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Text S1. Methods for estimating glacier water storage
To be consistent with TWSA data, changes in glacier volume, dvol, can be converted into changes in

glacier water storage represented as equivalent water height (EWH), dEWH, through Eq. (S1):

dEWH = Z22P0 (S1)

where p; and A refer to the density of ice and the area of pixel, respectively. The units for dvol, p;,

A,and dEWH are m*, kg/m® m? and kg/m? (equiv. to mm), respectively.

Text S2. Methods for estimating permafrost water storage
Changes in permafrost water storage, APM, can be indirectly estimated from changes in active layer

thickness (ALT), AALT, by applying Eq. (S2) (Xiang et al., 2016; Zou et al., 2022).

APM = —AALT (S&=mkpi _ o) S2
(1-K)p

where n is the porosity of soil and rock in the bottom of active layer and is set to 0.4352 m%m? (same

as soil porosity of perennial land ice defined in JRA-55); p; and p,, are the density of ice and water,
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respectively; k is the ice content in the permafrost with an upper limit of 20% (Zhang et al., 2008); ¢
is the residual water content in the increased active layer and is determined to be 7.93% (Gouttevin et

al., 2012).

Text S3. Methods for estimating pixel-wise lake and reservoir water storage

The temporal resolution of GLWS is near-monthly and was resampled to monthly by using linear
interpolation. The water storage data are archived lake by lake instead of grid by grid. To allow for
spatial analysis, we first identified the geographical locations of all grids intersecting with a given lake
or reservoir at a 0.5° X0.5° resolution based on the vector boundaries derived from HydroLAKES

dataset. Next, pixel-wise water storage for the given lake or reservoir can be obtained through Eq. (S3).

A
Vi = Viotar X —— , (S3)

Atotal

where Viorar @nd Ago:q; are the total water storage and area of the lake or reservoir, respectively; V;

and A; are the allocated water storage and intersecting area of the ith grid, respectively.

Text S4. Data processing of multi-source RZSM simulations

The stratification of root zone is 0-100 cm for GLDAS CLSM and MERRA-2; 0-10 cm, 10-40 cm,
and 40-100 cm for GLDAS Noah and FLDAS Noah; and 0-7 c¢m, 7-28 c¢cm, and 28-100 cm for
ERA5-Land. In terms of unit, RZSM is represented as water storage (kg/m?, equiv. to mm) in GLDAS
Noah and GLDAS CLSM, volumetric water content (m*/m®) in FLDAS Noah and ERA5-Land, and
relative moisture (%) in MERRA-2. To be comparable with PSM, RZSM should be quantified by water
storage consistently. To this end, RZSM for GLDAS Noah and GLDAS CLSM was determined as the
summation of water storage in different layers. As for FLDAS Noah and ERA5-Land, RZSM can be

obtained through Eq. (S4) with FLDAS Noah as an example.
RZSMpipas = Yi=1 O X di (S4)

where 6, and d, are the volumetric water content and thickness of the kth layer, respectively. K is
the total number of soil layers. As for MERRA-2, relative soil moisture RM should first be converted
into volumetric water content by multiplying by soil porosity p derived from CLSM. RZSM;zrra—2

2
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was then calculated as the product of volumetric water content and root zone depth (100 cm), as shown

in Eg. (S5).

RZSMyprra—s = RM X p X 100 (S5)

Text S5. Methods for obtaining ensemble estimation through BTCH
Taking RZSM as an example, the ensemble estimation RZSMg,sempie Can be obtained through Eq.

(S6) and Eq. (S7).
RZSMgpsempie = Wi X RZSMy + w, X RZSM, + -+ wy X RZSM,, , (S6)

N 2

_ Iizyi#noi

T N N 2) !
Zn:l(“i:l,#n 9 )

Wi (87)

where N is the total number of datasets to be integrated (N=5 for RZSM); w,, is the weight of the

nth dataset; o; is the error variance of the ith dataset.

Text S6. Evaluation metrics of RF models

N 2
2 1— Zi=1(PSMobs_i_P5Mpre_i)

B Z?’=1(PSMobs_i_PSMobs)2 , (Sg)
1 2
RMSE = \[ﬁ YN (PSMyps i — PSMypre ;)" (S9)
_ RMSE
rRMSE = 22— % 100% , (S10)

where PSM,,, ; is the ith PSM value simulated by CLSM; PSM,,. ; isthe ith PSM value predicted
by RF; PSM,,s is the average of all PSM,,s ;. Higher R? and lower rRMSE indicate greater

explanatory power and accuracy of the RF model.

Text S7. Component contribution ratio
To quantify the contribution of a given individual storage component to the interannual variability of
TWS, the component contribution ratio (CCR) proposed by Kim et al. (2009) was employed, as shown

in Eq. (S11) and Eq. (S512).
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MADs = ~%I,1S, =S| , (S11)

MADg
2%”:1 MADg

CCRs = X 100% |, (S12)

where MADs denotes the mean absolute deviation (MAD) of an individual storage component S (e.g.,
canopy water storage); S is the long-term mean of S during the study period; N is the number of

years; M is the number of storage components.
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Table S1. Consideration of non-groundwater components in previous studies.

Reference Study area glaciers  permafrost  lakes and surface snow canopy soil
reservoirs runoff water moisture
Yi et al. (2016) China X X X X X X v
Lvetal. (2021) China X X X X 4 v v
Zhao et al. (2023) China X X X X 4 v v
Lin et al. (2020) Lhasa River Basin X X X X v X v
Zhu and Zhang (2022) Yangtze River Basin, Yellow River Basin X X X X 4 v v
Liu et al. (2023) northwest China X X v v v v 4
Peng et al. (2021) Central Asia X X X X 4 v v
Forootan et al. (2017) the Middle East X X v X v v v
Nikraftar et al. (2024) the Middle East X X X v v X v
Shin et al. (2021) Nepal X X X v v v v
Montecino et al. (2016) Northern Chile X X X X v X v
Sproles et al. (2015) Canada X X v X v X v
Zhu et al. (2022) Canada X X X X v X v

84



85 Table S1 (continued). Consideration of non-groundwater components in previous studies.

Reference Study area glaciers permafrost  lakes and surface snow canopy soil
reservoirs runoff water moisture
Muskett and Romanovsky (2011) Alaska X X X 4 X X X
Wang et al. (2022) North America X X v X v X v
Xanke and Liesch (2022) Euro-Mediterranean region X X X v v X v
Muskett and Romanovsky (2009) Arctic X X X v X X X
Lin et al. (2022) Arctic X X X v v X v
Jin and Feng (2013) Global X X X v v 4 4
Xiang et al. (2016) Tibetan Plateau v v v X v X v
Zhang et al. (2017) Tibetan Plateau v v v X v X v
Zou et al. (2022) Tibetan Plateau v v v X v X v
Fan et al. (2023) northern Himalayas v v v X v X v
Li etal. (2023) China 4 X v v v v v
Liu et al. (2020) Asia and eastern Europe 4 X v X v v v
Wang et al. (2018) global endorheic basins v X v X v v v
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Table S2. Interannual trends in igGWSA, GWSAgoreq, and GlacierWSA in glacier-covered regions.

Region igGWSA GWSAignored GlacierWSA Region igGWSA GWSAignored GlacierWSA

Global —0.19** —4.03** —3.85** Region 10 0.58** 0.30** —0.28**
Region 1 4.92%* —8.87** —13.79** Region 11 1.40** —-0.07 —1.47**
Region 2 1.41** 0.04 -1.36** Region 12 —0.04 —0.64** -0.60**
Region 3 3.28** -10.01** -13.30** Region 13 0.32** —0.35** -0.66**
Region 4 4.99** —8.82** -13.81** Region 14 0.63** —0.61** —1.24**
Region 5 —-18.79** —24.72** —5.92** Region 15 0.58** —1.53** —-2.10**
Region 6 12.49** —7.78** —20.27** Region 16 0.37** 0.08 —0.29**
Region 7 7.86** —7.16** —15.03** Region 17 2.25%* —2.37** —4.62**
Region 8 1.73** 0.47* —1.27** Region 18 1.54%** 0.15 —1.38**
Region 9 —1.42 —10.36** —8.95**

Note: Unit: cm/yr. * indicates significance at the 0.05 level.

** indicates significance at the 0.01 level.
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Table S3. Interannual trends in igGWSA, GWSAmpiified: and LRWSA in giant lakes.

Lake igGWSA GWSAgimpiified LRWSA Lake igGWSA GWSAgimpiified LRWSA
Global -0.19** —0.35** -0.11 Malawi 2.60** —1.32%* —3.92%*
Caspian Sea 0.77* —4.82** —5.58** Great Slave —0.66* —0.74** —-0.09
Great Lakes of NA -1.74* 0.99** 2.72%* Winnipeg -0.30 0.68** 0.98
Victoria —1.45 1.56* 3.01** Ladoga —-0.78 0.39* 1.17
Tanganyika -0.53 0.39 0.92 Balkhash -1.40* —-0.04 1.36*
Baikal 0.68** —0.70** —1.38** Aral Sea 11.46** —1.15** —12.60**
Great Bear —-0.09 —0.13** —-0.03 Lakes of Tibetan Plateau —2.31** 0.04 2.62%*
Note: Unit: cm/yr. * indicates significance at the 0.05 level. ** indicates significance at the 0.01 level.
Table S4. Interannual trends in igGWSA, GWSA,q, and GWSA,g, in deep-soil areas.
Region igGWSA GWSAq GWSA g9 Region igGWSA GWSA GWSA 59
Mississippi —0.08 —0.08 —-0.03 Congo 0.06 —0.24** 0.53**
\olga —-0.24* —0.37** —0.16** Songhua-Liache —-0.06 -0.07 0.39*
Ob 0.03 -0.06 0.22%* Pampas -0.08 -0.16 0.69**
Loess Plateau —0.83** —0.99** —0.42** Ganges-Brahmaputra —1.09** —1.25** —1.24**

Note: Unit: cm/yr. * indicates significance at the 0.05 level.

** indicates significance at the 0.01 level.
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Figure S2. Map of the optimal RZSM dataset.
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Figure S3. Scaled importance of predictor variables for PSM modelling in humid regions and drylands.
Note: Scaled importance was derived by setting the value of RZSM to 1 and proportionally scaling the

values of other variables.
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Figure S4. (a) Map of contribution ratio of canopy water storage (CWS) to TWS variability (unit: %). (b)
Map of the multi-year (2000-2019) average of CWS (unit: cm). (c) Map of the interannual trend in CWS
(unit: e-04 cm/yr). The three maps consistently revealed that the hotspots of CWS variability were located in
tropical rainforest regions, encompassing the Amazon Basin, the Congo Basin, and Southeast Asia. The
three maps were made based on the ensemble data of CWS simulations from four LSMs, i.e., GLDAS Noah,
GLDAS CLSM, GLDAS VIC, and ERA5-Land. (d) The spatial Pearson's correlation coefficients between
the four single-source data and the ensemble data for both multi-year average and interannual trend. **
indicates significance at the 0.01 level. The spatiotemporal patterns of CWS revealed by the four
single-source data were all highly consistent with the ensemble data, indicating the high robustness of map a,

b, and c.
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