

1 **RESPONSE TO REVIEWER #1**

2 The manuscript proposes a high-resolution forest-specific mapping approach for predicting soil bulk
3 density and pH across China. It presents a substantial body of work and addresses a topic of interest,
4 which has the potential to contribute to the field. However, in my opinion, the current manuscript
5 requires major revision before it can be considered for publication.

6 Overall, the manuscript is informative and holds value but requires further refinement. The authors
7 are encouraged to more clearly emphasize the importance and novelty of their work, revise
8 redundant descriptions in Results while focusing on demonstrating statistical significance. With
9 careful revision, this manuscript has considerable potential to make a meaningful contribution to
10 the field.

11

12 **Response**

13 Dear reviewer #1,

14 We sincerely thank you for your insightful and comprehensive comments, which have been very
15 helpful in improving the quality and clarity of this manuscript. In response to your suggestions, we
16 have undertaken substantial revisions.

17 Specifically, we revised the Introduction to more clearly articulate the scientific motivation,
18 urgency, and novelty of forest-specific, high-resolution mapping of soil bulk density and pH across
19 China. We also carefully refined the Results section to reduce redundancy and to emphasize
20 quantitative interpretation supported by appropriate statistical evidence, avoiding subjective or over-
21 interpreted statements.

22 We believe that these revisions substantially enhance the rigor, transparency, and
23 interpretability of the manuscript. Our point-by-point responses to all comments are provided below,
24 and all corresponding revisions are marked in **blue** in the revised manuscript.

25

26 Best regards,

27 Jizhen Chen

28

29 **Major comment 1**

30 First of all, after reading the Introduction, I wasn't fully convinced of the necessity and urgency of
31 this study. The Introduction section begins with very basic background information on forest soil,
32 which is too general to establish a compelling rationale. The excessive introduction about
33 methodology doesn't effectively build a case for the study's significance, either. For instance, the
34 entire second paragraph is basically saying "a lot of people have done this", which may justify
35 methodological reliability but not why this work is needed. The fourth paragraph focuses on the
36 historical development of methodologies, which isn't the main goal of an Introduction. While
37 building a nationwide forest soil profile database is potentially valuable, the current Introduction
38 does not sufficiently highlight how this study advances beyond simply extracting forest-covered
39 data from existing maps.

40

41 **Response**

42 We thank the reviewer for this constructive and important comment. We agree that the original
43 Introduction did not sufficiently establish the necessity and urgency of this study.

44 In response, we have substantially revised the Introduction to adopt a more problem-driven

45 structure. General background information on forest soils and the historical development of digital
46 soil mapping methodologies has been condensed (*Lines 37-60*). The revised text now explicitly
47 emphasizes the limitations of existing national and global soil bulk density and pH products, which
48 are largely derived from mixed-ecosystem samples and therefore fail to capture the distinct spatial
49 heterogeneity and vertical structure of forest soils (*Lines 61-73*).

50 Importantly, we now clarify that simply extracting forest-covered pixels from existing soil
51 maps is insufficient. Instead, we highlight the need for forest-specific modeling frameworks that
52 explicitly account for ecosystem-specific processes and depth-dependent variability. This rationale
53 is clearly articulated in *Lines 79-80*, where we emphasize the ecological importance, spatial
54 complexity, and current lack of high-resolution forest soil BD and pH estimates across China.

56 **Major comment 2**

57 Some findings are presented without statistical validation and therefore unconvincing. For example,
58 L255 “BD prediction accuracy...peaking at intermediate depths (15–30 cm: MEC = 0.657) with
59 lower accuracy in surface layers (0–5cm: MEC = 0.598) and deep layers (60–100 cm: MEC =
60 0.656)”. Without testing for statistical significance, how can 0.656 represent “lower accuracy”
61 compared to 0.657? Similarly, statements such as “all predictions maintained negligible bias ($|ME| \leq 0.019$)
62 across depth intervals” lack a defined threshold for “negligible”. Descriptions like
63 “Conversely, pH predictions demonstrated superior accuracy: CV maintained strong performance
64 across depths” appear subjective, without definition for “superior” or “strong”.

66 **Response**

67 Thank you for your important comment regarding the interpretation of model performance
68 metrics. In response, we have revised the manuscript to avoid over-interpretation of small numerical
69 differences in performance indicators and to remove subjective descriptors that were not supported
70 by formal statistical testing.

71 Specifically, statements comparing prediction accuracy across soil depths (e.g., “higher” or
72 “lower” accuracy) have been removed, as differences in MEC values such as 0.656 versus 0.657 are
73 not statistically meaningful. Similarly, qualitative terms such as “superior,” “strong,” and
74 “negligible” have been replaced with objective descriptions based on the reported ranges of MEC,
75 RMSE, and ME values.

76 The revised text now focuses on presenting model performance in a descriptive and transparent
77 manner, emphasizing the overall consistency between cross-validation and independent validation
78 results, as well as the absence of systematic bias indicated by ME values close to zero.

79 These revisions can be found in *Section 3.2 (Lines 275–288)*.

81 **Major comment 3**

82 Similarly, in the Result section, the authors keep emphasizing that their “patterns align with former
83 maps”, which further raises questions about the novelty and importance of this work.

85 **Response**

86 We thank the reviewer for this insightful comment regarding the interpretation of similarities
87 between our results and existing soil datasets. In response, we have revised the manuscript to avoid
88 overemphasizing pattern agreement with previous products in the Results section.

89 Specifically, statements such as “Macroscale patterns align with existing maps” have been
90 removed from the Results, as simple visual consistency alone does not sufficiently reflect the
91 novelty or contribution of this work. Instead, we have substantially revised **Section 4.1 (Lines 451–**
92 **511)** to provide a more detailed and quantitative comparison with existing datasets (CSDLv2,
93 ChinaSoilInfoGrids, and SoilGrids 2.0).

94 This revised discussion focuses on ecosystem-specific differences in both the vertical
95 distribution and magnitude of forest soil BD and pH, highlighting discrepancies that are not captured
96 by generalized soil products. In particular, we demonstrate that existing datasets fail to fully
97 represent the non-linear depth-dependent pattern of forest soil BD and systematically predict higher
98 BD values in deeper layers (60–100 cm), which may lead to overestimation of forest soil carbon
99 stocks. Similarly, our results indicate consistently lower forest soil pH values compared to existing
100 datasets, suggesting that ecosystem-specific acidification processes in forest soils are
101 underestimated in generalized products.

102 These revisions clarify that the contribution of this study lies not in reproducing existing spatial
103 patterns, but in providing forest-specific, high-resolution estimates that improve the representation
104 of soil properties and associated ecological processes.

105 **106 Major comment 4**

107 Many descriptions in the Results section are excessive or repetitive (e.g., L268–270, L274–279),
108 and some qualitative statements regarding spatial gradients (e.g., “BD values increase from the coast
109 inland” in L271) are unclear.

110 **111 Response**

112 We thank the reviewer for pointing out that parts of the Results section were overly descriptive
113 and repetitive, and that some qualitative statements regarding spatial gradients lacked clarity. In
114 response, we have substantially revised the Results section to improve conciseness and clarity, and
115 to shift from generalized qualitative descriptions toward a more quantitative and statistically
116 supported characterization of spatial patterns.

117 Specifically, repetitive regional descriptions have been removed, and ambiguous statements
118 such as “BD values increase from the coast inland” have been eliminated. Instead, we now quantify
119 spatial patterns using latitudinal and longitudinal gradients, together with regional statistical
120 summaries (boxplots), which provide a clearer and more objective representation of spatial
121 variability.

122 To support this revision, Figures 3 and 4 have been redesigned (now **Figures 4 and 5**) to
123 explicitly illustrate depth-specific latitudinal and longitudinal trends, as well as regional differences
124 in BD and pH. The revised Results section (**Section 3.3, Lines 290–345**) now presents the main
125 spatial features more concisely, while preserving the key information needed to interpret large-scale
126 patterns.

127 **128 Major comment 5**

129 Why is FRFS introduced in the Introduction section but QRF in the Method?

130 **131 Response**

132 We thank the reviewer for this comment regarding the structure and consistency of the

133 methodological description. We agree that the initial presentation may have given the impression
134 that FRFS and QRF were introduced at different conceptual levels.

135 In response, we have revised the Introduction to explicitly present FRFS and QRF as
136 complementary components of a unified modeling framework. Specifically, FRFS is introduced as
137 a feature selection strategy designed to reduce dimensionality and improve model parsimony and
138 interpretability, while QRF is described as the core predictive algorithm used to model soil BD and
139 pH and to quantify prediction uncertainty.

140 This dual-focused strategy is now clearly outlined in the Introduction (*Lines 46–60*). The
141 Methods section then follows this conceptual structure, first detailing the covariate selection
142 procedure based on FRFS (*Section 2.2.1*), and subsequently describing the implementation of the
143 QRF model as the primary predictive tool (*Section 2.2.2*). This revision ensures consistency
144 between the Introduction and Methods and clarifies the distinct but integrated roles of FRFS and
145 QRF within the overall DSM framework.

146

147 **Major comment 6**

148 Table 1 may be presented more clearly as a figure, and currently has a confusing caption.

149

150 **Response**

151 We thank the reviewer for this helpful suggestion regarding the presentation of Table 1. In
152 response, we have revised the manuscript to improve the clarity and interpretability of this
153 information. Specifically, Table 1 has been converted into a violin plot (now *Fig. 3*), which more
154 effectively illustrates the distribution of soil samples across depth intervals and highlights
155 differences between layers.

156 In addition, statistical tests have been applied to assess the significance of differences among
157 soil depths, and the corresponding results are now explicitly shown in the figure. The original table
158 has been moved to the Supplementary Information (*Table S5*) for reference. The Results section has
159 been updated accordingly to reflect the revised figure and the additional statistical information
160 (*Section 3.1, Lines 248–274*). These changes improve the clarity of data presentation and provide a
161 more informative summary of the sampling structure.

162

163 **Major comment 7**

164 Figure 6 might benefit from an overall analysis across depths, and consider adding relationships
165 between BD and MAP (or other key covariates) in supplementary materials.

166

167 **Response**

168 We thank the reviewer for this constructive suggestion regarding the analysis of Figure 6 and
169 the relationships between soil properties and key covariates. We agree that an overall comparison
170 across soil depths, together with a clearer interpretation of the relationships between BD/pH and
171 major environmental drivers, would substantially strengthen the manuscript. In response, we have
172 extended the methodological framework by introducing SHAP (SHapley Additive exPlanations)
173 analysis (*Section 2.3, Lines 222–229*).

174 This addition addresses a key limitation of the relative variable importance measures
175 previously derived from the QRF models, which reflect covariate importance only in a relative sense
176 within each depth-specific model and depend on the selected feature set.

177 Because FRFS yields different covariate subsets for different soil layers, these relative
178 importance values are not directly comparable across depths. SHAP provides independent, additive
179 contribution scores for each predictor, enabling consistent cross-depth comparison and allowing
180 both the magnitude and direction of covariate effects to be quantitatively interpreted. Based on this
181 approach, Figures 6 and 7 have been revised and are now presented as **Figures 7 and 8**, illustrating
182 depth-consistent importance patterns and the relationships between BD/pH and key covariates.

183 Accordingly, the previous Results subsection on variable importance has been fully revised
184 and replaced by **Section 3.5 (Lines 377–453)**, which now presents the SHAP-based analysis and
185 interpretation in place of the original QRF relative importance results.

186

187 **Major comment 8**

188 L85 & 91, QRF should be explained upon its first mention.

189

190 **Response**

191 We thank the reviewer for pointing out this issue. In response, we have revised the manuscript
192 to ensure that Quantile Regression Forest (QRF) is fully explained at its first mention (**Lines 51**). In
193 addition, we conducted a systematic check of abbreviations throughout the manuscript to ensure
194 consistent definition and usage upon first appearance.

195

196 **Major comment 9**

197 Abbreviations (including BD, SD and the abbreviations of models) in Tables and Figures should be
198 clearly defined in their captions to make them self-explanatory.

199

200 **Response**

201 We thank the reviewer for this helpful comment. In response, we have revised all figure and
202 table captions to ensure that abbreviations (including BD, SD, and model abbreviations) are clearly
203 defined upon first appearance, making the tables and figures self-explanatory. This change has been
204 applied consistently throughout the manuscript.

205

206

207 **Major comment 10**

208 L111 is redundant with L108.

209

210 **Response**

211 We thank the reviewer for carefully identifying this redundancy. In response, we have revised
212 the manuscript to improve clarity and conciseness by removing the sentence.

213

214 **Major comment 11**

215 L251, rephrase “conversely”.

216

217 **Response**

218 We thank the reviewer for this helpful suggestion regarding wording. In response, we have
219 revised the relevant sentence and removed the use of “conversely,” which was no longer appropriate
220 given the revised structure and interpretation of the Results section. Following the substantial

221 revision of **Section 3.2**, the description of pH model performance has been rewritten to avoid
222 subjective or contrastive wording and to present the results in a more neutral and consistent manner
223 based on the reported performance metrics.

224