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Abstract: Accurate quantification of global groundwater storage anomaly (GWSA) is imperative for 12 

global water security and socio-economic sustainability. The Gravity Recovery and Climate 13 

Experiment (GRACE) satellite has emerged as a prevailing methodology for estimating GWSA. 14 

However, oversimplification of non-groundwater components potentially compromised its accuracy in 15 

most previous studies. Here we present an improved GRACE-derived GWSA dataset at the global scale, 16 

namely igGWSA, with full consideration of non-groundwater components including glaciers, snow, 17 

permafrost, lakes, reservoirs, surface runoff, profile soil moisture (PSM), and plant canopy water based 18 

on current new datasets. In particular, PSM was generated based on Catchment Land Surface Model 19 

and random forest algorithm. igGWSA demonstrated strong agreement with well-observed 20 

groundwater level and model-simulated GWSA in five globally recognized hotspots of groundwater 21 

depletion. Compared to igGWSA with full consideration, simplified estimation would lead to 22 

misinterpretations of groundwater storage variations in glacier-covered regions, giant lakes, and 23 

deep-soil areas, highlighting the necessity of comprehensively accounting for non-groundwater 24 

components in estimating GWSA, especially under a changing environment. igGWSA dataset is 25 

publicly available on Zenodo through https://doi.org/10.5281/zenodo.16871689 (Wang et al., 2025). 26 
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1. Introduction 27 

Constituting the Earth's largest reservoir of liquid freshwater, groundwater serves as a critical 28 

hydrological component in global terrestrial water cycle (Adams et al., 2022). Groundwater is a 29 

fundamental source of drinking water and agricultural irrigation, with 38% of global area equipped for 30 

irrigation relying on groundwater (Siebert et al., 2010). Groundwater-dependent ecosystems (GDEs) 31 

are identified worldwide (Link et al., 2023) and are found to be closely associated with biodiversity 32 

hotspots across global drylands (Rohde et al., 2024). Therefore, groundwater is of great significance for 33 

achieving the sustainable development goals (SDGs) proposed by the United Nations, such as No 34 

Poverty (SDG 1), Zero Hunger (SDG 2), Clean Water and Sanitation (SDG 6), Climate Action (SDG 35 

13), and Life on Land (SDG 15) (Gleeson et al., 2020). However, climate change has imposed 36 

profound impacts on the atmosphere, hydrosphere and cryosphere (Prein and Heymsfield, 2020; Su et 37 

al., 2022; Ombadi et al., 2023), and particularly triggered changes in groundwater storage (GWS) 38 

through altering water supply-demand balance and groundwater recharge (Taylor et al., 2013; Condon 39 

et al., 2020; Kuang et al., 2024). Moreover, intensified anthropogenic activities (e.g., groundwater 40 

withdrawals for irrigation) have led to global groundwater depletion (Wada et al., 2010; De Graaf et al., 41 

2017), which left vast populations threatened by unsustainable groundwater resources (Gleeson et al., 42 

2012) and gave rise to eco-environmental issues such as land subsidence (Hasan et al., 2023) and river 43 

baseflow reduction (De Graaf et al., 2024). Therefore, accurate and quantitative monitoring of GWS 44 

variations is essential for ensuring global water security, food security, and socio-economic 45 

sustainability. 46 

Conventional monitoring of groundwater dynamics primarily depends on well-based observations. 47 

Despite the high reliability, the availability of such data remains severely constrained by economic 48 

costs, spatial accessibility, and data sharing policies (Adams et al., 2022). Consequently, related studies 49 

are typically conducted at local to regional scales, whereas large-scale and particularly global-scale 50 

analyses remain critically underexplored (Fan et al., 2013; Berghuijs et al., 2022; Jasechko et al., 2024). 51 

Notably, all these few large-scale studies suffer from spatial underrepresentation due to the extremely 52 

uneven distribution of monitoring wells. Moreover, point-scale measurements fail to delineate spatially 53 

continuous groundwater dynamics, nor can they adequately capture the heterogeneity of 54 
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hydrogeological characteristics. Hydrological models provide an alternative approach to address the 55 

spatial limitations of in situ observations. Nevertheless, the reliability of model-simulated groundwater 56 

dynamics is subject to other limitations. For example, the accuracy of simulations is sensitive to quality 57 

of forcing data and inherent uncertainties in model structure (Döll and Fiedler, 2008; Berghuijs et al., 58 

2022). Besides, owing to the absence of human activity module, many models capture only natural 59 

variability patterns without accounting for the effects of human-induced hydrological processes such as 60 

groundwater abstraction and irrigation practices (Fan et al., 2013; Pokhrel et al., 2021). In addition, the 61 

vertical representation of aquifer systems in some models is too simplified to reliably simulate the 62 

evolution of GWS (Gascoin et al., 2009). 63 

In 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite was launched jointly by 64 

the National Aeronautics and Space Administration (NASA) and Deutsches Zentrum für Luft- und 65 

Raumfahrt (DLR) (Tapley et al., 2004a). GRACE mission has created unprecedented opportunities for 66 

detecting terrestrial mass redistribution and provided an innovative perspective to quantify GWS 67 

variations (Tapley et al., 2004b). Changes in GWS can be isolated from changes in GRACE-detected 68 

terrestrial water storage (TWS) by removing other non-groundwater components (Rodell et al., 2009). 69 

Compared to in situ observations and model simulations, GRACE-based estimation demonstrates 70 

distinct superiority. Horizontally, the global coverage of GRACE enables continuous monitoring of 71 

large-scale groundwater variations. Vertically, GRACE-derived groundwater storage anomaly (GWSA) 72 

represents the integrated dynamics of aquifer systems, providing more holistic characterization than 73 

monitoring wells or predictions of hydrological models. 74 

Although GRACE has emerged as a prevailing methodology for GWS estimation, limitations still 75 

remain in current GRACE-based studies. On the one hand, TWS is the summation of GWS and 76 

non-groundwater storage. The more comprehensively non-groundwater components are taken into 77 

account, the more accurate the separated GWS information will be. However, non-groundwater 78 

components considered in most previous studies only encompass soil moisture, snow, plant canopy 79 

water, and surface runoff (Table S1), which may be applicable to areas with limited types of water 80 

bodies. For areas characterized by complicated hydrological systems (e.g., coexisting glaciers, 81 

permafrost, and lakes), such ignorance will erroneously attribute the signals of unaccounted 82 
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components to changes in GWS, which will consequently compromise the accuracy of GWSA 83 

estimation. Among the neglected components, glaciers typically exhibit the most pronounced 84 

magnitude of mass change. Therefore, the potential impact of incomprehensive consideration on 85 

GWSA estimation is expected to be the greatest in glacier-covered regions. Due to the absence of 86 

glacier module in most land surface models (LSMs) and hydrological models, glacier mass balance 87 

cannot be obtained from model simulations as other components. To our knowledge, the vast majority 88 

of previous studies conducted in glacier-covered regions worldwide fail to take into account glacier 89 

water storage when estimating GWSA (Table S1). 90 

On the other hand, although soil moisture storage is involved in most previous studies (Table S1), 91 

the adopted soil moisture data characterize water content within fixed-depth soil layers only instead of 92 

the entire soil profile. Among these data, soil moisture storage in the 0–200 cm soil layer simulated by 93 

GLDAS (Global Land Data Assimilation Systems) Noah (Rodell et al., 2004) has been most 94 

extensively applied. However, soil thickness is not spatially uniform in reality, and the 200 cm depth 95 

fails to represent actual soil profile depth in many regions. As early as 2001, Rodell and Famiglietti 96 

(2001) declared that a uniform soil depth of 200 cm would introduce significant uncertainties into 97 

GRACE-derived GWSA estimation. They defined the remaining water storage in the unsaturated zone 98 

below 200 cm as intermediate zone storage (IZS), a potentially critical but poorly understood 99 

component of TWS. When IZS is not quantified, it is unrealistic to clearly determine to what extent the 100 

separated GWSA variations are attributed to changes in actual groundwater level instead of changes in 101 

deep-layer soil moisture storage (Rodell and Famiglietti, 2002). In regions where soil moisture acts as 102 

the dominant component of TWS (Felfelani et al., 2017; Wang et al., 2018), the absence of deep-layer 103 

soil moisture storage will inevitably diminish the accuracy of GWSA estimation. 104 

The primary objective of this study is to develop an improved GRACE-derived GWSA dataset at 105 

the global scale, namely igGWSA, by comprehensively considering diverse non-groundwater 106 

components and particularly resolving the effects of deep-layer soil moisture storage. igGWSA is 107 

expected to improve our understanding of the evolution of global and regional GWS, and to shed light 108 

on the scientific management and sustainable utilization of groundwater resources under a changing 109 

environment. 110 
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2. Datasets 111 

2.1. GRACE-based terrestrial water storage anomaly (TWSA) reconstruction data 112 

In spite of the capability of providing global observations, the temporal gap existing between GRACE 113 

and GRACE-FO is not conducive to the analysis of TWS evolution. To this end, Li et al. (2021) 114 

reconstructed a long-term and gap-free TWSA dataset named GRID_CSR_GRACE_REC based on 115 

RL06 GRACE Mascon solutions. This reconstruction showed high consistency with RL06 GRACE-FO 116 

Mascon solutions and proved to be superior to previous TWSA datasets. Therefore, 117 

GRID_CSR_GRACE_REC was adopted in this study to encompass the entire period from 2000 to 118 

2019. 119 

2.2. Non-groundwater components data 120 

2.2.1. Glaciers 121 

Taking advantage of massive stereo images from the Advanced Spaceborne Thermal Estimation and 122 

Reflection Radiometer (ASTER), Hugonnet et al. (2021) developed a global-scale glacier mass balance 123 

dataset. Changes in glacier surface elevation, volume and mass were estimated at four levels of spatial 124 

resolution, i.e., 0.5º0.5º, 1º1º, 2º2º, and 4º4º. Volume change data with the finest resolution 125 

(0.5º0.5º) were used in this study to obtain glacier water storage (Text S1). 126 

2.2.2. Permafrost 127 

Changes in permafrost water storage were indirectly estimated based on changes in active layer 128 

thickness (ALT) in this study (Text S2), as suggested by Xiang et al. (2016) and Zou et al. (2022). ALT 129 

data were derived from Community Land Model version 5 (CLM5) developed by the National Center 130 

for Atmospheric Research (NCAR). 131 

2.2.3. Snow 132 

Snow water equivalent simulations from seven reanalysis products were collected in this study, 133 

including: (1) GLDAS Noah from NASA (Rodell et al., 2004); (2) GLDAS Variable Infiltration 134 
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Capacity (VIC) from NASA (Rodell et al., 2004); (3) GLDAS Catchment Land Surface Model (CLSM) 135 

from NASA (Rodell et al., 2004); (4) Famine Early Warning Systems Network Land Data Assimilation 136 

System (FLDAS) Noah from NASA (Mcnally et al., 2022); (5) Modern-Era Retrospective analysis for 137 

Research and Applications version 2 (MERRA-2) from NASA (Gelaro et al., 2017); (6) The land 138 

component dataset of the fifth generation of European ReAnalysis (ERA5-Land) from European Centre 139 

for Medium-Range Weather Forecasts (ECMWF) (Munoz-Sabater et al., 2021); (7) Japanese 55-year 140 

Reanalysis (JRA-55) from Japan Meteorological Agency (JMA) (Kobayashi et al., 2015). 141 

2.2.4. Lakes and reservoirs 142 

The global database of lake water storage (GLWS) developed by Yao et al. (2023) was used in this 143 

study. To construct GLWS, 248,649 satellite images from Landsat were used to map time-varying water 144 

areas (Yao et al., 2019). Then, elevation measurements from nine satellite altimeters, including 145 

CryoSat-2, ENVISAT, ICESat, ICESat-2, Jason 1-3, SARAL, and Sentinel 3, were used to estimate 146 

water levels. Lastly, changes in lake volume were quantified by combining water areas with water 147 

levels. GLWS depicts the variations in water storage of 1,972 large water bodies spanning 1992 to 2020, 148 

accounting for 96% of the total global lake water storage and 83% of the total global reservoir water 149 

storage, respectively. Data processing of GLWS is detailed in Text S3. 150 

2.2.5. Surface runoff 151 

The global runoff reanalysis reconstructed by Ghiggi et al. (2021), namely Global RUNoff 152 

ENSEMBLE (G-RUN ENSEMBLE), was used in this study. G-RUN ENSEMBLE is produced based 153 

on in situ river discharge measurements and machine learning. Benchmarked against other independent 154 

observations, this reanalysis outperforms simulations from a set of global hydrological models. A total 155 

of 21 atmospheric forcing datasets are involved to generate 525 ensemble members in G-RUN 156 

ENSEMBLE, and the median of all these members was adopted in our study. 157 

2.2.6. Plant canopy water 158 

Plant canopy water simulations from four reanalysis products were collected in this study, including: (1) 159 
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GLDAS Noah; (2) GLDAS VIC; (3) GLDAS CLSM; (4) ERA5-Land. 160 

2.2.7. Profile soil moisture (PSM) 161 

In most GRACE-derived GWSA studies, the depth of soil moisture profile is set fixed, say 200 cm and 162 

289 cm in Noah model driven by GLDAS and CHTESSEL model driven by ERA5, respectively. In this 163 

study, PSM simulated by CLSM was utilized. Inspired by Famiglietti and Wood (1994), Koster et al. 164 

(2000) and Ducharne et al. (2000) proposed CLSM in 2000 by coupling a classic hydrological model, 165 

TOPMODEL (Beven and Kirkby, 1979), with the parameterization of surface energy and water fluxes 166 

from Mosaic LSM. Based on the concepts of TOPMODEL, the distribution of water table depth can be 167 

inferred from that of topographic index. Subsequently, the distribution of water table depth is applied to 168 

derive catchment deficit (CD), which is defined as the water amount required to saturate the entire 169 

catchment under the assumption that vertical moisture profile in the unsaturated zone arises from 170 

hydrostatic equilibrium. In addition, two variables that take into account non-equilibrium conditions 171 

are defined in CLSM, namely surface excess (SE) and root zone excess (RE). SE and RE quantify the 172 

deviations of surface soil moisture and root zone soil moisture, respectively, from the value implied by 173 

the equilibrium profile. Richards equation is used to solve the vertical water fluxes between CD, SE, 174 

and RE, which contribute to bringing the vertical moisture profile closer to the equilibrium profile 175 

(Gascoin et al., 2009). Despite the significant value of CLSM-simulated PSM, uncertainties inherent to 176 

single-source simulation may inevitably compromise the accuracy of GWSA estimation. Thus, machine 177 

learning was applied in this study to improve CLSM-simulated PSM, as will be detailed in Sect. 3.2. 178 

2.3. Predictor variables for PSM 179 

Root zone soil moisture (RZSM), meteorological variables, and vegetation index were selected as 180 

predictor variables for PSM. As a function of vegetation type, root zone depth is characterized by 181 

spatial heterogeneity and is inherently challenging to quantify globally. In this study, soil water content 182 

within the uppermost 100 cm soil layer was defined as RZSM as suggested by Xu et al. (2021) and 183 

Heyvaert et al. (2023). RZSM simulations from five reanalysis products were collected, including: (1) 184 

GLDAS Noah; (2) GLDAS CLSM; (3) FLDAS Noah; (4) MERRA-2; (5) ERA5-Land. Data 185 
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processing of RZSM is detailed in Text S4. With regard to meteorological variables, air temperature 186 

and precipitation from one of the most widely used climate dataset, CRU TS (Climatic Research Unit 187 

gridded Time Series) v4.08 (Harris et al., 2020), was adopted. Besides, the normalized difference 188 

vegetation index (NDVI) provided by Global Inventory Monitoring and Modeling System (GIMMS) 189 

(Pinzon and Tucker, 2014) was also used for prediction of PSM. 190 

2.4. In situ-observed and model-simulated groundwater data 191 

Jasechko et al. (2024) compiled in situ observations of groundwater level (GWL) from a total of 192 

170,000 wells and 1,693 aquifer systems across more than 40 countries worldwide, with which they 193 

revealed widespread groundwater depletion in the 21st century. Due to the provisions of data sharing, 194 

only 59% of data used for analysis can be publicly accessed. The available data exhibit a pronounced 195 

spatial imbalance, with 97.7% of the monitoring wells located in the United States and the remaining 196 

2.3% distributed across China, Canada, Europe, etc. In situ-observed GWL served as the benchmark 197 

for validating GWSA estimation in this study.  198 

In addition, a state-of-the-art hydrological model coupled with human activity modules, namely the 199 

WaterGAP Global Hydrological Model (WGHM), was employed to provide independent simulations 200 

of GWSA. WaterGAP (Water-Global Assessment and Prognosis) is developed by the University of 201 

Frankfurt to quantify water storage, water resources, and water use at the global scale. GWSA 202 

simulations from the most recent version, i.e., WaterGAP v2.2e (Schmied et al., 2024), were used in 203 

this study. 204 

Detailed information of data utilized in this study is listed in Table 1. Taking into account the 205 

spatiotemporal attributes of diverse datasets, this study was conducted over global land areas excluding 206 

Antarctica (60º S–90º N) at a 0.5º0.5º spatial resolution, spanning the period from January 2000 to 207 

December 2019. Datasets with coarser resolutions were harmonized to 0.5º0.5º by using bilinear 208 

interpolation. 209 
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3. Methods 213 

3.1. Integrating multi-source estimates via Bayesian three-cornered hat (BTCH) 214 

BTCH proposed by He et al. (2020) is a data fusion method free of any a priori knowledge. By 215 

coupling TCH technique with Bayesian probabilistic frameworks, BTCH is capable of reducing 216 

uncertainties inherent to single-source dataset, and has been widely used to improve the estimation of 217 

hydrological variables such as soil moisture (Shangguan et al., 2023) and terrestrial water storage 218 

(Chen et al., 2024). In this study, BTCH was employed to generate ensemble simulations of snow water 219 

equivalent, plant canopy water and RZSM (Fig. 1, Text S5). 220 

3.2. Generating PSM data with lower uncertainties via machine learning 221 

3.2.1. Random forest (RF) 222 

RF is an ensemble machine learning technique that combines decision tree with bagging algorithm 223 

(Breiman, 2001). In contrast to non-ensemble techniques, RF is characterized by stronger 224 

generalization ability, higher robustness to noise, and lower susceptibility to overfitting. Moreover, RF 225 

is more interpretable than other black-box machine learning methods owing to its capability to quantify 226 

the relative importance of predictors. RF has been extensively applied in soil moisture prediction 227 

(Wang et al., 2022; Li et al., 2022). 228 

3.2.2. Modelling the relationship between PSM and covariates 229 

RF was employed to establish relationship model between CLSM-simulated PSM and diverse 230 

covariates including CLSM-simulated RZSM, air temperature, precipitation, and NDVI (Fig. 1). There 231 

are two key hyperparameters in RF: the number of trees (ntree) and the number of variables randomly 232 

sampled as candidates at each split (mtry). We adjusted ntree from 250 to 1000 in steps of 250, and 233 

varied mtry from 1 to 4 (the total number of predictors) in steps of 1. All the remaining parameters 234 

were retained at their default settings. The 16 combinations of ntree and mtry were tested one by one, 235 

among which the one with the lowest prediction error was determined as the optimal parameter 236 
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combination. Based on the optimal hyper-parameters, prediction models for PSM were developed at 237 

the pixel scale by randomly partitioning the datasets into training set and validation set at an 80%:20% 238 

ratio. The accuracy of RF model was evaluated using two metrics: R
2
 (coefficient of determination) and 239 

rRMSE (relative root mean square error) (Text S6).  240 

To further quantify the spatial differences in the accuracy of RF models, performance evaluation 241 

was also conducted at the climatic zone scale. Here, climate classification scheme based on aridity 242 

index (AI), the ratio of annual precipitation to potential evapotranspiration (PET), was adopted as 243 

suggested by the United Nations Environment Program (UNEP) (Middleton and Thomas, 1997). The 244 

climatology (1991–2020) of AI was computed using precipitation and PET data provided by CRU TS 245 

v4.08. Following the definition of UNEP, humid regions (AI≥0.65) and drylands (AI<0.65) were first 246 

delineated with a threshold of 0.65. Whereafter, drylands were further classified into four subtypes: dry 247 

sub-humid (0.5≤AI＜0.65), semi-arid (0.2≤AI＜0.5), arid (0.05≤AI＜0.2), and hyper-arid 248 

(AI<0.05). 249 

3.2.3. Prediction of improved PSM and uncertainty analysis 250 

Owing to the fact that PSM is inclusive of RZSM, this study assumed that RZSM served as a critical 251 

predictor for PSM. Accordingly, the prediction accuracy of PSM was expected to be enhanced by 252 

constraining the uncertainties in RZSM input. To this end, we integrated multi-source RZSM 253 

simulations by using BTCH. Given the established optimal models, ensemble RZSM, air temperature, 254 

precipitation, and NDVI were reintroduced as inputs into the models to derive improved prediction of 255 

PSM that synthesized the advantages of multi-source soil moisture datasets (Fig. 1). 256 

Quantitative analysis was imperative to demonstrate whether the uncertainties in the improved 257 

prediction had been reduced relative to the original CLSM simulations. Typically, this can be achieved 258 

by using in situ measurements as benchmarks. Nevertheless, unlike surface soil moisture or RZSM, in 259 

situ-observed PSM is extremely scarce. In light of this, an alternative approach named the generalized 260 

three-corner hat (GTCH) (Tavella and Premoli, 1994) was used for uncertainty analysis. Note that at 261 

least three estimates are required to implement GTCH. Besides improved PSM and CLSM-simulated 262 

PSM, we additionally derived GLDAS-Noah-based PSM, FLDAS-Noah-based PSM, 263 
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ERA5-Land-based PSM, and MERRA-2-based PSM by replacing the ensemble RZSM with the 264 

corresponding single-source RZSM as a model input. A dimensionless index, namely relative 265 

uncertainty, was calculated by GTCH to evaluate the abovementioned six PSM estimations from the 266 

perspective of uncertainties. 267 

3.3. Estimation, validation and intercomparison methods of GWSA 268 

3.3.1. Estimation of igGWSA and non-improved GWSA 269 

Vertically, TWS comprises a variety of hydrological components such as glaciers, snow, soil moisture, 270 

groundwater, etc. By subtracting diverse non-groundwater components, GWS can be isolated from 271 

TWS (Fig. 1), as shown in Eq. (1). 272 

𝑖𝑔𝐺𝑊𝑆𝐴 = 𝑇𝑊𝑆𝐴 − 𝐺𝑙𝑎𝑐𝑖𝑒𝑟𝑊𝑆𝐴 − 𝑃𝑊𝑆𝐴 − 𝐿𝑅𝑊𝑆𝐴 − 𝑆𝑅𝑆𝐴 − 𝑃𝑆𝑀𝑆𝐴𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 − 𝑆𝑊𝐸𝐴 −273 

𝐶𝑊𝑆𝐴 ,                  (1) 274 

where 𝑖𝑔𝐺𝑊𝑆𝐴  stands for the improved estimation of groundwater storage anomaly; 𝑇𝑊𝑆𝐴  is 275 

terrestrial water storage anomaly; 𝐺𝑙𝑎𝑐𝑖𝑒𝑟𝑊𝑆𝐴  is glacier water storage anomaly; 𝑃𝑊𝑆𝐴  is 276 

permafrost water storage anomaly; 𝐿𝑅𝑊𝑆𝐴 is lake and reservoir water storage anomaly; 𝑆𝑅𝑆𝐴 is 277 

surface runoff storage anomaly; 𝑃𝑆𝑀𝑆𝐴𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑  is the improved profile soil moisture storage 278 

anomaly; 𝑆𝑊𝐸𝐴 is snow water equivalent anomaly; 𝐶𝑊𝑆𝐴 is canopy water storage anomaly. 279 

To quantify the impacts of incomprehensive considerations of non-groundwater components, five 280 

kinds of non-improved GWSA were further estimated as listed below. 281 

(1) GWSAsimplified: Similar to most previous studies (Liu et al., 2023; Peng et al., 2021; Zhao et al., 282 

2023), simplified GWSA was separated from TWSA by subtracting only soil moisture storage 283 

in the 0–200 cm soil layer, snow water equivalent, and plant canopy water simulated by 284 

GLDAS Noah. 285 

(2) GWSACLSM: CLSM-simulated PSM instead of improved PSM was used to estimate GWSA, 286 

with all other non-groundwater components identical to those for igGWSA. 287 

(3) GWSA289: Soil moisture storage in the 0–289 cm soil layer derived from ERA5-Land instead of 288 

improved PSM was used to estimate GWSA, with all other non-groundwater components 289 
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identical to those for igGWSA. 290 

(4) GWSA200: Soil moisture storage in the 0–200 cm soil layer derived from FLDAS Noah instead 291 

of improved PSM was used to estimate GWSA, with all other non-groundwater components 292 

identical to those for igGWSA. 293 

(5) GWSAignored: GlacierWSA was ignored when estimating GWSA, with all other 294 

non-groundwater components identical to those for igGWSA. 295 

3.3.2. Validation of igGWSA against in situ observations and model simulations 296 

Focusing on the potential of igGWSA in detecting groundwater resources evolution and serving for 297 

global water security, validation of igGWSA was performed in five globally recognized hotspots of 298 

groundwater depletion, i.e., North China Plain, California Central Valley, High Plains of USA, 299 

Ganges-Brahmaputra River Basin, and the Middle East. 300 

Among the five hotspots, high-density in situ observations of monitoring wells can be obtained from 301 

Jasechko et al. (2024) in North China Plain, California Central Valley, and High Plains of USA. Given 302 

the intrinsic disparity in spatial scales between in situ monitoring (point-scale) and igGWSA (0.5º0.5303 

º grid cell), scale transformation was imperative before validation. Accordingly, point-scale data were 304 

first converted into pixel-scale by averaging observations of wells located in the specific grid cell. Then 305 

in situ GWL and GWSA estimation at a 0.5º0.5º resolution were upscaled to obtain basin-averaged 306 

time series. Due to the fact that GWL and GWS are two fundamentally distinct hydrological variables, 307 

error metrics such as RSME were unsuitable for validation. Instead, Pearson's correlation coefficient 308 

(PCC) was employed to evaluate the consistency in their temporal evolution. 309 

As for Ganges-Brahmaputra and the Middle East, in situ observations were currently unavailable. 310 

Alternatively, an advanced global hydrological model with consideration of effects of anthropogenic 311 

activities (e.g., water withdrawal) on groundwater resources, i.e., WGHM, was introduced to provide 312 

independent GWSA simulations. PCC between our igGWSA and WGHM-simulated GWSA was also 313 

calculated to facilitate the validation. 314 
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3.3.3. Intercomparison between igGWSA and non-improved GWSA 315 

Similar to intercomparison between various PSM estimations, GTCH was applied to quantify the 316 

relative uncertainty of igGWSA as well as four kinds of non-improved GWSA estimations, i.e., 317 

GWSAsimplified, GWSACLSM, GWSA289, and GWSA200. GWSAignored was not involved in GTCH 318 

evaluation given that glaciers constitute only a minor fraction of global land areas. 319 

In addition to pixel-wise uncertainty analysis, intercomparison between igGWSA and non-improved 320 

GWSA was further carried out under three kinds of distinctive geographical environments. To be 321 

specific, the three environments refer to glacier-covered regions, giant lakes, and deep-soil areas, 322 

corresponding to the absence of glaciers, lakes and reservoirs, and deep-layer soil moisture, 323 

respectively, in most previous studies when estimating GWSA in these regions. 324 

For glacier-covered regions, a dataset of global glacier outlines named the Randolph Glacier 325 

Inventory (RGI) was utilized. RGI 6.0 defines 19 first-order glacier regions: (1) Alaska; (2) Western 326 

Canada and USA; (3) Arctic Canada (North); (4) Arctic Canada (South); (5) Greenland Periphery; (6) 327 

Iceland; (7) Svalbard and Jan Mayen; (8) Scandinavia; (9) Russian Arctic; (10) North Asia; (11) 328 

Central Europe; (12) Caucasus and Middle East; (13) Central Asia; (14) South Asia (West); (15) South 329 

Asia (East); (16) Low Latitudes; (17) Southern Andes; (18) New Zealand; (19) Antarctic and 330 

Subantarctic. Region 19 was excluded from analysis. Intercomparison between igGWSA and 331 

GWSAignored was conducted in glacier-covered regions. 332 

For giant lakes, 13 lakes or lake clusters were involved: (1) Caspian Sea; (2) Great Lakes of North 333 

America; (3) Victoria; (4) Tanganyika; (5) Baikal; (6) Great Bear; (7) Malawi; (8) Great Slave; (9) 334 

Winnipeg; (10) Ladoga; (11) Balkhash; (12) Aral Sea; (13) Lakes of Tibetan Plateau. The outlines of 335 

these lakes were derived from HydroLAKES dataset. Intercomparison between igGWSA and 336 

GWSAsimplified was conducted in giant lakes. 337 

For deep-soil areas, eight regions were selected as typical cases: (1) Mississippi River Basin; (2) 338 

Volga River Basin; (3) Ob River Basin; (4) Loess Plateau; (5) Congo River Basin; (6) Songhua-Liaohe 339 

River Basin; (7) Pampas Steppe; (8) Ganges-Brahmaputra River Basin. These regions were primarily 340 

determined based on soil depth information defined in GLDAS VIC model (Fig. S1) and encompassed 341 

the major loess and chernozem zones worldwide. Intercomparison between igGWSA, GWSA289, and 342 
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GWSA200 was conducted in deep-soil areas. 343 

 344 

Figure 1. Flowchart of the generation process for igGWSA. 345 

4. Results 346 

4.1. Performance evaluation of RF-based modelling of PSM 347 

4.1.1. Evaluation at the pixel scale 348 

Pixel-wise RF models demonstrated exceptional accuracy in replicating CLSM-simulated PSM (Fig. 2). 349 

During model training, 86.90% and 97.33% of global grid cells achieved R² values exceeding 0.9 and 350 

0.8, respectively, indicating strong explanatory power of the selected predictors for PSM. With regard 351 

https://doi.org/10.5194/essd-2025-497
Preprint. Discussion started: 13 October 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

to error metric, rRMSE was contained below 1% and 2% for 93.47% and 99.87% of global grid cells, 352 

respectively. The accuracy of validation sets was relatively lower than that of training sets, with 67.14% 353 

and 83.07% of grid cells exhibited R² values exceeding 0.9 and 0.8, respectively, and 76.96% and 97.43% 354 

of grid cells showed rRMSE less than 1% and 2%, respectively. Overall, the training and validation sets 355 

achieved average R² values of 0.96 and 0.89, respectively, with average rRMSE values of 1.18% and 356 

1.84%. 357 

 358 

Figure 2. Pixel-scale performance of RF-based modelling of PSM. 359 

4.1.2. Evaluation at the climatic zone scale 360 

The accuracy of RF models was found to vary remarkably in different climatic zones. The models 361 

outperformed in humid regions compared to drylands, whether assessed through training/validation sets 362 

or evaluated by R²/ rRMSE (Fig. 3). For the training set, the average R² values were 0.98 and 0.93 for 363 

humid regions and drylands, respectively, and the average rRMSE values were 1.10% and 1.29%, 364 

respectively. Moreover, the predictive skill of RF models was observed to progressively decline with 365 

increasing aridity within drylands: dry sub-humid (R²=0.96), semi-arid (R²=0.94), arid (R²=0.92), and 366 

hyper-arid (R²=0.87). 367 
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 368 

Figure 3. Climatic zone-scale performance of RF-based modelling of PSM. 369 

4.1.3. Evaluation of interannual trends 370 

The aforementioned evaluations were achieved by randomly partitioning time series of the given pixel 371 

into training and validation sets without maintaining the original patterns. Given this, evaluation of 372 

interannual trends in PSM was carried out additionally. Results showed that trends in RF-predicted 373 

PSM were highly consistent with trends in CLSM-simulated PSM with R
2
 exceeding 0.98 in all 374 

climatic zones (Fig. 4). RF models effectively reproduced the interannual variations in PSM, which 375 

was critical for the temporal patterns of the derived GWSA. 376 
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 377 

Figure 4. Comparison between trends in RF-predicted PSM and CLSM-simulated PSM. 378 

4.2. Evaluation of improved estimation of PSM 379 

4.2.1. Intercomparison with fixed-depth soil moisture 380 

Improved estimation of PSM (SMSprofile) was compared to soil moisture storage in 0–200 cm layer 381 

(SMS200) and 0–289 cm layer (SMS289) (Fig. 5). The multi-year (2000–2019) and global averages of 382 

SMS200, SMS289, and SMSprofile were 50.70 cm, 78.28 cm, and 106.98 cm, respectively. The spatial PCC 383 

between SMS200 and SMSprofile was 0.55 (p<0.01), and that between SMS289 and SMSprofile reached 0.74 384 

(p<0.01). SMS289 was more comparable to SMSprofile in both magnitude and spatial pattern, yet 385 

conspicuous deviations still existed. Therefore, fixed-depth soil moisture cannot adequately represent 386 

PSM, implying the considerable effects of deep-layer soil moisture. 387 
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 388 

Figure 5. Intercomparison between SMS200, SMS289, and SMSprofile. 389 

4.2.2. Intercomparison with single-source PSM estimations 390 

Improved estimation of PSM was also compared to five kinds of single-source PSM estimations via 391 

GTCH (Fig. 6). The global-averaged relative uncertainty ranked as: CLSM-based PSM (0.057) > 392 

ERA5-Land-based PSM (0.048) > MERRA-2-based PSM (0.046) > GLDAS-Noah-based PSM 393 

(0.045) > FLDAS-Noah-based PSM (0.040) > ensemble-based PSM (0.019). CLSM-simulated PSM 394 

exhibited the highest uncertainty levels, whereas our improved PSM based on ensemble RZSM and RF 395 

modeling demonstrated the lowest relative uncertainty. Results confirmed that constraining the 396 

uncertainties of predictors can effectively improve the accuracy of PSM estimation. 397 
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 398 

Figure 6. Relative uncertainty of ensemble-based PSM and single-source PSM. 399 

4.3. Evaluation of igGWSA 400 

4.3.1. Validation against in situ observations and model simulations 401 

Well-monitored groundwater depth (GWDin situ, negatively correlated with GWL) and 402 

WGHM-simulated GWSA (GWSAWGHM) were applied as independent benchmarks to validate 403 

igGWSA in five typical hotspots (Fig. 7). PCCs between igGWSA and GWDin situ reached −0.99 404 

(p<0.01), −0.95 (p<0.01), and −0.96 (p<0.01) in North China Plain, Central Valley, and High Plains, 405 

respectively. Persistent declines in GWS were accompanied by distinct increases in GWD, both 406 

indicating substantial mass loss. For all the five hotspots, tremendous groundwater depletion revealed 407 

by igGWSA was highly consistent with GWSAWGHM in spite of differences in declining rates, with 408 

PCCs ranging from 0.95 (p<0.01) to 0.99 (p<0.01). Validation results suggested that igGWSA was 409 

capable of detecting temporal evolution of groundwater resources. Unlike our comprehensive method, 410 

Jin and Feng (2013) obtained two GRACE-derived GWSA estimations based on GLDAS and WGHM 411 

by using simplified method and found that the amplitudes of GWSAWGHM were much smaller than 412 

these two simplified estimations. In comparison, our igGWSA are in high agreement with GWSAWGHM 413 

as demonstrated above, underscoring the importance of the full consideration of non-groundwater 414 

storage components. 415 
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 416 

Figure 7. Validation of igGWSA against GWDin situ and GWSAWGHM in five typical hotspots of groundwater 417 

depletion. ** indicates significance at the 0.01 level. 418 

4.3.2. Uncertainty analysis 419 

Uncertainty analysis was further conducted for igGWSA and four kinds of non-improved estimations 420 

(Fig. 8). The global-averaged relative uncertainty ranked as: GWSAsimplified (0.94) > GWSA289 (0.74) > 421 

GWSACLSM (0.67) > GWSA200 (0.59) > igGWSA (0.56). The highest uncertainty was observed in 422 

GWSAsimplified, which was estimated by roughly deducting only fixed-depth soil moisture, snow, and 423 

plant canopy water from TWS like most previous studies. In contrast, our igGWSA that 424 

comprehensively took into account diverse non-groundwater components exhibited the lowest 425 

uncertainty. Note that GWSACLSM relying on CLSM-simulated PSM showed higher uncertainty than 426 

igGWSA, highlighting the significance of improving GWSA estimation by optimizing PSM simulation. 427 
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 428 

Figure 8. Relative uncertainty of igGWSA and non-improved estimations of GWSA. 429 

4.4. Intercomparison between igGWSA and non-improved GWSA under distinctive geographical 430 

environments 431 

4.4.1. Glacier-covered regions 432 

The impacts of neglecting glacier water storage on the estimation of GWSA in glacier-covered regions 433 

manifested as three scenarios (Fig. 9, Table S2): 434 

(1) Misestimation of the sign of trends: In Region 1, 3, 4, 6, 7, 11, 13, 14, 15, and 17, GWS tended 435 

to increase significantly due to the replenishment from glacier meltwater. However, the potential 436 

increasing trends would be reversed when ignoring glacier as a non-groundwater component. 437 

(2) Overestimation of the decreasing trends: Both igGWSA and GWSAignored were observed to 438 

decrease, but the latter exhibited a more considerable declining rate on account of the additional 439 

contribution of changes in glacier. This pattern was found in Region 5, 9, and 12. 440 

(3) Underestimation of the increasing trends: Compared to igGWSA that increased at a remarkable 441 

rate, the increasing trend of GWSAignored was greatly offset by glacier melting. This pattern was 442 

represented by Region 2, 8, 10, 16, and 18. 443 

Regarding to the global glaciated areas, igGWSA and GWSAignored declined at rates of −0.19 cm/yr 444 

(p<0.01) and −4.03 cm/yr (p<0.01), respectively. However, the enormous mass loss signal was 445 

primarily attributed to glacier melting (−3.85 cm/yr, p<0.01) rather than groundwater depletion itself. 446 
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Therefore, absence of glaciers would inevitably result in inaccurate estimation of GWSA and 447 

misunderstandings of GWS evolution in glacier-covered regions. 448 

 449 

Figure 9. Intercomparison between igGWSA and GWSAignored in glacier-covered regions. 450 

4.4.2. Giant lakes 451 

Among the 13 giant lakes, Tanganyika, Great Bear, Great Slave, Winnipeg, and Ladoga exhibited 452 

insignificant (p≥0.05) fluctuations in water storage. For the remaining eight lakes where dramatic 453 

storage variations have been detected, GWSAsimplified can lead to two kinds of diametrically opposed 454 
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misinterpretations (Fig. 10, Table S3). 455 

(1) For shrinking lakes including Caspian Sea, Baikal, Malawi, and Aral Sea, increasing signals of 456 

GWS were overshadowed by the pronounced declining signals of lake water storage, thus 457 

indicating unrealistic risks of groundwater depletion. 458 

(2) For expanded lakes including Great Lakes of NA, Victoria, Balkhash, and Lakes of Tibetan 459 

Plateau, decreasing trends in GWS became unrecognizable due to the marked increasing trends 460 

in lake water storage, consequently generating spurious positive signals of groundwater surplus. 461 

This is what was exactly presented in Jin and Feng (2013). 462 

For all the 1,972 large lakes and reservoirs worldwide, igGWSA and GWSAsimplified showed a 463 

decreasing trend of −0.19 cm/yr (p<0.01) and −0.35 cm/yr (p<0.01), respectively. GWSAsimplified 464 

interpreted mass loss of surface water bodies (−0.11 cm/yr, p>0.05) as part of changes in GWS, which 465 

significantly exaggerated groundwater depletion at the global scale. 466 
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 467 

Figure 10. Intercomparison between igGWSA and GWSAsimplified in giant lakes. 468 

4.4.3. Deep-soil areas 469 

Non-improved GWSA based on fixed-depth SM (GWSA200, GWSA289) demonstrated consistent sign of 470 

interannual trends with igGWSA in only four of the eight deep-soil regions, i.e., Mississippi, Volga, 471 

Loess Plateau, and Ganges-Brahmaputra (Fig. 11, Table S4). GWSA200 showed an opposite trend to 472 

igGWSA in Ob and Congo, and negative correlation was found between GWSA289 and igGWSA in 473 

Songhua-Liaohe and Pampas. Beyond the sign, the magnitude of trends in GWSA200, GWSA289, and 474 

igGWSA also varied considerably. For instance, igGWSA exhibited insignificant fluctuations with 475 

absolute rates not exceeding 0.1 cm/yr in Ob, Congo, Songhua-Liaohe and Pampas. However, 476 

GWSA289 increased significantly with rates ranging from 0.22 cm/yr to 0.69 cm/yr in these regions. 477 

Results underscored the limitations of fixed-depth SM data and the necessity of involving deep-layer 478 
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soil moisture as a non-groundwater component. 479 

 480 

Figure 11. Intercomparison between GWSA200, GWSA289, and igGWSA in deep-soil areas. 481 

5. Discussions 482 

5.1. Influence factors of PSM modelling 483 

In the RF-based modelling of CLSM-simulated PSM, CLSM-simulated RZSM achieved the highest 484 

importance among the four predictors across 97.17% of global grid cells (Fig. 12), implying the 485 

feasibility of improving PSM simulations by optimizing RZSM. Despite this, CLSM-simulated RZSM 486 

outperformed other RZSM products only in 16.10% of global grid cells (Fig. S2). The optimal RZSM 487 

product was characterized by strong spatial heterogeneity without any dominant patterns, which 488 

underscored the significance of integrating multi-source RZSM simulations for PSM prediction. 489 

Furthermore, the relative importance of RZSM varied with climate conditions. Specifically, it was 490 

more important in humid regions than in drylands as illustrated by scaled importance (Fig. S3). This 491 

implied the weaker correlation between RZSM and PSM in drylands, which explained the lower R
2
 of 492 

RF models in drylands mentioned in Sect. 4.1.2, given that RZSM was the foremost predictor of PSM. 493 

We attributed the differences across climatic zones to the higher susceptibility to decoupling of RZSM 494 

and PSM in drylands, which was consistent to Carranza et al. (2018) who identified decoupling of 495 
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surface and subsurface SM under arid conditions with in situ data. 496 

For the remaining 2.83% of global grid cells, NDVI emerged as the dominant predictor variable for 497 

PSM modelling in most regions, accounting for 2.08% of global grid cells in total. Specifically, NDVI 498 

exhibited predominant impacts on PSM dynamics in the band between the Sahara Desert and the 499 

Congo Basin, the east coast of Africa, eastern South America, and northern Australia (Fig. 12). 500 

Interestingly, this spatial pattern closely aligned with the global distribution of deep-rooted regions 501 

predicted by Schenk and Jackson (2005) via climate-based model, highlighting the critical role of 502 

vegetation activity in regulating regional water storage variability. To further investigate the 503 

relationship between vegetation and water storage, the spatiotemporal variations of the sole 504 

vegetation-associated TWS component, i.e., canopy water storage (CWS), were analyzed (Fig. S4). 505 

However, the spatial pattern of CWS failed to match that of the variable importance of NDVI. The 506 

reason may be that CWS cannot adequately represent vegetation water storage, which was not 507 

quantified in this study due to its markedly smaller magnitude of variation compared to other 508 

components at the global scale (Rodell et al., 2005). Building on these findings, we suggest that 509 

vegetation water storage should be underscored in the hotspots of vegetation-PSM interactions to 510 

enhance the understanding of regional water storage evolution in future studies. 511 

 512 

Figure 12. Map of dominant predictor variable for PSM modelling. 513 
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5.2. The gains to GWSA estimation from improved PSM 514 

As demonstrated in Sect. 4.3.2, igGWSA based on improved PSM achieved lower uncertainty 515 

compared to GWSACLSM based on CLSM-simulated PSM. To substantiate the gains from improved 516 

PSM to GWSA estimation, igGWSA and GWSACLSM were further compared using GWDin situ as 517 

benchmarks. 518 

At the pixel scale, igGWSA showed average PCCs of −0.41, −0.71, −0.70, and −0.58 with GWDin 519 

situ in North China Plain (NCP) , Central Valley (CV) , High Plains (HP) , and the aggregation of these 520 

three hotspots, respectively. In contrast, average PCCs between GWSACLSM and GWDin situ were −0.38, 521 

−0.73, −0.59, and −0.51 in these regions (Table 2). igGWSA achieved stronger correlations with 522 

GWDin situ except in CV where only seven pixels were involved in analysis. Mann-Whitney U test was 523 

adopted to further identify the differences between igGWSA and GWSACLSM. The differences were not 524 

statistically significant in NCP and CV, while igGWSA was significantly superior to GWSACLSM in HP 525 

and the aggregation (Fig. 13). 526 

At the regional scale, igGWSA and GWSACLSM exhibited comparable correlations with GWDin situ in 527 

NCP and CV, with difference in PCCs not exceeding 0.02. As for HP, igGWSA was relatively more 528 

notably correlated with GWDin situ than GWSACLSM (−0.96 vs −0.90) (Table 2). In conclusion, 529 

improving PSM via machining learning was of great significance for generating GWSA estimation 530 

with higher accuracy and lower uncertainty. 531 

 532 

Figure 13. Difference in PCC between igGWSA and GWDin situ versus GWSACLSM and GWDin situ. ** 533 
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indicates significance at the 0.01 level; * indicates significance at the 0.05 level; ns indicates not significant 534 

(p > 0.05). 535 

 536 

Table 2. Correlations of igGWSA and GWSACLSM with GWDin situ at the pixel scale and the regional scale. 537 

Region Pixel_N 

Pixel scale Regional scale 

igGWSA GWSACLSM igGWSA GWSACLSM 

NCP 48 −0.41 −0.38 −0.99** −0.98** 

CV 7 −0.71 −0.73 −0.95** −0.97** 

HP 61 −0.70 −0.59 −0.96** −0.90** 

Merge 116 −0.58 −0.51 / / 

Note: Pixel_N indicates the number of pixels at a 0.5º0.5º resolution in the specific region; ** 538 

indicates significance at the 0.01 level; Values for pixel scale indicates the average of PCCs for all 539 

pixels. 540 

5.3. Uncertainties and limitations 541 

Although GRACE provides an innovative perspective for monitoring GWS, it is essentially an indirect 542 

estimation methodology. Uncertainties inherent in TWSA data and non-groundwater components data 543 

will ultimately propagate into GRACE-derived GWSA. Therefore, validation of igGWSA against in 544 

situ measurements is imperative. However, existing as a conceptual derivative of TWSA, GWSA lacks 545 

ground truth. Given that, GWL data collected from monitoring wells can serve as substitute 546 

benchmarks for validating GWSA. It should be noted that GWL is closely linked to but is not directly 547 

comparable to GWSA. Accordingly, only correlation metric was employed for validation without error 548 

quantification in this study. Moreover, as mentioned in Sect. 1, the scarcity of globally accessible 549 

groundwater monitoring data renders large-scale validation of GWSA infeasible. To address this, 550 

local-scale validation was alternatively conducted focusing on several hotspots of groundwater 551 

depletion in this study based on available in situ observations and model simulations accounting for 552 

human water use. We would greatly appreciate if researchers worldwide could carry out supplementary 553 

validation of igGWSA using locally available in situ data. 554 
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6. Data availability 555 

Datasets used to develop igGWSA are publicly available and have been stated in the Datasets section. 556 

Our igGWSA dataset is archived on Zenodo and can be freely downloaded at 557 

https://doi.org/10.5281/zenodo.16871689 (Wang et al., 2025). 558 

7. Conclusions 559 

An improved GRACE-derived GWSA dataset over global land, namely igGWSA, was developed in 560 

this study. To this end, we first generated improved estimation of PSM based on RF algorithm and 561 

multi-source RZSM simulations. Then diverse non-groundwater components were subtracted from 562 

TWSA to obtain igGWSA. Finally, validation of igGWSA against in situ observations and model 563 

simulations and intercomparison between igGWSA and non-improved GWSA were conducted. The 564 

key conclusions can be summarized as follows: 565 

(1) RF-based modeling of PSM exhibited superior performance at the global scale, with average R² 566 

and rRMSE reaching 0.96 and 1.18%, respectively. RF models outperformed in humid regions 567 

over drylands Among the predictors, RZSM showed the highest explanatory power for PSM 568 

variations, implying the feasibility of improving PSM by optimizing RZSM. The improved 569 

PSM estimation integrating multi-source RZSM exhibited the lowest relative uncertainty 570 

compared to estimations based on single-source RZSM. 571 

(2) igGWSA was highly consistent with in situ-observed GWD and WGHM-simulated GWSA in 572 

five typical hotspots of groundwater depletion worldwide, i.e., North China Plain, California 573 

Central Valley, High Plains of USA, Ganges-Brahmaputra, and the Middle East, with |PCC| 574 

ranging from 0.89 to 0.99. In addition, igGWSA exhibited the lowest relative uncertainty 575 

compared to four kinds of non-improved GWSA estimations, including GWSACLSM that relied 576 

on CLSM-simulated PSM. Furthermore, igGWSA also achieved significantly stronger 577 

correlations with in situ observations than GWSACLSM, underscoring the gains from improved 578 

PSM to GWSA estimation. 579 

(3) igGWSA and non-improved GWSA estimations showed remarkable discrepancies in 580 
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glacier-covered regions, giant lakes, and deep-soil areas. Specifically, neglecting glacier as a 581 

non-groundwater component would erroneously attribute mass loss induced by glacier melting 582 

to groundwater depletion. Similarly, simplified estimation without considering lakes and 583 

reservoirs would confound the signals of lake shrinkage or expansion with changes in GWS. 584 

Besides, GWSA estimations based on fixed-depth SM would fail to satisfactorily replicate the 585 

sign and the magnitude of trends in igGWSA due to the absence of deep-layer soil moisture 586 

storage. 587 
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