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Abstract: Accurate quantification of global groundwater storage anomaly (GWSA) is imperative for
global water security and socio-economic sustainability. The Gravity Recovery and Climate
Experiment (GRACE) satellite has emerged as a prevailing methodology for estimating GWSA.
However, oversimplification of non-groundwater components potentially compromised its accuracy in
most previous studies. Here we present an improved GRACE-derived GWSA dataset at the global scale,
namely igGWSA, with full consideration of non-groundwater components including glaciers, snow,
permafrost, lakes, reservoirs, surface runoff, profile soil moisture (PSM), and plant canopy water based
on current new datasets. In particular, PSM was generated based on Catchment Land Surface Model
and random forest algorithm. igGWSA demonstrated strong agreement with well-observed
groundwater level and model-simulated GWSA in five globally recognized hotspots of groundwater
depletion. Compared to igGWSA with full consideration, simplified estimation would lead to
misinterpretations of groundwater storage variations in glacier-covered regions, giant lakes, and
deep-soil areas, highlighting the necessity of comprehensively accounting for non-groundwater
components in estimating GWSA, especially under a changing environment. igGWSA dataset is

publicly available on Zenodo through https://doi.org/10.5281/zen0do.16871689 (Wang et al., 2025).
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1. Introduction

Constituting the Earth's largest reservoir of liquid freshwater, groundwater serves as a critical
hydrological component in global terrestrial water cycle (Adams et al., 2022). Groundwater is a
fundamental source of drinking water and agricultural irrigation, with 38% of global area equipped for
irrigation relying on groundwater (Siebert et al., 2010). Groundwater-dependent ecosystems (GDEs)
are identified worldwide (Link et al., 2023) and are found to be closely associated with biodiversity
hotspots across global drylands (Rohde et al., 2024). Therefore, groundwater is of great significance for
achieving the sustainable development goals (SDGs) proposed by the United Nations, such as No
Poverty (SDG 1), Zero Hunger (SDG 2), Clean Water and Sanitation (SDG 6), Climate Action (SDG
13), and Life on Land (SDG 15) (Gleeson et al., 2020). However, climate change has imposed
profound impacts on the atmosphere, hydrosphere and cryosphere (Prein and Heymsfield, 2020; Su et
al., 2022; Ombadi et al., 2023), and particularly triggered changes in groundwater storage (GWS)
through altering water supply-demand balance and groundwater recharge (Taylor et al., 2013; Condon
et al., 2020; Kuang et al., 2024). Moreover, intensified anthropogenic activities (e.g., groundwater
withdrawals for irrigation) have led to global groundwater depletion (\Wada et al., 2010; De Graaf et al.,
2017), which left vast populations threatened by unsustainable groundwater resources (Gleeson et al.,
2012) and gave rise to eco-environmental issues such as land subsidence (Hasan et al., 2023) and river
baseflow reduction (De Graaf et al., 2024). Therefore, accurate and quantitative monitoring of GWS
variations is essential for ensuring global water security, food security, and socio-economic
sustainability.

Conventional monitoring of groundwater dynamics primarily depends on well-based observations.
Despite the high reliability, the availability of such data remains severely constrained by economic
costs, spatial accessibility, and data sharing policies (Adams et al., 2022). Consequently, related studies
are typically conducted at local to regional scales, whereas large-scale and particularly global-scale
analyses remain critically underexplored (Fan et al., 2013; Berghuijs et al., 2022; Jasechko et al., 2024).
Notably, all these few large-scale studies suffer from spatial underrepresentation due to the extremely
uneven distribution of monitoring wells. Moreover, point-scale measurements fail to delineate spatially

continuous groundwater dynamics, nor can they adequately capture the heterogeneity of
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hydrogeological characteristics. Hydrological models provide an alternative approach to address the
spatial limitations of in situ observations. Nevertheless, the reliability of model-simulated groundwater
dynamics is subject to other limitations. For example, the accuracy of simulations is sensitive to quality
of forcing data and inherent uncertainties in model structure (DAl and Fiedler, 2008; Berghuijs et al.,
2022). Besides, owing to the absence of human activity module, many models capture only natural
variability patterns without accounting for the effects of human-induced hydrological processes such as
groundwater abstraction and irrigation practices (Fan et al., 2013; Pokhrel et al., 2021). In addition, the
vertical representation of aquifer systems in some models is too simplified to reliably simulate the
evolution of GWS (Gascoin et al., 2009).

In 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite was launched jointly by
the National Aeronautics and Space Administration (NASA) and Deutsches Zentrum fUr Luft- und
Raumfahrt (DLR) (Tapley et al., 2004a). GRACE mission has created unprecedented opportunities for
detecting terrestrial mass redistribution and provided an innovative perspective to quantify GWS
variations (Tapley et al., 2004b). Changes in GWS can be isolated from changes in GRACE-detected
terrestrial water storage (TWS) by removing other non-groundwater components (Rodell et al., 2009).
Compared to in situ observations and model simulations, GRACE-based estimation demonstrates
distinct superiority. Horizontally, the global coverage of GRACE enables continuous monitoring of
large-scale groundwater variations. Vertically, GRACE-derived groundwater storage anomaly (GWSA)
represents the integrated dynamics of aquifer systems, providing more holistic characterization than
monitoring wells or predictions of hydrological models.

Although GRACE has emerged as a prevailing methodology for GWS estimation, limitations still
remain in current GRACE-based studies. On the one hand, TWS is the summation of GWS and
non-groundwater storage. The more comprehensively non-groundwater components are taken into
account, the more accurate the separated GWS information will be. However, non-groundwater
components considered in most previous studies only encompass soil moisture, snow, plant canopy
water, and surface runoff (Table S1), which may be applicable to areas with limited types of water
bodies. For areas characterized by complicated hydrological systems (e.g., coexisting glaciers,

permafrost, and lakes), such ignorance will erroneously attribute the signals of unaccounted
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components to changes in GWS, which will consequently compromise the accuracy of GWSA
estimation. Among the neglected components, glaciers typically exhibit the most pronounced
magnitude of mass change. Therefore, the potential impact of incomprehensive consideration on
GWSA estimation is expected to be the greatest in glacier-covered regions. Due to the absence of
glacier module in most land surface models (LSMs) and hydrological models, glacier mass balance
cannot be obtained from model simulations as other components. To our knowledge, the vast majority
of previous studies conducted in glacier-covered regions worldwide fail to take into account glacier
water storage when estimating GWSA (Table S1).

On the other hand, although soil moisture storage is involved in most previous studies (Table S1),
the adopted soil moisture data characterize water content within fixed-depth soil layers only instead of
the entire soil profile. Among these data, soil moisture storage in the 0-200 cm soil layer simulated by
GLDAS (Global Land Data Assimilation Systems) Noah (Rodell et al., 2004) has been most
extensively applied. However, soil thickness is not spatially uniform in reality, and the 200 cm depth
fails to represent actual soil profile depth in many regions. As early as 2001, Rodell and Famiglietti
(2001) declared that a uniform soil depth of 200 cm would introduce significant uncertainties into
GRACE-derived GWSA estimation. They defined the remaining water storage in the unsaturated zone
below 200 cm as intermediate zone storage (I1ZS), a potentially critical but poorly understood
component of TWS. When IZS is not quantified, it is unrealistic to clearly determine to what extent the
separated GWSA variations are attributed to changes in actual groundwater level instead of changes in
deep-layer soil moisture storage (Rodell and Famiglietti, 2002). In regions where soil moisture acts as
the dominant component of TWS (Felfelani et al., 2017; Wang et al., 2018), the absence of deep-layer
soil moisture storage will inevitably diminish the accuracy of GWSA estimation.

The primary objective of this study is to develop an improved GRACE-derived GWSA dataset at
the global scale, namely igGWSA, by comprehensively considering diverse non-groundwater
components and particularly resolving the effects of deep-layer soil moisture storage. igGWSA is
expected to improve our understanding of the evolution of global and regional GWS, and to shed light
on the scientific management and sustainable utilization of groundwater resources under a changing

environment.

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-497
Preprint. Discussion started: 13 October 2025
(© Author(s) 2025. CC BY 4.0 License.

111
112

113
114
115
116
117
118

119
120
121

122
123
124
125

126
127

128
129
130

131
132

133

134

2. Datasets

2.1. GRACE-based terrestrial water storage anomaly (TWSA) reconstruction data

In spite of the capability of providing global observations, the temporal gap existing between GRACE
and GRACE-FO is not conducive to the analysis of TWS evolution. To this end, Li et al. (2021)
reconstructed a long-term and gap-free TWSA dataset named GRID_CSR_GRACE_REC based on
RL06 GRACE Mascon solutions. This reconstruction showed high consistency with RL06 GRACE-FO
Mascon solutions and proved to be superior to previous TWSA datasets. Therefore,
GRID_CSR_GRACE_REC was adopted in this study to encompass the entire period from 2000 to

2019.

2.2. Non-groundwater components data

2.2.1. Glaciers

Taking advantage of massive stereo images from the Advanced Spaceborne Thermal Estimation and
Reflection Radiometer (ASTER), Hugonnet et al. (2021) developed a global-scale glacier mass balance
dataset. Changes in glacier surface elevation, volume and mass were estimated at four levels of spatial
resolution, i.e., 0.5° X0.5°, 1° X1°, 2° X2°, and 4° X4°. Volume change data with the finest resolution

(0.5° X0.5°) were used in this study to obtain glacier water storage (Text S1).

2.2.2. Permafrost

Changes in permafrost water storage were indirectly estimated based on changes in active layer
thickness (ALT) in this study (Text S2), as suggested by Xiang et al. (2016) and Zou et al. (2022). ALT
data were derived from Community Land Model version 5 (CLM5) developed by the National Center

for Atmospheric Research (NCAR).

2.2.3. Snow

Snow water equivalent simulations from seven reanalysis products were collected in this study,

including: (1) GLDAS Noah from NASA (Rodell et al., 2004); (2) GLDAS Variable Infiltration
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Capacity (VIC) from NASA (Rodell et al., 2004); (3) GLDAS Catchment Land Surface Model (CLSM)
from NASA (Rodell et al., 2004); (4) Famine Early Warning Systems Network Land Data Assimilation
System (FLDAS) Noah from NASA (Vicnally et al., 2022); (5) Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2) from NASA (Gelaro et al., 2017); (6) The land
component dataset of the fifth generation of European ReAnalysis (ERA5-Land) from European Centre
for Medium-Range Weather Forecasts (ECMWF) (Miunoz-Sabater et al., 2021); (7) Japanese 55-year

Reanalysis (JRA-55) from Japan Meteorological Agency (JMA) (Kobayashi et al., 2015).

2.2.4. Lakes and reservoirs

The global database of lake water storage (GLWS) developed by Yao et al. (2023) was used in this
study. To construct GLWS, 248,649 satellite images from Landsat were used to map time-varying water
areas (Yao et al., 2019). Then, elevation measurements from nine satellite altimeters, including
CryoSat-2, ENVISAT, ICESat, ICESat-2, Jason 1-3, SARAL, and Sentinel 3, were used to estimate
water levels. Lastly, changes in lake volume were quantified by combining water areas with water
levels. GLWS depicts the variations in water storage of 1,972 large water bodies spanning 1992 to 2020,
accounting for 96% of the total global lake water storage and 83% of the total global reservoir water

storage, respectively. Data processing of GLWS is detailed in Text S3.

2.2.5. Surface runoff

The global runoff reanalysis reconstructed by Ghiggi et al. (2021), namely Global RUNoff
ENSEMBLE (G-RUN ENSEMBLE), was used in this study. G-RUN ENSEMBLE is produced based
on in situ river discharge measurements and machine learning. Benchmarked against other independent
observations, this reanalysis outperforms simulations from a set of global hydrological models. A total
of 21 atmospheric forcing datasets are involved to generate 525 ensemble members in G-RUN

ENSEMBLE, and the median of all these members was adopted in our study.

2.2.6. Plant canopy water

Plant canopy water simulations from four reanalysis products were collected in this study, including: (1)
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GLDAS Noah; (2) GLDAS VIC; (3) GLDAS CLSM; (4) ERA5-Land.

2.2.7. Profile soil moisture (PSM)

In most GRACE-derived GWSA studies, the depth of soil moisture profile is set fixed, say 200 cm and
289 cm in Noah model driven by GLDAS and CHTESSEL model driven by ERAS5, respectively. In this
study, PSM simulated by CLSM was utilized. Inspired by Famiglietti and Wood (1994), Koster et al.
(2000) and Ducharne et al. (2000) proposed CLSM in 2000 by coupling a classic hydrological model,
TOPMODEL (Beven and Kirkby, 1979), with the parameterization of surface energy and water fluxes
from Mosaic LSM. Based on the concepts of TOPMODEL, the distribution of water table depth can be
inferred from that of topographic index. Subsequently, the distribution of water table depth is applied to
derive catchment deficit (CD), which is defined as the water amount required to saturate the entire
catchment under the assumption that vertical moisture profile in the unsaturated zone arises from
hydrostatic equilibrium. In addition, two variables that take into account non-equilibrium conditions
are defined in CLSM, namely surface excess (SE) and root zone excess (RE). SE and RE quantify the
deviations of surface soil moisture and root zone soil moisture, respectively, from the value implied by
the equilibrium profile. Richards equation is used to solve the vertical water fluxes between CD, SE,
and RE, which contribute to bringing the vertical moisture profile closer to the equilibrium profile
(Gascoin et al., 2009). Despite the significant value of CLSM-simulated PSM, uncertainties inherent to
single-source simulation may inevitably compromise the accuracy of GWSA estimation. Thus, machine

learning was applied in this study to improve CLSM-simulated PSM, as will be detailed in Sect. 3.2.

2.3. Predictor variables for PSM

Root zone soil moisture (RZSM), meteorological variables, and vegetation index were selected as
predictor variables for PSM. As a function of vegetation type, root zone depth is characterized by
spatial heterogeneity and is inherently challenging to quantify globally. In this study, soil water content
within the uppermost 100 cm soil layer was defined as RZSM as suggested by Xu et al. (2021) and
Heyvaert et al. (2023). RZSM simulations from five reanalysis products were collected, including: (1)

GLDAS Noah; (2) GLDAS CLSM; (3) FLDAS Noah; (4) MERRA-2; (5) ERA5-Land. Data

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-497
Preprint. Discussion started: 13 October 2025
(© Author(s) 2025. CC BY 4.0 License.

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

processing of RZSM is detailed in Text S4. With regard to meteorological variables, air temperature
and precipitation from one of the most widely used climate dataset, CRU TS (Climatic Research Unit
gridded Time Series) v4.08 (Harris et al., 2020), was adopted. Besides, the normalized difference
vegetation index (NDVI) provided by Global Inventory Monitoring and Modeling System (GIMMS)

(Pinzon and Tucker, 2014) was also used for prediction of PSM.

2.4. In situ-observed and model-simulated groundwater data

Jasechko et al. (2024) compiled in situ observations of groundwater level (GWL) from a total of
170,000 wells and 1,693 aquifer systems across more than 40 countries worldwide, with which they
revealed widespread groundwater depletion in the 21st century. Due to the provisions of data sharing,
only 59% of data used for analysis can be publicly accessed. The available data exhibit a pronounced
spatial imbalance, with 97.7% of the monitoring wells located in the United States and the remaining
2.3% distributed across China, Canada, Europe, etc. In situ-observed GWL served as the benchmark
for validating GWSA estimation in this study.

In addition, a state-of-the-art hydrological model coupled with human activity modules, namely the
WaterGAP Global Hydrological Model (WGHM), was employed to provide independent simulations
of GWSA. WaterGAP (Water-Global Assessment and Prognosis) is developed by the University of
Frankfurt to quantify water storage, water resources, and water use at the global scale. GWSA
simulations from the most recent version, i.e., WaterGAP v2.2e (Schmied et al., 2024), were used in
this study.

Detailed information of data utilized in this study is listed in Table 1. Taking into account the
spatiotemporal attributes of diverse datasets, this study was conducted over global land areas excluding
Antarctica (60°S-90°N) at a 0.5° X0.5° spatial resolution, spanning the period from January 2000 to
December 2019. Datasets with coarser resolutions were harmonized to 0.5° X0.5° by using bilinear

interpolation.
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3. Methods

3.1. Integrating multi-source estimates via Bayesian three-cornered hat (BTCH)

BTCH proposed by He et al. (2020) is a data fusion method free of any a priori knowledge. By
coupling TCH technique with Bayesian probabilistic frameworks, BTCH is capable of reducing
uncertainties inherent to single-source dataset, and has been widely used to improve the estimation of
hydrological variables such as soil moisture (Shangguan et al., 2023) and terrestrial water storage
(Chen et al., 2024). In this study, BTCH was employed to generate ensemble simulations of snow water

equivalent, plant canopy water and RZSM (Fig. 1, Text S5).

3.2. Generating PSM data with lower uncertainties via machine learning

3.2.1. Random forest (RF)

RF is an ensemble machine learning technique that combines decision tree with bagging algorithm
(Breiman, 2001). In contrast to non-ensemble techniques, RF is characterized by stronger
generalization ability, higher robustness to noise, and lower susceptibility to overfitting. Moreover, RF
is more interpretable than other black-box machine learning methods owing to its capability to quantify
the relative importance of predictors. RF has been extensively applied in soil moisture prediction

(Wang et al., 2022; Li et al., 2022).

3.2.2. Modelling the relationship between PSM and covariates

RF was employed to establish relationship model between CLSM-simulated PSM and diverse
covariates including CLSM-simulated RZSM, air temperature, precipitation, and NDVI (Fig. 1). There
are two key hyperparameters in RF: the number of trees (ntree) and the number of variables randomly
sampled as candidates at each split (mtry). We adjusted ntree from 250 to 1000 in steps of 250, and
varied mtry from 1 to 4 (the total number of predictors) in steps of 1. All the remaining parameters
were retained at their default settings. The 16 combinations of ntree and mtry were tested one by one,

among which the one with the lowest prediction error was determined as the optimal parameter
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combination. Based on the optimal hyper-parameters, prediction models for PSM were developed at
the pixel scale by randomly partitioning the datasets into training set and validation set at an 80%:20%
ratio. The accuracy of RF model was evaluated using two metrics: R? (coefficient of determination) and
rRMSE (relative root mean square error) (Text S6).

To further quantify the spatial differences in the accuracy of RF models, performance evaluation
was also conducted at the climatic zone scale. Here, climate classification scheme based on aridity
index (Al), the ratio of annual precipitation to potential evapotranspiration (PET), was adopted as
suggested by the United Nations Environment Program (UNEP) (Middleton and Thomas, 1997). The
climatology (1991-2020) of Al was computed using precipitation and PET data provided by CRU TS
v4.08. Following the definition of UNEP, humid regions (Al =0.65) and drylands (Al<0.65) were first
delineated with a threshold of 0.65. Whereafter, drylands were further classified into four subtypes: dry
sub-humid (0.5< Al <0.65), semi-arid (0.2< Al <<0.5), arid (0.05<AI<0.2), and hyper-arid

(A1<0.05).

3.2.3. Prediction of improved PSM and uncertainty analysis

Owing to the fact that PSM is inclusive of RZSM, this study assumed that RZSM served as a critical
predictor for PSM. Accordingly, the prediction accuracy of PSM was expected to be enhanced by
constraining the uncertainties in RZSM input. To this end, we integrated multi-source RZSM
simulations by using BTCH. Given the established optimal models, ensemble RZSM, air temperature,
precipitation, and NDVI were reintroduced as inputs into the models to derive improved prediction of
PSM that synthesized the advantages of multi-source soil moisture datasets (Fig. 1).

Quantitative analysis was imperative to demonstrate whether the uncertainties in the improved
prediction had been reduced relative to the original CLSM simulations. Typically, this can be achieved
by using in situ measurements as benchmarks. Nevertheless, unlike surface soil moisture or RZSM, in
situ-observed PSM is extremely scarce. In light of this, an alternative approach named the generalized
three-corner hat (GTCH) (Tavella and Premoli, 1994) was used for uncertainty analysis. Note that at
least three estimates are required to implement GTCH. Besides improved PSM and CLSM-simulated

PSM, we additionally derived GLDAS-Noah-based PSM, FLDAS-Noah-based PSM,
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ERAS5-Land-based PSM, and MERRA-2-based PSM by replacing the ensemble RZSM with the
corresponding single-source RZSM as a model input. A dimensionless index, namely relative
uncertainty, was calculated by GTCH to evaluate the abovementioned six PSM estimations from the

perspective of uncertainties.

3.3. Estimation, validation and intercomparison methods of GWSA

3.3.1. Estimation of igGWSA and non-improved GWSA

Vertically, TWS comprises a variety of hydrological components such as glaciers, snow, soil moisture,
groundwater, etc. By subtracting diverse non-groundwater components, GWS can be isolated from

TWS (Fig. 1), as shown in Eq. (1).

igGWSA = TWSA — GlacierWSA — PWSA — LRWSA — SRSA — PSMSAimproved — SWEA —

CWSA , 1)

where igGWSA stands for the improved estimation of groundwater storage anomaly; TWSA is
terrestrial water storage anomaly; GlacierWSA is glacier water storage anomaly; PWSA is
permafrost water storage anomaly; LRWSA is lake and reservoir water storage anomaly; SRSA is
surface runoff storage anomaly; PSMSA;mproveq IS the improved profile soil moisture storage
anomaly; SWEA is snow water equivalent anomaly; CWSA is canopy water storage anomaly.

To quantify the impacts of incomprehensive considerations of non-groundwater components, five

kinds of non-improved GWSA were further estimated as listed below.

(1) GWSAqimpiities: Similar to most previous studies (Liu et al., 2023; Peng et al., 2021; Zhao et al.,
2023), simplified GWSA was separated from TWSA by subtracting only soil moisture storage
in the 0-200 cm soil layer, snow water equivalent, and plant canopy water simulated by
GLDAS Noah.

(2) GWSAc sm: CLSM-simulated PSM instead of improved PSM was used to estimate GWSA,
with all other non-groundwater components identical to those for igGWSA.

(3) GWSAg0: Soil moisture storage in the 0-289 c¢m soil layer derived from ERA5-Land instead of

improved PSM was used to estimate GWSA, with all other non-groundwater components
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identical to those for igGWSA.

(4) GWSA,: Soil moisture storage in the 0-200 cm soil layer derived from FLDAS Noah instead
of improved PSM was used to estimate GWSA, with all other non-groundwater components
identical to those for igGWSA.

(5) GWSAjgnoed: GlacierWWSA  was ignored when estimating GWSA, with all other

non-groundwater components identical to those for igGWSA.

3.3.2. Validation of igGWSA against in situ observations and model simulations

Focusing on the potential of igGWSA in detecting groundwater resources evolution and serving for
global water security, validation of igGWSA was performed in five globally recognized hotspots of
groundwater depletion, i.e., North China Plain, California Central Valley, High Plains of USA,
Ganges-Brahmaputra River Basin, and the Middle East.

Among the five hotspots, high-density in situ observations of monitoring wells can be obtained from
Jasechko et al. (2024) in North China Plain, California Central Valley, and High Plains of USA. Given
the intrinsic disparity in spatial scales between in situ monitoring (point-scale) and igGWSA (0.5° X0.5
° grid cell), scale transformation was imperative before validation. Accordingly, point-scale data were
first converted into pixel-scale by averaging observations of wells located in the specific grid cell. Then
in situ GWL and GWSA estimation at a 0.5° X0.5° resolution were upscaled to obtain basin-averaged
time series. Due to the fact that GWL and GWS are two fundamentally distinct hydrological variables,
error metrics such as RSME were unsuitable for validation. Instead, Pearson's correlation coefficient
(PCC) was employed to evaluate the consistency in their temporal evolution.

As for Ganges-Brahmaputra and the Middle East, in situ observations were currently unavailable.
Alternatively, an advanced global hydrological model with consideration of effects of anthropogenic
activities (e.g., water withdrawal) on groundwater resources, i.e., WGHM, was introduced to provide
independent GWSA simulations. PCC between our igGWSA and WGHM-simulated GWSA was also

calculated to facilitate the validation.
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3.3.3. Intercomparison between igGWSA and non-improved GWSA

Similar to intercomparison between various PSM estimations, GTCH was applied to quantify the
relative uncertainty of igGWSA as well as four kinds of non-improved GWSA estimations, i.e.,
GWSAimpiitietr GWSAcLsm, GWSAgg9, and GWSAgg. GWSAignoed Was not involved in GTCH
evaluation given that glaciers constitute only a minor fraction of global land areas.

In addition to pixel-wise uncertainty analysis, intercomparison between igGWSA and non-improved
GWSA was further carried out under three kinds of distinctive geographical environments. To be
specific, the three environments refer to glacier-covered regions, giant lakes, and deep-soil areas,
corresponding to the absence of glaciers, lakes and reservoirs, and deep-layer soil moisture,
respectively, in most previous studies when estimating GWSA in these regions.

For glacier-covered regions, a dataset of global glacier outlines named the Randolph Glacier
Inventory (RGI) was utilized. RGI 6.0 defines 19 first-order glacier regions: (1) Alaska; (2) Western
Canada and USA, (3) Arctic Canada (North); (4) Arctic Canada (South); (5) Greenland Periphery; (6)
Iceland; (7) Svalbard and Jan Mayen; (8) Scandinavia; (9) Russian Arctic; (10) North Asia; (11)
Central Europe; (12) Caucasus and Middle East; (13) Central Asia; (14) South Asia (West); (15) South
Asia (East); (16) Low Latitudes; (17) Southern Andes; (18) New Zealand; (19) Antarctic and
Subantarctic. Region 19 was excluded from analysis. Intercomparison between igGWSA and
GWSAgnored Was conducted in glacier-covered regions.

For giant lakes, 13 lakes or lake clusters were involved: (1) Caspian Sea; (2) Great Lakes of North
America; (3) Victoria; (4) Tanganyika; (5) Baikal; (6) Great Bear; (7) Malawi; (8) Great Slave; (9)
Winnipeg; (10) Ladoga; (11) Balkhash; (12) Aral Sea; (13) Lakes of Tibetan Plateau. The outlines of
these lakes were derived from HydroLAKES dataset. Intercomparison between igGWSA and
GWSAgimpiities Was conducted in giant lakes.

For deep-soil areas, eight regions were selected as typical cases: (1) Mississippi River Basin; (2)
\olga River Basin; (3) Ob River Basin; (4) Loess Plateau; (5) Congo River Basin; (6) Songhua-Liaohe
River Basin; (7) Pampas Steppe; (8) Ganges-Brahmaputra River Basin. These regions were primarily
determined based on soil depth information defined in GLDAS VIC model (Fig. S1) and encompassed

the major loess and chernozem zones worldwide. Intercomparison between igGWSA, GWSA,g, and
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Figure 1. Flowchart of the generation process for igGWSA.

4. Results

4.1. Performance evaluation of RF-based modelling of PSM

4.1.1. Evaluation at the pixel scale

Pixel-wise RF models demonstrated exceptional accuracy in replicating CLSM-simulated PSM (Fig. 2).

During model training, 86.90% and 97.33% of global grid cells achieved R=®values exceeding 0.9 and

0.8, respectively, indicating strong explanatory power of the selected predictors for PSM. With regard
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to error metric, rRMSE was contained below 1% and 2% for 93.47% and 99.87% of global grid cells,
respectively. The accuracy of validation sets was relatively lower than that of training sets, with 67.14%
and 83.07% of grid cells exhibited R=values exceeding 0.9 and 0.8, respectively, and 76.96% and 97.43%
of grid cells showed rRMSE less than 1% and 2%, respectively. Overall, the training and validation sets
achieved average R=values of 0.96 and 0.89, respectively, with average rRMSE values of 1.18% and

1.84%.

a.R? of training set b. R? of validation set

0 0.6 0.8 0.9 1 0 0.6 0.8 0.9 1
d. rRMSE of validation set

0% 1% 2% 5% 16% 0% 1% 2% 5% 16%

Figure 2. Pixel-scale performance of RF-based modelling of PSM.

4.1.2. Evaluation at the climatic zone scale

The accuracy of RF models was found to vary remarkably in different climatic zones. The models
outperformed in humid regions compared to drylands, whether assessed through training/validation sets
or evaluated by R#rRMSE (Fig. 3). For the training set, the average R2values were 0.98 and 0.93 for
humid regions and drylands, respectively, and the average rRMSE values were 1.10% and 1.29%,
respectively. Moreover, the predictive skill of RF models was observed to progressively decline with
increasing aridity within drylands: dry sub-humid (R=0.96), semi-arid (R=0.94), arid (R=0.92), and

hyper-arid (R=0.87).
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Figure 3. Climatic zone-scale performance of RF-based modelling of PSM.

4.1.3. Evaluation of interannual trends

The aforementioned evaluations were achieved by randomly partitioning time series of the given pixel
into training and validation sets without maintaining the original patterns. Given this, evaluation of
interannual trends in PSM was carried out additionally. Results showed that trends in RF-predicted
PSM were highly consistent with trends in CLSM-simulated PSM with R? exceeding 0.98 in all
climatic zones (Fig. 4). RF models effectively reproduced the interannual variations in PSM, which

was critical for the temporal patterns of the derived GWSA.
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Figure 4. Comparison between trends in RF-predicted PSM and CLSM-simulated PSM.

4.2. Evaluation of improved estimation of PSM

4.2.1. Intercomparison with fixed-depth soil moisture

Improved estimation of PSM (SMS;.i) Was compared to soil moisture storage in 0-200 cm layer
(SMSyq0) and 0-289 cm layer (SMSyg) (Fig. 5). The multi-year (2000-2019) and global averages of
SMS200, SMS;g9, and SMSo1ite Were 50.70 cm, 78.28 cm, and 106.98 cm, respectively. The spatial PCC
between SMS;0 and SMS,,qsiie Was 0.55 (p<0.01), and that between SMSygq and SMS;, s reached 0.74
(p<0.01). SMS;5 was more comparable to SMSy.fe in both magnitude and spatial pattern, yet
conspicuous deviations still existed. Therefore, fixed-depth soil moisture cannot adequately represent

PSM, implying the considerable effects of deep-layer soil moisture.
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Figure 5. Intercomparison between SMS,00, SMSygq, and SMSgije.

4.2.2. Intercomparison with single-source PSM estimations

Improved estimation of PSM was also compared to five kinds of single-source PSM estimations via
GTCH (Fig. 6). The global-averaged relative uncertainty ranked as: CLSM-based PSM (0.057) >
ERA5-Land-based PSM (0.048) > MERRA-2-based PSM (0.046) > GLDAS-Noah-based PSM
(0.045) > FLDAS-Noah-based PSM (0.040) > ensemble-based PSM (0.019). CLSM-simulated PSM
exhibited the highest uncertainty levels, whereas our improved PSM based on ensemble RZSM and RF

modeling demonstrated the lowest relative uncertainty. Results confirmed that constraining the

uncertainties of predictors can effectively improve the accuracy of PSM estimation.
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Figure 6. Relative uncertainty of ensemble-based PSM and single-source PSM.

4.3. Evaluation of igGWSA

4.3.1. Validation against in situ observations and model simulations

Well-monitored groundwater depth (GWD;, «w, hegatively correlated with GWL) and
WGHM-simulated GWSA (GWSAwgnm) Were applied as independent benchmarks to validate
igGWSA in five typical hotspots (Fig. 7). PCCs between igGWSA and GWD;, 4, reached —0.99
(p<0.01), —0.95 (p<0.01), and —0.96 (p<0.01) in North China Plain, Central Valley, and High Plains,
respectively. Persistent declines in GWS were accompanied by distinct increases in GWD, both
indicating substantial mass loss. For all the five hotspots, tremendous groundwater depletion revealed
by igGWSA was highly consistent with GWSAwgum in spite of differences in declining rates, with
PCCs ranging from 0.95 (p<0.01) to 0.99 (p<0.01). Validation results suggested that igGWSA was
capable of detecting temporal evolution of groundwater resources. Unlike our comprehensive method,
Jin and Feng (2013) obtained two GRACE-derived GWSA estimations based on GLDAS and WGHM
by using simplified method and found that the amplitudes of GWSAwguw Were much smaller than
these two simplified estimations. In comparison, our igGWSA are in high agreement with GWSAwgHm

as demonstrated above, underscoring the importance of the full consideration of non-groundwater

storage components.
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Figure 7. Validation of igGWSA against GWDj, i, and GWSAwcnwm in five typical hotspots of groundwater

depletion. ** indicates significance at the 0.01 level.

4.3.2. Uncertainty analysis

Uncertainty analysis was further conducted for igGWSA and four kinds of non-improved estimations
(Fig. 8). The global-averaged relative uncertainty ranked as: GWSAimpiified (0.94) > GWSAg (0.74) >
GWSAc sm (0.67) > GWSA, (0.59) > igGWSA (0.56). The highest uncertainty was observed in
GWSAqimpiiies; Which was estimated by roughly deducting only fixed-depth soil moisture, snow, and
plant canopy water from TWS like most previous studies. In contrast, our igGWSA that
comprehensively took into account diverse non-groundwater components exhibited the lowest
uncertainty. Note that GWSAc sy relying on CLSM-simulated PSM showed higher uncertainty than

igGWSA, highlighting the significance of improving GWSA estimation by optimizing PSM simulation.
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Figure 8. Relative uncertainty of igGWSA and non-improved estimations of GWSA.

4.4, Intercomparison between igGWSA and non-improved GWSA under distinctive geographical

environments

4.4.1. Glacier-covered regions

The impacts of neglecting glacier water storage on the estimation of GWSA in glacier-covered regions
manifested as three scenarios (Fig. 9, Table S2):

(1) Misestimation of the sign of trends: In Region 1, 3, 4, 6, 7, 11, 13, 14, 15, and 17, GWS tended
to increase significantly due to the replenishment from glacier meltwater. However, the potential
increasing trends would be reversed when ignoring glacier as a non-groundwater component.

(2) Overestimation of the decreasing trends: Both igGWSA and GWSAgeres Were observed to
decrease, but the latter exhibited a more considerable declining rate on account of the additional
contribution of changes in glacier. This pattern was found in Region 5, 9, and 12.

(3) Underestimation of the increasing trends: Compared to igGWSA that increased at a remarkable
rate, the increasing trend of GWSAg0eq Was greatly offset by glacier melting. This pattern was
represented by Region 2, 8, 10, 16, and 18.

Regarding to the global glaciated areas, igGWSA and GWSAgoreq declined at rates of —0.19 cm/yr

(p<0.01) and —4.03 cm/yr (p<0.01), respectively. However, the enormous mass loss signal was

primarily attributed to glacier melting (-3.85 cm/yr, p<0.01) rather than groundwater depletion itself.
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Figure 9. Intercomparison between igGWSA and GWSAignereq in glacier-covered regions.
4.4.2. Giant lakes

Among the 13 giant lakes, Tanganyika, Great Bear, Great Slave, Winnipeg, and Ladoga exhibited
insignificant (p>0.05) fluctuations in water storage. For the remaining eight lakes where dramatic

storage variations have been detected, GWSAgimpifies Can lead to two kinds of diametrically opposed
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misinterpretations (Fig. 10, Table S3).

(1) For shrinking lakes including Caspian Sea, Baikal, Malawi, and Aral Sea, increasing signals of
GWS were overshadowed by the pronounced declining signals of lake water storage, thus
indicating unrealistic risks of groundwater depletion.

(2) For expanded lakes including Great Lakes of NA, Victoria, Balkhash, and Lakes of Tibetan
Plateau, decreasing trends in GWS became unrecognizable due to the marked increasing trends
in lake water storage, consequently generating spurious positive signals of groundwater surplus.
This is what was exactly presented in Jin and Feng (2013).

For all the 1,972 large lakes and reservoirs worldwide, igGWSA and GWSAgjmpiifies Showed a

decreasing trend of —0.19 cm/yr (p<0.01) and —0.35 cm/yr (p<0.01), respectively. GWSAgimpiified
interpreted mass loss of surface water bodies (-0.11 cm/yr, p>0.05) as part of changes in GWS, which

significantly exaggerated groundwater depletion at the global scale.
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Figure 10. Intercomparison between igGWSA and GWSAgimpiified In giant lakes.

4.4.3. Deep-soil areas

Non-improved GWSA based on fixed-depth SM (GWSA,q, GWSA,g9) demonstrated consistent sign of
interannual trends with igGWSA in only four of the eight deep-soil regions, i.e., Mississippi, Volga,
Loess Plateau, and Ganges-Brahmaputra (Fig. 11, Table S4). GWSAyy showed an opposite trend to
igGWSA in Ob and Congo, and negative correlation was found between GWSA, and igGWSA in
Songhua-Liaohe and Pampas. Beyond the sign, the magnitude of trends in GWSAyg, GWSA,g, and
igGWSA also varied considerably. For instance, igGWSA exhibited insignificant fluctuations with
absolute rates not exceeding 0.1 cm/yr in Ob, Congo, Songhua-Liaohe and Pampas. However,
GWSA,g increased significantly with rates ranging from 0.22 cm/yr to 0.69 cm/yr in these regions.

Results underscored the limitations of fixed-depth SM data and the necessity of involving deep-layer
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Figure 11. Intercomparison between GWSA,q,, GWSA,g9, and igGWSA in deep-soil areas.

5. Discussions

5.1. Influence factors of PSM modelling

In the RF-based modelling of CLSM-simulated PSM, CLSM-simulated RZSM achieved the highest
importance among the four predictors across 97.17% of global grid cells (Fig. 12), implying the
feasibility of improving PSM simulations by optimizing RZSM. Despite this, CLSM-simulated RZSM
outperformed other RZSM products only in 16.10% of global grid cells (Fig. S2). The optimal RZSM
product was characterized by strong spatial heterogeneity without any dominant patterns, which
underscored the significance of integrating multi-source RZSM simulations for PSM prediction.
Furthermore, the relative importance of RZSM varied with climate conditions. Specifically, it was
more important in humid regions than in drylands as illustrated by scaled importance (Fig. S3). This
implied the weaker correlation between RZSM and PSM in drylands, which explained the lower R? of
RF models in drylands mentioned in Sect. 4.1.2, given that RZSM was the foremost predictor of PSM.
We attributed the differences across climatic zones to the higher susceptibility to decoupling of RZSM

and PSM in drylands, which was consistent to Carranza et al. (2018) who identified decoupling of
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surface and subsurface SM under arid conditions with in situ data.

For the remaining 2.83% of global grid cells, NDVI emerged as the dominant predictor variable for
PSM modelling in most regions, accounting for 2.08% of global grid cells in total. Specifically, NDVI
exhibited predominant impacts on PSM dynamics in the band between the Sahara Desert and the
Congo Basin, the east coast of Africa, eastern South America, and northern Australia (Fig. 12).
Interestingly, this spatial pattern closely aligned with the global distribution of deep-rooted regions
predicted by Schenk and Jackson (2005) via climate-based model, highlighting the critical role of
vegetation activity in regulating regional water storage variability. To further investigate the
relationship between vegetation and water storage, the spatiotemporal variations of the sole
vegetation-associated TWS component, i.e., canopy water storage (CWS), were analyzed (Fig. S4).
However, the spatial pattern of CWS failed to match that of the variable importance of NDVI. The
reason may be that CWS cannot adequately represent vegetation water storage, which was not
quantified in this study due to its markedly smaller magnitude of variation compared to other
components at the global scale (Rodell et al., 2005). Building on these findings, we suggest that
vegetation water storage should be underscored in the hotspots of vegetation-PSM interactions to

enhance the understanding of regional water storage evolution in future studies.
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Figure 12. Map of dominant predictor variable for PSM modelling.
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5.2. The gains to GWSA estimation from improved PSM

As demonstrated in Sect. 4.3.2, igGWSA based on improved PSM achieved lower uncertainty
compared to GWSAc sv based on CLSM-simulated PSM. To substantiate the gains from improved
PSM to GWSA estimation, igGWSA and GWSAc sv were further compared using GWD;, i, as
benchmarks.

At the pixel scale, igGWSA showed average PCCs of —0.41, —0.71, —0.70, and —0.58 with GWD;,
situ IN North China Plain (NCP) , Central Valley (CV) , High Plains (HP) , and the aggregation of these
three hotspots, respectively. In contrast, average PCCs between GWSA¢ sy and GWD;, 4, Were —0.38,
—0.73, —0.59, and —0.51 in these regions (Table 2). igGWSA achieved stronger correlations with
GWDj, siu €xcept in CV where only seven pixels were involved in analysis. Mann-Whitney U test was
adopted to further identify the differences between igGWSA and GWSA¢ sw. The differences were not
statistically significant in NCP and CV, while igGWSA was significantly superior to GWSAc sy in HP
and the aggregation (Fig. 13).

At the regional scale, igGWSA and GWSA sv exhibited comparable correlations with GWDj, iy in
NCP and CV, with difference in PCCs not exceeding 0.02. As for HP, igGWSA was relatively more
notably correlated with GWD;, 4, than GWSAc sy (—0.96 vs —0.90) (Table 2). In conclusion,
improving PSM via machining learning was of great significance for generating GWSA estimation

with higher accuracy and lower uncertainty.

Iy oS [ igGWSA
[] GWSAL, o, *
0.5}
ok s =
g o
-0.5¢ ns 'YE!
B |
. . ; ;
NCP cv HP Merge

Figure 13. Difference in PCC between igGWSA and GWD;, s, versus GWSAc sy and GWD;y g **
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indicates significance at the 0.01 level; * indicates significance at the 0.05 level; ns indicates not significant

(p > 0.05).

Table 2. Correlations of igGWSA and GWSAc sy With GWD;, g, at the pixel scale and the regional scale.

Pixel scale Regional scale
Region Pixel_N
|gGWSA GWSACLSM |gGWSA GWSACLSM
NCP 48 041 -0.38 —0.99** —0.98**
CcVv 7 -0.71 —0.73 —0.95** —0.97**
HP 61 -0.70 -0.59 —0.96** -0.90**
Merge 116 -0.58 -0.51 / /

Note: Pixel_N indicates the number of pixels at a 0.5° X0.5° resolution in the specific region; **
indicates significance at the 0.01 level; Values for pixel scale indicates the average of PCCs for all

pixels.

5.3. Uncertainties and limitations

Although GRACE provides an innovative perspective for monitoring GWS, it is essentially an indirect
estimation methodology. Uncertainties inherent in TWSA data and non-groundwater components data
will ultimately propagate into GRACE-derived GWSA. Therefore, validation of igGWSA against in
situ measurements is imperative. However, existing as a conceptual derivative of TWSA, GWSA lacks
ground truth. Given that, GWL data collected from monitoring wells can serve as substitute
benchmarks for validating GWSA. It should be noted that GWL is closely linked to but is not directly
comparable to GWSA. Accordingly, only correlation metric was employed for validation without error
quantification in this study. Moreover, as mentioned in Sect. 1, the scarcity of globally accessible
groundwater monitoring data renders large-scale validation of GWSA infeasible. To address this,
local-scale validation was alternatively conducted focusing on several hotspots of groundwater
depletion in this study based on available in situ observations and model simulations accounting for
human water use. We would greatly appreciate if researchers worldwide could carry out supplementary

validation of igGWSA using locally available in situ data.
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6. Data availability

Datasets used to develop igGWSA are publicly available and have been stated in the Datasets section.
Our igGWSA dataset is archived on Zenodo and can be freely downloaded at

https://doi.org/10.5281/zenodo.16871689 (Wang et al., 2025).

7. Conclusions

An improved GRACE-derived GWSA dataset over global land, namely igGWSA, was developed in
this study. To this end, we first generated improved estimation of PSM based on RF algorithm and
multi-source RZSM simulations. Then diverse non-groundwater components were subtracted from
TWSA to obtain igGWSA. Finally, validation of igGWSA against in situ observations and model
simulations and intercomparison between igGWSA and non-improved GWSA were conducted. The
key conclusions can be summarized as follows:

(1) RF-based modeling of PSM exhibited superior performance at the global scale, with average R=
and rRMSE reaching 0.96 and 1.18%, respectively. RF models outperformed in humid regions
over drylands Among the predictors, RZSM showed the highest explanatory power for PSM
variations, implying the feasibility of improving PSM by optimizing RZSM. The improved
PSM estimation integrating multi-source RZSM exhibited the lowest relative uncertainty
compared to estimations based on single-source RZSM.

(2) igGWSA was highly consistent with in situ-observed GWD and WGHM-simulated GWSA in
five typical hotspots of groundwater depletion worldwide, i.e., North China Plain, California
Central Valley, High Plains of USA, Ganges-Brahmaputra, and the Middle East, with |[PCC]|
ranging from 0.89 to 0.99. In addition, igGWSA exhibited the lowest relative uncertainty
compared to four kinds of non-improved GWSA estimations, including GWSAc sy that relied
on CLSM-simulated PSM. Furthermore, igGWSA also achieved significantly stronger
correlations with in situ observations than GWSAc sy, underscoring the gains from improved
PSM to GWSA estimation.

(3) igGWSA and non-improved GWSA estimations showed remarkable discrepancies in
31

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-497
Preprint. Discussion started: 13 October 2025
(© Author(s) 2025. CC BY 4.0 License.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606
607
608
609
610

glacier-covered regions, giant lakes, and deep-soil areas. Specifically, neglecting glacier as a
non-groundwater component would erroneously attribute mass loss induced by glacier melting
to groundwater depletion. Similarly, simplified estimation without considering lakes and
reservoirs would confound the signals of lake shrinkage or expansion with changes in GWS.
Besides, GWSA estimations based on fixed-depth SM would fail to satisfactorily replicate the
sign and the magnitude of trends in igGWSA due to the absence of deep-layer soil moisture

storage.
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