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Abstract. China has undertaken extensive afforestation efforts in recent decades. However, the 6 

effectiveness of these plantings varies with different environmental conditions. Whether China's forest 7 

expansion is primarily due to intentional planting or natural reforestation remains uncertain. Thus, 8 

assessing the growth of planted forests (PF) is crucial for monitoring forest quality and supporting 9 

China’s commitment to carbon neutrality. In this study, using 30 m Landsat time-series, we proposed a 10 

Continuous Change Detection and Classification (CCDC)-based PF expansion monitoring (C-PFM) 11 

method. Based on the C-PFM, 30 m annual maps for PF and natural forests (NF) across China from 12 

1990 and 2020 were produced. The resulting PF map in 2020 achieved a F1-score of 79.2% for PF and 13 

an overall accuracy of 90.8% when validated against visually interpreted reference data. The PF maps 14 

for the years 1998, 2003, 2008, 2013, and 2018 were evaluated using data from the 5th, 6th, 7th, 8th, 15 

and 9th National Forest Inventory (NFI) data across 34 provinces and autonomous regions of China. 16 

The results demonstrated that all Pearson’s product-moment correlations were larger than 0.86. 17 

According to the C-PFM results, we found 8.06 million ha (Mha) of net forest gains across China from 18 

1990 to 2020, with 16.15 Mha net gains of PF and 8.09 Mha net loss of NF. In eight forestry ecological 19 

engineering areas, we observed that the upper and middle reaches of Yangtze river Shelterbelt Program 20 

and Pearl River Shelterbelt Program experienced the most significant PF expansion. The resulting 21 

dataset can serve as valuable scientific data for policymakers, researchers, and forest managers, guiding 22 

appropriate planting, environment enhancement, and carbon sequestration efforts. The produced 30 m 23 

annual maps for PF and NF in China are publicly available at https://doi.org/10.5281/zenodo.15559086 24 

(Xiao, 2025). 25 

1 Introduction 26 

China has continued to expand planted forests (PF) to improve land cover, restore the environment, 27 

sequester carbon dioxide, and increase farmers’ income (Yu et al., 2019; Dong et al., 2022; Lu et al., 28 

2018). China is at the forefront of global greening efforts, contributing a 25% net increase in global 29 

vegetation despite covering only 6.6% of the world’s vegetated area (Chen et al., 2019). Among the net 30 
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increase, 42% is attributed to the forest based on China’s eight forestry programs, including the 31 

Three-North Forest Shelterbelt Program, Taihang Mountain Greening Project, Liaohe River Shelterbelt 32 

Program, Yellow River Shelterbelt Program, Huaihe River and Taihu lake Shelterbelt Program, upper 33 

and middle reaches of Yangtze river Shelterbelt Program, Pearl River Shelterbelt Program, and Coast 34 

Shelterbelt Program (Liu et al., 2023; Wang et al., 2007). Despite China’s significant efforts and notable 35 

achievements in increasing forest area, concerns are growing regarding the negative impact of PF 36 

expansion. 37 

The expansion of PF often occurs at the expense of replacing NF. However, previous studies have 38 

found that PF cannot adequately replace NF due to their weaker resistance to disturbance, limited 39 

ecosystem services, and lower biodiversity (Tang et al., 2007; Hua et al., 2022; Betts et al., 2022; Xu, 40 

2011). In addition, PF in water-limited regions often exhibits lower survival rates and less effective 41 

ecological and carbon sequestration outcomes compared to NF, largely due to singular planting patterns 42 

and limited management practices (Cook-Patton et al., 2020). For example, plantation typically fails to 43 

provide suitable habitat for other species and generates less organic matter in the soil, thus creating an 44 

unsuitable living environment for soil organisms. Furthermore, the invasion of non-native tree species 45 

disrupts the existing ecological balance, resulting in increased water consumption compared to native 46 

species, which in turn leads to declining water levels and poses a threat to the survival of other 47 

organisms (Xu, 2011). Planting suitable species at appropriate locations remains a challenge (Xu et al., 48 

2023), partially due to a lack of research on PF expansion monitoring. 49 

Accurate mapping of PF and NF is critical for monitoring forest expansion, identifying the main 50 

drivers of forest regrowth, and assessing carbon stock dynamics (Liao et al., 2024). It is also essential 51 

for evaluating the ecological impacts of PF expansion on NF ecosystems (Fagan et al., 2022). However, 52 

spatially explicit, long-term estimations of PF and NF expansion across China remain limited (Petersen 53 

et al., 2016). Existing time-series products, such as those developed by Cheng et al. (2024), provide PF 54 

and NF classification results at five-year intervals and a spatial resolution of 30. To generate time-series 55 

training samples, Cheng et al. (2024) employed a monitoring approach that identified undisturbed PF 56 

and NF pixels in 2020 and used them as training data for earlier years (i.e., 1990, 1995, 2000, …, and 57 

2020). However, this method struggles in areas with frequent disturbances, as it lacks sufficient training 58 

samples from disturbed regions. Some existing PF and NF maps focus on a single reference year and 59 

emphasize data compilation. For example, Harris et al. (2019) developed the Spatial Database of 60 

Planted Trees version 1 (SDPT_V1) by compiling country and region-level PF data. Bourgoin et al. 61 

(2025) integrated several global datasets (such as SDPT, canopy height data from 2019, and primary 62 
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forest inventories) into a composite product (GFT2020) that classifies forests into three categories: 63 

naturally regenerating forest, primary forest, and PF. However, such compilation-based datasets often 64 

fail to capture the actual status of PF and NF in specific periods and typically suffer from variable 65 

spatial resolution due to inconsistencies among data sources. 66 

Thus, whether the growth of China’s forested areas is driven by deliberate planting efforts or natural 67 

reforestation remains unclear. Traditional methods of PF mapping primarily rely on manual delineation. 68 

For example, Koskinen et al. (2019) delineated plantations in the southern highlands area of Tanzania. 69 

However, manual delineation methods are time-consuming and labor-intensive, limiting their 70 

implications at a large scale. 71 

To date, utilizing machine learning to distinguish between PF and NF based on remote sensing 72 

images become a more common choice. In general, machine learning methods are mainly performed 73 

based on the differences in spectral, textural, and structural features between PF and NF. Recently, 74 

various additional features have also been considered. For example, Cheng et al. (2023) fed the spectral, 75 

temporal, structural, textual, and topographic features into a Random Forest (RF) classifier to map PF in 76 

China. Fagan et al. (2018) utilized spectral, structural, and temporal features to train decision tree 77 

models for mapping pine plantations in the southeastern U.S.. Koskinen et al. (2019) selected the 78 

features extracted from optical and SAR images, and topographic data to train a classification and 79 

regression tree (CART) classifier to map the plantation in the southern highlands area of Tanzania. 80 

Additionally, the differences in phenology and management intensity between the PF and NF can also 81 

be used as a criterion to identify these two kinds of forests. For example, Bey and Meyfroidt (2021) 82 

utilized phenological and growth-based time-series attributes to distinguish plantations from natural or 83 

semi-natural forests in North Mozambique. Deng et al. (2020) mapped the short-rotation eucalyptus 84 

plantations of the Guangxi province of China based on the attribution that eucalyptus plantations should 85 

be logged in a special period. 86 

Although several studies have been developed to distinguish between PF and NF, methods 87 

specifically designed for annual, time-series monitoring of PF and NF expansion remain scarce. 88 

Previous studies mainly focus on differentiating two temporal PF maps to monitor PF expansion (Fagan 89 

et al., 2022). This strategy can enlarge mapping errors and lead to cryptic forest loss (Puyravaud et al., 90 

2010). For example, errors in predicting the expansion of PF are magnified when using two PF maps 91 

with misclassified areas due to errors in each classification. Consequently, it is difficult to assess 92 

whether the forest regrowth is driven by PF or NF expansion, especially in China with rapid PF 93 

regrowth. Furthermore, previous research cannot estimate the continuous PF expansion for a long 94 
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period instead of focusing on a single map in a certain year (Fagan et al., 2022). 95 

To address the issues mentioned above, in this research, we proposed a Continuous Change Detection 96 

and Classification (CCDC)-based PF expansion mapping (C-PFM) method to distinguish the PF and NF, 97 

and more importantly, to monitor PF dynamic expansion annually. To achieve this goal, the C-PFM first 98 

generates training sample points of PF and NF automatically. For each pixel, the corresponding 99 

time-series is divided into multiple temporal segments by CCDC, with each segment sharing the same 100 

fitted curve of the temporal profiles. Then, coefficients of the fitted curve from the last temporal 101 

segment, covering 2020 at the training sample points, were selected as input features of the training data. 102 

These samples are then fed into an RF classifier to classify other CCDC segments, which can 103 

effectively filter out noise across different Landsat platforms. Finally, the classified segments are 104 

transformed into annual PF and NF maps. The main contributions of this research are threefold: (1) The 105 

C-PFM method was proposed to extract PF and identify its expansion at a national scale; (2) Annual 30 106 

m resolution maps of PF and NF across China from 1990 to 2020 were generated; (3) An assessment of 107 

the drivers of China’s forest regrowth across eight forest ecological engineering areas and climatical 108 

zones was reported. The results in this paper are crucial for advancing China’s carbon neutrality goal 109 

and enhancing ecosystem functions. 110 

2 Data 111 

2.1 Remote sensing images 112 

All remote sensing images required for this study are available through the Google Earth Engine 113 

(GEE) cloud platform (Tamiminia et al., 2020) at https://code.earthengine.google.com. We used Landsat 114 

4-8 Collection 2 Tier 1 level 2 Surface Reflectance images from 1985 to 2020 across China for 115 

time-series analysis to generate training samples. We enhanced image quality by removing shadows, 116 

clouds, and snow pixels using the Quality Assessment band and performed atmospheric correction using 117 

the LaSRC algorithm (Vermote et al., 2018). Any remaining gaps were filled using composite images 118 

from adjacent years. 119 

2.2 The National Forest Inventory data 120 

In this paper, we selected 5th (1994-1998), 6th (1999-2003), 7th (2004-2008), 8th (2009-2013), and 121 

9th (2014-2018) National Forest Inventory (NFI) (Zeng et al., 2023; State Forestry and Grassland 122 

Administration of China, 2019) data to evaluate the accuracy of the produced PF and NF maps in five 123 

years (i.e., 1998, 2003, 2008, 2013, and 2018). The areas of PF for 31 provinces (excluding Hong Kong, 124 
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Macao, and Taiwan) were reported by the NFI. As the Chongqing data are included in the Sichuan data 125 

in the 5th
 
NFI, only 30 provinces’ records were used. 126 

2.3 Other existing PF and NF products 127 

Four existing PF and NF products were selected for comparison, as summarized in Table 1. Cheng et 128 

al. (2024) provide a PF and NF classification dataset covering five periods (1990 to 2020, with a 129 

five-year interval) at a spatial resolution of 30 m, which is publicly available for the entire China. Du’s 130 

planting year map was derived from the PF extent defined in SDPT_V1 (Harris et al., 2019; Du et al., 131 

2022), which was compiled based on PF data submitted by national agencies. SDPT_V2 is an updated 132 

version of SDPT_V1, in which the PF data for China were replaced with a map at 1 km resolution 133 

(Richter et al., 2024). SDPT_V2 represents the PF distribution for the year 2020. The GFC2020, 134 

provided by the Joint Research Centre (JRC), is a global map of primary forests, naturally regenerating 135 

forests, and PF for 2020 (Bourgoin et al., 2025). This product integrates multiple PF and NF datasets 136 

through overlay analysis, incorporating disturbance information derived from the global forest cover 137 

map with 30 m resolution. Additionally, the PFNF2021 (Xiao et al., 2024) and SBTN (Mazur et al., 138 

2025) datasets were employed to compare different training sample generation strategies. The 139 

PFNF2021 dataset, developed by Xiao et al. (2024), provides a global map of PF and NF for the year 140 

2021 at a spatial resolution of 30 m. The SBTN dataset serves as a 2020 baseline map of natural and 141 

non-natural land covers, compiled from a synthesis of existing global and regional datasets (Mazur et al., 142 

2025). 143 

Table 1. Summary of the existing PF and NF maps. 144 

ID Name Classes Spatial resolution Available years References 

1 Cheng’s PF 

map 

PF, NF 30 m 1990, 1995, 2000, 

2005, 2010, 2015, 

2020 

(Cheng et al., 2024) 

2 GFC2020 Primary forests, 

naturally 

regenerating forests, 

PF 

/ 2020 (Bourgoin et al., 2025) 

3 Du’s planting 

year map 

PF 1 km 2020 (Harris et al., 2019; Du 

et al., 2022) 

4 SDPT_V2 PF 1 km (in China) 2020 (Richter et al., 2024) 

5 PFNF2021 PF, NF 30 m 2021 (Xiao et al., 2024) 

6 SBTN NF 30 m 2020 (Mazur et al., 2025) 
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2.4 Auxiliary data 145 

A forest structure database for plantation forests in China (CPSDv0) (Wu et al., 2023) was utilized as 146 

auxiliary data for visual interpretation to generate validation samples. The CPSDv0 includes 147 

information on tree species, mean stand age, mean tree height, stand density, and other attributes of 148 

plantations, derived from over 600 peer-reviewed articles. 149 

When generating training samples and maps for PF and NF, we used the forest masks extracted from 150 

the WorldCover2020 land cover dataset (Zanaga et al., 2022) and the 30 m annual China Land Cover 151 

Dataset (CLCD) dataset (Yang and Huang, 2021). Produced by the European Space Agency, 152 

WorldCover2020 includes 11 classes: tree cover, shrubland, grassland, cropland, built-up areas, 153 

bare/sparse vegetation, permanent water bodies, herbaceous wetland, mangroves, and moss and lichen. 154 

We specifically extracted the tree cover class as the forest mask. In WorldCover2020, the tree cover 155 

class is defined as any geographic area dominated by trees with a canopy cover of ≥ 10%. This product 156 

has an overall accuracy of 74.4±0.1%, with the tree cover class having a user’s accuracy of 80.8±0.1% 157 

and a producer’s accuracy of 89.9±0.1%. At the continental level, WorldCover2020 has the highest 158 

overall accuracy in Asia at 80.7±0.1% (Tsendbazar et al., 2022). The forest mask derived from the 159 

WorldCover2020 dataset was utilized to identify training sample points, as its high spatial resolution 160 

provides more accurate information on forest locations. In addition, the CLCD dataset, currently one of 161 

the few sources providing annual land cover data for China from 1990 to 2020 at a 30 m resolution, was 162 

utilized to generate time-series forest masks. These masks were used for the post-classification 163 

refinement of the annual PF and NF extents identified in this study. 164 

Additionally, we utilized shapefile data for eight forestry ecological engineering areas (Liu et al., 165 

2023) and climate zones across China. The forestry ecological engineering shapefiles were obtained 166 

from the Geographic Data Sharing Infrastructure at the College of Urban and Environmental Science, 167 

Peking University (http://geodata.pku.edu.cn). The climate zone data was derived from the climate 168 

regionalization map of China (Zheng et al., 2010) and was digitized into a shapefile format. 169 

3 Methodology 170 

In this research, we proposed the C-PFM method to map annual PF maps. The workflow of the 171 

C-PFM approach is illustrated in Figure 1. In summary, the C-PFM method first employs the time-series 172 

analysis algorithm (i.e., CCDC) to identify training sample points for PF, NF, and non-forest. Next, 173 

features from the last CCDC segment, coupled with the labels, are selected and fed into the RF classifier. 174 
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The trained model is then used to predict all segments for all pixels across the study period from 1990 to 175 

2020. Finally, the annual PF and NF maps are derived from all the classified CCDC segments. A 176 

detailed description of the C-PFM method is provided below. Note that the entire process of mapping 177 

annual PF forests was carried out on grids with 0.5°×0.5° (Xiao et al., 2023). 178 

 179 

Figure 1. Flow chart of the C-PFM method for mapping annual PF and NF regrowth from 1990 to 2020. 180 
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3.1 Automatic training sample generation 181 

We prepared training sample points with three labels: PF, NF, and non-forest. The training sample 182 

points were integrated from three sources. Specifically, NF sample points were identified by 183 

distinguishing differences in disturbance frequency between PF and NF. PF sample points were 184 

extracted from high-confidence areas, determined by integrating multiple PF maps in 2020. These maps 185 

included the four existing PF datasets listed in Table 1, as well as PF maps derived from a global NF 186 

and PF dataset produced by Xiao et al., (2023). To ensure the reliability of the PF samples, only areas 187 

where at least three PF products were consistent were used for extraction. Non-forest sample points 188 

were obtained from the non-forest mask of the WorldCover2020 dataset. 189 

The NF training sample points were generated using the method developed in the study in Xiao et al., 190 

(2023). Specifically, PF exhibits higher disturbance frequencies than NF (Xu et al., 2024; Liao et al., 191 

2012). The disturbance frequencies were calculated using the CCDC algorithm (Zhu and Woodcock, 192 

2014; Xiao et al., 2023). Zhu and Woodcock (2014) proposed the CCDC algorithm for utilizing dense 193 

time-series of satellite imagery to detect changes and conduct land cover classification. In this research, a 194 

GEE-based CCDC (Arévalo et al., 2020) was applied to monitor the forest disturbance using all available 195 

Landsat images from 1985 to 2020. On the GEE platform, the key parameters of CCDC, 196 

chiSquareProbability and minObservations, which determine the sensitivity of disturbance detection, 197 

were set to 0.99 and 6, respectively (Xiao et al., 2023). Additionally, six spectral bands from the Landsat 198 

imagery—namely red, green, blue, near-infrared (NIR), shortwave infrared 1 (SWIR1), and shortwave 199 

infrared 2 (SWIR2)—were used in the CCDC for harmonic analysis. Additionally, we excluded sample 200 

points near open water to eliminate mislabeled samples influenced by frequent tides (Saintilan et al., 201 

2022). 202 

Based on the optimal training sample size for each tile (will be detailed in Section 4.3), a total of 203 

1,343,709 training sample points were generated across China. These include 395,492 NF samples, 204 

352,172 PF samples, and 596,045 non-forest training samples (Figure 2). To maintain class balance 205 

during model training, a fixed number of training samples per class was set for each 0.5° × 0.5° tile. 206 

When the available samples for a given class fell below this threshold, additional samples were sourced 207 

from adjacent tiles to ensure sufficient representation. 208 

https://doi.org/10.5194/essd-2025-489
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 209 

Figure 2. Spatial distribution of the 1,343,709 training samples across China. 210 

3.2 Classification of PF and NF based on CCDC segments 211 

3.2.1 Selection of features 212 

For the training sample points, the features from the last CCDC segment (fitted curve) ending with 213 

July 27, 2020, were selected as input features. To ensure the representativeness of features, segments 214 

shorter than two years, spanning the period from 2019 to 2020, were excluded. The retained training 215 

samples, combined with 261 features—including 6 spectral bands, 5 spectral indices (NDVI, NBR, 216 

NDMI, EVI, and BSI), and 18 textural features multiplied by 9 coefficients (Figure 1) from the final 217 

CCDC model—were used as inputs for the classifier. The feature importance score was evaluated using 218 

the Gini coefficient calculated by the RF classifier (Cheng et al., 2023). To evaluate the influence of 219 

dimensionality of the input, we tested four subsets of input features: the top 30 features (Features_30), 220 

the top 60 features (Features_60), the top 90 features (Features_90, see Figure 3), and the full set of 261 221 

features (Features_all). 222 
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 223 

Figure 3. Importance scores of input features based on the Random Forest classifier. Only the top 90 features are 224 

shown as examples. The feature names are consistent with ‘band’ names and coefficient names. For example, 225 

‘NBR_Residual’ refers to the residual coefficient from the CCDC model for the NBR band. Features starting with 226 

‘glcm’ represent CCDC coefficients for the ‘bands’ composed of textural features. 227 
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3.2.2 Classification based on the RF 228 

Given China’s vast latitudinal and topographic range, forest ecosystems span a wide array of climatic 229 

zones—from the cold temperate zone in the north to subtropical and tropical climates in the south. 230 

These climatic gradients substantially influence forest structure, phenology, and spectral characteristics, 231 

thereby impacting classification accuracy. To address this issue, a localized RF model at a spatial extent 232 

of 0.5° × 0.5° was implemented. This approach helps mitigate the effects of inter-regional variability in 233 

forest types and climatic conditions. RF classifiers are well-suited for classification tasks in land cover 234 

mapping (Htitiou et al., 2021; Belgiu and Csillik, 2018). The trained classifier was applied to all CCDC 235 

segments to estimate forest types for other periods. After identifying the forest types of all the segments, 236 

we transformed them into annual maps of PF, NF, and non-forest. To ensure the quality of maps, the 237 

pixels of maps in 2019 and 2020 were reclassified based on the method proposed in our previous study 238 

(Xiao et al., 2024), as we excluded the training samples with shorter than two years in the last segments. 239 

Additionally, a post-processing step was performed to reduce misclassification caused by sparse shrubs 240 

and other vegetation that are easily confused with secondary forests. Specifically, forest masks extracted 241 

from CLCD were applied to delineate the final forest extent for each corresponding period. Within this 242 

extent, PF areas were first identified, and the remaining forest areas were classified as NF. 243 

3.3 Accuracy assessment 244 

3.3.1 Assessment with validation samples 245 

To validate the accuracy of the produced map of PF in 2020, the validation sample collection was 246 

designed by adopting the methodology recommended by Olofsson et al (2014). The AREA
2
 (Area 247 

Estimation & Accuracy Assessment) tool (available at https://area2.readthedocs.io/en/latest/), which 248 

supports best practices for accuracy assessment and area estimation following Olofsson’s framework, 249 

was utilized. AREA
2
 is implemented on the GEE platform (Bullock et al., 2020), which is compatible 250 

with our mapping workflow that also runs on GEE. Within AREA
2
, we applied stratified random 251 

sampling. The parameters were set as follows: the target standard error for the PF class was set to 0.005, 252 

the estimated user’s accuracy was set to 0.95, and the anticipated proportion of PF within other classes 253 

was set to 0.01. These settings were informed by recommendations in Adrah et al. (2025). Finally, the 254 

total number of validation sample points was determined as 490. To ensure a minimum sample size for 255 

each class, 50 samples were initially allocated to each. The remaining samples were then proportionally 256 

distributed according to class area. After excluding several samples due to the unavailability of very 257 

high-resolution Google Earth imagery, a total of 81, 67, and 319 samples were ultimately assigned to 258 
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NF, PF, and non-forest areas, respectively. We visually interpret the land cover labels based on the 259 

locations of the generated validation sample points. In practice, non-forest labels are relatively 260 

straightforward to interpret. To distinguish between PF and NF labels, several criteria were applied. For 261 

PF interpretation, indicators such as regular planting patterns, evidence of management activities, 262 

uniform canopy height, and consistent texture were considered. In contrast, NF is typically 263 

characterized by greater diversity in canopy structure, color, and size, and lacks the regular features 264 

associated with PF (Fagan et al., 2022). Figure 4 presents six representative examples of PF and NF 265 

samples overlaid on high-resolution Google Earth images. 266 

 267 

Figure 4. Six representative examples of PF and NF samples overlaid on high-resolution Google Earth images. 268 

An independent set of time-series validation samples was incorporated to enable a more 269 
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comprehensive evaluation. Specifically, 490 validation sample points were stratified and randomly 270 

generated across the testing areas (Figure 5). Each point was manually interpreted using historical 271 

imagery available in Google Earth Pro, and reference labels were assigned based on observed land 272 

cover changes. Due to the limited availability of high-quality historical imagery in earlier years, the 273 

number of validation samples varied across periods. To ensure adequate representation, several early 274 

years were aggregated into broader periods. Consequently, we obtained 89-337 validation samples for 275 

the following time intervals: 2000–2006, 2007–2010, 2011–2012, 2013, 2014, 2015, 2016, 2017, 2018, 276 

2019, and 2020. 277 

 278 

Figure 5. Spatial distribution of validation samples across China. (a) All validation samples; (b) Enlarged view of 279 

validation samples in a testing region. 280 

To better evaluate the performance across different regions of China, additional validation samples 281 

are desirable. Thus, we adopted two sampling strategies: global sampling and map sheet-based sampling 282 

(Tong et al., 2011; Chen et al., 2015). For the global sampling, the NF reference samples are randomly 283 

distributed in China, and the PF reference samples were visually interpreted based on the locations of 284 

PF sites in CPSDv0. Non-forest reference samples were visually interpreted according to randomly 285 

generated points within the non-forest mask extracted from WorldCover2020. This strategy resulted in 286 
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2,116 global samples, comprising 485 NF samples, 1,035 PF samples and 596 non-forest samples. The 287 

map sheet-based samples was generated in our previous study (Xiao et al., 2024). Specifically, China 288 

was divided into 5°×5° grids, with the centers of these grids serving as map sheets (0.5°×0.5°). We 289 

excluded sheets with a low proportion of forest cover or lacking very high spatial resolution Google 290 

Earth images. In all selected map sheets, there are 1,458 validation samples, including 250 NF samples, 291 

344 PF samples and 864 non-forest samples. Eventually, we obtained a total of 3,574 additional 292 

reference samples, including 735 samples for NF, 1,379 samples for PF and 1,460 samples for 293 

non-forest (Figure 5). 294 

3.3.2 Assessment with NFI 295 

We selected the 5th to 9th NFI data to validate the accuracy of the produced PF maps in the years 296 

1998, 2003, 2008, 2013, and 2018. Specifically, we compared the proportion of the estimated PF area in 297 

31 provinces/regions (excluding Hong Kong, Macao, and Taiwan) of China with the NFI statistics. As 298 

the Chongqing data are included in the Sichuan data in the 5th
 
NFI, only 30 provinces’ records were 299 

used. The slope of the reduced major axis regression line (Cohen et al., 2003) and Pearson’s 300 

product-moment correlations (r) were chosen as metrics to evaluate the correlation between the two 301 

datasets. In addition, we utilized data from the 5th and the 9th NFI to generate the PF expansion 302 

reference data, representing the PF expansion from 1998 to 2018. Similarly, we compared the 303 

proportions of the estimated PF expansion area in 30 provinces/regions of China with the reference data 304 

of PF expansion. 305 

3.3.3 Comparison with existing products 306 

We compared the C-PFM-based PF map in this study with four existing PF products: Cheng’s 307 

product (Cheng et al., 2024), GFC2020 (Bourgoin et al., 2025), Du’s planting year map (Du et al., 2022; 308 

Harris et al., 2019), and SDPT_V2 (Richter et al., 2024). For consistency with the definition of NF, we 309 

merged the naturally regenerating and primary forest classes in GFC2020 into a single NF category. 310 

Additionally, to ensure the reliability and consistency of the comparison, all products were resampled to 311 

a spatial resolution of 1 km. The comparison was performed using two evaluation strategies. First, we 312 

assessed the accuracy of each product by validating it against visually interpreted reference samples 313 

representing ground truth for the year 2020. In this strategy, the accuracy assessment was conducted 314 

using a binary classification (PF and non-PF), as Du’s planting year map and SDPT_V2 specifically 315 

represent PF only. Second, we performed a time-series comparison over three periods (2010, 2015, and 316 
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2020), evaluating maps using three classes—PF, NF, and non-forest—based on validation samples 317 

representing ground truth for the years 2010, 2015, and 2020. Due to the difficulty in collecting reliable 318 

reference samples before 2010 using Google Earth imagery, earlier years were not included. This 319 

approach was adopted because, among the four existing products, only Cheng’s map provides 320 

time-series classifications for both PF and NF. 321 

4 Results 322 

4.1 Accuracy of the produced map 323 

As shown in Table 2, the 2020 map achieves an overall accuracy (OA) of 90.8% when validated 324 

against the visually interpreted reference samples. This result indicates that the accuracy of the 2020 325 

map is satisfactory and further demonstrates the acceptable performance of the proposed C-PFM 326 

method. When validated using the additional time-series validation samples (Table 3), all periods 327 

achieved an OA of above 80.0%, except 2014, 2016, and 2017, which still attained OAs exceeding 328 

71.0%. 329 

Table 2. Accuracy assessment (based on the methodology recommended by Olofsson et al (2014)) of NF and PF maps 330 

for the year 2020 across China. 331 

Metrics PF NF non-forest 

UA (%) 68.7 75.3 96.9 

PA (%) 61.2 80.4 97.1 

OA (%) 90.8 

Table 3. Accuracy assessment against additional validation samples for different periods. 332 

Year  PF NF Non-forest No. of 

samples OA 

(%) 

F1 

(%) 

UA 

(%) 

PA 

(%) 

F1 

(%) 

UA 

(%) 

PA 

(%) 

F1 

(%) 

UA 

(%) 

PA 

(%) 

2000-2006 82.0  54.5  47.4  64.3  79.3  88.5  71.9  94.3  93.2  95.3  89 

2007-2010 82.5  65.5  67.9  63.3  66.7  66.7  66.7  95.3  93.8  96.8  114 

2011-2012 88.1  68.0  63.0  73.9  87.6  88.5  86.8  96.2  98.4  94.0  143 

2013 80.4  74.6  77.2  72.1  68.7  67.6  69.7  90.8  88.9  92.8  163 

2014 72.9  66.2  59.7  74.2  61.9  70.3  55.3  87.0  90.5  83.8  177 

2015 81.0  75.2  74.5  75.9  77.2  78.6  75.9  88.1  88.1  88.1  142 

2016 73.3  69.7  66.0  73.8  38.1  44.4  33.3  84.8  86.7  83.0  101 

2017 71.7  69.6  67.1  72.3  64.6  75.0  56.8  80.0  76.6  83.7  145 

2018 82.4  78.4  76.3  80.6  73.8  79.5  68.9  91.7  90.4  93.0  188 

2019 80.5  74.3  74.7  73.9  52.4  52.4  52.4  96.0  95.5  96.4  241 

2020 84.3  79.2  78.9  79.5  72.2  76.5  68.4  94.7  92.5  97.1  337 
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 333 

Figure 6. Annual PF and NF maps across China at a 30 m spatial resolution from 1990 to 2020 (12 years of maps are 334 

shown). 335 
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 336 

Figure 7. Comparisons between PF area estimates across provinces/regions of China and NFI statistics in (a) 1998, (b) 337 

2003, (c) 2008, (d) 2013, and (e) 2018. (f) Comparison between PF expansion estimates from 1998 to 2018 and NFI 338 

statistics. The regression lines were derived using the reduced major axis analysis and the dashed lines represent the 339 

1:1 line. 340 
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Figure 6 shows the generated annual maps in 12 selected years based on the C-PFM method. To 341 

further assess the accuracy of the generated annual PF maps, we compared the proportions of estimated 342 

PF in five years (i.e., 1998, 2003, 2008, 2013, and 2018) and PF expansion from 1998 to 2018 in China 343 

with corresponding NFI statistics. As depicted in Figure 7(a)-(e), all the maps exhibit high correlations 344 

with NFI statistics, with the lowest r value of 0.85 for the year 1998 and the highest r value of 0.91 for 345 

the year 2013. Regarding PF expansion from 1998 to 2018 (Figure 7(f)), an r value of 0.71 is observed. 346 

4.2 Different training sample generation strategies 347 

Three strategies for generating training samples across China were compared: (1) Extracting samples 348 

from high-confidence areas identified by integrating multiple PF and NF maps in 2020; (2) Using only 349 

the FD layer, as adopted in the study of Xiao et al. (2024); and (3) A hybrid approach. Specifically, for 350 

the hybrid approach, PF samples were drawn from the high-confidence PF regions, while NF samples 351 

were derived from the FD layer. This strategy is based on the observation that PF samples extracted 352 

from multiple PF maps are more reliable than those derived from FD layers. Conversely, NF samples 353 

extracted from multiple NF maps resulted in poorer model performance compared to those derived from 354 

the FD layer. This discrepancy is likely due to the low consistency between the existing maps. 355 

As shown in Table 4, the hybrid strategy yielded the most reliable samples, resulting in the highest 356 

OA. Under this strategy, the F1-scores for all three classes (NF, PF, and non-forest) were the highest 357 

among the three approaches. In contrast, the strategy based solely on high-confidence areas from PF and 358 

NF maps produced the lowest F1-score and PA for the NF class. The superior performance of the hybrid 359 

strategy reveals the more reliable NF samples derived from the FD layer and the PF samples extracted 360 

from high-confidence PF regions across multiple products. 361 

Table 4. Comparison of classification performance using different training sample generation strategies. 362 

Classes Metrics High-confidence areas  FD layer Hybrid approach 

 OA (%) 79.9  75.9  82.3  

 

PF 

F1-score (%) 73.2  59.0  75.7  

UA (%) 74.5  85.5  77.9  

PA (%) 72.0  45.0  73.6  

 

NF 

F1-score 67.9  69.9  73.7  

UA (%) 67.6  56.1  72.0  

PA (%) 68.2  92.8  75.5  

 

Non-forest 

F1-score (%) 92.6  91.6  93.0  

UA (%) 91.4  89.1  92.0  

PA (%) 93.8  94.3  94.0  

 363 
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4.3 Influence of parameter settings in the C-PFM model 364 

A series of experiments were conducted to determine the optimal parameters for the C-PFM model, 365 

including training sample size and feature selection. Specifically, an experiment was carried out to 366 

identify the optimal number of training samples per class within each tile. As shown in Figure 8, the OA 367 

stabilizes once the sample size exceeds 200 per class. The highest accuracy is achieved with 300 368 

samples per class, resulting in an OA of 82.4% and an F1-score of 76.1% for PF. 369 

 370 

Figure 8. OA and F1-score for PF with varying training sample sizes. 371 

Figure 9 presents the classification accuracy across seven climatic zones and the entire area (Entire) 372 

under different input feature sets. From the figure, we observe that using all features yields the highest 373 

accuracy in the entire area. This improvement is particularly pronounced in the Northern Subtropical 374 

Zone (NSTZ), suggesting that a richer feature set enhances the model’s ability to distinguish PF in 375 

heterogeneous environments. In contrast, the Tropical Zone (TZ) achieved the highest accuracy when 376 

the top 60 features were used, which may be attributed to the concentration of large-scale plantations in 377 

this region, such as those in Hainan Province. Meanwhile, the Middle Temperate Zone (MTZ) attained 378 

the highest accuracy with only the top 30 features, possibly due to relatively homogeneous afforestation 379 

activities associated with programs such as the Three-North Forest Shelterbelt Program. 380 
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 381 

Figure 9. Classification performance under different input feature sets across seven climate zones and the entire area. 382 

The feature sets include the top 30, 60, 90, and all 261 features ranked by importance. Climate zones are abbreviated as 383 

follows: MTZ – middle temperate zone; CTZ – cold temperate zone; WTZ – warm temperate zone; TZ – tropical zone; 384 

NSTZ – northern subtropical zone; SSTZ – southern subtropical zone; MSTZ – middle subtropical zone. (a) The 385 

climate zones of China; (b) OA and F1-score for PF. 386 

4.4 Comparison with other products 387 

The spatial distribution of PF in this study and four existing PF products is in Figure 10. The 388 

accuracy evaluation is shown in Figure 11 and Figure 12. It is seen from Figure 11 that the proposed 389 

C-PFM achieves a higher OA of 69.9% and a comparable F1-score of 0.559. When validated using 390 

time-series reference samples, Cheng’s map yielded OAs ranging from 50.6% to 66.7% and PF 391 

F1-scores between 0.353 and 0.582, as shown in Figure 12. Moreover, the C-PFM achieved higher OAs 392 

ranging from 61.6% to 71.6%, with PF F1-scores between 0.537 and 0.563. 393 
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 394 

Figure 10. The PF maps of the C-PFM-based method and four existing products. (a) Cheng’s product; (b) GFC2020; (c) 395 

Du’s product; (d) SDPT_V2; (e) C-PFM-based map. 396 

https://doi.org/10.5194/essd-2025-489
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



22 

  397 

Figure 11. Comparison of PF mapping accuracy between the proposed C-PFM method and four existing PF products 398 

for the year 2020. 399 

 400 

Figure 12. Comparison of PF mapping accuracy between the proposed C-PFM method and Cheng’s product for 401 

multiple years. 402 

4.5 Forest dynamic changes at national and provincial scales 403 

The trends of PF and NF in China from 1990 to 2020 are shown in Figure 13. For NF, the area 404 

experienced a brief increase from 1990 to 1992, after which it began to decline. In contrast, PF showed 405 

a dramatic increase from 1990 to 1995, followed by a stable increase until 2020. Table 5 shows that 406 

China experienced a net forest gain of 8.06 Mha over the study period. Specifically, the area of PF 407 

increased from 73.64 Mha in 1990 to 89.79 Mha in 2020, representing a net gain of 16.15 Mha. In 408 

contrast, the area of NF declined from 158.95 Mha to 150.86 Mha, representing a net loss of 8.09 Mha. 409 

https://doi.org/10.5194/essd-2025-489
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

Most provinces exhibited net forest expansion, with particularly notable increases in Sichuan, Shaanxi, 410 

Inner Mongolia, and Hebei.  411 

 412 

Figure 13. Dynamics of area change for PF and NF in the entire China from 1990 to 2020. 413 

 414 

Figure 14. Net change of forest areas in the 34 provinces from 1990 to 2020. (a) PF. (b) NF. 415 

 416 

 417 
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Table 5. Net change of NF and PF area in each province from 1990 to 2020. 418 

Province 

PF NF Forest (PF + NF) 

1990 

(Mha) 

2020 

(Mha) 

Net 

change 

(Mha) 

1990 

(Mha) 

2020 

(Mha) 

Net 

change 

(Mha) 

1990 

(Mha) 

2020 

(Mha) 

Net 

change 

(Mha) 

Anhui 1.83  2.08  0.25  1.78  1.58  -0.20  3.61  3.66  0.05  

Beijing 0.32  0.35  0.03  0.42  0.45  0.03  0.74  0.80  0.06  

Chongqing 1.37  1.76  0.39  2.62  2.69  0.07  3.99  4.45  0.46  

Fujian 4.58  5.67  1.09  5.59  4.30  -1.29  10.16  9.97  -0.20  

Gansu 0.74  1.11  0.36  2.49  2.83  0.33  3.24  3.94  0.70  

Guangdong 5.06  6.63  1.56  6.28  4.74  -1.53  11.34  11.37  0.03  

Guangxi 6.75  9.27  2.52  9.77  7.56  -2.21  16.51  16.83  0.32  

Guizhou 3.82  4.61  0.79  6.60  6.19  -0.41  10.43  10.80  0.38  

Hainan 1.29  1.40  0.11  1.01  0.81  -0.20  2.29  2.21  -0.08  

Hebei 1.51  2.10  0.59  2.04  2.40  0.36  3.55  4.50  0.95  

Heilongjiang 4.56  4.67  0.11  18.82  17.50  -1.32  23.37  22.17  -1.20  

Henan 1.17  1.44  0.27  1.60  1.51  -0.09  2.78  2.96  0.18  

Hong Kong 0.03  0.03  0.00  0.05  0.04  -0.01  0.08  0.07  -0.01  

Hubei 3.30  3.68  0.39  5.76  5.34  -0.42  9.06  9.03  -0.03  

Hunan 5.72  6.77  1.05  7.63  6.32  -1.31  13.35  13.08  -0.26  

Inner 

Mongolia 
2.75  3.26  

0.50  
14.22  14.85  

0.63  16.97  18.11  1.14  

Jiangsu 0.13  0.11  -0.02  0.09  0.05  -0.03  0.22  0.16  -0.05  

Jiangxi 4.88  5.94  1.06  6.02  4.65  -1.37  10.90  10.59  -0.31  

Jilin 2.28  2.32  0.04  6.25  5.91  -0.33  8.53  8.23  -0.29  

Liaoning 2.02  2.40  0.38  2.81  2.74  -0.07  4.83  5.14  0.31  

Macao 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Ningxia 0.02  0.03  0.01  0.04  0.06  0.02  0.06  0.09  0.03  

Qinghai 0.02  0.03  0.01  0.52  0.59  0.08  0.54  0.62  0.08  

Shaanxi 2.24  3.11  0.87  5.78  6.23  0.45  8.02  9.34  1.32  

Shandong 0.33  0.46  0.13  0.32  0.32  0.01  0.64  0.78  0.14  

Shanghai 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Shanxi 1.45  2.09  0.63  1.72  1.96  0.23  3.18  4.04  0.87  

Sichuan 4.56  5.34  0.78  13.49  14.27  0.78  18.05  19.61  1.57  

Taiwan 1.02  1.07  0.05  1.50  1.41  -0.09  2.52  2.49  -0.04  

Tianjin 0.02  0.02  0.01  0.02  0.01  0.00  0.03  0.03  0.00  

Tibet 0.31  0.35  0.05  9.78  10.44  0.66  10.09  10.80  0.71  

Xinjiang 0.05  0.09  0.04  0.99  1.73  0.74  1.04  1.82  0.78  

Yunnan 6.33  8.17  1.84  19.21  18.11  -1.11  25.54  26.28  0.73  

Zhejiang 3.18  3.42  0.24  3.76  3.27  -0.49  6.93  6.69  -0.25  

China 73.64  89.79  16.15  158.95  150.86  -8.09  232.59  240.65  8.06  

 419 

As shown in Figure 14, most provinces experienced a net increase in PF. The top five provinces with 420 

the largest net increases in PF are Guangxi, Yunnan, Guangdong, Fujian, and Jiangxi, each contributing 421 

more than 1.06 Mha. These provinces played a key role in driving the overall forest expansion in China. 422 
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In contrast, NF declined in most provinces. The greatest net decreases in NF were observed in Guangxi, 423 

Guangdong, Jiangxi, Heilongjiang, and Hunan. However, a few provinces exhibited net gains in NF, 424 

including Sichuan (0.78 Mha), Xinjiang (0.74 Mha), Tibet (0.66 Mha), Inner Mongolia (0.63 Mha), 425 

Shaanxi (0.45 Mha), and Hebei (0.36 Mha), which recorded the highest increases in NF area. 426 

In summary, forest expansion in China can be attributed to favorable climatic and geographical 427 

conditions that support forest regrowth in the southern regions, as well as the implementation of 428 

large-scale afforestation and reforestation programs in the north. Under the Natural Forest Protection 429 

Program (Yan et al., 2022), several provinces, including Sichuan, Xinjiang, Tibet, Inner Mongolia, 430 

Shaanxi, and Hebei, showed notable increases in NF area, highlighting the program’s effectiveness in 431 

these regions. In contrast, forest expansion in provinces such as Heilongjiang and Guangxi was limited, 432 

likely due to continued timber supply demands in those areas. 433 

4.6 Change pattern of PF and NF 434 

Figure 15 illustrates the annual dynamics of the PF area across various provinces from 1990 to 2020. 435 

It shows that Guangxi, Yunnan, and Guangdong had relatively large PF areas in 1990 and subsequently 436 

experienced rapid increases, with slopes greater than 0.0587, indicating significant expansion trends. 437 

Guangxi exhibited the largest slope at 0.0818, and the polyline in Figure 15(a) reveals a dramatic 438 

increase in PF area after 2004, likely due to the extensive planting of eucalyptus trees during this period. 439 

In addition to these provinces, Fujian, Jiangxi, Shaanxi, and Hunan also display high growth trends, 440 

indicating substantial planting efforts in those regions after 1990. In contrast, most other provinces 441 

exhibit slow increases or stable PF areas, likely due to natural forest protection projects (Yan et al., 2022) 442 

and limited planting conditions.  443 

Regarding the dynamics of the NF area throughout the study period, most provinces experienced 444 

stable or slight decreases in NF area (Figure 16). Specifically, Xinjiang, Tibet, Inner Mongolia, Sichuan, 445 

and Hebei exhibit positive slopes, suggesting effective NF protection measures in these regions. In 446 

contrast, Guangxi, Guangdong, Hunan, Yunnan, and Fujian show the lowest negative slopes, indicating 447 

a tendency towards deforestation in these provinces. 448 
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 449 

Figure 15. Annual dynamics of PF area from 1990 to 2020 across various provinces. 450 
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 451 

Figure 16. Annual dynamics of NF area from 1990 to 2020 across various provinces. 452 

4.7 Forest expansion in different forest ecological engineering areas 453 

To further evaluate the drivers of forest regrowth in China, we calculated the area of PF and NF and 454 

their growth rate from 1990 to 2020 within eight forestry ecological engineering areas (Figure 17). 455 

These areas include the Three-North Forest Shelterbelt Program (TNSP), Taihang Mountain Greening 456 
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Project (TMGP), Liaohe River Shelterbelt Program (LHSP), Yellow River Shelterbelt Program (YRSP), 457 

Huaihe River and Taihu lake Shelterbelt Program (HTSP), upper and middle reaches of Yangtze river 458 

Shelterbelt Program (YZSP), Pearl River Shelterbelt Program (PRSP), and Coast Shelterbelt Program 459 

(COSP) (Liu et al., 2023). 460 

Figure 17 shows that all eight forestry ecological engineering areas present a positive growth rate of 461 

PF (ranging from 8.20% to 53.90%). Notably, the YRSP and TMGP experienced the most substantial 462 

PF growth, with increases of 53.90% and 37.40%, respectively. While most forest ecological 463 

engineering areas experienced negative growth rates in NF, a few regions exhibited positive trends. 464 

Specifically, the TNSP (24.80%), TMGP (16.30%), YRSP (15.90%), and LHSP (5.40%) showed 465 

increases in NF area. The COSP exhibited the lowest growth rate at -23.20%, followed by the PRSP 466 

(-19.10%) and HTSP (-17.70%). The low growth rates observed in the COSP and HTSP regions may be 467 

attributed to the degradation of NF, likely due to intensified human activities in these areas. In contrast, 468 

the decline in NF in the PRSP region may result from extensive PF expansion, as PF exhibited a growth 469 

rate of 34.00%, likely encroaching on NF areas. Overall, forest expansion in these regions appears to be 470 

primarily driven by the growth of PF.  471 

 472 

Figure 17. PF and NF area growth rate from 1990 to 2020 across various forest ecological engineering areas. 473 

PF in all eight forestry ecological engineering areas exhibits an overall increase trend during the 474 

study period (Figure 18 (a)). In contrast, NF in most of these regions showed either a decline or stable 475 

trend, with the exception of the TNSP (Figure 18 (b)), where both PF and NF increased. Specifically, 476 

the YZSP region experienced the most significant PF expansion, with a marked increase from 1990 to 477 
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2020. By contrast, the NF in YZSP exhibited a decline trend from 1990 to 2020, likely due to the 478 

conversion of NF into PF in the region. In the PRSP, PF demonstrated a relatively stable and continuous 479 

increase throughout the study period. In the TNSP, both PF and NF showed consistent growth over the 480 

entire study period. 481 

 482 

Figure 18. Annual dynamics of PF and NF area from 1990 to 2020 across various forest ecological engineering areas. 483 

(a) PF. (b) NF. 484 

5 Discussion 485 

5.1 The impact of different vegetation and regions 486 

Different vegetation types, particularly coniferous and deciduous forests, exhibit distinct structural 487 

and phenological characteristics, which can influence their spectral and temporal signatures and 488 

subsequently affect model performance. To address these differences, we evaluated the classification 489 

performance by forest type, including evergreen needleleaf forest (ENF), evergreen broadleaf forest 490 
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(EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), and mixed forest (MF). 491 

Specifically, we extracted forest type information from the Terra and Aqua combined Moderate 492 

Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6.1 product 493 

(Friedl and Sulla-Menashe, 2022), which provides global coverage at a spatial resolution of 500 m. Due 494 

to the limited distribution of DNF in China, this class was excluded from the accuracy assessment. As 495 

illustrated in Figure 19, the DBF class achieved the highest F1-score for PF, whereas the ENF class 496 

yielded the lowest F1-score. This discrepancy may be attributed to the phenological variability and 497 

canopy textural differences inherent in DBF, such as seasonal leaf shedding and more pronounced 498 

structural heterogeneity, which provide richer information for distinguishing PF from NF. 499 

 500 

Figure 19. Classification performance of PF and NF across different forest types. ENF: evergreen needleleaf forest; 501 

EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest. 502 

Given China’s vast geographic expanse, regional variations in mapping accuracy are to be expected. 503 

Thus, a spatially stratified accuracy assessment was conducted to examine classification performance 504 

across different regions. A spatially explicit accuracy assessment was conducted based on the major 505 

climate zones of China (Figure 9(a)). The results revealed substantial regional variation in classification 506 

accuracy. As shown in Figure 20, the MTZ and MSTZ exhibited the highest OA and F1-score for PF 507 

classification, respectively, followed by SSTZ and TZ. In contrast, the CTZ demonstrated the lowest 508 

classification performance. The relatively high accuracy observed in the tropical and subtropical zones 509 

may be attributed to the concentration of large-scale plantations in these regions, which benefit from 510 

favorable temperature and precipitation conditions. Conversely, the lower accuracy in the CTZ could be 511 

due to persistent snow cover and the dominance of coniferous forests, whose homogeneous canopy 512 

texture complicates the differentiation between PF and NF. These findings underscore the influence of 513 

climatic heterogeneity as a significant source of uncertainty in large-scale forest mapping. 514 

https://doi.org/10.5194/essd-2025-489
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



31 

 515 

Figure 20. Classification performance of PF and NF across different climate zones of China. MTZ: middle temperate 516 

zone; CTZ: cold temperate zone; WTZ: warm temperate zone; TZ: tropical zone; NSTZ: northern subtropical zone; 517 

SSTZ: southern subtropical zone; MSTZ: middle subtropical zone. 518 

Additionally, accuracy was evaluated within the seven natural regions of China (i.e., Northeast, North, 519 

East, South, Central, Southwest, and Northwest). As shown in Figure 21, higher accuracy was observed 520 

in the South region (i.e., Hainan and Guangxi provinces), where forest types are more homogeneous. In 521 

contrast, lower accuracy was noted in the East region, where mixed forest types introduce considerable 522 

spectral variability. In these areas, small patches of plantation forests often contain spectrally mixed 523 

pixels, resulting in increased omission and commission errors. 524 

 525 

Figure 21. Classification performance of PF and NF mapping across the seven natural regions of China. 526 

5.2 Analysis of model fitting ability and generalization 527 

A series of supplementary analyses were conducted across 16 testing regions (with locations listed in 528 

Table 6) to evaluate three key aspects of the model uncertainty: (1) fitting ability, (2) spatial 529 

generalization across regions, and (3) sensitivity to key parameters of the RF classifier. 530 
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Table 6. Location information on the 16 testing regions. 531 

Regions Minimum longitudes Minimum latitudes Maximum longitudes Maximum latitudes 

Region 1 102.5  35.0  103.0  35.5  

Region 2 104.0  27.0  104.5  27.5  

Region 3 105.5  34.0  106.0  34.5  

Region 4 108.5  23.0  109.0  23.5  

Region 5 109.5  19.0  110.0  19.5  

Region 6 110.5  33.0  111.0  33.5  

Region 7 112.0  36.0  112.5  36.5  

Region 8 114.0  23.5  114.5  24.0  

Region 9 114.0  29.5  114.5  30.0  

Region 10 116.0  27.5  116.5  28.0  

Region 11 117.0  41.5  117.5  42.0  

Region 12 118.0  44.0  118.5  44.5  

Region 13 121.0  41.5  121.5  42.0  

Region 14 122.5  50.5  123.0  51.0  

Region 15 123.5  53.0  124.0  53.5  

Region 16 126.0  50.5  126.5  51.0  

First, fitting ability was evaluated. Specifically, a stratified cross-validation analysis was conducted 532 

by dividing the dataset in each testing region into training (80%) and validation (20%) subsets, which 533 

were then used to train and evaluate the RF classifier. The results revealed a relatively small 534 

performance gap between training and validation accuracies. Specifically, in 10 out of the 16 testing 535 

regions, the overfitting gap (defined as the difference between training and validation accuracy) was 536 

below 20% (Figure 22). This indicates that the model exhibits reliable generalization capability and 537 

does not suffer from obvious overfitting in the majority of regions. 538 
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 539 

Figure 22. Training and validation accuracies of the RF classifier across the 16 testing regions. The overfitting gap is 540 

defined as the difference between training and validation accuracy. 541 

Second, the model’s spatial transferability (generalization performance) in geographically 542 

independent regions was assessed. Specifically, a leave-one-block-out cross-validation approach (Fu et 543 

al., 2004), in which each region was retained for validation while the model was trained on samples 544 

from the other regions, was implemented. The results show that while the model’s performance 545 

remained relatively stable, it exhibited lower validation accuracies (ranging from 62.3% to 73.8%) and 546 

larger overfitting gaps across different testing regions (Figure 23). These findings suggest limited 547 

generalization capacity across regions. The reason is that a local RF classifier was used in the paper, 548 

which was trained and predicted for each tile separately. This scheme, however, is more appropriate for 549 
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large-scale mapping across China, where regional ecological and spectral heterogeneity is substantial. 550 

 551 

Figure 23. Spatial generalization performance based on leave-one-block-out cross-validation across the 16 testing 552 

regions. 553 

Third, the sensitivity of the model to a key parameter of the RF classifier—namely, the number of 554 

decision trees (n_tree)—across the testing regions was examined. As shown in Figure 24, classification 555 

performance remained relatively stable once the number of trees exceeded 100, indicating that the 556 

model is robust to variations in this parameter. 557 
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 558 

Figure 24. Classification performance of the RF classifier with varying number of decision trees (n_tree). 559 

5.3 The driving forces behind forest expansion 560 

China’s strategic implementation of the Natural Forest Protection Program was a direct response to 561 

severe ecological degradation resulting from decades of overexploitation of NF resources, particularly 562 

in the aftermath of the catastrophic floods in 1998. Our results show a marked increase in the PF area in 563 

the PRSP region before 2000, followed by a noticeable slowdown in growth thereafter. It is a trend 564 

likely attributable to the introduction of the Natural Forest Protection Program. Conversely, in the TNSP 565 

region, the area of NF began to show a steady and sustained increase after this period, indicating the 566 

effectiveness of NF protection and restoration policies. Moreover, the continued expansion of PF across 567 

all eight major forestry ecological engineering regions highlights the success of large-scale afforestation 568 

and reforestation programs implemented to address environmental degradation and timber supply 569 

shortages. Notable initiatives include the Natural Forest Protection Program, the Three-North 570 

Shelterbelt Project, and China’s Conversion of Cropland to Forest Program (Gutiérrez Rodríguez et al., 571 

2016), all of which have played pivotal roles in promoting forest recovery at the national scale. In 572 

addition to policy-driven interventions, favorable climatic and geographic conditions in southern China, 573 

such as warm temperatures and abundant precipitation, have further facilitated PF expansion. Provinces 574 

like Guangxi, Guangdong, and Yunnan, which benefit from both optimal biophysical conditions and 575 

strong policy support, have experienced the most substantial gains in PF area. 576 

Conversely, the decline of NF in many regions is closely associated with anthropogenic pressures and 577 

land-use changes. Although the Natural Forest Protection Program was designed to curb logging and 578 
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safeguard natural ecosystems, the conversion of NF to PF continued in certain areas, particularly during 579 

the early years of policy implementation. This trend was largely driven by the economic incentives 580 

associated with PF, which typically offers faster returns and clearer land tenure arrangements. For 581 

instance, in the YZSP region, a substantial decline in NF was observed between 1990 and 2020, 582 

accompanied by a rapid expansion of PF, which highlights the trade-off between ecological 583 

conservation and economic development. 584 

Moreover, persistent timber demand in provinces such as Heilongjiang and Guangxi has contributed 585 

to the ongoing NF loss (Zhang et al., 2014), despite national efforts to enforce forest protection 586 

regulations. These cases underscore the challenges of balancing ecological goals with local 587 

socio-economic needs and emphasize the importance of strengthening policy enforcement, promoting 588 

sustainable forest management, and ensuring that afforestation initiatives do not inadvertently lead to 589 

the degradation of natural forest ecosystems. 590 

While the expansion of PF has contributed to increased forest cover and carbon sequestration, it also 591 

raises considerable ecological concerns (Xu et al., 2023). In contrast to NF, which harbors rich 592 

biodiversity, complex structural layers, and robust ecosystem functions, PF (particularly those 593 

dominated by monocultures) typically offer lower habitat heterogeneity, reduced resistance to pests and 594 

diseases, and heightened vulnerability to climate variability. The large-scale replacement of NF with PF 595 

may therefore lead to declines in native biodiversity, degradation of ecosystem services, and increased 596 

ecological fragility, particularly in ecologically sensitive and biodiversity-rich regions. Moreover, the 597 

intensive management regimes associated with PF, which are characterized by short rotation cycles and 598 

recurrent disturbances, can result in soil nutrient depletion, hydrological disruption, and long-term 599 

declines in forest health and productivity if not appropriately regulated. The widespread use of 600 

fast-growing, often non-native species in afforestation initiatives can further aggravate ecological 601 

imbalances by suppressing native flora and altering local ecosystem dynamics. These risks underscore 602 

the need for a more ecologically informed approach to PF management that balances production goals 603 

with long-term ecosystem sustainability. 604 

5.4 The advantages of the proposed C-PFM method 605 

The proposed C-PFM method offers a novel approach to monitoring PF expansion throughout the 606 

Landsat records. The C-PFM method holds several advantages over traditional methods. It leverages the 607 

forest disturbance detection algorithms (i.e., CCDC) to identify PF expansion areas, providing a new 608 

strategy for monitoring forest expansion. Traditional methods typically rely on multi-temporal maps, 609 
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which often exhibit inconsistent quality due to the variation in training samples across different periods. 610 

Some studies, such as Cheng et al., (2024), utilized samples from undisturbed areas in disturbance 611 

analysis algorithms. However, this approach may introduce issues of sample imbalance, as it lacks 612 

sufficient representation from disturbed areas. Alternatively, the C-PFM auto-generates numerous 613 

training samples, which is essential for large-scale supervised classification but challenging to obtain 614 

through traditional methods. Manual collection of training samples is time-consuming and 615 

labor-intensive, particularly at national or global scales. Our approach involves integrating training 616 

samples from time-series analysis and existing NF and PF datasets. Furthermore, the C-PFM based on 617 

the GEE cloud platform enables large-scale, fine spatial resolution mapping, which is crucial for 618 

accurately assessing forest regrowth in China’s diverse landscapes. 619 

The annual NF and PF datasets produced by the C-PFM method are the first to describe yearly 620 

dynamical changes at a 30 m resolution across China. Existing relative datasets, such as the one 621 

produced by Cheng et al. (2024), provide data with a 5-year interval. The finer temporal resolution of 622 

the dataset produced in this paper is more beneficial for monitoring forest dynamics, especially the 623 

dramatic expansion of PF in China. Additionally, the fine spatial resolution of 30 m is suitable for 624 

monitoring areas with smaller-scale forests (Xiao et al., 2023). 625 

5.5 Potential applications 626 

Over recent decades, China has led global greening efforts through extensive afforestation, 627 

reforestation, and forest conservation projects (Wang et al., 2007; Qiu et al., 2017), establishing itself as 628 

a leader in these initiatives (Chen et al., 2019). However, the expansion of PF remains controversial due 629 

to its potential impacts on ecosystems, biodiversity, and native tree species (Fagan et al., 2022). 630 

Accurate monitoring of NF and PF expansion is crucial for evaluating carbon sequestration estimates 631 

and assessing the progress of forestry ecological engineering initiatives, especially as China is 632 

navigating the dual challenges of ensuring food security and pursuing carbon neutrality. The proposed 633 

C-PFM method offers a valuable tool for mapping the PF expansion, contributing to environmental 634 

improvements and the evaluation of China’s afforestation efforts. 635 

Our dataset is a crucial resource for environmental researchers and policymakers, aiding in the 636 

development of more effective and ecologically sound afforestation strategies. There is a need for 637 

significant improvements in the survival rates of PF and the ecosystem services they provide (Cao et al., 638 

2011). Xu (2011) highlighted that some afforestation efforts in China involve planting trees in areas 639 

where they did not historically grow, which may not be the most effective approach for environmental 640 
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enhancement. Moreover, monoculture planting practices can reduce resilience to disturbances and offer 641 

fewer ecosystem services compared to natural forests (Lian et al., 2023; Betts et al., 2022). Planting the 642 

right species in appropriate locations is essential for successful afforestation (Xu et al., 2023). Thus, our 643 

dataset, which details PF and NF expansion, is vital for improving the quality of afforestation practices 644 

and ensuring more beneficial environmental outcomes. 645 

5.6 Uncertainty and future work 646 

A pixel-level uncertainty analysis for the PF and NF maps for the year 2020 was conducted. 647 

Specifically, the C-PFM-based PF maps were compared simultaneously with four existing PF products: 648 

Cheng’s product, GFC2020 (Bourgoin et al., 2025), Du’s planting year map (Harris et al., 2019; Du et 649 

al., 2022), and SDPT_V2 (Richter et al., 2024). A score (ranging from 1 to 4) representing the 650 

agreement between the maps was recorded for each pixel. This approach is particularly effective in 651 

situations where pixel-level reference data is limited or unavailable at the national scale. The spatial 652 

agreement map shown in Figure 25 presents an agreement count, indicating the number of existing PF 653 

products that are consistent with the C-PFM-based map in identifying PF at each location. This 654 

agreement counts as a proxy for the uncertainty map. The uncertainty map revealed that 72.8% of the 655 

identified PF pixels in this study correspond to areas that agree with at least one of the existing products 656 

(Figure 26). The remaining 27.2% of PF pixels were uniquely identified in this study, which can be 657 

partly attributed to the finer spatial resolution employed compared to other products. Additionally, we 658 

observed that provinces such as Hainan, Fujian, Guangxi, and Guangdong exhibited relatively low 659 

uncertainties (i.e., a high proportion of agreement in PF identification), whereas regions like Xinjiang, 660 

Qinghai, Shanghai, and Tibet showed relatively higher uncertainties (i.e., lower PF agreement ratios). 661 

This suggests that the C-PFM method performs more reliably in areas with extensive PF coverage, 662 

particularly in tropical and subtropical regions, where environmental conditions such as temperature and 663 

precipitation are more favorable for tree growth. 664 
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 665 

Figure 25. Pixel-level uncertainty map showing the agreement between the C-PFM-derived PF map for 2020 and four 666 

existing PF products. The map reflects the number of products that are consistent with the C-PFM classification at each 667 

pixel, serving as a proxy for spatial uncertainty. 668 

 669 

Figure 26. Proportion of the PF pixels at different confidence levels. The confidence scores range from 1 to 4, 670 

indicating the number of existing PF products that consistently classify each pixel as PF. 671 
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Despite achieving an acceptable accuracy, the maps of NF and PF contain inherent uncertainties. 672 

Firstly, the forest samples and post-processing step are determined using a series of forest masks. 673 

Uncertainties in these forest masks affect the precise mapping of NF and PF. Secondly, the training 674 

samples also suffer from some mislabeled issues, as the frequency of disturbances between PF and NF 675 

often leads to confusion (Xiao et al., 2024). For example, samples from NF areas with frequent fires and 676 

PF areas with no disturbance between 1990 and 2020 are more susceptible to mislabeling. Additionally, 677 

there is a continuous transformation process from PF to NF. Specifically, unmanaged PF gradually 678 

transforms into a semi-natural state and eventually into NF, resulting in no clear boundary between 679 

unmanaged PF and secondary forests. Although the sampling strategy, the low proportion of such areas, 680 

and the use of relatively conservative (i.e., low-sensitivity) parameters in CCDC help mitigate the 681 

impact of mislabeled samples, errors are still introduced into the proposed method. Some studies 682 

demonstrated that the probabilistic RF classifiers are suitable for classification when the training sample 683 

set contains few mislabeled training samples (Htitiou et al., 2021; Belgiu and Csillik, 2018; Reis et al., 684 

2018; Wang and Jia, 2009). Implementing a soft classification strategy is recommended to enhance the 685 

accuracy when the target is in fragmented areas (Pan et al., 2012), which matches the situation of 686 

China’s small-scale landscapes. Thus, future work should focus on developing models that are capable 687 

of tolerating mislabeled samples in training datasets. Moreover, the accuracy results across different 688 

periods suggest a potential decline in classification performance when using training samples from 2020 689 

to represent earlier years. This finding underscores the temporal limitations of static training datasets. 690 

Future work may benefit from incorporating multi-year training samples into model development, 691 

particularly if high-quality reference data from earlier periods becomes available, to improve 692 

classification accuracy over time. 693 

Additionally, although the C-PFM method provides a robust approach for detecting forest changes, 694 

some omission and commission errors in identifying stand-replacement disturbances are inevitable due 695 

to temporal fitting errors caused by data gaps and image noise. In this study, the CCDC algorithm was 696 

employed as the temporal segmentation algorithm owing to its capability to utilize all available Landsat 697 

observations without requiring compositing. This maximizes the exploitation of temporal information 698 

and enhances the detection of forest changes. Moreover, two critical parameters in CCDC, 699 

chiSquareProbability and minObservations, were configured following Xiao et al. (2023) to specifically 700 

target stand-replacement disturbances. These settings help reduce commission errors and improve the 701 

reliability of PF mapping. However, uncertainties persist, particularly in areas affected by inconsistent 702 

data availability and image noise. Future research may address these limitations by integrating 703 
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complementary remote sensing datasets from other platforms, such as MODIS and Sentinel-2, to 704 

increase temporal coverage and spectral diversity. Additionally, the utilization of auxiliary datasets and 705 

additional features has the potential to enhance the detection of forest changes. Furthermore, the 706 

introduction of disturbance-sensitive indices, such as the Normalized Difference Fraction Index (NDFI), 707 

has proven effective in improving classification accuracy in areas dominated by mixed pixels (Chen et 708 

al., 2021). 709 

6 Data availability 710 

The produced 30 m annual maps for PF and NF in China are openly available at 711 

https://doi.org/10.5281/zenodo.15559086 (Xiao, 2025). 712 

7 Conclusion 713 

This study introduces the C-PFM approach to monitor annual NF and PF dynamics at a 30 m spatial 714 

resolution in China from 1990 to 2020. The annual maps produced by the C-PFM method demonstrated 715 

reliability, supported by satisfactory accuracy when validated against visually interpreted reference data, 716 

and acceptable Pearson’s product-moment correlations with the 5th to 9th NFI data. Our findings reveal 717 

that PF has predominantly driven the increase in forest cover in China, underscoring the significant 718 

impact of afforestation initiatives, particularly in programs such as the upper and middle reaches of 719 

Yangtze River Shelterbelt Program. This suggests that the targeted afforestation strategies in these areas 720 

may be particularly effective. These insights are vital for shaping China’s policies and initiatives that 721 

aim at achieving carbon neutrality. Overall, the methods and data produced in this research provide a 722 

solid foundation for further scientific investigation and policy development, enhancing our 723 

understanding of forest expansion mechanisms and their implications for environmental conservation. 724 
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