Response to the reviewer comments

Reviewer #1

The manuscript is a valuable contribution to the delineation of lake ice/water cover using SAR imagery.
Although coverage is limited to the ACP, the algorithm shows promise for application to broader areas
across the northern hemisphere. The data provides advantages over optical imagery as expected of
active microwave. The comparison to DW is a provides suitable validation for the ice fraction product.
There are some minor comments that would be good to address. Overall, the manuscript quality is very
high but there a few key points that should be addressed.

Thank you for your thorough evaluation and valuable suggestions. We have revised the manuscript

accordingly.

There is clear indication that this product could be extended to be an operational product. Was there a
reason that other operational products were not compared? For example, the CCI lakes lake ice cover
product is available at roughly a 1km resolution and covers some of the lakes in the study area. A
comparison to the CCI product would be beneficial due to the similarity between methods, both use a
random forest algorithm to classify ice cover.

Thank you for the comment. The Lakes Essential Climate Variable products (Lakes cci project;

https://climate.esa.int/en/projects/lakes/data/) have a spatial resolution of approximately 1 km, and

focus on relatively large lakes. Accordingly, the CCI Lakes product has almost no spatial overlap with

our data set, which focused on the small water bodies within the ACP study region (Fig. R1).

- Small water bodies in this study - Lakes in CCl_lakes product

Figure R1
Spatial distributions of small water bodies focused in this study and the lakes in the CCI product

(https://climate.esa.int/en/projects/lakes/data/) within the ACP study region.


https://climate.esa.int/en/projects/lakes/data/
https://climate.esa.int/en/projects/lakes/data/

Considering the complementary nature of the two data sets, we added the following in the

Discussion:

Line 433-435: In addition, our dataset of small water bodies can be merged with operational
products that focus on relatively large lakes, such as the ESA Lakes cci (Carrea et al., 2024). The
complementary datasets allow for comprehensive assessment of water bodies across a wide range of
sizes.

Added reference:

Carrea, L., Crétaux, J.-F., Liu, X., Wu, Y., Bergé-Nguyen, M., Calmettes, B., Duguay, C., Jiang,
D., Merchant, C. J., Mueller, D., Selmes, N., Simis, S., Spyrakos, E., Stelzer, K., Warren, M., Yesou,
H., and Zhang, D.: ESA Lakes Climate Change Initiative (Lakes cci): Lake products, Version 2.1,
https://doi.org/10.5285/7FCI9DF8070D34CACABS092E45EF276F1, 2024.

Another question for the authors relates to the choice of texture as a variable for the classifier. The
citation provided was conducted for sea ice, however, to the reviewers knowledge no formal
exploration of texture has been done for lake ice. Did the authors conduct any investigation into texture
values for lake ice? For example, does the texture provide any context for heterogenous surfaces during
freeze-up? break-up? Was an investigation done into the temporal evolution of the texture pattern?

As suggested, we examined texture patterns and used the VV correlation texture as an example to
illustrate the temporal evolution of texture during the ice break-up period (Fig. S1 in the Supplementary
Materials).

For the selected area, the VV correlation texture exhibited a noisy spatial pattern at the onset of
ice melt (first row of Fig. S1). The irregular spatial correlations among adjacent pixels indicated
heterogeneous snow and ice conditions, likely associated with variations in surface roughness, snow
wetness, and ice thickness during this transitional phase. As melting progressed, elevated correlation
values emerged along the ice-water boundary (second row of Fig. S1), reflecting spatially consistent
backscatter from ice slush or saturated, rough ice surfaces within the ice-water transition zone. This
pronounced texture signal provided direct spatial evidence for delineating ice-water boundaries. In the
late stage of break-up, open water areas exhibited high correlation values, consistent with the relatively

homogeneous surface structure of calm water (third row of Fig. S1).



Overall, the VV correlation texture evolved with the changing ice/water conditions and their
spatial patterns, thereby providing support for the machine-learning-based classification.
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Figure S1

The texture derived from SAR imagery provides spatial information for distinguishing lake ice and open water,
illustrated here using a selected area within the study region. The figure shows three stages of lake ice break-up: (1)
the early stage (first row, 6 June 2022), (2) the rapid melt stage (second row, 20 June 2022), and (3) the late stage
(third row, 30 June 2022). For each row, the two panels from left to right represent the Sentinel-2 RGB image, and

the correlation texture computed from the VV band.

We added the following clarification in the manuscript:



Line 201-203: For example, VV_corr texture information is indicative of ice and water conditions
(e.g., ice patches, open water patches, and ice-water boundaries) during the break-up period (Fig. S1),

and thus supports the machine-learning based classification.

There is no variable importance analysis provided - was this conducted? It would be of interest to users
to see how the valuable the different variables were in the random forest classifier. The classifier used
both SAR parameters and temperature variables, how does the model rate these? The concern here
being that the classifier is being driven by temperature rather than SAR/EO data which is the original
goal.

We conducted analysis on variable importance and provided Fig. S3 in the Supplementary
Materials. Both temperature-based and radar-based features are important, with comparable
contributions to the predictions (Fig. S3). For example, in the descending-orbit model, Tmax accounts
for 17.6% while VV accounts for 16.8%, and in the ascending-orbit model, Tmean5d accounts for
18.2% while VV accounts for 16.4% (Fig. S3). The temperature variables provide regional temperature
distributions and seasonal context, whereas the SAR variables provide the direct observations crucial
for distinguishing pixel-level ice conditions.
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Feature importance of the random forest classifiers trained with ascending-pass data (a) and descending-pass data

(b).



We added the following in the manuscript:

Line 289-291: Both temperature-based and radar-based features are important, with comparable
contributions to the predictions (Fig. S3). The temperature variables provide regional temperature
distributions and seasonal context, whereas the SAR variables provide the direct observations crucial

for distinguishing pixel-level ice conditions.



Reviewer #2

This work introduces a new product to support ice cover research in the north. It also presents a novel
method that can be used in other regions to monitor ice cover fraction. This will be highly beneficial
for those working in northern areas. The writing is clear and well-structured, and the data is easily
accessible and well-labelled for the most part. I have only a few minor suggestions to improve clarity
for the reader or user.

Thank you for your thorough evaluation and your valuable suggestions. We have revised the

manuscript accordingly.

“small water bodies’, to me, refers to lakes, rather than rivers — so the validation sites being rivers
seemed to come out of the blue while reading. The authors should consider clarifying in the abstract
that they are referring to lakes and rivers as small water bodies.

Thank you for the suggestion. We have clarified the scope of “small water bodies” in the revised
abstract.

Line 15-17: Here, we developed an ice fraction dataset for small water bodies (ponds, lakes and
rivers;, 900 m? to 25 km?) across the Arctic Coastal Plain of Alaska (ACP) from 2017 through 2023,
using Sentinel-1 Synthetic Aperture Radar (SAR) imagery, texture features, and Daymet air

temperature data.

While I understood the product had 2 bands of data, it wasn’t clear to me that each image did not cover
the entire study area, so some clarification on that could be added to the text.
Thank you for the suggestion. We have added this clarification in Section 6 (Data availability) of

the manuscript and in the product’s README.md file.

README.md file & Manuscript Section 6 (Data availability), Line 446-447:
The spatial coverage of each product image is consistent with the corresponding Sentinel-1

acquisition, which may not fully cover the entire study area.



Overall model performance shows many pixels in the moderate-to-large error category (section starting
around line 304). Given the data limitations, I agree that this is still a very useful product. The per-
pixel quality product, however, could use some clarification. The text lists the values as percentages,
but the product loads with a scale of 0 — 153.8. What is the link between uncertainty and the RRMSE
values in the quality file? Perhaps even just in the .md file, some explanation of what exactly the
RRMSE in the tif are in terms of uncertainty would be helpful.

Thank you for the comment. In the quality file ‘grid rrmse quality layer.tif’, the value of each 1-
km grid cell represents the RRMSE calculated from all same-day paired S1 and DW ice-fraction
observations for that grid cell during the study period. The RRMSE values in
‘grid_rrmse_quality layer.tif” are expressed in percentage (%), so a range of 0—153.8 corresponds to
0%—153.8%.

We have added this clarification in Section 3.7 (Uncertainty assessment), Section 6 (Data

availability) and in the README.md file.

Section 3.7 Uncertainty assessment, Line 276-284:

To assess the S1 ice fraction data uncertainty, we collected all paired DW and S1 ice fraction
observations on the same dates from 2017 through 2023 for each grid cell. Subsequently, the RMSE of
S1 and DW ice fractions was calculated for each grid cell and normalized by the average DW ice
fraction of that grid cell across all temporally matched observations, to derive the RRMSE, expressed

in percentage. The RRMSE for each grid cell is calculated as follows:

j%le(Sli—DWi)z
RRMSE = — x 100% (3)

DwW

where S1; and DW; denote the S1 and DW ice fraction of the same 1 km grid cell at the i-th

temporally matched observation, respectively; n is the number of temporally matched observations

available for that grid cell; and DW represents the mean DW ice fraction of that grid cell across all

n temporally matched observations. The resulting RRMSE map serves as a quality flag layer for the

ice fraction product and will be released alongside the final dataset (Fig. S2, Section 6).

Manuscript Section 6 (Data availability), Line 449-451: The quality flag information was also



provided in the data product in GeoTIFF format, with the band named “RRMSE” expressed in
percentage (%) and representing the RRMSE between S1 and DW ice fraction values for each 1-km

grid cell, calculated using all temporally matched observations over the study period.

README.md file: In the quality file 'grid rrmse quality layer.tif', the value of each 1-km grid
cell represents the Relative Root Mean Square Error (RRMSE), expressed in percentage (%),
calculated from all same-day paired S1 and DW ice-fraction observations for that grid cell during the
study period. Specifically, we collected all paired DW and S1 ice fraction observations on the same
dates from 2017 through 2023 for each grid cell. Subsequently, the RMSE of S1 and DW ice fractions
was calculated for each grid cell and normalized by the average DW ice fraction of that grid cell

across all temporally matched observations, to derive the RRMSE.

Also, can the user be given some cautions to watch for regarding reasons for high RRMSE? e.g., some
of the larger errors occur in these regions (it did not appear to me to be particularly spatially based,
from a brief review of the data product), or on this size or type of water body, etc.? or is there no
discernable set of reasons? With the understanding that this is a data paper and not the venue for a deep
exploration of the reasons, a brief comment or two to help the user would be beneficial.

Thank you for this suggestion. We have added a quick view of the quality layer (Fig. S2) to the
Supplementary Materials. We found that high errors primarily occur in areas of braided rivers and
smaller lakes and ponds, where mixed land and water/ice conditions are likely found in S1 observations.

Accordingly, the following discussions were added in the revised manuscript:

Line 321-325: Relatively high errors were mainly found along rivers as well as in very small water
bodies, where mixed land and water/ice conditions are likely found in SI1 observations (Fig. S2). For
example, among the 1-km grid cells with RRMSE greater than 60%, 46.7% areas are distributed in
river areas determined by a 1 km buffer around the river centerlines. Contaminations in SI
observations from the surrounding land areas of the elongated or very small water bodies likely led to

the large classification uncertainties.
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The quality layer of the S1 ice fraction product in this study shows that the areas with larger errors are mainly located
along rivers and their surrounding regions, as well as in very small lakes and ponds within the study area. The quality
layer provides an evaluation of the ice fraction quality for each 1-km grid cell, where each cell’s value represents the
Relative Root Mean Square Error (RRMSE) between all same-day Sentinel-1 and Dynamic World ice fraction data
pairs during the study period (2017-2023), expressed in percentage (%) .

A few minor things to note:

Figure 1: The map should include a panel with an overview of the site’s location for context. Even just
an outline of Alaska would help to see where it is situated.
Thanks for the suggestion! We have accordingly added an overview panel in Figure 1 to show the

location of the study area (below).
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Figure 1. Numerous small water bodies are distributed across the study area. a, Small water bodies (blue) investigated
within the ACP, locations of observed ice phenology records (green triangles), and the three selected regions for ice



phenology analysis (orange circles). b—d, Enlarged views of the three selected regions, with orange borders indicating
5 x5 km areas. Panels b—d use basemaps from Esri World Imagery.

Line 193: The authors explain that ascending and descending are processed separately, but don’t
mention why. For clarity, it might be helpful to mention here for those less familiar with radar and the
orbital times. (I fully agree with the methods used and the separate processing; this is just a
clarification.)

Thanks for the suggestion. We added the following in the revised manuscript:

Line 228-230: Considering the different passing time, SI ascending (6 PM local time) and

descending (6 AM local time) observations were processed separately.

Figure 2: b) Constructing the dataset using the 4 types of input data is clear. In panel C, then, the data
set goes through the RF model, and it appears that two of the original datasets are then used again to
generate the ice cover maps. The text makes it clear that the RF model was applied to S1 to generate
the 10m map. Perhaps the authors could make panel C clearer for workflow, but this might just be a
matter of my interpretation.

Thank you for the comment. Figure 2b involves pairing same-day S1, S2, DW, and Daymet data
to create the S1-S2-DW-Daymet dataset. The purpose of this dataset is to collect training and testing
sample points. Due to the same-day pairing, the S1-S2-DW-Daymet dataset does not include all S1
images. In Figure 2¢, we applied the trained classifier to every S1 image during the study period, and
therefore, we did not use the paired S1-S2-DW-Daymet dataset from Figure 2b. We have also adjusted
the direction of the arrows between the “Processed S1 SAR data” and “Processed Daymet data” boxes

in Figure 2c for clarity. The revised Figure 2 is shown below.
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Figure 2. Workflow for generating ice fraction dataset, comparing S1 and DW ice fraction, and analyzing ice

For three subregions

phenology.

Line 344: “This discrepancy may result from a mismatch between the observed freeze-up phase and
the phase captured by remote sensing,” can the authors clarify what they mean here?

The S1-based ice fraction data captured the ice phenology within 1-km grid cells, whereas the in-
situ data set were from eye-based visual observations. Therefore, the two phenology measurements
may differ due to mismatches in spatial extent and time of observation.

We have revised the sentence for clarity:

Line 358-360: The S1-based ice fraction data captured the ice phenology within 1-km grid cells,
whereas the in-situ data set were from eye-based visual observations. Therefore, the two phenology

measurements may differ due to mismatches in spatial extent and time of observation.



	Reviewer #1
	Reviewer #2

