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Abstract. Precise monitoring of key forest soil properties is crucial for addressing global challenges like carbon sequestration
and soil acidification. However, existing national soil maps, primarily derived from comprehensive ecosystem samples,
inadequately represent the distinct characteristics and high spatial heterogeneity of China's vast and diverse forest ecosystems.
20 To bridge this gap, we present the first high-resolution (90-m), forest-specific maps of soil bulk density (BD) and pH across
China. Leveraging 4,356 forest soil profiles collected through extensive field surveys and 41 environmental covariates within
an optimized Quantile Regression Forests (QRF) framework incorporating forward recursive feature selection (FRES), we
generated wall-to-wall predictions for five standardized depth intervals (0-5, 5-15, 15-30, 30-60, 60—-100 cm). Model
performance, assessed through 10-fold cross-validation (CV) and independent validation (IV), achieved model efficiency
25 coefficients (MEC) ranging from 0.78 to 0.89 (CV) and 0.60 to 0.66 (IV) for bulk density (BD), and from 0.83 to 0.87 (CV)
and 0.71 to 0.81 (IV) for pH, indicating the product's strong capability to capture the spatial variability of forest soil properties
across China. The 90-m resolution BD and pH maps contribute to the GlobalSoilMap initiative and provide forest-specific
inputs for regional Earth system and land surface models. These products advance the quantification of soil acidification
processes and provide critical baseline data for estimating forest soil carbon stocks across China. The dataset is available at

30 https://doi.org/10.57760/sciencedb.25375.
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1 Introduction

Forest soils are defined as soils that have developed under forest cover, influenced by long-term vegetation—soil interactions,
and distinguished by unique physical, chemical, and biological properties (Binkley and Fisher, 2013; Osman, 2013). As key

35 regulators of carbon storage, water cycling, and nutrient availability, forest soils are vital to forest sustainability and policy
(Dai et al., 2019; Kleber et al., 2021). China's forest ecosystems span 209 million hectares across diverse climatic zones and
complex topographies, encompassing 452 vegetation types to form one of Earth's most ecologically varied forest spectra (Chen
et al., 2016; Patton et al., 2019; Zhang et al., 2024). Revealing the spatial distribution of forest soils is fundamental for
estimating forest carbon stocks and evaluating forest soil acidification (Zhu et al., 2016; Huang et al., 2022b; Xu et al., 2015).

40 However, forest soils are highly heterogeneous across geographical space, shaped by long-term climatic gradients, vegetation
succession, and topographic variation (Zhao et al., 2019; Chen et al., 2022a; Liu et al., 2024). Consequently, accurately
revealing the spatial distribution of key forest soil attributes presents a significant challenge.

Digital Soil Mapping (DSM), which integrates machine learning and environmental covariates to predict soil properties
across complex landscapes while significantly enhancing spatial soil representation in areas of varied terrain and vegetation,

45 has become a pivotal methodology for acquiring high-resolution spatial soil information (McBratney et al., 2003; Minasny et
al., 2013; Padarian et al., 2019). Consequently, numerous countries globally and transnational initiatives have invested
substantial resources in using DSM to build national-scale, high-accuracy digital soil databases. These national initiatives
typically target resolutions of 90 meters or finer, predicting the spatial distribution of multiple soil attributes across globally
standardized depth intervals (0-5 cm, 5-15 c¢cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm) as established by

50 GlobalSoilMap.net (Arrouays et al., 2014; Hempel et al., 2014). Exemplary national efforts include the Soil and Landscape
Grid of Australia (SLGA; Grundy et al., 2015), France's Soil Data Inventory and Management System (DIGSOL; Mulder et
al., 2016), the gSSURGO database in the United States (Ramcharan et al., 2018; Thompson et al., 2020), and the high resolution
National Soil Information Grids of China (Liu et al., 2022a; Shi et al., 2025). Concurrently, global-scale initiatives such as
SoilGrids provide open-access soil predictions at 250m resolution across all continents using the same GlobalSoilMap

55 standards (Hengl et al., 2017; Poggio et al., 2021). Collectively, these national efforts have substantially advanced our
understanding of spatial distribution of multiple soil attributes within their respective coverage areas.

However, a significant limitation persists in characterizing forest soils specifically. Current national-scale soil products
in China and globally primarily derive from samples located in comprehensive ecosystem (Poggio et al., 2021; Liu et al.,
2022b; Shi et al., 2025). Consequently, they fail to adequately capture the unique physical structures (e.g., higher aggregation,

60 root effects) and biogeochemical processes (e.g., greater susceptibility to acidification driven by vegetation inputs) inherent to
forest ecosystems (Widyati et al., 2022; Liu et al., 2024). This creates a critical gap between available soil data products and
the urgent need for forest-specific soil information to support accurate carbon stock estimation and acidification risk
assessment in these vital ecosystems. Further complicating this gap is the methodological challenge of selecting predictive

covariates for forest soil mapping that adequately capture the complex vegetation-soil interactions (Wu et al., 2023).
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65 While the SCORPAN (Soil, Climate, Organisms, Relief, Parent material, Age, and Space) framework underpins digital
soil mapping (McBratney et al., 2003; Chen et al., 2022b), optimal covariate selection for forest soils remains challenging due
to complex vegetation-soil interactions (Chen et al., 2021; Xue et al., 2025). Model-based feature importance methods,
particularly random forest (RF) metrics, have become primary solutions to address dimensionality traps from extensive
predictors (Song et al., 2020; Liu et al., 2022a). Subsequent studies have successfully leveraged RF importance to identify key

70  drivers of soil attributes, such as soil-environment relationships via OOB error (Jeune et al., 2018) and critical covariates for
soil hydraulic properties (Santos et al., 2023). However, RF-based approaches frequently fail to identify minimal optimal
subsets due to variable redundancy. To overcome this, Recursive Feature Elimination (RFE) was developed, which iteratively
prunes low-importance features using RF. It distilled high-dimensional covariate sets into parsimonious subsets for soil organic
carbon stocks (Hounkpatin et al., 2021) and identified key topographic-vegetation predictors for soil nutrients in heterogeneous

75 (Helfenstein et al., 2024; Shi et al., 2025). Yet RFE’s sequential removal risks discarding combinatorially significant variables
and incurs high computational costs. More recently, the forward recursive feature selection (FRFS) method has emerged as a
superior alternative, excelling at capturing nonlinear relationships while reducing computational costs (Xiao et al., 2022). Xue
et al. (2025) successfully applied this method to map the spatial heterogeneity of complex soil attributes across diverse
landscapes in China, demonstrating its promising potential for addressing the specific challenges of mapping heterogeneous

80 forest soils. Therefore, our study leverages the FRFS method to tackle the critical covariate selection challenge inherent to
mapping China's diverse forest soils.

To address the critical limitations of legacy soil data in representing China’s complex and heterogeneous forest
ecosystems, we conducted a systematic nationwide forest soil survey. Leveraging machine learning, this study aims to: (1)
construct the first nationwide forest-specific soil profile database; (2) develop and apply an optimized DSM framework

85 integrating QRF and FRFS; and (3) pioneer high-resolution (90-meter) digital maps of two fundamental forest soil properties,
bulk density (BD) and pH, across China's entire forest domain. Spanning five standardized depth intervals (0-5 cm, 5-15 cm,
15-30 cm, 30-60 cm, and 60-100 cm), these forest-specific maps provide the first continuous, wall-to-wall spatial
characterization of BD and pH at 90m resolution, conforming to GlobalSoilMap standards. This unprecedented dataset

provides the essential spatial baseline for accurately quantifying forest carbon stocks and assessing soil acidification risks.

90 2 Materials and Methods

We developed 90-m resolution forest soil BD and pH grids for China (0—100 cm) using an optimized QRF model, a machine
learning algorithm effective for both spatial prediction and uncertainty quantification (Szatmari et al., 2024). This framework
integrated 4,356 georeferenced forest soil profiles, combining historical inventory data (2018-2023). Sampling efforts were
designed to ensure ecological and spatial representativeness across major climatic zones and forest types. Soil profiles were
95 harmonized into standardized depth intervals (0-5, 5-15, 15-30, 30-60, and 60—100 cm) using an adaptive equal-area spline
method (Bishop et al., 1999; Liu et al., 2022a) and randomly partitioned into training (80%) and independent validation (20%)
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subsets. A set of 41 environmental covariates, aligned with soil-forming factors (Jenny, 1941), were resampled to a 90-m grid
via bilinear interpolation. Feature selection and hyperparameter tuning were implemented to optimize model performance.
Predictive accuracy was evaluated using 10-fold cross-validation and independent validation based on a withheld dataset. A

summary of the modelling framework is shown in Figure 1.
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Figure 1. Workflow diagram for forest soil mapping.
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2.1 Data compilation
2.1.1 Soil database

105 We developed a comprehensive forest soil property database for China, representing the most extensive and up-to-date
collection of forest soil data to date. The data were compiled from two major nationwide forest soil surveys conducted in 2018
and 2023, complemented by independently conducted regional forest soil surveys during the intervening years to enhance
spatial and ecological representation. These surveys employed a stratified sampling design to ensure broad representativeness
across China's major forest ecosystems, covering diverse climate zones, forest types, and topographic gradients. In addition to

110 these national efforts, data from independently conducted regional forest soil surveys during the intervening years were also
incorporated to enhance spatial and ecological representation. After rigorous quality control and data harmonization, the final
integrated dataset comprises 8,709 soil profiles and 18,193 soil samples. Of these, 4,356 profiles and 11,873 samples contain
both BD and pH values, forming the core dataset used in this study. The spatial distribution of sampling plots and forest
coverage is displayed in Figure 2.

115 To ensure data comparability and minimize measurement errors, all samples were processed under identical conditions.
Soil sampling and analysis followed standardized protocols to ensure data consistency. Soil samples were collected using a
soil auger, air-dried at room temperature, homogenized, and passed through a 2 mm sieve to remove coarse fragments and
roots for physicochemical analyses. Undisturbed soil cores were collected from each horizon using a cutting ring sampler to
determine BD. Soil pH was measured using a pH meter following the potentiometric method, with a soil-to-water ratio of 1:2.5

120 (w/v). Reference materials were used throughout the analytical process to ensure measurement accuracy and control data

quality.
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Figure 2. Spatial distribution of soil sampling plots and forest coverage. Publisher’s remark: please note that the above figure contains
disputed territories.

125
2.1.2 Standard soil depths

Following GlobalSoilMap specifications (Arrouays et al., 2014), soil samples are typically standardized to fixed depth intervals
of 0-5, 5-15, 15-30, 30-60, 60—100, and 100200 cm. To model continuous depth functions from soil property measurements
recorded by genetic horizons, equal-area quadratic spline interpolation is commonly used (Bishop et al., 1999). However,
130 natural soil profiles often contain abrupt changes in properties between adjacent horizons, leading to inconsistencies with these
standardized depth layers. To address this issue and reduce fitting errors, we applied an adaptive equal-area spline method (Liu
et al., 2022a). This method detects abrupt transitions by calculating the ratio of property values between adjacent horizons and
applying a predefined threshold. When such discontinuities are identified, a 1 cm transitional layer is inserted between the

affected horizons before spline fitting. This adjustment ensures improved consistency with the observed morphological

6
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135  structure of each soil profile. While the GlobalSoilMap framework includes the 100-200 cm interval, our study focused on the
upper five layers (0-5, 5-15, 15-30, 30-60, and 60—-100 cm) due to the limited number of forest soil profiles extending beyond
100 cm in depth.

2.1.3 Environmental Covariates

Soil formation is governed by the combined effects of climate, parent material, topography, vegetation, and human activities.
140 In this study, 41 environmental covariates were selected based on the soil-forming factor framework (Jenny, 1941; Minasny
et al., 2013) and categorized into five groups: parent material, climate, organisms, topography, and intrinsic soil properties
(Table S1). To reduce multicollinearity, a variance inflation factor (VIF) threshold of less than 10 was applied through iterative
variable exclusion.
All covariate layers were projected using the Albers Equal Area coordinate system (EPSG:4326, WGS84 datum) and
145 resampled to a unified 90-m spatial resolution via bilinear interpolation. For multi-year variables, long-term annual means and
growing season (May to September) averages were calculated from monthly records spanning 2003 to 2023, thereby capturing
both historical trends and contemporary environmental conditions relevant to forest soil development.
Climate-related covariates included temperature, precipitation, potential evapotranspiration, and solar radiation, derived
from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn) and the TerraClimate dataset. Parent material
150 characteristics were obtained from Sentinel-2 imagery using the shortwave infrared band (B12) and the B8/B12 band ratio to
estimate clay content. Depth to Bedrock (DTB) data were incorporated to represent weathering intensity, and lithological
context was supplemented using the Geological Map of China. Topographic attributes were extracted from the NASADEM
digital elevation model (https://Ipdaac.usgs.gov/products/nasadem_hgtv001/) and computed using SAGA GIS
(http://www.saga-gis.org). Vegetation indicators were sourced from MODIS products, including NDVI, NDWI, LAI, and NPP,

155  while forest type classifications were based on the National Atlas of Forest Vegetation in China.

2.2 Modelling
2.2.1 Covariate selection

To balance model parsimony with biogeochemical interpretability, we adapted the Forward Recursive Feature Selection (FRFS)
approach proposed by Xiao et al. (2022) into a depth-specific selection framework, applied independently to four standardized
160 soil layers. The procedure comprised three sequential steps. First, the covariate with the highest predictive importance, as
assessed by permutation-based Random Forest analysis, was selected to initiate the model. Subsequently, additional variables
were iteratively added based on two criteria: a reduction of more than 5% in five-fold cross-validated root mean square error
(RMSE) and a variance inflation factor (VIF) below 10. The selection process was automatically terminated when five

consecutive iterations failed to achieve an RMSE improvement of at least 1%, thereby avoiding model overfitting. This
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165 hierarchical strategy ensured effective dimensionality reduction while maintaining predictive performance across all soil

depths. The framework was applied across four distinct soil horizons.

2.2.2 Predictive models

Quantile Regression Forests (QRF), a nonparametric ensemble learning method extending the Random Forest framework,
were used to model the relationships between environmental covariates and soil properties, while explicitly quantifying
170  predictive uncertainty (Meinshausen, 2006). As a state-of-the-art algorithm in DSM (Liu et al., 2022a; Poggio et al., 2021;
Pouladi et al., 2019), QRF leverages both bootstrap aggregation of regression trees and randomized feature subset selection at

each node, enabling robust handling of high-dimensional, non-stationary data.
Unlike standard Random Forests, QRF retains the full conditional distribution F(y Il X = x) At each prediction
node, allowing estimation of both point predictions and confidence intervals. This is achieved via kernel-based empirical

175 distribution construction:

FlX=x) =3, w Iy; <y) )

where w;(x) Is the weight assigned to each training observation based on terminal node proximity. The conditional

quantile function is derived as:
G, () =inf{y: F(y | X = x) > a} ()]

180 for a given quantile level @ € (0,1). This allows the derivation of the median estimate §,5(x), prediction intervals
[4a 72(%), §1-a/2 (x)], and the full uncertainty distribution, enhancing both interpretability and decision support in forest soil

assessments.
where specifies the quantile level (e.g., @ = 0.5 or median prediction). This formulation generates three interconnected
outputs: the median predictor as a robust central tendency estimate, prediction intervals for heteroscedastic uncertainty
185 quantification, and the complete conditional distribution through parametric evaluation of §, (x) across the a continuum.

To implement QRF across China’s forested regions, we adopted a spatially parallel computing framework. The study area
was divided into 461 contiguous grid tiles (10 x 10 km) using the Albers Equal Area projection. Model execution was carried
out using the quantregForest package in R 4.2.1, running on 24 logical cores of a high-performance computing node. Spatial
continuity was preserved across grid boundaries using a Gaussian kernel-based edge matching algorithm, enabling seamless

190  90-m resolution prediction without artifacts.

2.2.3 Hyperparameter tuning

Hyperparameter optimization was conducted for three parameters critical to model performance: mtry (number of variables
randomly sampled at each split), num.trees (number of trees), and min.node.size (minimum samples per terminal node). The

randomized search strategy was employed, guided by 10-fold cross-validation and using RMSE as the evaluation metric. Fifty

8
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195 iterations of parameter space sampling were performed to identify the optimal combination. Final hyperparameter values were
selected based on configurations that yielded the highest prediction accuracy on the validation dataset. A summary of optimized

parameters for each soil property and depth interval is provided in Table S2.

2.3 Model validation

To comprehensively evaluate model performance, we applied two complementary validation strategies: 10-fold cross-
200 validation on the training dataset (80%) and independent validation using a held-out test set (20%). These schemes were
implemented across the entire study region to assess the predictive accuracy of forest soil BD and pH.

In 10-fold cross-validation, the training set was randomly partitioned into ten equal subsets. In each iteration, nine subsets
were used to train the model, and the remaining one was used for validation. This procedure was repeated ten times, ensuring
each subset served as validation data exactly once. Model accuracy was assessed by averaging performance metrics across

205 folds, including mean error (ME), root mean square error (RMSE), and the model efficiency coefficient (MEC).
For independent validation, the reserved test set was excluded entirely from model training and hyperparameter tuning,

thereby providing an unbiased evaluation of generalizability. The formulas used for calculating the evaluation metrics are as

follows:

ME = 37,3 - ) 3
210 RMSE = /%Z}Ll(yi - )2 “

MEC = 1 — 29 (5)

S, 0i-9)?

where y; is the observed soil property value, y; is the predicted value, and y is the mean of observed values. ME, also
referred to as bias, measures average deviation. RMSE reflects the overall prediction error, with lower values indicating higher
accuracy. MEC, equivalent to the coefficient of determination (R?), ranges from 0 to 1, with higher values indicating better

215 predictive performance.

2.4 Uncertainty Quantification

Quantifying spatial uncertainty is essential in DSM, as prediction errors may arise from input data variability, model structure,
and environmental heterogeneity (Arrouays et al., 2014; Poggio et al., 2021; Liu et al., 2022a; Shi et al., 2025). To visualize
the spatial distribution of prediction uncertainty, we calculated the Prediction Interval Ratio (PIR), defined as the ratio between

220 the 90% prediction interval width and the median estimate:

PIR = 40.95—490.05 (6)

qo0.50
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where g 95 and q o5 represent the upper and lower bounds of the 90% prediction interval, respectively, and qq o5 denotes
the median prediction. PIR is a dimensionless metric that quantifies the relative spread of prediction uncertainty around the
central estimate. Higher PIR values indicate greater dispersion and, therefore, higher predictive uncertainty.

225 To evaluate the calibration of these uncertainty estimates, we used the Prediction Interval Coverage Probability (PICP),
computed from the independent validation dataset (Goovaerts, 2001). PICP measures the proportion of observed values that
fall within their corresponding prediction intervals at a specified confidence level (e.g., 90%). A well-calibrated model should
yield a PICP value close to the nominal coverage. For example, a 90% prediction interval is considered reliable if the empirical
PICP also approximates 90%. Systematic deviation from this benchmark can indicate miscalibration: a PICP above the target

230 level suggests that intervals are too narrow (underestimated uncertainty), while a PICP below the target indicates overly wide
intervals (overestimated uncertainty) (Poggio et al., 2021; Liang et al., 2019). This diagnostic approach supports the robust

interpretation of uncertainty in DSM outputs.

3 Results
3.1 Forest soil database overview

235 Table 1 presents the harmonized forest soil database comprised 4,356 forest soil profiles distributed across China. Using the
equal-area spline method, soil property values were standardized to fixed depth intervals (0-5, 5-15, 15-30, 30-60, and 60—
100 cm), resulting in 15,845 horizons for BD and 15,978 horizons for pH. BD showed low skewness across depths (0.16—
0.42), while pH closely followed a normal distribution (skewness 0.05-0.19). Mean values of both BD and pH increased
gradually with depth, from 1.206 to 1.342 g/cm? for BD and from 6.07 to 6.47 for pH. The standard deviation of BD increased

240 gradually from 0.261 in the shallowest layer (0—5 cm) to 0.308 in the lowest depth interval (60-100 cm), while pH showed a
more pronounced rise in variability, with its standard deviation increasing from 0.909 to 1.327 across the same range. Both
parameters showed wide value ranges across all depths (BD: 0.15-2.30 g/cm?; pH: 4.00-8.70).

Table 1. Statistical summary of BD and pH at five depth intervals. Refer to Table 1 for the abbreviations and units of the soil
properties interested.

Property Depth (cm) N# Mean SD Min Max Skewness

0-5 4356 1.206 0.261 0.152 2.057 0.162

5-15 3522 1.209 0.288 0.284 2.291 0.317

BD 15-30 3488 1.287 0.269 0.301 2271 0.422
30-60 2973 1.340 0.269 0.257 2215 0.393

60-100 1506 1.342 0.308 0.534 2.291 0.367

0-5 3963 6.066 0.909 4.000 8.440 0.045

pH 5-15 3962 6.131 0.991 4.000 8.515 0.111

10
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15-30 3816 6.172 1.005 4.030 8.420 0.087
30-60 2783 6.458 1.198 4.040 8.640 0.194
60-100 1454 6.466 1.327 4.040 8.704 0.119

245 9N varies slightly between properties and depths due to sample availability for specific analyses.

3.2 Model performance

The performance of the QRF models was evaluated after training and optimisation. Table 2 lists the 10-fold cross-validation
(CV) and independent validation (IV) results for BD and pH predictions of our study across five soil depth intervals. Model
performance varied with specific soil properties. For BD, 10-fold CV achieved high accuracy (MEC = 0.782-0.889, RMSE =

250  0.079-0.090 g/cm?), explaining 78.2—-88.9% of variability. IV yielded robust but reduced performance (MEC = 0.598-0.657,
RMSE = 0.155-0.181 g/cm?), retaining 59.8-65.7% explanatory power. Conversely, pH predictions demonstrated superior
accuracy: CV maintained strong performance across depths (MEC = 0.834-0.868, RMSE = 0.214-0.254), peaking at 60—-100
cm (MEC = 0.868, RMSE = 0.238; 86.8% variability explained). IV confirmed generalizability (MEC = 0.705-0.812, RMSE
=0.432-0.515).

255 Model performance also varied with depth. BD prediction accuracy exhibited non-monotonic depth dependence during
independent validation, peaking at intermediate depths (15-30 cm: MEC = 0.657) with lower accuracy in surface layers (0-5
cm: MEC = 0.598) and deep layers (60—100 cm: MEC = 0.656). In contrast, pH prediction accuracy systematically increased
with soil depth under both validation frameworks. CV showed MEC progression from 0.844 (0—5 cm) to 0.868 (60-100 cm),
while IV demonstrated improvement from 0.705 (0-5 cm) to 0.812 (60-100 cm). Optimal pH performance consistently

260 occurred at the deepest interval (60-100 cm) for both validation methods. In addition, all predictions maintained negligible
bias ((ME| < 0.019) across depth intervals.

Table 2. Predictive performance of BD and pH predictions.

S 10-fold CV v
Validation Depth (cm)
MEC RMSE ME MEC RMSE ME
0-5 0.782 0.090 0.000 0.598 0.164 -0.01
5-15 0.815 0.084 0.000 0.611 0.181 -0.017
BD 15-30 0.828 0.081 -0.000 0.657 0.155 0.006
30-60 0.874 0.079 -0.000 0.614 0.166 0.005
60-100 0.889 0.087 0.000 0.656 0.166 -0.019
0-5 0.844 0.215 0.000 0.705 0.432 -0.003
5-15 0.834 0.254 0.000 0.726 0.480 -0.001
pH 15-30 0.854 0.214 0.000 0.742 0.448 -0.007
30-60 0.854 0.256 0.001 0.760 0.515 -0.002
60-100 0.868 0.238 0.001 0.812 0.492 0.014

11
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3.3 Spatial patterns
3.3.1 Spatial patterns of BD

265 The BD maps predicted by QRF (Figure 3) show consistent mean values ranging from 1.16 to 1.34 g/cm® and standard
deviations of 0.15-0.21 g/cm? across all soil depths (Tables S3 and Fig S3). Macroscale patterns align with CSDLv2,
ChinaSoillnfoGrids, and SoilGrids 2.0 (Fig. S1).

Spatially, BD exhibits distinct regional variation. The highest values occur in southwestern China (mean BD = 1.45 g/cm?)
and the lowest values in northeastern China (mean BD = 0.79 g/cm?®). Southwestern China consistently forms the highest-value

270 area across all soil layers. Northeastern China constitutes the lowest-value zone. In eastern China, BD values increase from
the coast inland. Across the eastern coastal and southern regions, BD gradients occur from south to north and from coast to
inland.

Vertically, BD increases with depth. Surface layers (0-5 cm) show the lowest BD, with minimal values concentrated in
northeastern and southeastern coastal regions (mean values 0.79 g/cm?® and 1.19 g/cm?, respectively). High-BD zones in the

275 southwest expand slightly with depth. Within the middle soil depths (5-15 cm and 15-30 cm), spatial variability intensifies:
low-BD zones extend from the northeast into North China, alongside distinct high-BD cores in the southwest. The 30-60 cm
layer reaches the highest mean BD (1.32 g/cm?®). The deep soil layer (60—-100 cm) has a mean BD of 1.23 g/cm?®, featuring

extensive high-BD areas in southwest China and reduced low-BD coverage in northeastern areas.

12
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3.3.2 Spatial patterns of pH

The predicted pH maps based on QRF are illustrated in Figure 4.. These maps showed mean values ranging from 5.70 to 6.06
and standard deviations ranging from 0.65 to 0.81 across all depths (Tables S3 and Fig.S4). Macroscale patterns align with
285 those of CSDLv2, ChinaSoillnfoGrids, and SoilGrids 2.0 (Fig. S2).
Spatially, pH shows regional differentiation. Forest soils in South and Southwest China exhibit lower pH values (pH <
5.76). Forest soils in North and Northwest China exhibit higher pH values (pH = 6.50). Northeast China shows intermediate
pH values, ranging between those of the southern and northern regions.
Vertically, pH patterns show both consistency with surface layers and changes with depth. Surface layers (05 cm, 5-15
290 cm) in the South and Southwest show the lowest pH values. With increasing soil depth (15-30 cm, 30-60 cm, and 60—100
cm), pH values in the southern regions increase. pH values in the northern regions become more stable with depth, showing

reduced range. Overall, spatial variability in pH decreases in deeper soil layers.
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3.4 Prediction uncertainty

Visualization of prediction uncertainty using the PIR highlighted clear regional variations in uncertainty for BD and pH across
China. Higher uncertainty for BD was concentrated in the northeastern and southwestern regions, while lower uncertainty
characterized the southeastern coastal areas (Fig. S5). Conversely, pH uncertainty was more pronounced in northern China
300 and parts of the southwest, with relatively lower levels observed in the northeast and the central-eastern coastal zone (Fig. S6).
Overall, areas of elevated uncertainty predominantly coincided with southwestern China, where complex soil-landscape
interactions likely contribute to increased model uncertainty. Additionally, regions with sparse data coverage, such as high-
altitude areas, exhibited amplified extrapolation uncertainty due to limited representation in the training dataset, further
challenging model reliability in these environments. For both BD and pH, prediction uncertainty generally increased with soil
305 depth, a pattern potentially attributable to the reduced availability of soil observations at deeper intervals.

To ensure that biased uncertainty estimates do not compromise practical applications of the model, we further employed
the PICP to perform this critical validation step. Five predictive accuracy plots were generated to evaluate the alignment of
predicted intervals with actual observations for BD and pH (Figure 5). The QRF-based digital soil mapping model showed
close adherence to the 1:1 reference line across both properties, indicating strong consistency in local uncertainty estimation.

310 However, for pH, a slight overestimation of uncertainty was detected at intermediate probability levels (60%—-90%) within
subsurface layers (0—60 cm), suggesting minor deviations from optimal calibration. In contrast, uncertainty quantification for

BD remained well-calibrated across all depth intervals and probability thresholds.
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Figure 5. Validation of uncertainty quantifications.
315 3.5 Covariate importance

Relative importance of the environmental covariates used in the soil spatial predictions is shown in Figure 6. The FRFS
framework enabled depth-specific dimensionality reduction, retaining 7 to 16 covariates per soil layer while eliminating 60.98%
to 77.93% of the initial set (Table S4). Considerable variation in covariate relative importance was observed both between soil
properties and across depths.

320 For forest soil BD prediction in the ensemble model, PRE A showed the highest relative importance across all depths (0-
100 cm), ranging from 11.41% to 23.73%. Other predictors exhibited clear depth-dependent variations in relative importance.
In surface soils (0-15 cm), NDWI_A, NPP, Elevation, and Soil had notable relative importance. In middle layers (15-60 cm),
the relative importance of NPP and Soil increased. In deep layers (60-100 cm), PRE_A, NDWI_A, and NPP maintained high

relative importance, while parent material (PM) and bedrock depth (DTB) showed increased relative importance. Analysis by
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62.47%), significantly exceeding the contributions from other factor categories.
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factor category (Fig. S7) indicated that climate factors contributed the most to BD prediction across all depths (44.00%—

For soil pH prediction in the ensemble model, the synergistic combination of NDWI_A, PRE_A, and NPP showed the

highest relative importance across the entire soil profile (29.11-36.14%). Secondary factors exhibited depth-dependent

variations in their relative importance. In surface soils (0-15 cm), vegetation indicators (LAI_A, NDVI MAX) had the

330

strongest secondary relative importance. In middle layers (15-60 cm), the relative importance of topographic factors (Elevation,

Geomor) and parent material (PM) increased. In the deep soil layer (60-100 cm), NDWI_GS and ALR2 showed increased

relative importance, while DTB maintained consistently high relative importance. Analysis by factor category (Fig. S7)

indicated that organism factors (primarily vegetation-related) contributed the most to the prediction (up to 36.14%), followed

by varying relative contributions from climate and parent material factors across depths.
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4 Discussion
4.1 Model performance improvement

340 China has established valuable national soil datasets, such as the comprehensive CSDLv2 (Shi et al., 2025) and the high-
resolution ChinaSoillnfoGrids (Liu et al., 2022a), which provide robust insights into soil properties across diverse ecosystems
(Table S5). Building upon these foundations and focusing specifically on forest ecosystems, our work developed a model to
simulate the spatial distribution of BD and pH within China's forests. As reported in Sect.3.2, the forest-optimized model
demonstrated reliable performance for this targeted application under both CV and IV frameworks. Critically, the IV results,

345 based solely on external forest samples withheld from model development, confirmed the model's robustness and
generalizability within the specific context of China's forest ecosystems. These outcomes underscore the effectiveness of our
approach in capturing forest-specific soil patterns.

Our methodology integrates two key innovations specifically designed to address the unique challenges of DSM in forest
ecosystems. First, recognizing that forest soil sites are often underrepresented in large-scale national databases (which typically

350 prioritize agricultural land) (Liu et al., 2022a; Shi et al., 2025), we constructed China's first dedicated, systematic forest soil
dataset. This dataset, encompassing dominant forest types across major ecoregions, provides the essential foundation for
characterizing forest-specific paedogenic processes and deriving accurate soil-environment relationships reflecting forest
biogeochemistry.

Second, forest covariate optimization contributed significantly to the improved accuracy (Table S5). Recent DSM studies

355 employing the SCORPAN framework have highlighted that relying solely on universal predictors may overlook critical
ecosystem-specific variations, particularly in heterogeneous regions (Sun et al., 2022; Zhang et al., 2025). Building on this
insight, our study explicitly incorporates forest-specific drivers to enhance mapping accuracy across China’s complex
landscapes. By tailoring covariate selection to forest ecosystems, we overcome the cross-ecosystem extrapolation bias
prevalent in current national datasets. For instance, forest soil BD in China is mainly influenced by root-mediated aggregation

360 (Liu et al., 2019; Zheng et al., 2023), while agricultural BD reflects region-specific tillage practices, such as the puddling
effects in rice-wheat rotations (Hou et al., 2012). Similarly, forest soil pH is controlled by litterfall chemistry with distinct
stoichiometry in Chinese subtropical forests (Zhou et al., 2016; Farooq et al., 2022), whereas agricultural pH is dominated by
long-term nitrogen fertilization (Wang et al., 2019; Jia et al., 2022). Consequently, moving beyond universal predictors to
select covariates specific to forest ecosystems was fundamental to the improved mapping accuracy.

365 Consequently, our forest-optimized framework, underpinned by the purpose-built dataset and ecologically informed
covariates, generates a specialized and complementary perspective on soil property mapping for forest ecosystems. It delivers
China's first comprehensive, 90-m resolution wall-to-wall maps characterizing forest BD and pH spatial patterns. These results

validate the critical importance of incorporating ecosystem context into digital soil mapping (Padarian et al., 2019).
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4.2 Potential applications

370 The high-resolution spatial dataset of forest soil BD and pH developed in this study represents a national-scale digital soil
mapping product that captures the spatial variability of key soil physical and chemical properties across forested regions in
China. Accurate knowledge of BD and pH is fundamental for estimating soil carbon stocks (Batjes, 2016), and monitoring
forest ecosystem responses to land-use and climate change (Pan et al., 2011). Bulk density is critical for accurate estimation
of soil carbon stocks, while pH governs nutrient availability, microbial activity, and forest productivity (Liu et al., 2024), and

375  is significant for understanding forest soil acidification (Farooq et al., 2022). The dataset fills longstanding gaps in forest soil
data coverage in China, and supports applications in ecosystem assessment and long-term soil monitoring. Beyond its scientific
value, this product contributes to national strategies on carbon neutrality and ecological restoration and aligns with
international environmental commitments including the UN Decade on Ecosystem Restoration and the Sustainable

Development Goals (UNEP, 2021; IPCC, 2022).

380 4.3 Limitations and outlook

Our study advances high-resolution DSM in forest ecosystems, yet several methodological limitations remain and merit further
investigation, particularly regarding the predictive reliability of machine learning approaches. Machine learning, while
significantly enhancing DSM through capturing nonlinear soil-environment relationships, are constrained by limitations in
spatial coverage and feature-space representativeness (Yang et al., 2013; Chen et al., 2019). Forests exhibit pronounced
385 landscape heterogeneity, complicating sampling design and frequently resulting in imbalanced training datasets (Huang et al.,
2022a; Liu et al., 2022b; Shao et al., 2022). As demonstrated by Westhuizen et al. (2024), models trained on such datasets
yield biased predictions in undersampled regions. Although ensemble methods manage uncertainty in sparse data settings, they
may prioritize statistical regularities over mechanistic soil formation processes (Sylvain et al., 2021; Liu et al., 2022b).
Emerging hybrid frameworks integrating environmental similarity metrics with pedological expertise show promise in
390 addressing these challenges (Zhao et al., 2024), though their scalability requires further validation (Miranda et al., 2023; Potash
et al., 2023; Rodrigues et al., 2025). Specifically, strategic sampling designs incorporating stratified and adaptive approaches
across diverse forest landscapes and soil types are crucial to mitigate dataset imbalance and capture underlying heterogeneity
(Brus et al., 2011). Concurrently, exploring novel covariates derived from multi-source remote sensing (e.g., hyperspectral,
LiDAR, radar) and proximal sensing (Xue et al., 2025), alongside improved representations of depth-dependent properties and
395 long-term environmental legacies, could substantially enrich the feature space and better characterize the complex soil-forming
factors operating in forest ecosystems (Vaysse and Lagacherie, 2017; Wadoux et al., 2020). Integrating such refined datasets
within hybrid modeling frameworks holds considerable potential for improving the accuracy and reliability of forest DSM

predictions.
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5 Data and code availability

400 The soil property maps generated in this study include soil pH and BD for five depth intervals (05 cm, 5-15 cm, 15-30 cm,
All resources for the ensemble machine learning model, including training and testing code, are publicly available at
https://github.com/cjz-ux/China_forest DSM/tree/main. The soil property maps generated in this study include soil pH and
BD for five depth intervals (0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, and 60—100 cm), with a spatial resolution of 90 meters.
These maps are openly accessible via the platform link: https://doi.org/10.57760/sciencedb.25375 (last access: 19 September

405 2025) (Chen et al., 2025). Users can download the datasets efficiently using the provided FTP credentials and any standard
FTP client.

6. Usage note

It is important to highlight that uncertainties associated with the spatial predictions of soil pH and BD have been not only

quantified but also explicitly embedded in the corresponding maps. These uncertainty estimates offer critical insights into the

410 reliability of predictions. Users are strongly encouraged to interpret the pH and BD maps alongside their respective uncertainty
layers to ensure scientific rigor in downstream analyses and to support evidence-based decision-making and policy formulation.
The inclusion of uncertainty information should not be regarded as a drawback. In fact, the adoption of standardized protocols
for uncertainty quantification and reporting, which are now commonly used in DSM, enhances the transparency and
applicability of the dataset. Users should also be aware that no spatial map represents a perfect depiction of reality. Interpreting

415  these predictions without considering uncertainty introduces scientific and practical risks. The uncertainty layers serve as a
guide for context-sensitive interpretation.

The current version of the China forest soil pH and BD grids is based on soil sampling limited to mainland China. Data
from Hong Kong, Macau, and Taiwan are not included due to availability constraints. While this spatial extent reflects the
existing sampling framework, future updates will aim to incorporate broader geographic coverage. Users should clearly

420 acknowledge this limitation when applying the dataset in regional-scale modelling or policy-oriented analyses.
In addition, the environmental covariates used in the DSM workflow exhibit spatially heterogeneous coverage, with localized
data gaps in certain regions (e.g., areas with steep elevation gradients or low-quality remote sensing input). To ensure model
reliability, soil property predictions were restricted to areas where all covariates are fully available. Consequently, regions with
missing covariate data were excluded from the final maps. Users should check the alignment of their study area with the

425 covariate intersection mask, which is provided as ancillary metadata, to confirm the spatial applicability of the dataset.

7 Conclusions

Our study developed the first high-resolution mapping of forest soil BD and pH across China, leveraging forest soil profiles

from the latest national forest soil survey. We achieved this detailed characterization across complex forest soil landscapes by
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integrating the predictive soil mapping paradigm with FRFS, QRF, and a detailed suite of forest-specific soil-forming
430 environmental factors within a high-performance parallel computing environment. This integrated approach not only
effectively reduced errors and training time but also enhanced the performance of the final predictive models. The resultant
multilayer maps delineate pronounced regional gradients and fine-scale forest soil heterogeneity across depths, outperforming
existing products in accuracy, spatial detail, and provision of local uncertainty metrics. These high-resolution forest soil
property maps represent a contribution to the GlobalSoilMap.net project and provide critical baseline data for China's forest

435  carbon accounting and understanding of soil acidification processes.
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