania, Europe, and Russia in recent decades.
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Figure 4. Annual changes of anthropogenic phosphorus inputs to terrestrial ecosystems

from 1860 to 2020.

Table 2. Decadal mean P inputs to the terrestrial biosphere (Tg P yr ')

Decade Prer Peer Pman Pman Pman Pman Paep Total
Crop Pasture Crop  App Dep Dep
Pasture  Pasture Range

1860s 0.1 0.0 0.5 0.2 0.7 0.3 1.9 3.8
1910s 0.6 0.0 1.3 0.4 1.8 1.1 1.9 7.1
1960s 6.2 0.4 2.8 0.7 5.1 3.5 2.0 20.6
1970s 105 09 33 0.8 59 39 22 27.5
1980s 139 1.1 3.7 0.9 6.7 42 2.3 32.8
1990s 132 1.0 3.9 0.8 7.3 4.4 23 33.1
2000s  14.7 1.3 4.0 0.8 7.9 4.8 2.4 35.8
2010s 179 1.5 43 0.8 8.8 5.0 2.6 40.9

Note: The following abbreviations are used in the table: Pr — P fertilizer, Pman — manure P, Pyep

— Atmospheric P deposition, App — Application, and Dep — Deposition.
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Figure 6. Annual variations of P inputs in 18 regions during 1860-2020. The 18 regions
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Korea and Japan (KAJ), China (CHN), South Asia (SAS), Southeast Asia (SEAS),
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Oceania (OCE), Middle East (MIDE), Southern Africa (SAF), Equatorial Africa
(EQAF), Northern Africa (NAF), southwestern South America (SSA), Brazil (BRA),
northern South America (NSA), and Central America (CAM).

3.2 P fertilizer inputs on cropland and pasture

The global total P fertilizer inputs surged from 6.6 Tg P yr~! in the 1960s to 19.4 Tg P

yr ! in the 2010s, with cropland receiving over 90% of these inputs (Figure 7). Annual
P fertilizer applied to croplands increased rapidly at a rate of 0.4 Tg yr 2 during 1961—

1989, then declined sharply until 1995 before resuming an upward trajectory. Despite
this global growth, significant regional disparities emerged (Figures 6 and 8). Europe
and the USA were the dominant regions for early P fertilizer consumption, accounting
for 38% and 24% of global usage, respectively, in the 1960s. By the 2010s, China (30%)
and South Asia (20%) had become the predominant consumers of P fertilizers, driven
by intensive agricultural expansion. Regional shifts in P fertilizer inputs were
pronounced. In the USA, P fertilizer application to cropland decreased from 2.0 Tg P
yrlin the 1970s to 1.5 Tg P yr ! in the 2000s. In Europe, P fertilizer usage peaked in
the 1980s but decreased by 66% in the 2010s. The increase in P fertilizer usage in China
and South Asia contributed to 44% and 29% of the global total increase in P fertilizer
application on cropland from the 1960s to the 2010s, respectively. However, China’s
usage plateaued in the 2010s, while South Asia’s continued to increase rapidly. In the
2020s, hotspot regions with high P fertilizer application rates (>3 g P m? yr'!) were
mainly distributed in eastern China, northern India, and southern Brazil. The P fertilizer
application rates on cropland were consistently low across most areas in Africa over the

whole study period, accounting for only 4% of global consumption in the recent decade.

Global P fertilizer application on pasture increased from 0.3 to 1.6 Tg P yr™! during
1961-2020. Before the 1980s, European countries were the predominant consumers of
P fertilizer on pasture (Figure S1). Thereafter, the USA and India significantly increased

17

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-507
Preprint. Discussion started: 24 November 2025
(© Author(s) 2025. CC BY 4.0 License.

359
360

361

362

363

364

365

366
367

368

369

their usage, accounting for 23% and 22% of total P fertilizer application on pasture,
respectively, in the 2010s. P fertilizer application rate per pasture land was high in India,

Japan, and southern Canada, but remained low in most other countries in recent decades.

2001 Fertilizer application on cropland
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Figure 7. Annual variations and trends in P fertilizer inputs during 1860-2020.

P fertilizer application on cropland (g P m~2 cropland yr—1)

Figure 8. Global patterns of P fertilizer application on cropland in the 1960s, 1980s,
2000s, and 2010s.

3.3 Manure P inputs on cropland, pasture, and rangeland

Livestock manure served as the primary P source for agricultural soils historically, with

global manure P inputs on cropland, pasture, and rangeland increasing from 1.7 to 18.9
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Tg P yr! during the period from the 1860s to the 2010s (Figure 9). Pasture received
half of total manure P inputs, while cropland and rangeland each shared a similar

proportion of the remaining half. Over 1961-2020, manure P deposition on pasture kept
increasing at a rate of 0.07 Tg P yr’z, while manure P application on pasture was

relatively stable. Meanwhile, annual manure inputs on cropland and rangeland both
increased, but at relatively slow rates than those on pasture. In the context of rising
global manure P inputs, developing countries have demonstrated stronger growth rates
than developed countries in recent decades. China has exceeded Europe and become
the largest consumer of manure P since the 2000s, as manure P inputs in Europe have
declined since the 1980s. Over the past four decades, manure usage in North Africa
(NAF) and Equatorial Africa (EQAF) has grown at the fastest rate, increasing by 96%
and 138%, respectively. In the 2010s, China, South Asia, Brazil, and North Africa, as
the top four regions, received 13%, 11%, 11%, and 10% of the global total manure P

inputs, respectively.

Application rates of manure P per unit area of cropland increased significantly in Asia,
Europe, and North and South America since 1860 (Figure 10). Manure P application on
cropland initially increased in western Europe in the 1910s, with subsequent intensified
application occurring in eastern Asia and northern South America by the 2010s. Manure
application and deposition rates on pasture were extremely high in South and Southeast
Asia over the last century (Figures 11, S2, and S3). The proportion of manure deposition
in total manure inputs to pasture gradually increased from 79% to 92% from the 1860s
to the 2010s. Prominent manure P deposition on rangeland was observed in South and
Southeast Asia, with new hotspots developing in Central Africa, eastern South America,

northern China, and Europe in the 2010s (Figure 12).
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Figure 11. Global patterns of manure P application and deposition on pasture in the
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Figure 12. Global patterns of manure P deposition on rangeland in the 1860s, 1910s,
1960s, and 2010s.

3.4 Atmospheric P deposition
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Atmospheric P deposition is the major P source for natural ecosystems, such as forests
and shrubs, but plays a less important role in cropland. Although anthropogenic
activities have led to the increase of atmospheric P deposition from 2.0 Tg P yr ! in the
1960s to 2.6 Tg P yr ! in the 2010s, the proportion of atmospheric P deposition in total
P inputs decreased dramatically to only 6% by the 2010s. China was the region with the
largest atmospheric P deposition (21% of the global total) in the 2010s, followed by
North Africa (15%), the USA (11%), and Europe (8%) (Figure 13). Atmospheric P
deposition in northern Africa was primarily derived from natural sources and remained
relatively stable during the study period. Influenced by anthropogenic activities,
atmospheric P deposition in China has continually increased since the 1960s, while that
in Europe has shifted from an increase to a decrease in the 1980s. Atmospheric P
deposition was relatively low across most regions, with the exception of several notable

hotspots in northern Africa, eastern China, central Europe, and eastern USA.

0 002 004 006 01 015 0.2
Atmospheric P deposition (g P m=2 yr—1)

Figure 13. Global patterns of atmospheric P deposition in the 1960s, 1980s, 2000s, and
2010s.

4 Discussion

4.1 Comparison with previous studies
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The HaPi dataset provides spatially explicit, annual estimates of anthropogenic P inputs
to the terrestrial biosphere. This gridded P input dataset reveals subnational
heterogeneity, enabling the detection of localized hotspots of high P input that national
averages may obscure. When aggregated to the global scale, HaPi aligns well with
existing studies, particularly for cropland fertilizer P inputs, which have been
extensively evaluated (Table 3). Nearly all these studies rely on the country-level
fertilizer inventory data provided by FAO or IFA, which give consistent global totals.
However, the HaPi estimates of manure P applied to cropland are lower than previous
estimates, whereas manure P inputs in grasslands (pasture and rangeland) are higher
than previous estimates. Despite these differences, total manure P inputs in HaPi remain
consistent with other studies. The major discrepancy lies in how manure inputs are
allocated to cropland and grassland. In previous studies, manure P inputs were
calculated by multiplying manure N inputs provided by FAO and P:N ratio in livestock
manure products. According to the latest FAOSTAT dataset, around 75% of total
manure N inputs are deposited on grassland, and the remaining 25% is applied to
cropland (around 21%) and grassland (4%) soils. The majority of manure is directly
deposited on grasslands through grazing animal excretion, whereas a smaller proportion
is collected and subsequently applied to pastures and croplands as a managed nutrient
input. HaPi estimates 23% of manure P was applied on cropland, closely matching
FAOSTAT’s current methodology. In contrast, Lun et al. (2018) and Sattari et al. (2016)
estimated 36% and 38% of total manure P inputs to cropland. Compared to previous
studies, the HaPi dataset offers the most comprehensive coverage of anthropogenic P
input fluxes, featured by a high spatial resolution and extended historical coverage.
These features support the analysis of legacy P accumulation and depletion, and
simultaneously provide consistent forcing data for land surface and biogeochemical
models. This harmonized P input dataset enhances our ability to assess regional nutrient

trends, environmental risks, and management needs at multiple spatial scales.
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Table 3. Comparison of P input data with other global estimates

Global P inputs Previous studies Year This study Reference
(TgPYr) (TgPYr?)
Fertilizer input on 16.4 2002-2010  17.6 Lun et al. (2018)
cropland 13.8 2000 13.2 Bouwman et al
(2009)
0.4-15.8 1900-2010  0.3-17.6 Zhang et al. (2017b)
4.6-17.5 1961-2013  4.5-18.0 Lu and Tian (2017)
Fertilizer input on 0.4 2002-2010 1.5 Lun et al. (2018)
pasture
Manure input on 1.6-7.2 1900-2010 1.0-4.3 Zhang et al. (2017b)
cropland 7.1 2002-2010 4.3 Lun et al. (2018)
6.3 2005 4.0 Sattari et al. (2016)
Manure input on 12.7 2002-2010 14.1 Lun et al. (2018)
grassland (pasture 10.2 2005 13.6 Sattari et al. (2016)

and rangeland)

Total manure 17.1 2000 16.7 Bouwman et al.
input (2013)
16.5 2005 17.6 Sattari et al. (2016)
19.8 2002-2010  18.4 Lun et al. (2018)

4.2 The implication of changes in manure and fertilizer P inputs

Globally, mineral P fertilizer has surpassed manure P as the largest P input to cropland,
while livestock manure remains the dominant P source for pasture and rangeland.
Overall, livestock manure is a more significant source of P for terrestrial ecosystems

compared to mineral fertilizer. In recent decades, livestock manure contributed over
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half of the P sources in most regions, especially in Africa where around 90% of total P
inputs were derived from manure. As P fertilizer application began to decrease in
European countries, manure P application on cropland played an increasingly important
role in food production. Grassland, including pasture and rangeland, received over 70%
of global manure P inputs and over 40% of total P inputs; therefore, it is critical to take
account of grassland when investigating global P balance and P-related environmental
issues. For instance, it is estimated that P loading to the Gulf of Mexico originated
primarily from manure on pasture and rangeland (37%), followed by corn and soybeans
(25%) within the Mississippi River Basin (Alexander et al., 2008). Despite high manure
P input, manure excretion is still partly an internal P cycling in the grassland-livestock
system since it derives from soil P uptake by grass. Furthermore, global manure P input
cannot compensate for the grazing P output in grassland systems because around 23%
of manure was transferred from grassland to cropland systems. Due to the limited
application of fertilizer to grasslands, global grasslands are facing the challenge of a
negative P budget (Sattari et al., 2016). Given the projected increase in livestock
production to meet future demand for meat and milk, effectively managing P flows in
the whole crop-livestock production systems is critical for the sustainable human P

cycle (Bouwman et al., 2013).

Socio-economic development clearly drives the long-term changes in total
anthropogenic P inputs to agricultural lands (Figure S4). The rapid increase in P
fertilizer application on cropland in the latter half of the 20" century stimulated crop
production but ultimately resulted in a decrease in the P use efficiency. After about 60
years of growth, global total P fertilizer use has leveled off in the 2010s. Europe,
previously the largest consumer of P fertilizer, began reducing its usage in the 1980s.
China, currently the largest consumer, has also shown a decrease in P fertilizer
consumption since 2013. Although P fertilizer application decreases, crop yield and P
uptake may not decline correspondingly. The large P surpluses due to previous P
application in European countries have built up soil residual P pool which can
continually supply crop production (Sattari et al., 2012). Similarly, the reduced usage
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of P fertilizer in China may also result from the supply of soil legacy P resources
accumulated over the last decades. The increased crop yield and decreased P fertilizer
usage indicated an enhancement in P use efficiency in these industrialized countries.
Meanwhile, many developing countries, such as India and Brazil, continue to
experience elevated P fertilizer usage and an amplified P surplus on croplands (Zhang
et al., 2017b). Utilizing residual soil P can be a key strategy to reduce reliance on
imported mineral P fertilizer and improve the sustainability of agriculture in these

countries.

4.3 Limitations in Data Development

Despite numerous improvements in the HaPi dataset over previous P input datasets,
several limitations remain in its development. We calculated manure P inputs based on
manure N inputs and P:N ratio with spatiotemporal heterogeneity, but the gridded
manure P data were not constrained by survey data, as country-level manure P inputs
data were not available from the Soil Nutrient Budget database in FAOSTAT. The
baseline crop-specific fertilizer rate used to develop the fertilizer input data is assumed
to be constant within each country, thereby disregarding regional variability in fertilizer
application rates for the same crop type. We used historical cropland, pasture, and
rangeland data from HYDE/LUHV?2 to spatialize country-level P fertilizer use amounts,
but HYDE/LUHV2 data have been shown to exhibit inconsistent spatial and temporal
patterns of land use relative to satellite-derived land use at the regional scale. For
example, the HYDE dataset overestimates the cropland area in India, which can lead to
the underestimation of the P fertilizer application rate on cropland. In this study, we
assumed that the ratios of P fertilizer application on pasture relative to cropland were
the same as those for N fertilizer, which may not accurately reflect the actual allocation
of P fertilizer usage on pasture. Since country-level data for P fertilizer are only
available from 1961 onwards, we assumed that the change rates of global fertilizer
inputs before 1961 followed the annual global trends reported by Cordell et al. (2009).

This assumption ignores regional variations in the changes of P fertilizer usage across
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different countries before 1961. Aside from mineral fertilizer, livestock manure, and
atmospheric deposition, other anthropogenic P sources, including guano, livestock
bones, and human excreta, were historically used to enhance soil fertility. These P
sources were difficult to quantify at a global level without reliable data sources and

were therefore not included or accurately quantified in the HaPi dataset.

4.4 Uncertainty

The uncertainties in the HaPi dataset mainly arise from the input datasets and
methodological assumptions used in developing the global P input estimates.
Quantifying the overall uncertainties in the HaPi dataset is challenging due to the
heterogeneity of underlying data sources and the scarcity of independent datasets for
robust validation. Four major sources of uncertainty were identified as contributing to
the overall uncertainty in the HaPi dataset. First, the FAO survey data, which serve as
the primary constraint for national total P inputs, represents a critical source of
uncertainty in estimating total P inputs to the terrestrial biosphere. Based on expert
judgment, a generic uncertainty of approximately 20% was assigned to the FAO
national estimates. Consequently, the spatially explicit P input maps derived from these
national data inherently carry at least the same level of uncertainty, with a minimum
estimated uncertainty of 20%. Second, uncertainties arise from the land use and crop
rotation distribution maps used to spatialize P inputs. Uncertainties in land cover
classification or temporal interpolation in HYDE/LUHvV2 data may propagate into the
spatial allocation of P fertilizer and manure applications, thereby affecting local input
rates and hotspot identification. Third, uncertainties stem from empirical assumptions
and static parameters used during dataset construction, including the assumption of
partitioning ratios for fertilizer use between cropland and pasture, the use of time-
invariant crop-specific fertilizer and manure application patterns, and the application of
globally uniform change rates for reconstructing pre-1961 data. Finally, uncertainties
in atmospheric P deposition simulated by the GEOS-Chem model are primarily

associated with model structure and parameterization. Collectively, these sources
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contribute to uncertainties in both the magnitude and spatial distribution of
anthropogenic nitrogen inputs. Given the limitations and uncertainties in the HaPi
dataset, it is important to collect or conduct surveys of crop-specific P fertilizer and
manure use at subnational scales and update global land use data to reflect more precise

regional patterns of global fertilizer and manure P inputs.

Data availability

The History of Anthropogenic P Inputs (HaPi) dataset is available at
https://doi.org/10.6084/m9.figshare.29930279.v1 (Bian et al., 2025).
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