## Supplementary Materials for

# A satellite-based ice fraction record for small water bodies of the Arctic Coastal Plain

Hong Lin<sup>1,2</sup>, Jinyang Du<sup>1</sup>, John S. Kimball<sup>1</sup>, Xiao Cheng<sup>2</sup>, J. Patrick Donnelly<sup>1,3</sup>, Jennifer D. Watts<sup>4</sup>, Annett Bartsch<sup>5</sup>

Correspondence to: jinyang.du@ntsg.umt.edu; chengxiao9@mail.sysu.edu.cn

#### This PDF file includes:

Figs. S1 to S3

Tables S1 to S4

<sup>&</sup>lt;sup>1</sup> Numerical Terradynamic Simulation Group, University of Montana, Missoula MT, USA

<sup>&</sup>lt;sup>2</sup> School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

<sup>&</sup>lt;sup>3</sup> Ducks Unlimited Inc., Missoula MT, USA

<sup>&</sup>lt;sup>4</sup> Woodwell Climate Research Center, Falmouth, MA, 02540, USA

<sup>&</sup>lt;sup>5</sup> b.geos, Industriestrasse 1, 2100 Korneuburg, Austria

### **Supplementary figures**

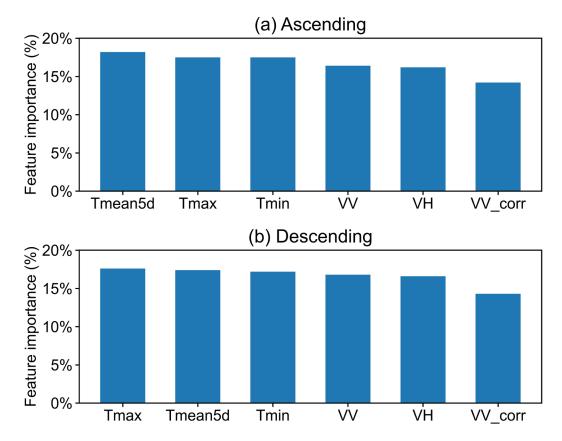
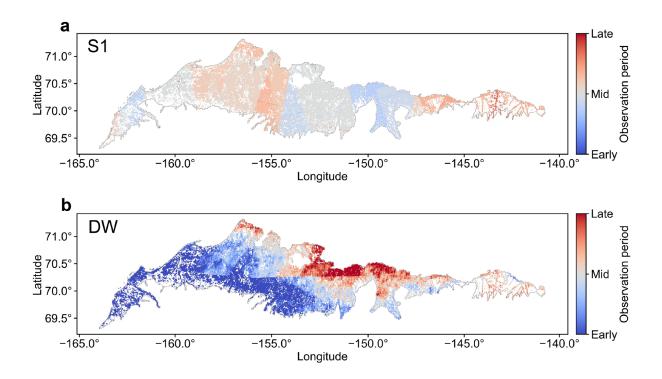




Figure S1

Feature importance of the random forest classifiers trained with ascending-pass data (a) and descending-pass data (b).



**Figure S2**Observation timing of Sentinel-1 (S1) (a) and Dynamic World (DW) (b) in June from 2017–2023. Observations from June 1–10 are classified as Early, June 11–20 as Mid, and June 21–30 as Late.

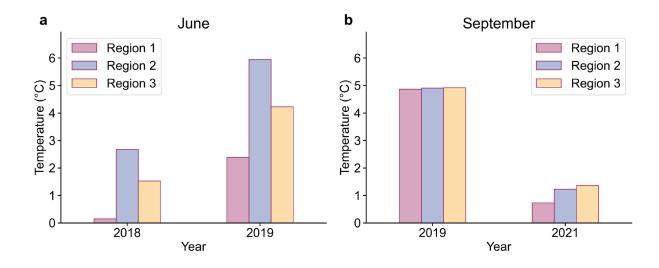



Figure S3

The mean temperature in June 2019 was higher than in June 2018 across the three selected regions (a), while the mean temperature in September 2021 was significantly lower than in September 2019 (b). Temperature data are derived from daily temperature records in the Daymet dataset.

### **Supplementary tables**

Table S1

Comparison between observed ice phenology data and satellite-based estimated phenology dates. The table presents seven observed ice phenology records from four rivers, including the site name, location, event type, and the observed date. It also includes phenology dates estimated from the 1-km Sentinel-1 (S1) and Dynamic World (DW) ice fraction data, along with the date errors calculated as the difference between the estimated and observed dates.

| Site name         | Lat   | Lon     | Event     | Observed | Estimated date |          | Date error |     |
|-------------------|-------|---------|-----------|----------|----------------|----------|------------|-----|
|                   |       |         |           | date     | S1             | DW       | S1         | DW  |
| Colville River    | 70.43 | -150.39 | Freeze-up | 20171015 | 20170926       | 20170927 | -19        | 18  |
| (ColvilleVillage) |       |         |           |          |                |          |            |     |
| Colville River    | 70.43 | -150.39 | Break-up  | 20180605 | 20180611       | 20180622 | 6          | 17  |
| (ColvilleVillage) |       |         |           |          |                |          |            |     |
| Colville River    | 70.43 | -150.39 | Freeze-up | 20181009 | 20181015       | 20180920 | 6          | -19 |
| (ColvilleVillage) |       |         |           |          |                |          |            |     |
| Colville River    | 70.43 | -150.39 | Break-up  | 20190527 | 20190519       | 20190522 | -8         | -5  |
| (ColvilleVillage) |       |         |           |          |                |          |            |     |
| Kuparuk River     | 70.33 | -149.01 | Break-up  | 20180605 | 20180605       | 20180713 | 0          | 38  |
| (Kuparuk)         |       |         |           |          |                |          |            |     |
| Meade River       | 70.49 | -157.41 | Break-up  | 20210530 | 20210524       | 20210615 | -6         | 16  |
| (Atqasuk)         |       |         |           |          |                |          |            |     |
| Sagavanirktok     | 70.25 | -148.31 | Break-up  | 20210524 | 20210522       | 20210609 | -2         | 16  |
| River (Deadhorse) |       |         |           |          |                |          |            |     |

Table S2

Training and testing data used in the random forest models.

| Orbit type _ | Traini | ng data | Tes  | - Total |         |
|--------------|--------|---------|------|---------|---------|
|              | Ice    | Non-Ice | Ice  | Non-Ice | - 10ta1 |
| Ascending    | 9083   | 6174    | 2383 | 1484    | 19,124  |
| Descending   | 16,184 | 10,032  | 3929 | 2589    | 32,734  |

 Table S3

 Hyperparameter settings for the random forest classifiers (ice detection models).

| Hyperparameter          | Ascending | Descending |  |  |
|-------------------------|-----------|------------|--|--|
| Number of trees         | 50        | 50         |  |  |
| Variables per split     | 2         | 3          |  |  |
| Minimum leaf population | 1         | 1          |  |  |
| Bag fraction            | 0.5       | 0.5        |  |  |
| Maximum nodes           | 2010      | 2010       |  |  |

**Table S4**Comparison of 1-km S1 and DW ice fraction on the same days each year from 2017 to 2023. The table lists the *R*, RMSE, RRMSE, and bias values, as well as the number of matched S1 and DW dates for each year and the total number of data points per year.

| Year | R    | RMSE | RRMSE | Bias  | Dates | Points  |
|------|------|------|-------|-------|-------|---------|
| 2017 | 0.90 | 0.21 | 0.38  | 0.05  | 61    | 54,057  |
| 2018 | 0.88 | 0.22 | 0.31  | 0.04  | 127   | 152,963 |
| 2019 | 0.94 | 0.16 | 0.23  | 0.03  | 126   | 140,814 |
| 2020 | 0.92 | 0.19 | 0.38  | 0.04  | 122   | 185,053 |
| 2021 | 0.94 | 0.13 | 0.16  | 0     | 121   | 151,235 |
| 2022 | 0.86 | 0.22 | 0.32  | -0.02 | 97    | 95,325  |
| 2023 | 0.92 | 0.18 | 0.29  | -0.02 | 100   | 87,791  |