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Abstract. Ice cover of water bodies in the northern high latitudes (NHL) is highly sensitive to the changing climate, and its 12 

dynamics exert substantial impacts on the NHL ecosystems, hydrological processes, and the carbon cycle. Yet, operational 13 

quantification of ice cover dynamics for smaller water bodies (e.g., ≤ 25 km²) over vast, remote NHL regions remains limited. 14 

Here, we developed an ice fraction dataset for small water bodies (ponds, lakes, and rivers; 900 m² to 25 km²) across the Arctic 15 

Coastal Plain of Alaska (ACP) from 2017 through 2023, using Sentinel-1 Synthetic Aperture Radar (SAR) imagery, texture 16 

features, and Daymet air temperature data. The dataset has a spatial resolution of 1 km and a temporal resolution of 17 

approximately 6 days. Compared with the Google Dynamic World (DW) product derived from Sentinel-2 optical remote 18 

sensing, our dataset shows high consistency with DW (R = 0.91, RMSE = 0.19) while having enhanced temporal coverage due 19 

to less SAR constraints from solar illumination, cloud cover, and atmospheric conditions. Validation against in-situ 20 

observations suggests that our dataset is more capable of capturing small water body ice phenology (e.g., freeze-up and break-21 

up dates) relative to DW, with an 11-day reduction in mean absolute error. Our ice fraction dataset reveals high spatial 22 

heterogeneity in ice conditions mainly occurring in June for small water bodies across the ACP. The ice phenology analysis 23 

over three selected subregions further shows that a warmer transition period generally leads to earlier ice break-up and later 24 

freeze-up, while the responses of ice fraction to warming climate vary among and within individual water bodies. The resulting 25 

dataset is anticipated to fill a gap in ice phenology studies for small water bodies, improve our understanding on the interactions 26 

between ice dynamics and climate change, and enhance the coupled modelling of ice and carbon processes. The S1 ice fraction 27 

dataset is publicly available at https://doi.org/10.5281/zenodo.17033546 (Lin et al., 2025). 28 
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1 Introduction 30 

Ice cover of rivers and lakes in the northern high latitudes (NHL) is a key indicator of climate change (Adrian et al., 2009). 31 

The seasonal dynamics of water ice cover, including freeze-up, break-up, and ice duration, are collectively referred to as ice 32 

phenology (Sharma et al., 2020). Changes in ice phenology can exert broad socio-economic and ecological impacts, such as 33 

influencing transportation networks (Hori et al., 2018), fisheries resources (Orru et al., 2014), wildlife habitats (Caldwell et al., 34 

2020), hydrological cycle (Wang et al., 2018), and carbon cycle (Matthews et al., 2020). Consequently, lake and river ice are 35 

of high scientific relevance and have become an important focus in climate-related research (Culpepper et al., 2024; Yang et 36 

al., 2020).  37 

Small water bodies dominate in number among global surface water bodies and contribute significantly to variations in 38 

global surface water area and carbon emissions (Mullen et al., 2023; Pi et al., 2022). With the Arctic warming rate exceeding 39 

three times the global average (Rantanen et al., 2022), the tens of thousands of Arctic water bodies are experiencing uncertain 40 

changes in the extent and timing of seasonal ice cover, which is vital for understanding the arctic carbon, water, and energy 41 

cycles (Sharma et al., 2022). Moreover, the rising instability of seasonal ice cover is increasing risks to human welfare in 42 

Arctic communities, which depend on frozen lakes and rivers as major conduits for winter travel. In addition, small water 43 

bodies are key sources of methane, surpassing big lakes by over tenfold in total emissions due to their high carbon content, 44 

low oxygen levels, and shallow nature (Wik et al., 2016). The ice dynamics from these small water bodies thus strongly 45 

regulate the magnitude and timing of Arctic methane emissions, which may be increasing and exacerbating global warming 46 

(Matthews et al., 2020). Despite the broad importance, knowledge of ice cover dynamics for small water bodies in the vast 47 

and remote NHL remains limited partly due to the lack of all-weather satellite observations with high-resolution and frequent-48 

sampling capabilities. One representative study region is the Arctic Coastal Plain of Alaska (ACP), which contains a high 49 

density of small surface water bodies (Smith et al., 2007). Since the early 21st century, this region has experienced marked 50 

hydrological changes due to climate warming and permafrost thaw (Webb et al., 2022). However, major lake ice observation 51 

datasets and related phenological analyses do not include lakes in the ACP (Benson et al., 2000; Sharma et al., 2019, 2022). 52 

Studies based on lake modeling also face limitations, as their coarse spatial resolution (e.g., 0.5° or 1°) makes them unsuitable 53 

for characterizing ice cover dynamics in small water bodies (Grant et al., 2021; Huang et al., 2022).  54 

Satellite remote sensing is currently the most practical approach for mapping open-water ice over the remote Arctic regions 55 

where field measurements and airborne campaigns are very limited. Satellite observations collected using optical-infrared (IR) 56 

and active and passive microwave sensors have been widely used for mapping ice cover over large regions (Du et al., 2019).  57 

High-resolution IR satellites such as Planet SuperDove/Skysat, Sentinel-2, Landsat, and Terra/Aqua are particularly useful 58 

for delineating ice cover extent from sub-meter to 1000 m scales (Arp et al., 2013; Brown et al., 2022; Mullen et al., 2023; 59 

Šmejkalová et al., 2016; Wang et al., 2022; Yang et al., 2020; Zhang et al., 2021).  For example, the Google Dynamic World 60 

(DW) product characterizes snow and ice conditions along with other land covers globally based on Sentinel-2 observations, 61 
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with a revisit frequency of about 4–10 days (Brown et al., 2022). However, the utility of these data is strongly constrained in 62 

the Arctic by signal degradation and data loss stemming from extended polar darkness and persistent cloud cover or smoke 63 

(Brown et al., 2022). Satellite microwave observations are capable of distinguishing between water and ice due to their 64 

contrasting dielectric properties, while exhibiting relatively low sensitivity to solar illumination and atmosphere constraints at 65 

lower frequencies (∼ < 89 GHz) (Antonova et al., 2016; Du et al., 2017; Kang et al., 2012; Šmejkalová et al., 2016). 66 

Passive microwave radiometers such as the Advanced Microwave Scanning Radiometer–Earth Observing System 67 

(AMSR-E/2) provide frequent (∼ daily) but relatively coarse spatial-resolution (~5–25 km) observations over northern (≥ 45° 68 

N) land areas (Du et al., 2017; Kang et al., 2012). For example, a daily lake ice phenology record (5-km resolution) from 2002 69 

to 2021 derived from AMSR-E/2 enabled precise (95 % temporal accuracy) ice cover mapping for Northern Hemisphere lakes 70 

regardless of cloud conditions (Du et al., 2017). Despite a general tendency towards thinner ice, later freezing, and earlier 71 

break-up in the Northern Hemisphere driven by recent climate warming (Du et al., 2017; Kang et al., 2012; Šmejkalová et al., 72 

2016), the study also revealed opposing trends toward earlier ice formation and later ice break-up existing over specific lakes 73 

and periods. However, the coarse resolution of passive microwave sensors restricts their application to only the largest lakes 74 

(area ≥ 50 km2), while similar capabilities for monitoring the abundance of smaller water bodies across the Arctic is lacking. 75 

Space-borne radar instruments are highly sensitive to ice conditions similar to passive microwave sensors, while having 76 

comparable resolutions to optical sensors capable of delineating ice cover of small water bodies. The radar open water ice 77 

observations are governed by sensor configurations (frequency, polarization, incidence angle) and scattering from or within 78 

snow/ice/water/sediment layers (Murfitt and Duguay, 2021). For the ice formation period, the contrasting pattern of high 79 

backscatter from cracks and deformations relative to the surrounding thin ice is indicative of the initial ice cover (Antonova et 80 

al., 2016). As the ice thickness grows, backscatter generally increases due to the roughness and large dielectric contrast at the 81 

ice and water surface (Murfitt and Duguay, 2021). When maximum ice thickness is reached, decreased radar backscatter can 82 

be observed from bedfast ice due to the small dielectric contrast at the ice and ground surface. For the melting period, dark 83 

patches/spots in radar images may be observed from open-water areas or small water pools on ice; while increased 84 

backscattering is also expected from the roughened ice surface during melt and refreeze events (Murfitt and Duguay, 2021). 85 

Accordingly, statistics-based approaches have been widely used to distinguish ice and water (Engram et al., 2018; Murfitt and 86 

Duguay, 2021). Machine learning approaches were recently utilized to leverage the characteristic radar backscatter patterns 87 

observed at different ice freezing/thawing phases for enhanced ice cover detection (Tom et al., 2020). Despite the algorithm 88 

development, radar capabilities for routine lake ice monitoring over large regions have been constrained by the complex 89 

interactions between microwave and water body features, limited global coverage, and relatively sparse temporal frequency 90 

of sampling from prevailing satellites (Du et al., 2019). There remains a lack of databases that can provide all-weather and 91 

operational observations of ice cover and phenology dynamics for small water bodies across the ACP, where accelerated 92 

warming and thawing occurs. 93 
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In this study, we developed a dataset of ice fraction for smaller water bodies (≤ 25 km²) on the ACP using Sentinel-1 SAR 94 

data (S1), with a temporal resolution of about 6 days. The total area of the studied water bodies is 6,443.59 km², with the 95 

smallest unit measuring 900 m². We analyzed 3,717 S1 images acquired between 2017 and 2023. A random forest (RF) 96 

classifier was applied to each image to generate 10-m resolution ice cover maps. The study area was subsequently divided into 97 

1 km² grid cells, and the ice fraction of small water bodies within each grid was calculated. The reliability of the dataset was 98 

evaluated based on classification accuracy, comparison with DW, and validation against observed ice phenology data. We also 99 

applied the resulting dataset to quantify multi-year ice fraction patterns during the melting season across the ACP, and assessed 100 

the potential utility of the data record for monitoring the regional ice phenology. 101 

2 Study area and data set 102 

2.1 Study area 103 

Our study focused on ice cover conditions of small water bodies (900 m² to 25 km²) across the ACP (Fig. 1a). We selected 104 

three representative regions (Fig. 1b–d) and estimated the ice phenology of small water bodies within each region based on 105 

satellite-derived ice fraction data (see Section 3.6). These regions differ in latitude, longitude, and geomorphological 106 

characteristics. Region 1 (Fig. 1b) lies near the northern coast of the ACP, adjacent to the Barrow flux tower, and features 107 

thermokarst lakes (Arp et al., 2012). Region 2 (Fig. 1c) is underlain by an ancient sand dune field and contains relatively deep 108 

lakes (Simpson et al., 2021). Region 3 (Fig. 1d) is situated near Prudhoe Bay, which is the largest conventional oil field in 109 

North America (Jamison et al., 1980) and is characterized by extensive infrastructure that supports oil and gas exploration. 110 

The water bodies in Region 3 provide freshwater resources for local industrial activities and are subject to greater human 111 

disturbance. 112 
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 113 
Figure 1. Numerous small water bodies are distributed across the study area. a, Small water bodies (blue) investigated within the ACP, 114 
locations of observed ice phenology records (green triangles), and the three selected regions for ice phenology analysis (orange circles). b–115 
d, Enlarged views of the three selected regions, with orange borders indicating 5 × 5 km areas. Panels b–d use basemaps from Esri World 116 
Imagery. 117 

2.2 Data set 118 

2.2.1 Water body data 119 

We used the Global Lakes and Wetlands Database Version 2 (GLWD v2) (Lehner et al., 2024) and the Joint Research 120 

Centre Global Surface Water (GSW) products, including maximum water extent and water occurrence (Pekel et al., 2016), to 121 

generate the small water body mask (Fig. 1a, Section 3.1.1). GLWD v2 provides a global map of inland surface water with a 122 

spatial resolution of 15 arc-seconds, including 33 categories of water bodies such as lakes (Lehner et al., 2024). The GSW 123 

maximum water extent product provides the maximum extent of surface water between 1984 and 2021 at 30-m spatial 124 

resolution, while the GSW water occurrence product provides the frequency of surface water presence at each pixel during 125 

1984–2021 (Pekel et al., 2016). 126 
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2.2.2 Sentinel-1 SAR data 127 

In this study, we used Sentinel-1 SAR imagery to detect ice within small water bodies in the ACP. The Sentinel-1 128 

constellation includes two satellites, S1A and S1B, which were launched in 2014 and 2016, respectively, with sun-synchronous 129 

descending/ascending orbits and 6 AM/PM mean local sampling times. The revisit frequency of the Sentinel-1 constellation 130 

is 6 days from both satellites but was reduced to 12 days after the S1B satellite ceased operating in December 2021 131 

(https://sentinels.copernicus.eu/copernicus/sentinel-1). SAR is less affected by cloud cover or illumination conditions relative 132 

to optical-IR sensors, enabling all-weather monitoring. Due to differences in dielectric properties and surface roughness, ice 133 

and water typically exhibit distinct backscatter characteristics in SAR imagery (Stonevicius et al., 2022; Section 1) for 134 

facilitating ice/water classifications. The Sentinel-1 Ground Range Detected (GRD) product, which was generated from the 135 

SAR observations under Interferometric Wide Swath (IW) mode and both ascending and descending orbits, was used in the 136 

study. The vertically (VV) and cross (VH) polarized radar backscatters and their incidence angles were analysed for ice and 137 

water mapping. A total of 3,717 S1 images (1,451 ascending and 2,266 descending scenes) covering the ACP at 10-m 138 

resolution were collected for the period from 2017 through 2023. 139 

2.2.3 Dynamic World and Sentinel-2 data 140 

Dynamic World (DW) is a 10-m resolution land cover dataset derived from Sentinel-2 (S2) optical-IR imagery. It includes 141 

nine classes, with snow and ice among them (Brown et al., 2022). Due to the application of cloud filtering, the temporal 142 

resolution of the DW product is approximately half that of Sentinel-2, around 4–10 days (Brown et al., 2022). The land cover 143 

classes in DW are predicted using a fully convolutional neural network (FCNN), with the snow/ice class achieving a user 144 

accuracy of 71.2 % and a producer accuracy of 94.2 % (Brown et al., 2022). The DW data were used for training the RF model 145 

and validating S1-based classifications. Specifically, we used the label band from DW, which represents the land cover class 146 

label with the highest estimated probability. Then, the DW images from 2017 through 2023 were converted into binary ice and 147 

non-ice masks (i.e., label dataset) for the identified small water bodies in the ACP. DW is generated from S2 images with 148 

cloud cover ≤ 35 %. However, to ensure higher-quality samples for training the RF model, we paired DW scenes with S2 149 

imagery acquired on the same day and retained only those with cloud cover ≤ 20 %. 150 

2.2.4 Daymet data 151 

The Daily Surface Weather and Climatological Summaries (Daymet V4) dataset provides daily estimates of surface 152 

weather parameters over North America at 1-km spatial resolution since 1980 (Thornton et al., 2021). The air temperature 153 

parameters of Daymet V4 are estimated through a weighted multivariate regression model based on observed weather station 154 

data. The cross-validation results of Daymet V4 show that the average daily mean absolute error (MAE) is 1.78 °C for daily 155 

minimum air temperature (Tmin) and 1.52 °C for daily maximum air temperature (Tmax) (Thornton et al., 2021). For each 156 

image from 2017 through 2023, we selected Tmax, Tmin, and a 5-day lagged mean air temperature (Tmean5d) as part of the 157 
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RF predictors. To derive the Tmean5d, we first computed the daily average air temperature (Tavg) by averaging Tmax and 158 

Tmin, then calculated the mean Tavg over the current day and the preceding four days. Temperature was selected as a predictor 159 

because it is a key atmospheric factor influencing the dynamics of ice cover (Woolway et al., 2020). Considering the data 160 

uncertainties due to the spatial interpolation from limited station measurements over the region, we added random noise of 161 

±1.5 °C to the original Daymet Tmax, Tmin, and Tmean5d data to improve the robustness of the RF model. 162 

2.2.5 Observed ice phenology data 163 

To assess the accuracy of our ice fraction dataset in estimating ice phenology, we collected seven observational records 164 

from four rivers within the study area (Fig. 1a) from the River and Lake Ice Phenology Dataset for Alaska and Northwest 165 

Canada (Arp and Cherry, 2022). The seven collected records are derived from ground-based visual observations. This 166 

observational dataset provides information such as the dates of ice break-up and freeze-up, and the coordinates of each record 167 

(Table S1). The dataset does not provide specific definitions for break-up and freeze-up dates, nor does it include specific 168 

accuracy metrics, but it notes that observations of river and lake ice conditions are primarily conducted by shore-side 169 

community members and are qualitative in nature.  170 

3 Methods 171 

3.1 Data preprocessing 172 

3.1.1 Generating small water body mask 173 

To delineate the extent of small water bodies, we first extracted lakes larger than 25 km² from the GLWD v2 product. 174 

These large lakes were then removed from the GSW maximum water extent to generate an initial mask of small water bodies. 175 

To reduce ice detection errors along littoral zones and riverbanks, we used the GSW water occurrence product to retain only 176 

areas with water occurrence greater than 80 % within the initial small water body extent. The total area of the remaining small 177 

water bodies used in this study is 6,443.59 km². We applied the resulting water body mask to the S1 imagery, the DW product, 178 

and the Daymet air temperature data for ice cover mapping over small water bodies in the ACP. 179 

3.1.2 Pre-processing of Sentinel-1 imagery 180 

The S1 data were pre-processed before being fed into the RF model, which included incidence angle normalization, de-181 

speckling using Refined Lee filtering, texture calculation, image clipping, and water body masking (Fig. 2a). 182 

To correct for SAR incidence angle effects (Koyama et al., 2019), we normalized the incidence angles to 40° using a well-183 

established cosine correction method (Mladenova et al., 2012) (Eq. 1). 184 

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜎𝜎𝜃𝜃 
 (𝑐𝑐𝑐𝑐𝑐𝑐

 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 

)𝑛𝑛           (1) 185 
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𝑙𝑙𝑙𝑙�𝜎𝜎𝜃𝜃 
 � = 𝑛𝑛 × 𝑙𝑙𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐  𝜃𝜃 ) + 𝑏𝑏          (2) 186 

where 𝜎𝜎𝜃𝜃 
  is the backscatter coefficient of a pixel in the SAR image, 𝑐𝑐𝑐𝑐𝑐𝑐  𝜃𝜃  is the cosine of the incidence angle for that pixel, 187 

and 𝑐𝑐𝑐𝑐𝑐𝑐  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  is the cosine of the reference incidence angle (set to 40° in this study). 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  represents the backscatter 188 

coefficient corrected to the reference angle. The exponent  𝑛𝑛  describes surface roughness, and  𝑏𝑏  is the intercept of the linear 189 

equation. The exponent  𝑛𝑛  in Equation (1) is derived by performing a linear fit between 𝑙𝑙𝑙𝑙�𝜎𝜎𝜃𝜃 
 � and  𝑙𝑙𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐  𝜃𝜃 ), as shown in 190 

Equation (2). 191 

Based on Equation (1), we applied incidence angle normalization to the VV and VH bands of both ascending and 192 

descending S1 data. To determine the four corresponding 𝑛𝑛 values, we sampled each S1 image within the small water body 193 

extent during the study period. A total of 318,400 data points were collected from ascending orbit images and 401,560 data 194 

points from descending orbit images. The correction coefficients (𝑛𝑛) derived using Equation (2) were 4.43 and 2.6 for 195 

ascending VV and VH, and 4.11 and 2.6 for descending VV and VH, respectively. 196 

To reduce SAR speckles, we applied the Refined Lee filter (Lee and Pottier, 2017) to each S1 image after incidence angle 197 

normalization. We then calculated the correlation texture for the VV band (VV_corr), which quantifies the similarity between 198 

a pixel and its neighbors. The inclusion of radar backscatter texture information provides spatial context for the RF model, 199 

enabling the classifier to utilize not only the value of individual pixels but also statistical characteristics of their surrounding 200 

neighborhood. For example, VV_corr texture information is indicative of ice and water conditions (e.g., ice patches, open 201 

water patches, and ice-water boundaries) during the break-up period (Fig. S1), and thus supports the machine-learning based 202 

classification. Among the commonly used texture features (Soh and Tsatsoulis, 1999), such as correlation, variance, contrast, 203 

energy, and entropy, VV_corr was found to be most important for ice detection. Considering the importance of VV_corr and 204 

the increased computational burden introduced by multiple texture features, we ultimately selected VV_corr as the only texture 205 

predictor.  206 

To avoid the impacts of S1 degradations over image edges, we removed the pixels within a 100-m buffer area from the 207 

image edges. Finally, the small water body mask was applied to each S1 scene. 208 
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 209 
Figure 2. Workflow for generating ice fraction dataset, comparing S1 and DW ice fraction, and analyzing ice phenology. 210 
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3.2 Constructing sample dataset 211 

To train and test our RF-based ice detection model, we first constructed a dataset using DW ice/non-ice classifications as 212 

predictand, and S1 VV and VH backscatter coefficients, VV_corr, and Daymet air temperature variables as predictors (Fig. 213 

2b). We paired all same-day S1, S2, DW, and Daymet images over the study area from 2017–2023 to form the S1-S2-DW-214 

Daymet image collection. The ACP study area was divided into 23 longitudinal zones at 1° intervals. For each S1-S2-DW-215 

Daymet image pair within a given longitudinal zone, we sampled 20 points per class (ice and non-ice) based on the DW labels.  216 

In total, we collected 51,858 samples, consisting of 31,579 ice samples and 20,279 non-ice samples (Fig. 3). Of these, 217 

19,124 samples (11,466 ice and 7,658 non-ice) were from ascending orbit scenes, and 32,734 samples (20,113 ice and 12,621 218 

non-ice) from descending orbit scenes. We separated the ascending and descending orbit samples to develop independent ice 219 

detection models for each orbit. 220 

 221 
Figure 3. The labelled data used for training and testing the ice detection models. a, Spatial distribution of ice samples. b, Spatial distribution 222 
of non-ice samples. 223 

3.3 Generating ice fraction 224 

We used the RF model to detect ice cover in small water bodies, specifically performing binary classification (ice vs. non-225 

ice) at the pixel scale (Fig. 2c). The RF is an ensemble learning algorithm with high computational efficiency and robustness 226 

against overfitting (Belgiu and Drăguţ, 2016; Maxwell et al., 2018). The input features for the ice detection model included 227 

six predictors: VV, VH, VV_corr, Tmax, Tmin, and Tmean5d. The predictand is the ice/non-ice classification. Considering 228 

the different passing time, S1 ascending (6 PM local time) and descending (6 AM local time) observations were processed 229 

separately. Therefore, separate RF models were trained using S1 ascending and descending orbit samples. The dataset was 230 

randomly split into 80 % for training and 20 % for testing (Table S2). Optimal model hyperparameters were determined through 231 
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tuning (Table S3). Model performance was evaluated using the test set, with metrics including overall accuracy, user accuracy, 232 

and producer accuracy. 233 

The trained ice detection models were applied to each S1 image throughout the study period to produce 10-m resolution 234 

ice cover maps for small water bodies in the ACP (Fig. 2c). The study area was then divided into 1-km grid cells, and the ice 235 

fraction was calculated for each grid based on the 10-m ice cover maps. Only grid cells with at least 95 % spatial coverage of 236 

small water bodies with RF ice classifications were retained. The 1-km ice fraction dataset from 2017–2023 was generated by 237 

merging the results for the respective S1 ascending and descending observations. In addition, we generated a corresponding 238 

1-km ice fraction dataset from the DW product for inter-comparisons. 239 

3.4 Post processing 240 

Post-processing was performed to minimize retrieval uncertainties and remove outliers from the ice fraction record. We 241 

first corrected non-zero ice fraction values during the ice-free season, which are likely artifacts from the misclassifications 242 

under rough water surface conditions (Du et al., 2016). Specifically, the 1-km S1 ice fraction time series for each grid was 243 

divided into one-year segments, and a Gaussian smoothing filter was applied to each segment. Periods with smoothed ice 244 

fraction values below 0.5 were identified as water-dominated periods. Within these periods, we located the first and last days 245 

in the original (i.e., unsmoothed) series where the ice fraction dropped below 0.1 and set all values between the two dates to 246 

zero. 247 

During the ice break-up process, the S1 radar backscatter tends to be reduced first due to an increase in liquid water content 248 

in snow on top of ice cover, followed by a possible increase with greater snow and ice surface roughness as melting continues 249 

(Murfitt et al., 2024). In the ice fraction time series, this effect can manifest as a dip followed by a rise. To address the snow 250 

melting impacts, we further applied a local minimum smoothing filter to the ice fraction time series. Specifically, if a given 251 

value was lower than both its preceding and following values, it was replaced by the average of those two neighbouring values. 252 

3.5 Comparison of S1 and DW ice fraction 253 

In addition to the RF model evaluations (Sections 3.3 and 4.1), we also compared the S1 and DW ice fraction datasets 254 

(Fig. 2d). For quantitative comparison (Section 4.2), we paired each S1 ice fraction value with the corresponding DW value 255 

on the same day and grid during 2017–2023. Only grids where small water bodies cover at least 5 % of the grid area were 256 

included. We then calculated the Pearson correlation coefficient (R), root mean square error (RMSE), relative RMSE (RRMSE), 257 

and bias between S1 and DW ice fraction datasets. For qualitative comparison (Section 4.3), we used S1 and DW ice fraction 258 

datasets to generate maps of the multi-year average ice fraction for small water bodies in the ACP during May to July and 259 

analyzed their spatiotemporal patterns. 260 
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3.6 Ice phenology analysis 261 

The ice fraction dataset captures the small water body ice phenology, such as the freeze-up and break-up dates. Freeze-up 262 

refers to the process from the initial formation of ice to full ice coverage, while break-up refers to the transition from the initial 263 

fracturing of ice to the return of open water conditions (Sharma et al., 2022). Definitions of freeze-up and break-up dates vary 264 

across studies, commonly based on the initiation or completion of these phases (Arp et al., 2013; Brown and Duguay, 2010; 265 

Sun, 2018). In this study, we define the break-up date as the first day on which the ice fraction drops below 0.95, and the 266 

freeze-up date as the last day below 0.95 before the ice fraction rises above this threshold. The 0.95 threshold represents the 267 

onset of break-up and the completion of freeze-up.  268 

To evaluate the accuracy of remote sensing-based ice fraction data in estimating ice phenology, we extracted S1 and DW 269 

ice fraction values from the 1-km grid cells corresponding to the in-situ ice phenology records (Fig. 1a, Table S1). Subsequently, 270 

ice phenology dates based on S1 and DW were estimated and compared with the observed dates (Fig. 2e). We also estimated 271 

ice phenology for three 5 × 5 km regions (Fig. 1b–d) within the ACP representing distinctive lake geomorphological 272 

characteristics and compared the results between warm and cold years for understanding the impacts of changing climate on 273 

lake ice dynamics (Fig. 2e). 274 

3.7 Uncertainty assessment 275 

To assess the S1 ice fraction data uncertainty, we collected all paired DW and S1 ice fraction observations on the same 276 

dates from 2017 through 2023 for each grid cell. Subsequently, the RMSE of S1 and DW ice fractions was calculated for each 277 

grid cell and normalized by the average DW ice fraction of that grid cell across all temporally matched observations, to derive 278 

the RRMSE, expressed in percentage. The RRMSE for each grid cell is calculated as follows: 279 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
�1𝑛𝑛� �𝑆𝑆1𝑖𝑖−𝐷𝐷𝑊𝑊𝑖𝑖�

2𝑛𝑛

𝑖𝑖=1

𝐷𝐷𝐷𝐷
× 100%         (3) 280 

where 𝑆𝑆1𝑖𝑖 and 𝐷𝐷𝑊𝑊𝑖𝑖 denote the S1 and DW ice fraction of the same 1 km grid cell at the 𝑖𝑖-th temporally matched observation, 281 

respectively; 𝑛𝑛 is the number of temporally matched observations available for that grid cell; and 𝐷𝐷𝐷𝐷 represents the mean 282 

DW ice fraction of that grid cell across all 𝑛𝑛 temporally matched observations. The resulting RRMSE map serves as a quality 283 

flag layer for the ice fraction product and will be released alongside the final dataset (Fig. S2, Section 6).  284 
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4 Results 285 

4.1 Performance of 10-m ice detection 286 

Our RF results were highly consistent with the DW for pixel-based ice classifications. For S1 ascending orbits, the overall 287 

accuracy, user accuracy, and producer accuracy were 0.91, 0.93, and 0.92, respectively. For descending orbits, these metrics 288 

were 0.91, 0.92, and 0.93. Both temperature-based and radar-based features are important, with comparable contributions to 289 

the predictions (Fig. S3). The temperature variables provide regional temperature distributions and seasonal context, whereas 290 

the SAR variables provide the direct observations crucial for distinguishing pixel-level ice conditions. Figure 4 shows good 291 

consistency between the 10-m S1 ice cover maps and the DW ice cover maps on the same days. Unlike the DW ice cover 292 

maps, which suffer from large data gaps due to cloud contamination, the S1 imagery provides valid estimates of ice cover 293 

under cloudy conditions (Fig. 4b). Due to differences in overpass times on the same date (UTC 03:00 for ascending S1, UTC 294 

17:00 for descending S1, and UTC 22:00 for S2), S1 and S2 may capture different ice conditions when active ice melting 295 

occurred (e.g., Fig. 4a). 296 
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 297 
Figure 4. Comparison of Sentinel-2 RGB, Sentinel-1 VV, S1-based ice detection, and DW-based ice detection. Rows a–e show results from 298 
different periods and regions. Each row of subplots presents, for the same day, the optical image, SAR image, the 10-m S1 ice cover map 299 
from this study, and the 10-m ice cover map from DW. In row b, significant portions of the S2 optical image and associated DW ice 300 
classification are degraded by cloud contamination, whereas the S1 SAR based ice classification is unaffected by this atmosphere constraint. 301 
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4.2 Quantitative assessment of 1-km ice fraction 302 

Quantitative comparisons showed high consistency between the 1-km S1 and DW ice fraction results, with an R of 0.91, 303 

RMSE of 0.19, RRMSE of 28.41 %, and a bias of 0.02 (Fig. 5). The S1 ice fraction shows a slight overestimation relative to 304 

DW in low-value areas, such as when the ice fraction ranges from 0 to 0.4. However, this overestimation accounts for less than 305 

10 % of the validation data pairs. Annual comparisons from 2017 through 2023 also showed good consistency, with R values 306 

ranging from 0.86 to 0.94, RMSE between 0.13 and 0.22, RRMSE between 0.16 and 0.38, and bias ranging from –0.02 to 0.05 307 

(Table S4). 308 

 309 
Figure 5. Comparison of 1-km S1 and DW lake ice fraction results on the same days from 2017 through 2023 show good agreement. The 310 
linear regression line and evaluation metrics (R, RMSE, RRMSE, and bias), based on 867,238 data points, are shown in the plot. The 311 
background is a kernel density estimate generated through random sampling. 312 

 313 

The uncertainty of the S1 ice fraction dataset for each 1 km grid cell was evaluated using RRMSE. About 5.16% of the 1 314 

km grid cells have an RRMSE below 10%, indicating that in these areas the model achieves high accuracy, with predictions 315 

closely matching the DW ice fraction (Table 1). An additional 17.30% of the data fall within the 10–20% range, reflecting 316 

good model performance (Table 1). The largest portion of the dataset, 31.17%, lies in the 20–30% range, indicating moderate 317 

accuracy for a substantial part of the ice fraction predictions (Table 1). Furthermore, 21.27% of the data are within the 30–40% 318 

range, showing areas with larger errors. In addition, 11.31% of the data have RRMSE values between 40–50%, and 13.79% 319 

exceed 50%, highlighting regions where the model performs poorly. For these high-error areas, users should exercise caution 320 

and can filter them using the provided quality layer. Relatively high errors were mainly found along rivers as well as in very 321 

small water bodies, where mixed land and water/ice conditions are likely found in S1 observations (Fig. S2). For example, 322 
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among the 1-km grid cells with RRMSE greater than 60%, 46.7% areas are distributed in river areas determined by a 1 km 323 

buffer around the river centerlines. Contaminations in S1 observations from the surrounding land areas of the elongated or 324 

very small water bodies likely led to the large classification uncertainties. 325 

 326 
Table 1. Uncertainty distribution of S1 ice fraction data. The uncertainty for each 1 km grid cell is measured by the RRMSE of ice fraction 327 
between S1 and DW for that cell. 328 

Uncertainty range Proportion of 1-km grid cells 

< 10 % 5.16 % 

[10 %, 20 %) 17.30 % 

[20 %, 30 %) 31.17 % 

[30 %, 40 %) 21.27 % 

[40 %, 50 %) 11.31 % 

> 50 % 13.79 % 

 329 

4.3 Spatiotemporal patterns of ice fraction 330 

We calculated monthly mean lake ice fraction maps for the ACP in May, June, and July of each year from 2017 through 331 

2023, and then averaged these to produce multi-year mean ice fraction maps for each month (Fig. 6). The May composite 332 

shows widespread ice coverage over small water bodies across the ACP (Fig. 6a). June marks a period of rapid melt, with a 333 

general decrease in ice fraction from higher to lower latitudes. Most rivers exhibit melt conditions in June, and adjacent lakes 334 

also show reduced ice coverage during this period (Fig. 6b). This pattern is related to the spring flood pulse and delivery of 335 

snowmelt runoff by river inflows from surrounding lake–watershed systems (Brown and Duguay, 2010). By July, ice fractions 336 

are minimal, which suggests most small water bodies have completed ice break-up (Fig. 6c). This is consistent with previous 337 

findings indicating that ice-out dates for lakes in the ACP generally occur after the summer solstice (Arp et al., 2013). 338 

The multi-year mean ice fraction maps derived from S1 (Fig. 6a–c) and DW (Fig. 6d–f) show good agreement, especially 339 

for May and July. In June, when ice melt is most dynamic, the DW ice fraction map indicates higher ice fractions in the western 340 

to central ACP, but lower ice fractions in the northeastern-central region compared to the S1 ice fraction map (Fig. 6b,e). These 341 

differences are attributable to differences in observation timing between the two datasets. In the western to central ACP, DW 342 

observations are concentrated in early June (Fig. S4b), generally capturing pre-melt conditions, whereas the S1 observations 343 

in this region are more concentrated in mid-June (Fig. S4a), reflecting more advanced melt. In contrast, in the northeastern-344 

central ACP, DW observations are concentrated in late June (Fig. S4b) when ice had largely melted, while the S1 observations 345 

occurred earlier in the month (Fig. S4a) when ice was still present. 346 
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 347 
Figure 6. Multi-year mean 1-km ice fraction maps for small water bodies in the ACP from May to July. a–c show the S1-derived ice fraction 348 
results for May (a), June (b), and July (c). d–f show the DW-derived ice fraction results for May (d), June (e), and July (f). Only grid cells 349 
where small water bodies cover ≥ 1 % of the area are shown. 350 

4.4 Ice phenology assessment 351 

For ice phenology estimation, the S1 derived ice fraction record produced more accurate results, with an overall MAE of 352 

7 days, whereas the DW-derived estimates had an overall MAE of 18 days in relation to the 7 ice phenology observations from 353 

the 4 ACP sites (Table 2). The error range for phenology dates derived from the S1 ice fraction record was 0 to 19 days (Table 354 

S1), comparable to a previous study at Lake Hazen in Canada using Sentinel-1 imagery (2–17 days) (Murfitt and Duguay, 355 

2020). In contrast, DW-derived phenology dates showed larger errors, ranging from 5 to 38 days. The estimation error of 356 

freeze-up dates from the S1 ice fraction record is larger than that of break-up dates, mainly due to the record from 2017 (Table 357 

S1). Notably, both S1 and DW estimates show large errors for this period. The S1-based ice fraction data captured the ice 358 

phenology within 1-km grid cells, whereas the in-situ data set were from eye-based visual observations. Therefore, the two 359 

phenology measurements may differ due to mismatches in spatial extent and time of observation. 360 

  361 
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Table 2. Errors in ice phenology dates estimated from 1-km S1 and DW ice fraction data. Errors are presented as mean absolute error (MAE), 362 
calculated based on the results in Table S1. The table includes MAE for break-up dates, freeze-up dates, and overall MAE. 363 

Data MAE (days) 

Break-up Freeze-up Overall 

DW 18 19 18 

S1 4 13 7 

 364 

The ice phenology results derived from the S1 ice fraction record captured the impact of an anomalous heatwave in 2019 365 

(Fig. S5a), which led to notably earlier break-up dates across all three regions compared to 2018 (Fig. 7). In June 2019, Region 366 

2 experienced the highest mean air temperature among the three regions, reaching approximately 6 °C (Fig. S5a).  367 

Correspondingly, Region 2 also exhibited the earliest break-up dates among the three regions (Fig. 7d–f). In 2018, some 368 

irregularly shaped and smaller water bodies in Region 3 experienced earlier ice break-up (Fig. 7c). This pattern is consistent 369 

with previous findings suggesting that lakes with more complex shapes and smaller areas tend to break up earlier (Arp et al., 370 

2013). Our results also showed that freeze-up in 2021 occurred significantly earlier than in 2019 across all three regions (Fig. 371 

8), which was related to a colder September in 2021 (Fig. S5b). 372 

 373 

 374 
Figure 7. The lake ice break-up dates in 2019 (d–f) were generally earlier than those in 2018 (a–c) across the three selected regions in the 375 
ACP (Fig. 1). Each subplot shows a 5 × 5 km area where water bodies are delineated by black lines. The phenology dates are calculated 376 
based on 1-km S1 ice fraction data, and the color of each 1-km grid cell indicates the break-up date in day of year (DOY). 377 

 378 
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 379 
Figure 8. The lake ice freeze-up dates in 2021 (d–f) were earlier than those in 2019 (a–c) across the three selected regions in the ACP (Fig. 380 
1). Each subplot shows a 5 × 5 km area with water bodies delineated by black lines. The phenology dates are calculated based on 1-km S1 381 
ice fraction data, and the color of each 1-km grid cell indicates the freeze-up date in day of year (DOY). 382 

5 Discussion 383 

This study provides a 1-km resolution ice fraction dataset for small water bodies in the ACP from 2017 through 2023. The 384 

dataset is derived from a 10-m resolution S1 derived ice classification and includes water bodies as small as 900 m² in size, 385 

which have been largely omitted in most previous remote sensing-based studies (Arp et al., 2013; Du et al., 2017; Šmejkalová 386 

et al., 2016; Wang et al., 2022; Zhang et al., 2021). By leveraging the all-weather and day-night observation capability of 387 

satellite SAR sensors, the dataset provides more timely ice cover detection relative to the optical-IR observations. In particular, 388 

optical-IR imagery may fail to reliably capture freezing events in high-latitude lakes due to low solar elevation angles 389 

(Šmejkalová et al., 2016), or miss critical ice information due to cloud contamination. Compared to the operational DW 390 

classifications, our dataset offers higher accuracy in ice phenology estimation (S1 MAE = 7 days; DW MAE = 18 days) and 391 

is more capable of capturing ice dynamics during periods of rapid change (Table 2). This dataset provides a new resource for 392 

tracking small water body ice dynamics complementary to optical-IR results and contributes to enhanced monitoring of NHL 393 

environmental changes. 394 

Our dataset shows that small water bodies within ACP are generally covered by ice in May, experience major melting 395 

events in June, and become mostly ice-free in July (Fig. 6a–c). This pattern is consistent with the DW-based results (Fig. 6d–396 

f) and previous studies showing ACP ice break-up events mainly occurring between June and July and ending after the summer 397 

solstice (Arp et al., 2013). Our ice fraction maps also show substantial spatial heterogeneity in June ice cover, including a 398 
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latitudinal gradient of decreasing ice cover toward the south and lower ice fractions in rivers and nearby water bodies (Fig. 399 

6b). The ice cover conditions of water bodies may vary with their distances from and connectivity with rivers due to the 400 

influence of snowmelt runoff on river–lake systems (Brown and Duguay, 2010; Prowse et al., 2011; Woo and Heron, 1989). 401 

Compared to isolated lakes, those connected to rivers tend to break up earlier due to the inflow of relatively warmer meltwater 402 

(Arp et al., 2013).  403 

Ice phenology analysis suggests that air temperature is the main control of break-up and freeze-up events of small water 404 

bodies in the ACP (Figs. 7 and 8), which was also confirmed from satellite observations over large lakes (Du et al., 2017) and 405 

in-situ observations over lakes and rivers (Weyhenmeyer et al., 2011). In addition, our results show that break-up dates tend 406 

to occur earlier in smaller and more irregularly shaped water bodies (Fig. 7c), which is consistent with previous findings (Arp 407 

et al., 2013).  408 

Our ice fraction retrievals are highly correlated with the DW results (R = 0.91). The uncertainties mainly arise from the 409 

complexity of SAR observations of ice and water, as well as the limitations in the RF training data and ancillary inputs. For 410 

example, wind-induced surface roughness may cause strong radar backscatters from open water, leading to water misclassified 411 

as ice (Du et al., 2016). On the other hand, the decrease in backscatters caused by melting snow may lead to ice misclassified 412 

as water (Murfitt et al., 2024). In addition, thin ice with a smooth surface may appear dark in S1 backscatter images, leading 413 

to ice misclassified as water (Mahmud et al., 2022). As a result, wind effects may lead to nonzero ice fraction values during 414 

ice-free periods, while wet snow and thin ice can cause anomalous drops in ice fraction. Moreover, lake water salinity can 415 

affect SAR backscatter coefficients and thus influence ice detection (Engram et al., 2018). This aspect warrants further 416 

investigation in the future. Our ice detection models were trained with diverse samples, yet occasional misclassifications 417 

remain unavoidable. Through post-processing, these residual effects were effectively reduced by identifying and removing 418 

outliers (Section 3.4). Errors can also arise from uncertainties in the RF temperature predictors. Due to the relatively coarse 419 

spatial resolution and reliance on sparse in-situ observations of the Daymet product, the ice detection performance may be 420 

affected by the zonal patterns in temperature. By introducing random noises in the Daymet temperatures (Section 2.2.4), this 421 

issue was effectively mitigated due to decreased RF sensitivity to temperature. In addition, the RF model training was 422 

constrained by the limited availability of a valid DW product due to frequent unfavorable conditions for S2 optical-IR remote 423 

sensing in the ACP. For example, periods without S2 clear-sky observations were under-represented in the RF training. 424 

The error in ice phenology estimation based on the S1 ice fraction dataset (MAE = 7 days) is close to the dataset’s temporal 425 

resolution (∼6 days). The uncertainties in ice phenology estimation partly stem from the uncertainty in the 10-m ice cover 426 

maps and the limited temporal resolution of S1, but may also arise from mismatches in spatial scales between the 1-km ice 427 

fraction product and point-scale in-situ observations.  428 

Despite the above constraints, our SAR-based record allows for operational mapping of 1-km ice fraction from 10-m 429 

ice/water classifications, and quantifying ice phenology over small water bodies. Integrating multiple satellite products holds 430 

promise for generating ice fraction and phenology datasets with further enhanced spatial and temporal coverage (Surdu et al., 431 

2015). For instance, combining with the DW product could enable temporally denser ice observations relative to either data 432 
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set. In addition, our dataset of small water bodies can be merged with operational products that focus on relatively large lakes, 433 

such as the ESA Lakes_cci (Carrea et al., 2024). The complementary datasets allow for comprehensive assessment of water 434 

bodies across a wide range of sizes. Our algorithm can be applied to additional SAR sensors. For example, adapting our method 435 

to the upcoming NISAR mission could provide independent L-band ice cover observations every 6 days over the globe 436 

(Kellogg et al., 2020). By leveraging multi-source remote sensing of ice dynamics for small water bodies, a more 437 

comprehensive ice fraction and phenology data set can be generated for better monitoring and understanding of the fast-438 

changing NHL. 439 

6 Data availability 440 

The 1-km S1 ice fraction dataset generated in this study, and the code used for its production, are publicly available at 441 

https://doi.org/10.5281/zenodo.17033546 (Lin et al., 2025). The final released dataset is provided in GeoTIFF format with a 442 

spatial resolution of 1 km, a temporal resolution of about 6 days, and is projected in the Alaska Albers Equal Area projection 443 

(EPSG: 3338). Each GeoTIFF image, named as YYYYMMDD.tif, represents the ice fraction of small water bodies in the ACP 444 

on a given day, observed by both ascending and descending Sentinel-1 passes, and recorded as the fraction of ice-covered area 445 

within small water bodies in each 1-km grid cell. The spatial coverage of each product image is consistent with the 446 

corresponding Sentinel-1 acquisition, which may not fully cover the entire study area. Each image contains two bands: (1) ice 447 

fraction, with values ranging from 0 to 1, and (2) the proportion of small water bodies within each 1-km grid cell, also ranging 448 

from 0 to 1. The quality flag information was also provided in the data product in GeoTIFF format, with the band named 449 

“RRMSE” expressed in percentage (%) and representing the RRMSE between S1 and DW ice fraction values for each 1-km 450 

grid cell, calculated using all temporally matched observations over the study period. 451 

7 Conclusions 452 

This study used Sentinel-1 SAR imagery, radar backscatter texture features, and air temperature data to develop an ice 453 

fraction dataset for small water bodies (900 m² to 25 km²) across the ACP from 2017 through 2023. The dataset is derived 454 

from 10-m resolution ice cover maps and records the fractional ice cover of small water bodies within each 1-km grid cell in 455 

the ACP, with a temporal resolution of about 6 days. The RF models used for generating the 10-m ice cover maps achieved an 456 

overall accuracy of 0.91, with user and producer accuracies between 0.92 and 0.93. The ice fraction dataset shows strong 457 

agreement with the ice fraction derived from the operational DW product (R = 0.91, RMSE = 0.19, RRMSE = 28.41 %, bias 458 

= 0.02). It also yields higher accuracy in estimating ice phenology compared to the DW data (S1 MAE = 7 days; DW MAE = 459 

18 days). Our ice fraction maps show that ice cover in small water bodies across the ACP exhibits high spatial variability 460 

during the thawing period (e.g., June). Ice phenology estimates suggest that ice dynamics of small water bodies in the ACP 461 

are strongly regulated by air temperature, while also being affected by lake and river interactions, and lake properties such as 462 
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area and shape. Adapting our algorithm framework to other SAR sensors and integrating other complementary information 463 

from multi-source remote sensing will help improve our products and enable timely monitoring and enhanced understanding 464 

of the changing NHL.  465 
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