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Abstract: Suspended Particulate Matter (SPM) is a crucial indicator of marine nutrient transport, the carbon cycle, and land-

sourced pollution. However, SPM research has been constrained by limited data. While marine remote sensing has helped

fill this gap since late 20th century, pre-2000 data remains scarce, particularly for global datasets with high spatiotemporal15
resolution. To address the shortage of in-situ SPM observations, we developed two empirical models for estimating SPM

concentrations: one based on remote sensing reflectance (Rrs) and the other on Secchi depth (Zsd). Model evaluation shows

that retrieval uncertainties do not exceed 35%. To mitigate errors in highly turbid waters (>100 mg l-1), we applied data

quality constraints by excluding samples above this threshold. The resulting dataset merges in-situ SPM observations,

providing global coverage of SPM concentrations from 1890 to 2020. Temporal and spatial analysis reveals an overall20
increase in global SPM concentrations, with a sharp rise between 1920 and 1942, followed by a rapid return to pre-1920

levels. The underlying causes of this fluctuation warrant further investigation. This unique dataset holds considerable

potential for marine resource management, climate modeling, human activity assessment, and environmental protection.
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1 Introduction25

Suspended particulate matter (SPM) is a key factor influencing the ecological condition of coastal environments, the

efficiency of marine primary production, global biogeochemical cycles, and climate-related ocean processes (Loisel et al.,

2014; Scown et al., 2023). High levels of SPM can lead to significant alterations in shoreline dynamics, reduce navigability

in estuarine and harbor regions, and pose challenges for coastal sediment regulation and planning (Green et al., 2000).

Moreover, by controlling the attenuation of light within the water column, SPM plays a fundamental role in shaping the30
underwater light regime, which in turn affects the vertical distribution of photosynthetically active radiation and the growth
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dynamics of phytoplankton populations (D'Sa et al., 2007). Beyond optical effects, SPM acts as a medium for transporting

key biogeochemical components—including nutrients, heavy metals, and organic pollutants—and contributes to carbon

cycling between oceanic and atmospheric systems (Yoshida et al., 2024). Recent investigations have emphasized that

fluctuations in SPM concentrations are closely associated with both natural variability and anthropogenic climate stressors,35
such as intensifying storm events, rising sea levels, and enhanced glacial melt (Overeem et al., 2017; Szeligowska et al.,

2024).

Understanding the influence of human activities and climate change on global sediment cycles requires long-term, consistent

observations. Ship-based measurements of suspended particulate matter (SPMmea), initiated in the 1930s using isokinetic and

later bottle samplers, remain spatially and temporally sparse due to logistical constraints (Milliman and Meade, 1983). The40
advent of satellite remote sensing has since enabled broad-scale assessments of marine SPM, with numerous studies

reporting widespread declines in sediment delivery from rivers, primarily linked to dam construction (Dethier et al., 2022).

Yet, despite these advances, the temporal coverage of satellite observations remains limited (1984–present), leaving the

evolution of sediment dynamics prior to major dam-building episodes largely unquantified (Rodriguez et al., 2020). This

temporal discontinuity creates a critical barrier to resolving century-scale changes in global sediment flux. Bridging this gap45
necessitates the development of integrated, multi-source datasets that leverage both historical and contemporary observations,

in combination with modeling approaches, to reconstruct long-term SPM variability with improved accuracy, spatial

representativeness, and temporal continuity.

Water transparency, defined as the depth to which light penetrates into the water column, is typically measured using a

Secchi disk—the depth at which the disk disappears from view as it is lowered into the water (Tyler, 1968). As one of the50
oldest and most straightforward bio-optical measurements, Secchi disk transparency has been routinely collected in

oceanographic surveys since 1865 (Cialdi and Secchi, 1865) , predating systematic SPM measurements by several decades.

Historically, transparency has explained a significant portion of the variability in marine bio-optical properties and

effectively captured large-scale changes in ocean optical environments (Pitarch, 2020), making it a valuable indicator of both

climatic and ecological dynamics (Boyce et al., 2010). Importantly, standardized Secchi disk observations can be empirically55
related to SPM concentrations (SPMzsd) through some well-established bio-optical models (Swift et al., 2006), as

transparency is closely linked to SPM dynamics and their influence on light attenuation (Preisendorfer, 1986). Given the

spatial extent, temporal coverage, and historical continuity of these measurements, transparency records provide a unique

opportunity to extend reconstructions of marine SPM more than a century beyond the advent of direct SPM observations,

thereby bridging a critical gap in our understanding of long-term sediment dynamics.60
Remote sensing reflectance (Rrs) serves as a fundamental parameter in ocean color remote sensing, as it underpins the

derivation of a wide range of downstream ocean color products, including suspended particulate matter (Chen et al., 2015;

Mao et al., 2012), as well as other biogeochemical indicators (IOCCG, 2006). Since the launch of the Coastal Zone Color

Scanner (CZCS) in late 1978 (Gordon et al., 1980b), a substantial volume of Rrs observations has been accumulated globally.

Notably, extensive field-based Rrs measurements are archived and made publicly accessible through repositories such as the65
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SeaWiFS Bio-optical Archive and Storage System, SeaBASS (Werdell and Bailey, 2002). In contrast to SPMmea, which

requires labor-intensive and often logistically complex in-situ sampling, Rrs data can be acquired more efficiently and at

significantly lower cost. Consequently, the availability of Rrs datasets far exceeds that of direct SPM measurements.

Developing reliable algorithms to retrieve SPM concentrations from Rrs (SPMrrs) would therefore be highly advantageous,

enabling retrospective analysis of sediment dynamics and enhancing the spatial and temporal resolution of SPM monitoring70
beyond what is feasible through conventional field sampling alone.

In the era of big data, the effective integration and utilization of multisource SPM information are crucial for addressing

persistent knowledge gaps concerning the response of global sedimentary processes to climate variability and anthropogenic

influences in the Anthropocene. This study proposes a globally consistent SPM dataset constructed by harmonizing

observations from multiple independent sources, aiming to reconstruct long-term records of oceanic SPM with enhanced75
temporal and spatial continuity (Fig. 1). Two empirical conversion models are introduced to derive SPM concentrations from

in situ remote sensing reflectance and water transparency measurements, respectively, and the consistency and reliability of

these multisource estimates are systematically assessed. The resulting dataset spans from 1890 to 2020, offering annual

temporal resolution and a spatial resolution of 5°, thereby enabling the examination of decadal-scale trends in sediment

variability. By bridging satellite-era and historical records, this dataset provides a robust basis for retrospective studies of80
sediment processes and supports improved projections of future SPM dynamics under changing environmental conditions.

2 Data, method, and techniques

2.1 SPMmea data originated from bottle field measurements

Bottle-based field measurements for SPMmea—particularly those using filtration and gravimetric analysis—are rooted in

classical limnological and oceanographic practices that trace back to the mid-19th century (Strickland and Parsons, 1972).85
This method involves collecting water samples from various depths using specialized water sampling devices, such as Niskin

bottles. The collected samples are subsequently filtered through pre-weighed glass fiber filters to retain suspended

particulates. After filtration, the filters are dried and reweighed to determine the mass of the suspended matter.

Even though bottle-based field measurements were developed relatively early, the limited accessibility of ocean

environments has resulted in most shared SPM datasets being concentrated in inland lakes and rivers, with comparatively90
fewer records from marine regions. In this study, SPMmea data are majourly obtained from platforms such as Sea-viewing

Wide Field-of-view Sensor Bio-optical Archive and Storage System (SeaBASS) and United States Geological Survey

(USGS) Water Quality Portal (See Table 1). In addition, Lavigne et al. (2022) have released a set of publicly available SPM

datasets, which we have also incorporated into our data collection.
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2.2 Empirical conceptual model for generating SPMzsd data95

Secchi disk depth (Zsd), one of the most established bio-optical proxies, has been a cornerstone of marine monitoring since its

introduction in 1865 (Cialdi and Secchi, 1865)—a period that coincides with the early development of bottle-based field

measurements (Strickland and Parsons, 1972). However, the relative simplicity of transparency measurements compared to

the more labor-intensive procedures required for SPMmea quantification has contributed to the broader availability and

greater abundance of transparency datasets.100
Tyler (1968) and Preisendorfer (1986) identified Zsd as an optical measure of water clarity, representing the depth at which a

submerged target is no longer visible. The value of Zsd is primarily governed by the composition and concentration of various

light-attenuating substances (Effler et al., 2017). Numerous principal component analyses have demonstrated that Zsd is

inversely correlated with SPM concentration (Golubkov and Golubkov, 2024), as elevated turbidity levels reduce water

transparency to the point where the Secchi disk becomes undetectable to the human eye. Given these inherent covarying105
mechanism, it is reasonable to hypothesize that SPM concentrations can be inferred from Zsd (SPMzsd) through a empirical

conceptual model (termed as SPMzsd model, h), such as:

���zsd = ℎ(�sd) , (1)

Secchi disk transparency data have been collected globally for over 130 years (Boyce et al., 2010). If the conceptual model

in Equation (1) is valid, it would enable a substantial improvement in the spatial and temporal resolution of historical and110
contemporary global SPM datasets. This, in turn, could provide crucial observational evidence for evaluating the impacts of

the First and Second Industrial Revolutions on the global suspended sediment cycle, thereby contributing to the reduction of

existing knowledge gaps in this field.

2.3 Empirical conceptual model for generating SPMrrs data

As SPM accounts for a significant portion of the variability in water-leaving radiance (Morel and Prieur, 1977), it has been115
widely acknowledged as a reliable proxy for estimating SPM concentration from remote sensing reflectance (Rrs) across

global oceanic and coastal waters. To date, three primary types of models have been developed for this purpose: empirical,

semi-analytical, and analytical approaches (Shen and Verhoef, 2010).

Commonly, semi-analytical and analytical models are theoretically more robust and physically interpretable due to their

explicit incorporation of radiative transfer principles (Chen et al., 2014; Sun et al., 2013), but extensive practical applications120
have shown that empirical models frequently outperform them in terms of solution stability, predictive accuracy, and

consistency with in situ observations (Allison et al., 2010; Dierssen, 2010; Sokoletsky et al., 2016). This discrepancy arises

partly because the highly heterogeneous nature of suspended particulate matter—characterized by its diverse composition,

size distribution, and scattering behaviors (Wozniak et al., 2010)—poses significant challenges for accurate parameterization

within semi-analytical and analyticsal frameworks. In contrast, such complexity is inherently embedded in the observed Rrs125
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signal, and when effectively exploited, empirical models are capable of capturing and leveraging this information to produce

reliable estimations.

Overall, considering both practical performance and implementation efficiency, we adopt an empirical approach for

estimating SPM from Rrs, the empirical conceptual model (termed as SPMrrs model, g) of which is outlined as follows:

SPMrrs = g �rs(412), �rs(443), �rs(490), �rs(555), �rs(670) , (2)130
To advance the field of ocean color remote sensing, a substantial archive of Rrs data has been accumulated since 1991,

supported by well-established data sharing frameworks. One prominent example is the SeaBASS, which remains the most

widely utilized platform for the dissemination and application of Rrs datasets (Hooker et al., 1994). Additionally, Valente et

al. (2022) have made publicly available a comprehensive dataset comprising extensive in situ Rrs measurements. If SPM

concentrations can be accurately retrieved from Rrs using empirical models, these datasets could serve as a valuable resource135
for SPM estimation and help bridge spatiotemporal gaps in bottle-based field measurements.

2.4 Numerical simulated data

Optical properties achieved from in situ measurements are seldom free from error. Specifically, even when the most

stringent protocols for remote sensing reflectance measurements are followed (Mueller et al., 2003), uncertainties in in situ

radiometric measurements typically range from 3% to 5% (Hooker and Maritorena, 2000). Furthermore, Chen et al. (2025a)140
demonstrated that individual variability in the contrast threshold of the human eye can result in uncertainties exceeding 10%

in Zsd measurements. Consequently, it is essential to conduct sensitivity analyses of both the SPMrrs and SPMzsd retrieval

models to establish robust quality control standards for the acquisition of high-precision, centennial-scale SPM datasets.

To assess the sensitivity of the SPMrrs and SPMzsd retrieval models to measurement noise, we designed two numerical

simulation scenarios:145
(1) A dataset of 6,000 transparency data points was randomly generated, uniformly distributed between 0.1 and 50 meters.

Each data point was subjected to random perturbation with a uniform error not exceeding ±20%, resulting in a corresponding

noise level of approximately 10% in the transparency measurements which was comparable with the disturbance associated

with variations in human eye contrast (Chen et al., 2025a). The sensitivity of the SPMzsd retrieval model was assessed by

comparing the consistency of SPMzsd derived from an error-free Zsd dataset with SPMzsd derived from the error-contaminated150
dataset.

(2) A set of 6,000 Rrs data points was randomly generated, with SPM values uniformly distributed between 0.1 and 500 mg/l.

Each data point was perturbed by a uniform error not exceeding ±10% following approch proposed by Chen et al. (2016),

resulting in an average measurement error of approximately 5% in the remote sensing reflectance values. The sensitivity of

the SPMrrs retrieval model was evaluated by comparing the consistency of SPMrrs derived from an error-free Rrs dataset with155
SPMrrs derived from the error-contaminated Rrs dataset.
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2.5 Statistical evaluation

We used two statistics to evaluate how well the model in generation of SPM from remote sensing reflectance and

transparency measurements. These statistics are the mean absolute percent difference (MAPD) and root-mean-square error

(RMSE). The statistics are described as follows:160

���� =
1
�

i=1

n
��,� − ��,�

��,�
� × 100% , (3)

���� =
1
�

i=1

n

��,� − ��,�
2� , (4)

where, � is the number of elements; ��,� is the model-derived SPM of the ith element from the Rrs data, and xr,i is the

equivalent known SPM of the ith element.

3 Results and discussion

3.1 Data availability from multiple sources over the global oceans165

From a temporal perspective, the technological levels represented by the remote sensing reflectance, suspended particulate

matter (SPM), and transparency measurement devices exhibit significant variation, leading to notable differences in the

earliest available public data (Figs. 2a-2c). For instance, the earliest recorded remote sensing reflectance data dates back to

1991, while public SPM data can be traced as far back as 1966. Transparency data, on the other hand, is available from as

early as 101 years and 76 years before the aforementioned two data types, respectively. These findings further confirm the170
fact that transparency remains, without question, the oldest optical parameter (Tyler, 1968).

In terms of data quantity, the transparency dataset comprises 583,613 samples, which is 2.4 times larger than the remote

sensing reflectance dataset and 7.4 times larger than the SPM dataset (Figs. 2d-2f). Spatially, most of the SPM measurement

data samples are concentrated in coastal areas, whereas the Rrs data samples are distributed across both coastal and open

ocean regions, although their density is much lower compared to the transparency dataset. A comparison also reveals that the175
data samples from the Northern Hemisphere outnumber those from the Southern Hemisphere. This discrepancy is likely

attributed to the fact that human activity is predominantly concentrated in the Northern Hemisphere, which houses

approximately 90% of the global population (Nations, 2022).

Regarding the earliest transparency measurement dates, data from the Eastern Hemisphere is generally older than that from

the Western Hemisphere (Fig. 2f). Notably, in the seas around Western Eurasia and Africa, a significant portion of the180
transparency measurement data dates back to before 1930, whereas most of the data from the Americas and Australia has

earliest recorded measurements after 1950. Moreover, influenced by ocean accessibility and maritime technological

https://doi.org/10.5194/essd-2025-484
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



7

advancements, the earliest measurement dates gradually converge from coastal areas to the open ocean. These temporal

differences are crucial for the proper utilization of this dataset in relevant research.

3.2 Model initialization and evaluation for SPM retrievals185

Two datasets were employed for model initialization and evaluation: one dataset contained synchronized measurements of

Zsd and SPM, while the other consisted of synchronized measurements of Rrs spectra and SPM. Both datasets were divided

into two subsets: approximately 70% of the data was used for model calibration, and the remaining 30% was reserved for

model validation. These datasets encompassed both clear open ocean waters and turbid coastal waters. Importantly, the

dataset for the SPMrrs model was notably more turbid than that for the SPMzsd model. This discrepancy arises from the fact190
that, in extremely turbid waters, transparency values are often very low (Table 2). Even slight disturbances, such as wind or

waves, can lead to substantial errors in transparency measurements. Consequently, due to the lower quality of transparency

data in highly turbid waters, such samples are typically less abundant.

Fig. 3 illustrates the performance of the empirical SPMzsd model in estimating SPM from transparency measurements. It was

observed that the Zsd value was negatively correlated with the SPM concentration, with a determination coefficient of 0.86195
(Fig. 3a). This indicates that Zsd could explain 86% of the variability in SPM across the global oceans, where SPM

concentrations ranged from 0.5 mg l-1 to 120.48 mg l-1. The evaluation was conducted by comparing the SPM values

predicted by the SPMzsd model with analytically measured SPM values from independent datasets collected globally. Based

on 148 field samples, the SPMzsd model was found to yield an uncertainty of 34.91% in estimating SPM from Zsd
measurements, with a determination coefficient of 0.71 and a slope of 1.04 (Fig. 3b). Notably, this performance was200
achieved without the need for any re-optimization of the model parameters.

To identify the optimal empirical SPMrrs model for converting Rrs to SPM, we employed the non-linear iterative method

proposed by Chen and Quan (2013). This method enabled us to derive the best empirical relationship between SPM and the

Rrs spectrum. The results showed that by using the expression X=[Rrs(670)+0.368Rrs(443)-

0.463Rrs(412)]/[Rrs(490)+0.515Rrs(555)] as inputs, SPM could be accurately and linearly derived from optical data, achieving205
a determination coefficient of 0.87 for optical data with SPM concentrations ranging from 0.1 mg l-1 to 2239.9 mg l-1 (Fig.

4a). When this model was applied to an independent optical dataset with SPM concentrations ranging from 0.13 mg l-1 to

577.2 mg l-1, the SPMrrs model produced estimates with a mean absolute percentage deviation (MAPD) of 33.68%, a

determination coefficient of 0.82, and a slope of 0.89 (Fig. 4b). This suggests that the SPM-Rrs model could account for 82%

of the variability in SPM across global Rrs data.210
Looking at the historical context of SPM estimation models, it is evident that the estimation accuracy generally falls within

the range of 30% to 50% (Balasubramanian et al., 2020; Chen et al., 2015; Jiang et al., 2021; Nechad et al., 2010; Teng et al.,

2025). Compared to typical SPM retrieval accuracy, both the SPMzsd and SPMrrs models are stable and accurate for

determining SPM from optical data. These models hold considerable potential for bridging spatial and temporal gaps in long-

term global SPM datasets, especially in regions where data coverage is sparse.215

https://doi.org/10.5194/essd-2025-484
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



8

3.3 Consistency evaluation and sensitivity analysis

The consistency between heterogeneous datasets is a crucial metric for assessing data quality in multisource data fusion.

Given the inherent discrepancies between the SPMzsd and SPMrrs models when applied to water bodies, it is vital to evaluate

the consistency of the SPM values derived from both models in order to develop robust data quality control criteria. These

criteria will assist in identifying and excluding data with poor consistency from multisource data, thereby enhancing the220
overall dataset quality. To this end, we selected synchronized samples of Zsd and Rrs from our field measurements and

processed them through both the SPMzsd and SPMrrs models to derive corresponding SPMzsd and SPMrrs values.

As shown in Fig. 5, the overall deviation between the SPM values derived from the SPMzsd and SPMrrs models is 36.99%,

while the corresponding determination coefficient is 0.62 (Fig. 5a). This suggests that both models are capable of producing

consistent SPM estimates from Zsd and Rrs data, but the SPMzsd model tends to yield slightly higher SPM values than the225
SPMrrs model (Fig. 5b). Particularly, the linear relationship between the two models has a slope of 1.15 and a bias of 1.639.

This deviation is most prominent in samples where SPM concentrations exceed 100 mg/l, and where transparency values fall

below 0.28 m, as indicated by the relationship shown in Fig. 3a.

In practice, accurately measuring transparency in highly turbid waters presents significant challenges due to a variety of

factors, including wave disturbances, inconsistent operator techniques, vessel platform instability, and the environmental230
adaptation of human eye contrast sensitivity (Chen et al., 2025a; Pitarch, 2020). These factors contribute to significant

measurement errors, especially in regions with low transparency. The SPMzsd model expresses an inverse relationship

between the SPM value and Zsd (Fig. 3a), meaning that in low-Zsd regions, where small values are divided by large ones,

even minor disturbances in Zsd can lead to considerable estimation errors in the SPM values. Furthermore, Doxaran et al.

(2002; 2009) have demonstrated that in clear to moderately turbid waters (SPM <100 mg l-1), the red and green bands of235
remote sensing reflectance exhibit a strong correlation with SPM concentrations. However, the successful application of

near-infrared bands is contingent upon the fact that in highly turbid waters, sufficient scattering occurs to overcome the

strong absorption of these bands by water (SPM > 100 mg l-1), where the green and red bands become less sensitive to

increases in SPM due to signal saturation (He et al., 2013). This phenomenon underscores the potential utility of the near-

infrared band for remote sensing of SPM in highly turbid waters. Nevertheless, publicly available observational datasets240
often contain limited near-infrared data, which could lead to a significant reduction in available bio-optical data, as

demonstrated in the dataset from Valente et al. (2022), if the near-infrared band is incorporated into the model inversion.

Fig. 6 illustrates the response of the SPMzsd and SPMrrs models to noise in field-measured Rrs and Zsd data. Both models show

strong noise tolerance ability in clear to moderately turbid waters (<100 mg l-1), even though there are substantial

uncertainties contained in field measurements. For example, when Rrs measurements contain 5% uncertainty and Zsd245
measurements contain 10% uncertainty, the SPMzsd and SPMrrs models exhibit overall inconsistencies of 10.02% and 4.7%,

respectively, compared to SPM values derived from error-free Rrs and Zsd data. However, in highly turbid and extremely

turbid waters (>100 mg l-1), scatterplots diverging from the 1:1 line become apparent (Figs. 6a and 6c), with the model
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inconsistency, represented by MAPD values, increasing as SPM concentrations rise (Figs. 6b and 6d). This deviation is

primarily attributed to the heightened sensitivity of the SPMzsd model to noise in low-Zsd regions, as well as the complex250
optical properties of highly turbid waters that complicate the remote sensing of SPM concentrations (D'Sa et al., 2007; He et

al., 2013). Notably, in clear and moderately turbid waters, both the blue-green remote sensing reflectance and transparency

values are relatively high (Chen et al., 2016), meaning that minor environmental disturbances have minimal impact, resulting

in more reliable data quality.

Given the performance of both models in turbid waters and the quality of the centennial-scale SPM dataset, we recommend255
excluding data with SPMmea, SPMrrs, and SPMzsd concentrations exceeding 100 mg l-1 from the data fusion process, as

illustrated in Fig. 1.

3.4 Global centennial-scale SPM dataset

By excluding samples with SPM concentrations exceeding 100 mg l-1, Fig. 7 presents the global centennial-scale SPM

dataset, derived by merging SPMmea, SPMrrs, and SPMzsd data. Among these, the Zsd dataset stands out with the largest260
sample size and the longest temporal coverage (Fig. 1). A comparison between the Zsd and the merged multisource dataset

(Figs. 1c and 7a) reveals that the final dataset contains 899,255 samples—1.54 times the number of Zsd samples. This

increase is largely due to the contributions of SPMmea and SPMrrs (Fig. 7c), with the samples predominantly concentrated in

coastal and some oceanic areas (Figs. 1a and 1b). It is important to note that, as Rrs and SPM measurement technologies were

developed and became widespread much later than Zsd (Cialdi and Secchi, 1865; Gordon et al., 1980a; Strickland and265
Parsons, 1972), the additional SPMmea and SPMrrs data primarily cover the past 50 years, with limited representation of

earlier periods. This creates some temporal gaps in the dataset, highlighting the need for further efforts to supplement the

early data.

Building on this, we analyzed the temporal variations in global SPM concentrations over nearly 130 years (Fig. 7d). The data

indicate an oscillating growth pattern in SPM concentrations. Between 1890 and 1920, SPM concentrations increased slowly,270
but from 1920 onwards, the growth rate sharply accelerated, peaking in 1926. This was followed by a significant decline,

with concentrations returning to pre-1920 levels by 1936. The reasons behind the sharp spike in SPM concentrations during

the 1920-1936 period remain unclear and require further investigation. After 1942, a gradual increase in SPM concentrations

continued until 2010, when the trend reversed and began to decline, persisting until 2020. The growth observed between

1942 and 2010 is likely linked to large-scale global water infrastructure projects, which led to increased coastal erosion and,275
consequently, higher SPM concentrations (Dethier et al., 2022; Hou et al., 2024). However, the sudden decline in

concentrations after 2010, lasting over a decade, is still not fully understood and demands additional research.

While every effort has been made to collect available open datasets, this dataset represents the most extensive and

temporally comprehensive global SPM dataset available in the public domain. However, it does not encompass all data

accumulated globally, as many datasets are still held by individuals or organizations. Understanding the global SPM source-280
sink processes and their interactions with climate change and human activities requires long-term, high-resolution temporal
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data. The spatial distribution of the data samples is crucial for accurately reconstructing temporal trends. We believe this

dataset is vital for understanding the mechanisms driving SPM movement and is currently the most comprehensive in terms

of both spatial and temporal coverage. However, there is room for improvement, especially in the resolution of both spatial

and temporal dimensions. We therefore urge all relevant stakeholders worldwide to make their datasets as accessible as285
possible to further advance this field.

In addition to optical parameters such as Rrs and Zsd, which are closely related to SPM concentrations, other factors—such as

water turbidity and sedimentation rate—also strongly correlate with SPM concentrations (Kim et al., 2025; Petus et al., 2010;

Strakhovenko et al., 2023). These parameters could serve as valuable supplementary data sources for future research. We

encourage scholars in this field to further explore these aspects and expand the scope of study.290

4 Data availability

The synthetic optical database described in this study is publicly available at the website of

https://gr.xjtu.edu.cn/en/web/chenjun/data_sharing or https://doi.org/10.5281/zenodo.16991206(Chen et al., 2025b).

5 Conclusion

SPM plays a critical role in the transport and cycling of marine chemical elements and is also a vital source of nutrients for295
marine phytoplankton to carry out primary production. To enhance our understanding of global climate change and the

impact of human activities on the marine environment, we constructed a centennial-scale dataset of SPM across the global

ocean. This dataset is of considerable scientific value, not only for advancing our knowledge of the oceanic carbon cycle but

also for improving our understanding of changes in marine primary production capacity and carbon cycling efficiency.

Therefore, this dataset holds significant promise for advancing related scientific fields.300
Our results demonstrate that the generated centennial-scale dataset exhibits high quality. For instance, SPM data derived

from Zsd and Rrs estimations show an average error of less than 35% when compared with in situ SPM observations, making

it robust enough to support large-scale global trend analyses. However, it is important to note that when SPM concentrations

exceed 100 mg l-1, the quality of the SPM data estimated from Zsd and Rrs decreases significantly. For example, the

consistency between the SPMzsd and SPMrrs models is poorer in high-concentration regions. To ensure the dataset’s quality,305
we excluded samples where the SPM concentration exceeded 100 mg l-1. Consequently, this dataset does not include water

bodies with SPM concentrations exceeding this threshold. To incorporate high-concentration regions, supplementary data or

methods would be required.

Overall, the centennial-scale SPM dataset marks a significant advancement in our understanding of the centennial-scale

changes in SPM across the global oceans. The accuracy and stability of the dataset suggest that it is a valuable resource for310
understanding and predicting the dynamics of SPM concentrations on a global scale. This dataset will further contribute to
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improved predictions of how SPM concentrations will change under climate change. It is anticipated that the findings from

this study will be of great interest to a broad spectrum of researchers, policymakers, and managers involved in the

monitoring and management of aquatic ecosystems.
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Table 1: Data sources and used

Source Temporal Parameter

https://www.ncei.noaa.gov 1991-2014 Zsd

https://www.bodc.ac.uk 2013-2018 Zsd

https://www.jodc.go.jp 1986 Zsd

https://ecos.fws.gov 1899-2019 Zsd

https://data.ontario.ca 2003-2005 Zsd

https://www.data.gov.in 2007-2021 Zsd

https://wesr.unep.org 2015 Zsd

https://doi.pangaea.de/10.1594/ 1903-2020 Zsd

https://seabass.gsfc.nasa.gov/ 1979-2020 Zsd and Rrs

Boyce et al. (2010) 1890-2010 Zsd

Chen et al. (2015; 2019) 2003-2018 Zsd, Rrs, and SPM

Lavigne et al. (2022) 2018 Rrs and SPM

Valente et al. (2022) 1997-2021 Rrs

https://www.pangaea.de 1991-2019 SPM

https://www.waterqualitydata.us 1966-2025 SPM
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Table 2: Descriptive statistics of bio-optical dataset used for model initialization and assessment. Std represents the standard
deviation

Model Variable Min Max Median Average Std

SPMzsd

Calibration dataset (N=217)
Zsd 0.18 21.00 4.50 5.69 4.47
SPM 0.50 120.48 2.88 7.64 14.20
Latitude 20.19 39.55 33.50 31.77 5.43
Longtitude 109.04 125.01 122.01 120.15 4.86
Validation dataset (N=148)
Zsd 1.20 45.00 4.70 14.13 13.79
SPM 0.13 16.8 3.60 4.89 4.68
Latitude 16.21 39.95 29.97 29.21 10.22
Longtitude 108.31 129.40 119.38 116.23 5.24

SPMrrs

Calibration dataset (N=620)
X -0.18 1.25 0.38 0.47 0.35
SPM 0.10 2239.80 12.77 109.25 296.69
Latitude -35.58 51.59 32.69 32.57 11.50
Longtitude -70.34 125.68 120.85 93.98 59.06
Validation dataset (N=198)
X -0.27 1.13 0.30 0.30 0.41
SPM 0.13 577.2 7.95 42.32 84.61
Latitude 16.86 39.91 31.25 29.55 8.79
Longtitude 108.31 122.74 118.77 116.89 4.63
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Figure 1: Flow chart for generating a centennial-scale SPM dataset
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Figure 2: Global oceanic data availability. Temporal coverage of (a–b) bottle-derived SPM measurements, (c–d) remote sensing485
reflectance observations, and (e–f) ocean transparency records. The global ocean is partitioned into 5° × 5° grid cells. For each
panel group, the first column depicts the fraction of total observations acquired per year, the second column indicates the year of
the earliest available record within each grid cell, and the third column presents the baseline year together with the full temporal
span of data availability in each cell.
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Figure 3: Empirical model for deriving SPM from transparency measurements: (a) model initialization and (b) model evaluation.
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Figure 4: Empirical model for deriving SPM from remote sensing reflectance measurements: (a) model initialization and (b) model495
evaluation.
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Figure 5: Consistency analysis of SPM data from different sources. (a) Scatterplot comparing SPM derived from transparency
measurements with SPM retrieved from remote sensing reflectance measurements; (b) histogram of differences between SPM500
derived from transparency measurements and SPM retrieved from remote sensing reflectance measurements.
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Figure 6: Sensitivity analysis of empirical SPM retrieval models to data errors by comparing SPM derived from noise-free and
noise-contaminated data. (a) SPM estimates with and without artificially added noise to Zsd data;(c) corresponding MAPD505
histograms;(b) SPM estimates with and without artificially added noise to Rrs data;(d) corresponding MAPD histograms. Shaded
areas in the histograms represent variance ranges.
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Figure 7: Centennial-scale dataset of SPM over the global ocean derived from multi-source data fusion.(a) Temporal coverage of510
total suspended sediment concentration; (b) Acquisition time of the earliest available measurement within each 5° × 5° grid cell for
the corresponding datasets; (c) Increase in global grid sample density compared with SPM derived from Zsd data within each
5° × 5° grid cell; (d) Interannual variability of global ocean SPM over the centennial scale derived from the fused dataset. Bars
indicate the logarithmic number of measurements collected annually.
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