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Abstract. Precise monitoring of key forest soil properties is crucial for addressing global challenges like carbon sequestration 

and soil acidification. However, existing national soil maps, primarily derived from comprehensive ecosystem samples, 

inadequately represent the distinct characteristics and high spatial heterogeneity of China's vast and diverse forest ecosystems. 

To bridge this gap, we present the first high-resolution (90-m), forest-specific maps of soil bulk density (BD) and pH across 20 

China. Leveraging 4,356 forest soil profiles collected through extensive field surveys and 41 environmental covariates within 

an optimized Quantile Regression Forests (QRF) framework incorporating forward recursive feature selection (FRFS), we 

generated wall-to-wall predictions for five standardized depth intervals (0–5, 5–15, 15–30, 30–60, 60–100 cm). Model 

performance, assessed through 10-fold cross-validation (CV) and independent validation (IV), achieved model efficiency 

coefficients (MEC) ranging from 0.78 to 0.89 (CV) and 0.60 to 0.66 (IV) for bulk density (BD), and from 0.83 to 0.87 (CV) 25 

and 0.71 to 0.81 (IV) for pH, indicating the product's strong capability to capture the spatial variability of forest soil properties 

across China. The 90-m resolution BD and pH maps contribute to the GlobalSoilMap initiative and provide forest-specific 

inputs for regional Earth system and land surface models. These products advance the quantification of soil acidification 

processes and provide critical baseline data for estimating forest soil carbon stocks across China. The dataset is available at 

https://doi.org/10.57760/sciencedb.25375. 30 
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1 Introduction 

Forest soils are defined as soils that have developed under forest cover, influenced by long-term vegetation–soil interactions, 

and distinguished by unique physical, chemical, and biological properties (Binkley and Fisher, 2013; Osman, 2013). As key 

regulators of carbon storage, water cycling, and nutrient availability, forest soils are vital to forest sustainability and policy 35 

(Dai et al., 2019; Kleber et al., 2021). China's forest ecosystems span 209 million hectares across diverse climatic zones and 

complex topographies, encompassing 452 vegetation types to form one of Earth's most ecologically varied forest spectra (Chen 

et al., 2016; Patton et al., 2019; Zhang et al., 2024). Revealing the spatial distribution of forest soils is fundamental for 

estimating forest carbon stocks and evaluating forest soil acidification (Zhu et al., 2016; Huang et al., 2022b; Xu et al., 2015). 

However, forest soils are highly heterogeneous across geographical space, shaped by long-term climatic gradients, vegetation 40 

succession, and topographic variation (Zhao et al., 2019; Chen et al., 2022a; Liu et al., 2024). Consequently, accurately 

revealing the spatial distribution of key forest soil attributes presents a significant challenge. 

Digital Soil Mapping (DSM), which integrates machine learning and environmental covariates to predict soil properties 

across complex landscapes while significantly enhancing spatial soil representation in areas of varied terrain and vegetation, 

has become a pivotal methodology for acquiring high-resolution spatial soil information (McBratney et al., 2003; Minasny et 45 

al., 2013; Padarian et al., 2019). Consequently, numerous countries globally and transnational initiatives have invested 

substantial resources in using DSM to build national-scale, high-accuracy digital soil databases. These national initiatives 

typically target resolutions of 90 meters or finer, predicting the spatial distribution of multiple soil attributes across globally 

standardized depth intervals (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm) as established by 

GlobalSoilMap.net (Arrouays et al., 2014; Hempel et al., 2014). Exemplary national efforts include the Soil and Landscape 50 

Grid of Australia (SLGA; Grundy et al., 2015), France's Soil Data Inventory and Management System (DIGSOL; Mulder et 

al., 2016), the gSSURGO database in the United States (Ramcharan et al., 2018; Thompson et al., 2020), and the high resolution 

National Soil Information Grids of China (Liu et al., 2022a; Shi et al., 2025). Concurrently, global-scale initiatives such as 

SoilGrids provide open-access soil predictions at 250m resolution across all continents using the same GlobalSoilMap 

standards (Hengl et al., 2017; Poggio et al., 2021). Collectively, these national efforts have substantially advanced our 55 

understanding of spatial distribution of multiple soil attributes within their respective coverage areas.  

However, a significant limitation persists in characterizing forest soils specifically. Current national-scale soil products 

in China and globally primarily derive from samples located in comprehensive ecosystem (Poggio et al., 2021; Liu et al., 

2022b; Shi et al., 2025). Consequently, they fail to adequately capture the unique physical structures (e.g., higher aggregation, 

root effects) and biogeochemical processes (e.g., greater susceptibility to acidification driven by vegetation inputs) inherent to 60 

forest ecosystems (Widyati et al., 2022; Liu et al., 2024). This creates a critical gap between available soil data products and 

the urgent need for forest-specific soil information to support accurate carbon stock estimation and acidification risk 

assessment in these vital ecosystems.  Further complicating this gap is the methodological challenge of selecting predictive 

covariates for forest soil mapping that adequately capture the complex vegetation-soil interactions (Wu et al., 2023). 
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While the SCORPAN (Soil, Climate, Organisms, Relief, Parent material, Age, and Space) framework underpins digital 65 

soil mapping (McBratney et al., 2003; Chen et al., 2022b), optimal covariate selection for forest soils remains challenging due 

to complex vegetation-soil interactions (Chen et al., 2021; Xue et al., 2025). Model-based feature importance methods, 

particularly random forest (RF) metrics, have become primary solutions to address dimensionality traps from extensive 

predictors (Song et al., 2020; Liu et al., 2022a). Subsequent studies have successfully leveraged RF importance to identify key 

drivers of soil attributes, such as soil-environment relationships via OOB error (Jeune et al., 2018) and critical covariates for 70 

soil hydraulic properties (Santos et al., 2023). However, RF-based approaches frequently fail to identify minimal optimal 

subsets due to variable redundancy. To overcome this, Recursive Feature Elimination (RFE) was developed, which iteratively 

prunes low-importance features using RF. It distilled high-dimensional covariate sets into parsimonious subsets for soil organic 

carbon stocks (Hounkpatin et al., 2021) and identified key topographic-vegetation predictors for soil nutrients in heterogeneous 

(Helfenstein et al., 2024; Shi et al., 2025). Yet RFE’s sequential removal risks discarding combinatorially significant variables 75 

and incurs high computational costs. More recently, the forward recursive feature selection (FRFS) method has emerged as a 

superior alternative, excelling at capturing nonlinear relationships while reducing computational costs (Xiao et al., 2022). Xue 

et al. (2025) successfully applied this method to map the spatial heterogeneity of complex soil attributes across diverse 

landscapes in China, demonstrating its promising potential for addressing the specific challenges of mapping heterogeneous 

forest soils. Therefore, our study leverages the FRFS method to tackle the critical covariate selection challenge inherent to 80 

mapping China's diverse forest soils. 

To address the critical limitations of legacy soil data in representing China’s complex and heterogeneous forest 

ecosystems, we conducted a systematic nationwide forest soil survey. Leveraging machine learning, this study aims to: (1) 

construct the first nationwide forest-specific soil profile database; (2) develop and apply an optimized DSM framework 

integrating QRF and FRFS; and (3) pioneer high-resolution (90-meter) digital maps of two fundamental forest soil properties, 85 

bulk density (BD) and pH, across China's entire forest domain. Spanning five standardized depth intervals (0–5 cm, 5–15 cm, 

15–30 cm, 30–60 cm, and 60–100 cm), these forest-specific maps provide the first continuous, wall-to-wall spatial 

characterization of BD and pH at 90m resolution, conforming to GlobalSoilMap standards. This unprecedented dataset 

provides the essential spatial baseline for accurately quantifying forest carbon stocks and assessing soil acidification risks. 

2 Materials and Methods 90 

We developed 90-m resolution forest soil BD and pH grids for China (0–100 cm) using an optimized QRF model, a machine 

learning algorithm effective for both spatial prediction and uncertainty quantification (Szatmári et al., 2024). This framework 

integrated 4,356 georeferenced forest soil profiles, combining historical inventory data (2018–2023). Sampling efforts were 

designed to ensure ecological and spatial representativeness across major climatic zones and forest types. Soil profiles were 

harmonized into standardized depth intervals (0–5, 5–15, 15–30, 30–60, and 60–100 cm) using an adaptive equal-area spline 95 

method (Bishop et al., 1999; Liu et al., 2022a) and randomly partitioned into training (80%) and independent validation (20%) 
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subsets. A set of 41 environmental covariates, aligned with soil-forming factors (Jenny, 1941), were resampled to a 90-m grid 

via bilinear interpolation. Feature selection and hyperparameter tuning were implemented to optimize model performance. 

Predictive accuracy was evaluated using 10-fold cross-validation and independent validation based on a withheld dataset. A 

summary of the modelling framework is shown in Figure 1. 100 

 

Figure 1. Workflow diagram for forest soil mapping. 
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2.1 Data compilation 

2.1.1 Soil database 

We developed a comprehensive forest soil property database for China, representing the most extensive and up-to-date 105 

collection of forest soil data to date. The data were compiled from two major nationwide forest soil surveys conducted in 2018 

and 2023, complemented by independently conducted regional forest soil surveys during the intervening years to enhance 

spatial and ecological representation. These surveys employed a stratified sampling design to ensure broad representativeness 

across China's major forest ecosystems, covering diverse climate zones, forest types, and topographic gradients. In addition to 

these national efforts, data from independently conducted regional forest soil surveys during the intervening years were also 110 

incorporated to enhance spatial and ecological representation. After rigorous quality control and data harmonization, the final 

integrated dataset comprises 8,709 soil profiles and 18,193 soil samples. Of these, 4,356 profiles and 11,873 samples contain 

both BD and pH values, forming the core dataset used in this study. The spatial distribution of sampling plots and forest 

coverage is displayed in Figure 2. 

To ensure data comparability and minimize measurement errors, all samples were processed under identical conditions. 115 

Soil sampling and analysis followed standardized protocols to ensure data consistency. Soil samples were collected using a 

soil auger, air-dried at room temperature, homogenized, and passed through a 2 mm sieve to remove coarse fragments and 

roots for physicochemical analyses. Undisturbed soil cores were collected from each horizon using a cutting ring sampler to 

determine BD. Soil pH was measured using a pH meter following the potentiometric method, with a soil-to-water ratio of 1:2.5 

(w/v). Reference materials were used throughout the analytical process to ensure measurement accuracy and control data 120 

quality. 
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Figure 2. Spatial distribution of soil sampling plots and forest coverage. Publisher’s remark: please note that the above figure contains 
disputed territories. 

 125 

2.1.2 Standard soil depths  

Following GlobalSoilMap specifications (Arrouays et al., 2014), soil samples are typically standardized to fixed depth intervals 

of 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm. To model continuous depth functions from soil property measurements 

recorded by genetic horizons, equal-area quadratic spline interpolation is commonly used (Bishop et al., 1999). However, 

natural soil profiles often contain abrupt changes in properties between adjacent horizons, leading to inconsistencies with these 130 

standardized depth layers. To address this issue and reduce fitting errors, we applied an adaptive equal-area spline method (Liu 

et al., 2022a). This method detects abrupt transitions by calculating the ratio of property values between adjacent horizons and 

applying a predefined threshold. When such discontinuities are identified, a 1 cm transitional layer is inserted between the 

affected horizons before spline fitting. This adjustment ensures improved consistency with the observed morphological 
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structure of each soil profile. While the GlobalSoilMap framework includes the 100–200 cm interval, our study focused on the 135 

upper five layers (0–5, 5–15, 15–30, 30–60, and 60–100 cm) due to the limited number of forest soil profiles extending beyond 

100 cm in depth. 

2.1.3 Environmental Covariates 

Soil formation is governed by the combined effects of climate, parent material, topography, vegetation, and human activities. 

In this study, 41 environmental covariates were selected based on the soil-forming factor framework (Jenny, 1941; Minasny 140 

et al., 2013) and categorized into five groups: parent material, climate, organisms, topography, and intrinsic soil properties 

(Table S1). To reduce multicollinearity, a variance inflation factor (VIF) threshold of less than 10 was applied through iterative 

variable exclusion. 

All covariate layers were projected using the Albers Equal Area coordinate system (EPSG:4326, WGS84 datum) and 

resampled to a unified 90-m spatial resolution via bilinear interpolation. For multi-year variables, long-term annual means and 145 

growing season (May to September) averages were calculated from monthly records spanning 2003 to 2023, thereby capturing 

both historical trends and contemporary environmental conditions relevant to forest soil development. 

Climate-related covariates included temperature, precipitation, potential evapotranspiration, and solar radiation, derived 

from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn) and the TerraClimate dataset. Parent material 

characteristics were obtained from Sentinel-2 imagery using the shortwave infrared band (B12) and the B8/B12 band ratio to 150 

estimate clay content. Depth to Bedrock (DTB) data were incorporated to represent weathering intensity, and lithological 

context was supplemented using the Geological Map of China. Topographic attributes were extracted from the NASADEM 

digital elevation model (https://lpdaac.usgs.gov/products/nasadem_hgtv001/) and computed using SAGA GIS 

(http://www.saga-gis.org). Vegetation indicators were sourced from MODIS products, including NDVI, NDWI, LAI, and NPP, 

while forest type classifications were based on the National Atlas of Forest Vegetation in China. 155 

2.2 Modelling 

2.2.1 Covariate selection 

To balance model parsimony with biogeochemical interpretability, we adapted the Forward Recursive Feature Selection (FRFS) 

approach proposed by Xiao et al. (2022) into a depth-specific selection framework, applied independently to four standardized 

soil layers. The procedure comprised three sequential steps. First, the covariate with the highest predictive importance, as 160 

assessed by permutation-based Random Forest analysis, was selected to initiate the model. Subsequently, additional variables 

were iteratively added based on two criteria: a reduction of more than 5% in five-fold cross-validated root mean square error 

(RMSE) and a variance inflation factor (VIF) below 10. The selection process was automatically terminated when five 

consecutive iterations failed to achieve an RMSE improvement of at least 1%, thereby avoiding model overfitting. This 
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hierarchical strategy ensured effective dimensionality reduction while maintaining predictive performance across all soil 165 

depths. The framework was applied across four distinct soil horizons. 

2.2.2 Predictive models 

Quantile Regression Forests (QRF), a nonparametric ensemble learning method extending the Random Forest framework, 

were used to model the relationships between environmental covariates and soil properties, while explicitly quantifying 

predictive uncertainty (Meinshausen, 2006). As a state-of-the-art algorithm in DSM (Liu et al., 2022a; Poggio et al., 2021; 170 

Pouladi et al., 2019), QRF leverages both bootstrap aggregation of regression trees and randomized feature subset selection at 

each node, enabling robust handling of high-dimensional, non-stationary data. 

Unlike standard Random Forests, QRF retains the full conditional distribution 𝐹ሺ𝑦 ∥ 𝑋 ൌ 𝑥ሻ At each prediction 

node, allowing estimation of both point predictions and confidence intervals. This is achieved via kernel-based empirical 

distribution construction: 175 

𝐹෠ሺ𝑦|𝑋 ൌ 𝑥ሻ ൌ ∑ 𝑤௜
௡
௜ୀଵ ሺ𝑥ሻ𝐼ሺ𝑦௜ ൑ 𝑦ሻ          (1) 

where 𝑤௜ሺ𝑥ሻ Is the weight assigned to each training observation based on terminal node proximity. The conditional 

quantile function is derived as: 

𝑞ොఈሺ𝑥ሻ ൌ inf൛𝑦:𝐹෠ሺ𝑦 ∣ 𝑋 ൌ 𝑥ሻ ൒ 𝛼ൟ           (2) 

for a given quantile level 𝛼 ∈ ሺ0,1ሻ. This allows the derivation of the median estimate 𝑞ො଴.ହሺ𝑥ሻ, prediction intervals 180 

ൣ𝑞ො௔/ଶሺ𝑥ሻ,𝑞ොଵି௔/ଶሺ𝑥ሻ൧, and the full uncertainty distribution, enhancing both interpretability and decision support in forest soil 

assessments. 

where specifies the quantile level (e.g., 𝛼 ൌ 0.5 or median prediction). This formulation generates three interconnected 

outputs: the median predictor as a robust central tendency estimate, prediction intervals for heteroscedastic uncertainty 

quantification, and the complete conditional distribution through parametric evaluation of 𝑞ොఈሺ𝑥ሻ across the 𝛼 continuum. 185 

To implement QRF across China’s forested regions, we adopted a spatially parallel computing framework. The study area 

was divided into 461 contiguous grid tiles (10 × 10 km) using the Albers Equal Area projection. Model execution was carried 

out using the quantregForest package in R 4.2.1, running on 24 logical cores of a high-performance computing node. Spatial 

continuity was preserved across grid boundaries using a Gaussian kernel-based edge matching algorithm, enabling seamless 

90-m resolution prediction without artifacts. 190 

2.2.3 Hyperparameter tuning 

Hyperparameter optimization was conducted for three parameters critical to model performance: mtry (number of variables 

randomly sampled at each split), num.trees (number of trees), and min.node.size (minimum samples per terminal node). The 

randomized search strategy was employed, guided by 10-fold cross-validation and using RMSE as the evaluation metric. Fifty 
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iterations of parameter space sampling were performed to identify the optimal combination. Final hyperparameter values were 195 

selected based on configurations that yielded the highest prediction accuracy on the validation dataset. A summary of optimized 

parameters for each soil property and depth interval is provided in Table S2. 

2.3 Model validation 

To comprehensively evaluate model performance, we applied two complementary validation strategies: 10-fold cross-

validation on the training dataset (80%) and independent validation using a held-out test set (20%). These schemes were 200 

implemented across the entire study region to assess the predictive accuracy of forest soil BD and pH. 

In 10-fold cross-validation, the training set was randomly partitioned into ten equal subsets. In each iteration, nine subsets 

were used to train the model, and the remaining one was used for validation. This procedure was repeated ten times, ensuring 

each subset served as validation data exactly once. Model accuracy was assessed by averaging performance metrics across 

folds, including mean error (ME), root mean square error (RMSE), and the model efficiency coefficient (MEC). 205 

For independent validation, the reserved test set was excluded entirely from model training and hyperparameter tuning, 

thereby providing an unbiased evaluation of generalizability. The formulas used for calculating the evaluation metrics are as 

follows: 

ME ൌ
ଵ

௡
∑ ሺ𝑦ො௜ െ 𝑦௜ሻ
௡
௜ୀଵ            (3) 

RMSE ൌ ටଵ

௡
∑ ሺ𝑦௜ െ 𝑦ො௜ሻଶ௡
௜ୀଵ            (4) 210 

𝑀𝐸𝐶 ൌ 1 െ
∑ ሺ௬೔ି௬ො೔ሻ

మ೙
೔సభ
∑ ሺ௬೔ି௬‾ሻమ
೙
೔సభ

            (5) 

where 𝑦௜ is the observed soil property value, 𝑦ො௜ is the predicted value, and 𝑦‾ is the mean of observed values. ME, also 

referred to as bias, measures average deviation. RMSE reflects the overall prediction error, with lower values indicating higher 

accuracy. MEC, equivalent to the coefficient of determination (R²), ranges from 0 to 1, with higher values indicating better 

predictive performance. 215 

2.4 Uncertainty Quantification  

Quantifying spatial uncertainty is essential in DSM, as prediction errors may arise from input data variability, model structure, 

and environmental heterogeneity (Arrouays et al., 2014; Poggio et al., 2021; Liu et al., 2022a; Shi et al., 2025). To visualize 

the spatial distribution of prediction uncertainty, we calculated the Prediction Interval Ratio (PIR), defined as the ratio between 

the 90% prediction interval width and the median estimate: 220 

𝑃𝐼𝑅 ൌ
௤బ.వఱି௤బ.బఱ

௤బ.ఱబ
            (6) 
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where 𝑞଴.ଽହ and 𝑞଴.଴ହ represent the upper and lower bounds of the 90% prediction interval, respectively, and 𝑞଴.଴ହ denotes 

the median prediction. PIR is a dimensionless metric that quantifies the relative spread of prediction uncertainty around the 

central estimate. Higher PIR values indicate greater dispersion and, therefore, higher predictive uncertainty. 

To evaluate the calibration of these uncertainty estimates, we used the Prediction Interval Coverage Probability (PICP), 225 

computed from the independent validation dataset (Goovaerts, 2001). PICP measures the proportion of observed values that 

fall within their corresponding prediction intervals at a specified confidence level (e.g., 90%). A well-calibrated model should 

yield a PICP value close to the nominal coverage. For example, a 90% prediction interval is considered reliable if the empirical 

PICP also approximates 90%. Systematic deviation from this benchmark can indicate miscalibration: a PICP above the target 

level suggests that intervals are too narrow (underestimated uncertainty), while a PICP below the target indicates overly wide 230 

intervals (overestimated uncertainty) (Poggio et al., 2021; Liang et al., 2019). This diagnostic approach supports the robust 

interpretation of uncertainty in DSM outputs. 

3 Results 

3.1 Forest soil database overview 

Table 1 presents the harmonized forest soil database comprised 4,356 forest soil profiles distributed across China. Using the 235 

equal-area spline method, soil property values were standardized to fixed depth intervals (0–5, 5–15, 15–30, 30–60, and 60–

100 cm), resulting in 15,845 horizons for BD and 15,978 horizons for pH. BD showed low skewness across depths (0.16–

0.42), while pH closely followed a normal distribution (skewness 0.05–0.19). Mean values of both BD and pH increased 

gradually with depth, from 1.206 to 1.342 g/cm³ for BD and from 6.07 to 6.47 for pH. The standard deviation of BD increased 

gradually from 0.261 in the shallowest layer (0–5 cm) to 0.308 in the lowest depth interval (60–100 cm), while pH showed a 240 

more pronounced rise in variability, with its standard deviation increasing from 0.909 to 1.327 across the same range. Both 

parameters showed wide value ranges across all depths (BD: 0.15–2.30 g/cm³; pH: 4.00–8.70).  

Table 1. Statistical summary of BD and pH at five depth intervals. Refer to Table 1 for the abbreviations and units of the soil 
properties interested. 

Property Depth (cm) Na) Mean SD Min Max Skewness 

BD 

0–5 4356 1.206 0.261 0.152 2.057 0.162 

5–15 3522 1.209 0.288 0.284 2.291 0.317 

15–30 3488 1.287 0.269 0.301 2.271 0.422 

30–60 2973 1.340 0.269 0.257 2.215 0.393 

60–100 1506 1.342 0.308 0.534 2.291 0.367 

pH 
0–5 3963 6.066 0.909 4.000 8.440 0.045 

5–15 3962 6.131 0.991 4.000 8.515 0.111 

https://doi.org/10.5194/essd-2025-496
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



11 
 

15–30 3816 6.172 1.005 4.030 8.420 0.087 

30–60 2783 6.458 1.198 4.040 8.640 0.194 

60–100 1454 6.466 1.327 4.040 8.704 0.119 

a) N varies slightly between properties and depths due to sample availability for specific analyses. 245 

3.2 Model performance 

The performance of the QRF models was evaluated after training and optimisation. Table 2 lists the 10-fold cross-validation 

(CV) and independent validation (IV) results for BD and pH predictions of our study across five soil depth intervals. Model 

performance varied with specific soil properties. For BD, 10-fold CV achieved high accuracy (MEC = 0.782–0.889, RMSE = 

0.079–0.090 g/cm³), explaining 78.2–88.9% of variability. IV yielded robust but reduced performance (MEC = 0.598–0.657, 250 

RMSE = 0.155–0.181 g/cm³), retaining 59.8–65.7% explanatory power. Conversely, pH predictions demonstrated superior 

accuracy: CV maintained strong performance across depths (MEC = 0.834–0.868, RMSE = 0.214–0.254), peaking at 60–100 

cm (MEC = 0.868, RMSE = 0.238; 86.8% variability explained). IV confirmed generalizability (MEC = 0.705–0.812, RMSE 

= 0.432–0.515).  

Model performance also varied with depth. BD prediction accuracy exhibited non-monotonic depth dependence during 255 

independent validation, peaking at intermediate depths (15–30 cm: MEC = 0.657) with lower accuracy in surface layers (0–5 

cm: MEC = 0.598) and deep layers (60–100 cm: MEC = 0.656). In contrast, pH prediction accuracy systematically increased 

with soil depth under both validation frameworks. CV showed MEC progression from 0.844 (0–5 cm) to 0.868 (60–100 cm), 

while IV demonstrated improvement from 0.705 (0–5 cm) to 0.812 (60–100 cm). Optimal pH performance consistently 

occurred at the deepest interval (60–100 cm) for both validation methods. In addition, all predictions maintained negligible 260 

bias (|ME| ≤ 0.019) across depth intervals. 

Table 2. Predictive performance of BD and pH predictions. 

Validation Depth (cm) 
10-fold CV IV 

MEC RMSE ME MEC RMSE ME 

BD 

0–5 0.782 0.090 0.000 0.598 0.164 -0.01 
5–15 0.815 0.084 0.000 0.611 0.181 -0.017 

15–30 0.828 0.081 -0.000 0.657 0.155 0.006 
30–60 0.874 0.079 -0.000 0.614 0.166 0.005 
60–100 0.889 0.087 0.000 0.656 0.166 -0.019 

pH 

0–5 0.844  0.215  0.000  0.705  0.432  -0.003  
5–15 0.834  0.254  0.000  0.726  0.480  -0.001  

15–30 0.854  0.214  0.000  0.742  0.448  -0.007  
30–60 0.854  0.256  0.001  0.760  0.515  -0.002  
60–100 0.868  0.238  0.001  0.812  0.492  0.014  
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3.3 Spatial patterns  

3.3.1 Spatial patterns of BD 

The BD maps predicted by QRF (Figure 3)  show consistent mean values ranging from 1.16 to 1.34 g/cm³ and standard 265 

deviations of 0.15–0.21 g/cm³ across all soil depths (Tables S3 and Fig S3). Macroscale patterns align with CSDLv2, 

ChinaSoilInfoGrids, and SoilGrids 2.0 (Fig. S1). 

Spatially, BD exhibits distinct regional variation. The highest values occur in southwestern China (mean BD = 1.45 g/cm³) 

and the lowest values in northeastern China (mean BD = 0.79 g/cm³). Southwestern China consistently forms the highest-value 

area across all soil layers. Northeastern China constitutes the lowest-value zone. In eastern China, BD values increase from 270 

the coast inland. Across the eastern coastal and southern regions, BD gradients occur from south to north and from coast to 

inland.  

Vertically, BD increases with depth. Surface layers (0–5 cm) show the lowest BD, with minimal values concentrated in 

northeastern and southeastern coastal regions (mean values 0.79 g/cm³ and 1.19 g/cm³, respectively). High-BD zones in the 

southwest expand slightly with depth. Within the middle soil depths (5–15 cm and 15–30 cm), spatial variability intensifies: 275 

low-BD zones extend from the northeast into North China, alongside distinct high-BD cores in the southwest. The 30–60 cm 

layer reaches the highest mean BD (1.32 g/cm³). The deep soil layer (60–100 cm) has a mean BD of 1.23 g/cm³, featuring 

extensive high-BD areas in southwest China and reduced low-BD coverage in northeastern areas. 
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Figure 3. The predicted maps of predicted BD at 0–5 cm (a), 5–15 cm (b), 15–30 cm (c), 30–60 cm (d) and 60–100cm (e) depths. 280 
Publisher’s remark: please note that the above figure contains disputed territories. 
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3.3.2 Spatial patterns of pH 

The predicted pH maps based on QRF are illustrated in Figure 4.. These maps showed mean values ranging from 5.70 to 6.06 

and standard deviations ranging from 0.65 to 0.81 across all depths (Tables S3 and Fig.S4). Macroscale patterns align with 

those of CSDLv2, ChinaSoilInfoGrids, and SoilGrids 2.0 (Fig. S2). 285 

Spatially, pH shows regional differentiation. Forest soils in South and Southwest China exhibit lower pH values (pH ≤ 

5.76). Forest soils in North and Northwest China exhibit higher pH values (pH ≥ 6.50). Northeast China shows intermediate 

pH values, ranging between those of the southern and northern regions. 

Vertically, pH patterns show both consistency with surface layers and changes with depth. Surface layers (0–5 cm, 5–15 

cm) in the South and Southwest show the lowest pH values. With increasing soil depth (15–30 cm, 30–60 cm, and 60–100 290 

cm), pH values in the southern regions increase. pH values in the northern regions become more stable with depth, showing 

reduced range. Overall, spatial variability in pH decreases in deeper soil layers. 
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Figure 4. The predicted maps of predicted pH at 0–5 cm (a), 5–15 cm (b), 15–30 cm (c), 30–60 cm (d) and 60–100cm (e) depths. 
Publisher’s remark: please note that the above figure contains disputed territories. 295 
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3.4 Prediction uncertainty  

Visualization of prediction uncertainty using the PIR highlighted clear regional variations in uncertainty for BD and pH across 

China. Higher uncertainty for BD was concentrated in the northeastern and southwestern regions, while lower uncertainty 

characterized the southeastern coastal areas (Fig. S5). Conversely, pH uncertainty was more pronounced in northern China 

and parts of the southwest, with relatively lower levels observed in the northeast and the central-eastern coastal zone (Fig. S6). 300 

Overall, areas of elevated uncertainty predominantly coincided with southwestern China, where complex soil-landscape 

interactions likely contribute to increased model uncertainty. Additionally, regions with sparse data coverage, such as high-

altitude areas, exhibited amplified extrapolation uncertainty due to limited representation in the training dataset, further 

challenging model reliability in these environments. For both BD and pH, prediction uncertainty generally increased with soil 

depth, a pattern potentially attributable to the reduced availability of soil observations at deeper intervals. 305 

To ensure that biased uncertainty estimates do not compromise practical applications of the model, we further employed 

the PICP to perform this critical validation step. Five predictive accuracy plots were generated to evaluate the alignment of 

predicted intervals with actual observations for BD and pH (Figure 5). The QRF-based digital soil mapping model showed 

close adherence to the 1:1 reference line across both properties, indicating strong consistency in local uncertainty estimation. 

However, for pH, a slight overestimation of uncertainty was detected at intermediate probability levels (60%–90%) within 310 

subsurface layers (0–60 cm), suggesting minor deviations from optimal calibration. In contrast, uncertainty quantification for 

BD remained well-calibrated across all depth intervals and probability thresholds. 
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Figure 5. Validation of uncertainty quantifications. 

3.5 Covariate importance 315 

Relative importance of the environmental covariates used in the soil spatial predictions is shown in Figure 6. The FRFS 

framework enabled depth-specific dimensionality reduction, retaining 7 to 16 covariates per soil layer while eliminating 60.98% 

to 77.93% of the initial set (Table S4). Considerable variation in covariate relative importance was observed both between soil 

properties and across depths.  

For forest soil BD prediction in the ensemble model, PRE_A showed the highest relative importance across all depths (0-320 

100 cm), ranging from 11.41% to 23.73%. Other predictors exhibited clear depth-dependent variations in relative importance. 

In surface soils (0–15 cm), NDWI_A, NPP, Elevation, and Soil had notable relative importance. In middle layers (15–60 cm), 

the relative importance of NPP and Soil increased. In deep layers (60-100 cm), PRE_A, NDWI_A, and NPP maintained high 

relative importance, while parent material (PM) and bedrock depth (DTB) showed increased relative importance. Analysis by 
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factor category (Fig. S7) indicated that climate factors contributed the most to BD prediction across all depths (44.00%–325 

62.47%), significantly exceeding the contributions from other factor categories. 

For soil pH prediction in the ensemble model, the synergistic combination of NDWI_A, PRE_A, and NPP showed the 

highest relative importance across the entire soil profile (29.11–36.14%). Secondary factors exhibited depth-dependent 

variations in their relative importance. In surface soils (0–15 cm), vegetation indicators (LAI_A, NDVI_MAX) had the 

strongest secondary relative importance. In middle layers (15–60 cm), the relative importance of topographic factors (Elevation, 330 

Geomor) and parent material (PM) increased. In the deep soil layer (60–100 cm), NDWI_GS and ALR2 showed increased 

relative importance, while DTB maintained consistently high relative importance. Analysis by factor category (Fig. S7) 

indicated that organism factors (primarily vegetation-related) contributed the most to the prediction (up to 36.14%), followed 

by varying relative contributions from climate and parent material factors across depths. 

 335 

Figure 6. Variable importance for model training at different soil depths. The abbreviations of the predictors are defined in Table 
S1. 
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4 Discussion 

4.1 Model performance improvement  

China has established valuable national soil datasets, such as the comprehensive CSDLv2 (Shi et al., 2025) and the high-340 

resolution ChinaSoilInfoGrids (Liu et al., 2022a), which provide robust insights into soil properties across diverse ecosystems 

(Table S5). Building upon these foundations and focusing specifically on forest ecosystems, our work developed a model to 

simulate the spatial distribution of BD and pH within China's forests. As reported in Sect.3.2, the forest-optimized model 

demonstrated reliable performance for this targeted application under both CV and IV frameworks. Critically, the IV results, 

based solely on external forest samples withheld from model development, confirmed the model's robustness and 345 

generalizability within the specific context of China's forest ecosystems. These outcomes underscore the effectiveness of our 

approach in capturing forest-specific soil patterns. 

Our methodology integrates two key innovations specifically designed to address the unique challenges of DSM in forest 

ecosystems. First, recognizing that forest soil sites are often underrepresented in large-scale national databases (which typically 

prioritize agricultural land) (Liu et al., 2022a; Shi et al., 2025), we constructed China's first dedicated, systematic forest soil 350 

dataset. This dataset, encompassing dominant forest types across major ecoregions, provides the essential foundation for 

characterizing forest-specific paedogenic processes and deriving accurate soil-environment relationships reflecting forest 

biogeochemistry. 

Second, forest covariate optimization contributed significantly to the improved accuracy (Table S5). Recent DSM studies 

employing the SCORPAN framework have highlighted that relying solely on universal predictors may overlook critical 355 

ecosystem-specific variations, particularly in heterogeneous regions (Sun et al., 2022; Zhang et al., 2025).  Building on this 

insight, our study explicitly incorporates forest-specific drivers to enhance mapping accuracy across China’s complex 

landscapes. By tailoring covariate selection to forest ecosystems, we overcome the cross-ecosystem extrapolation bias 

prevalent in current national datasets. For instance, forest soil BD in China is mainly influenced by root-mediated aggregation 

(Liu et al., 2019; Zheng et al., 2023), while agricultural BD reflects region-specific tillage practices, such as the puddling 360 

effects in rice-wheat rotations (Hou et al., 2012). Similarly, forest soil pH is controlled by litterfall chemistry with distinct 

stoichiometry in Chinese subtropical forests (Zhou et al., 2016; Farooq et al., 2022), whereas agricultural pH is dominated by 

long-term nitrogen fertilization (Wang et al., 2019; Jia et al., 2022). Consequently, moving beyond universal predictors to 

select covariates specific to forest ecosystems was fundamental to the improved mapping accuracy. 

Consequently, our forest-optimized framework, underpinned by the purpose-built dataset and ecologically informed 365 

covariates, generates a specialized and complementary perspective on soil property mapping for forest ecosystems. It delivers 

China's first comprehensive, 90-m resolution wall-to-wall maps characterizing forest BD and pH spatial patterns. These results 

validate the critical importance of incorporating ecosystem context into digital soil mapping (Padarian et al., 2019). 
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4.2 Potential applications  

The high-resolution spatial dataset of forest soil BD and pH developed in this study represents a national-scale digital soil 370 

mapping product that captures the spatial variability of key soil physical and chemical properties across forested regions in 

China. Accurate knowledge of BD and pH is fundamental for estimating soil carbon stocks (Batjes, 2016), and monitoring 

forest ecosystem responses to land-use and climate change (Pan et al., 2011). Bulk density is critical for accurate estimation 

of soil carbon stocks, while pH governs nutrient availability, microbial activity, and forest productivity (Liu et al., 2024), and 

is significant for understanding forest soil acidification (Farooq et al., 2022). The dataset fills longstanding gaps in forest soil 375 

data coverage in China, and supports applications in ecosystem assessment and long-term soil monitoring. Beyond its scientific 

value, this product contributes to national strategies on carbon neutrality and ecological restoration and aligns with 

international environmental commitments including the UN Decade on Ecosystem Restoration and the Sustainable 

Development Goals (UNEP, 2021; IPCC, 2022). 

4.3 Limitations and outlook 380 

Our study advances high-resolution DSM in forest ecosystems, yet several methodological limitations remain and merit further 

investigation, particularly regarding the predictive reliability of machine learning approaches. Machine learning, while 

significantly enhancing DSM through capturing nonlinear soil–environment relationships, are constrained by limitations in 

spatial coverage and feature-space representativeness (Yang et al., 2013; Chen et al., 2019). Forests exhibit pronounced 

landscape heterogeneity, complicating sampling design and frequently resulting in imbalanced training datasets (Huang et al., 385 

2022a; Liu et al., 2022b; Shao et al., 2022). As demonstrated by Westhuizen et al. (2024), models trained on such datasets 

yield biased predictions in undersampled regions. Although ensemble methods manage uncertainty in sparse data settings, they 

may prioritize statistical regularities over mechanistic soil formation processes (Sylvain et al., 2021; Liu et al., 2022b). 

Emerging hybrid frameworks integrating environmental similarity metrics with pedological expertise show promise in 

addressing these challenges (Zhao et al., 2024), though their scalability requires further validation (Miranda et al., 2023; Potash 390 

et al., 2023; Rodrigues et al., 2025). Specifically, strategic sampling designs incorporating stratified and adaptive approaches 

across diverse forest landscapes and soil types are crucial to mitigate dataset imbalance and capture underlying heterogeneity 

(Brus et al., 2011). Concurrently, exploring novel covariates derived from multi-source remote sensing (e.g., hyperspectral, 

LiDAR, radar) and proximal sensing (Xue et al., 2025), alongside improved representations of depth-dependent properties and 

long-term environmental legacies, could substantially enrich the feature space and better characterize the complex soil-forming 395 

factors operating in forest ecosystems (Vaysse and Lagacherie, 2017; Wadoux et al., 2020). Integrating such refined datasets 

within hybrid modeling frameworks holds considerable potential for improving the accuracy and reliability of forest DSM 

predictions. 
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5 Data and code availability 

The soil property maps generated in this study include soil pH and BD for five depth intervals (0–5 cm, 5–15 cm, 15–30 cm,  400 

 All resources for the ensemble machine learning model, including training and testing code, are publicly available at 

https://github.com/cjz-ux/China_forest_DSM/tree/main. The soil property maps generated in this study include soil pH and 

BD for five depth intervals (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, and 60–100 cm), with a spatial resolution of 90 meters. 

These maps are openly accessible via the platform link: https://doi.org/10.57760/sciencedb.25375 (last access: 19 September 

2025) (Chen et al., 2025). Users can download the datasets efficiently using the provided FTP credentials and any standard 405 

FTP client. 

6. Usage note 

It is important to highlight that uncertainties associated with the spatial predictions of soil pH and BD have been not only 

quantified but also explicitly embedded in the corresponding maps. These uncertainty estimates offer critical insights into the 

reliability of predictions. Users are strongly encouraged to interpret the pH and BD maps alongside their respective uncertainty 410 

layers to ensure scientific rigor in downstream analyses and to support evidence-based decision-making and policy formulation. 

The inclusion of uncertainty information should not be regarded as a drawback. In fact, the adoption of standardized protocols 

for uncertainty quantification and reporting, which are now commonly used in DSM, enhances the transparency and 

applicability of the dataset. Users should also be aware that no spatial map represents a perfect depiction of reality. Interpreting 

these predictions without considering uncertainty introduces scientific and practical risks. The uncertainty layers serve as a 415 

guide for context-sensitive interpretation. 

The current version of the China forest soil pH and BD grids is based on soil sampling limited to mainland China. Data 

from Hong Kong, Macau, and Taiwan are not included due to availability constraints. While this spatial extent reflects the 

existing sampling framework, future updates will aim to incorporate broader geographic coverage. Users should clearly 

acknowledge this limitation when applying the dataset in regional-scale modelling or policy-oriented analyses. 420 

In addition, the environmental covariates used in the DSM workflow exhibit spatially heterogeneous coverage, with localized 

data gaps in certain regions (e.g., areas with steep elevation gradients or low-quality remote sensing input). To ensure model 

reliability, soil property predictions were restricted to areas where all covariates are fully available. Consequently, regions with 

missing covariate data were excluded from the final maps. Users should check the alignment of their study area with the 

covariate intersection mask, which is provided as ancillary metadata, to confirm the spatial applicability of the dataset. 425 

7 Conclusions 

Our study developed the first high-resolution mapping of forest soil BD and pH across China, leveraging forest soil profiles 

from the latest national forest soil survey. We achieved this detailed characterization across complex forest soil landscapes by 
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integrating the predictive soil mapping paradigm with FRFS, QRF, and a detailed suite of forest-specific soil-forming 

environmental factors within a high-performance parallel computing environment. This integrated approach not only 430 

effectively reduced errors and training time but also enhanced the performance of the final predictive models. The resultant 

multilayer maps delineate pronounced regional gradients and fine-scale forest soil heterogeneity across depths, outperforming 

existing products in accuracy, spatial detail, and provision of local uncertainty metrics. These high-resolution forest soil 

property maps represent a contribution to the GlobalSoilMap.net project and provide critical baseline data for China's forest 

carbon accounting and understanding of soil acidification processes. 435 
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