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 Abstract 
 Climate  change  is  increasing  the  frequency  and  intensity  of  extreme  wildfires  globally,  yet 
 our  understanding  of  these  high-impact  events  remains  uneven  and  shaped  by  media 
 attention  and  regional  research  biases.  The  State  of  Wildfire  Project  systematically  tracks 
 and  analyses  global  fire  activity  and  this,  its  second  annual  report,  covers  the  March  2024  to 
 February  2025  fire  season.  During  the  2024-25  fire  season,  fire-related  carbon  (C)  emissions 
 were  totalled  2.2  Pg  C,  9%  above  average  and  the  6th  highest  on  record  since  2003,  despite 
 below-average  global  burned  area  (BA;  3.7  million  km2).  Extreme  fire  seasons  in  South 
 America’s  rainforests,  dry  forests  and  wetlands,  and  in  Canada’s  boreal  forests  pushed  up 
 the  global  C  emissions  total.  Fire  C  emissions  were  over  four  times  above  average  in  Bolivia, 
 three  times  above  average  in  Canada,  and  ~50%  above  average  in  Brazil  and  Venezuela. 
 Wildfires  in  2024-25  caused  100  fatalities  in  Nepal,  34  in  South  Africa,  and  30  in  Los 
 Angeles,  with  additional  fatalities  reported  in  Canada,  Côte  d’Ivoire,  Portugal,  and  Turkey. 
 The  Eaton  and  Palisades  fires  in  Southern  California  caused  150,000  evacuations  and 
 US$140  billion  in  damages.  Communities  in  Brazil,  Bolivia,  Southern  California,  and 
 Northern  India  were  exposed  to  fine  particulate  matter  at  concentrations  13-60  times  WHO’s 
 daily  air  quality  standards.  We  evaluated  the  causes  and  predictability  of  four  extreme 
 wildfire  episodes  from  the  2024-25  fire  season,  including  in  Northeast  Amazonia 
 (January-March  2024),  the  Pantanal-Chiquitano  border  regions  of  Brazil  and  Bolivia 
 (August-September  2024),  Southern  California  (January  2025),  and  the  Congo  Basin 
 (July-August  2024).  Anomalous  weather  created  conditions  for  these  regional  extremes, 
 while  fuel  availability  and  human  ignitions  shaped  spatial  patterns  and  temporal  fire 
 dynamics.  In  the  three  tropical  regions,  prolonged  drought  was  the  dominant  fire  enabler, 
 whereas  in  California,  extreme  heat,  wind,  and  antecedent  fuel  build-up  were  the  dominant 
 enablers.  Our  attribution  analyses  show  that  climate  change  made  extreme  fire  weather  in 
 Northeast  Amazonia  30–70  times  more  likely,  increasing  burned  area  roughly  fourfold 
 compared  to  a  scenario  without  climate  change.  In  the  Pantanal–Chiquitano,  fire  weather 
 was  4–5  times  more  likely,  with  up  to  35-fold  increases  in  burned  area.  In  Southern 
 California,  climate  change  made  larger  burned  area  89%  more  likely,  with  burned  area  up  to 
 25  times  higher.  The  Congo  Basin’s  fire  weather  was  3–8  times  more  likely  with  climate 
 change,  with  a  2.7-fold  increase  in  burned  area.  Socioeconomic  changes  since  the 
 pre-industrial  period,  including  land-use  change,  also  likely  increased  burned  area  in 
 Northeast  Amazonia.  Our  models  project  that  events  on  the  scale  of  2024-25  will  become  up 
 to  57%,  34%,  and  50%  more  frequent  than  in  the  modern  era  in  Northeast  Amazonia,  the 
 Pantanal-Chiquitano,  and  the  Congo  Basin,  respectively,  under  a  middle-of-the-road 
 scenario  (SSP370).  Climate  action  can  limit  the  added  risk,  with  frequency  increases  kept 
 below  15%  in  all  three  regions  under  a  strong  mitigation  scenario  (SSP126).  In  Southern 
 California,  the  future  trajectory  of  extreme  fire  likelihood  remains  highly  uncertain  due  to 
 poorly  constrained  climate-vegetation-fire  interactions  influencing  fuel  moisture,  though  our 
 models  suggest  that  risk  may  decline  in  future.  This  annual  report  from  the  State  of  Wildfires 
 Project  integrates  and  advances  cutting-edge  fire  observations  and  modelling  with  regional 
 expertise  to  track  changing  global  wildfire  hazard,  guiding  policy  and  practice  towards 
 improved  preparedness,  mitigation,  adaptation,  and  societal  benefit.  Thirteen  new  datasets 
 and  model  codebase’s  presented  in  this  work  are  available  from  the  State  of  Wildfires 
 Project’s  Zenodo  community  (  https://zenodo.org/communities/stateofwildfiresproject  ,  last 
 access: 11 August 2025). 

 Short Summary 
 The  second  State  of  Wildfires  report  examines  extreme  wildfire  events  from  2024  to  early 
 2025.  It  analyses  key  regional  events  in  Southern  California,  Northeast  Amazonia, 
 Pantanal-Chiquitano,  and  the  Congo  Basin,  assessing  their  drivers,  predictability,  and 
 attributing  them  to  climate  change  and  land  use.  Seasonal  outlooks  and  decadal  projections 
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 are  provided.  Climate  change  greatly  increased  the  likelihood  of  these  fires,  and  without 
 strong mitigation, such events will become more frequent. 

 1.  Introduction 

 1.1.  Background 

 The  potential  for  wildfires  is  growing  under  climate  change,  with  increases  in  the  frequency 
 and  intensity  of  drought  and  periods  of  fire-favourable  weather  driving  reductions  in 
 vegetation  (fuel)  moisture  and  priming  landscapes  to  burn  more  regularly,  intensely,  and 
 severely  (Seneviratne  et  al.,  2022;  UNEP,  2022a;  Jones  et  al.,  2022;  Abatzoglou  et  al.,  2019; 
 Cunningham  et  al.,  2024a).  Additionally,  human  activities  and  land  use  change  can 
 contribute  to  or  exacerbate  the  risk  of  extremely  large,  fast-moving  or  intense  fires, 
 especially  in  tropical  forests  where  people  are  the  primary  cause  of  ignition  and  forest 
 degradation  (Lapola  et  al.,  2023).  Recent  years  have  been  marked  by  a  series  of  extreme 
 wildfire  events  spanning  the  globe  (Abatzoglou  et  al.,  2025),  with  record  levels  of  burned 
 area  (BA)  occurring  in  the  2019-2020  Australian  “Black  Summer”  bushfires  (Abram  et  al., 
 2021;  Canadell  et  al.,  2021)  and  a  series  of  high-ranking  wildfire  seasons  occurring  in  quick 
 succession  in  the  western  US  (2020  and  2021;  Higuera  &  Abatzoglou,  2020),  Siberia  (2020 
 and  2021;  Zheng  et  al.,  2023),  varying  parts  of  Europe  (e.g.  2017,  2022,  2023;  European 
 Commission  Joint  Research  Centre,  2023,  2024,  2025),  South  America  (2019,  2020,  2023, 
 2024;  Kelley  et  al.,  2021;  Barbosa  et  al.,  2022;  Silveira  et  al.,  2020;  Mataveli  et  al.,  2024, 
 2025),  and  Canada  (2023,  2024;  Jones  et  al.,  2024b;  Jain  et  al.,  2024;  Byrne  et  al.,  2024; 
 Kolden  et  al.,  2024).  The  2024-25  fire  season  was  marked  by  extreme  fire  extent  and 
 emissions  in  Amazonia  and  the  Pantanal-Chiquitano  (Mataveli  et  al.,  2025;  Kolden  et  al., 
 2025)  and  a  second  consecutive  year  of  extreme  fire  extent  and  emissions  in  Canada 
 (Kolden  et  al.,  2025;  Parrington  and  Di  Tomaso,  2025).  The  2024-25  fire  season  also  saw 
 extreme  fire  activity  in  equatorial  Africa,  which  went  broadly  under-reported  despite  fires 
 triggering  record  rates  of  forest  loss  (stand-replacing  fire  extent)  in  the  region  (World 
 Resources  Institute,  2025).  Meanwhile,  extremely  destructive  and  costly  individual  fires 
 affected  Southern  California  (Barnes  et  al.,  2025;  Woolcott,  2025)  and  Jasper  National  Park 
 in  Alberta  (Parks  Canada,  2024;  Insurance  Bureau  of  Canada,  2025).  Widespread  regional 
 anomalies  in  high  fire  activity  were  also  seen  in  northern  India  leading  to  severe  haze  events 
 (CAMS, 2024). 

 The  prominence  of  recent  extreme  wildfires  and  wildfire  seasons  notably  contrasts  with 
 overall  trends  in  the  area  burned  by  fires  globally.  A  distinctive  trend  has  emerged  towards 
 enhanced  fire  activity  and  severity  in  forests  and  other  fuel-rich  environments,  which  is 
 occurring  amidst  increasingly  frequent  and  intense  droughts  and  heatwaves,  particularly  in 
 the  extratropics  (Jones  et  al.,  2024a,  Cunningham  et  al.,  2024a).  Due  mostly  to  a  reduction 
 in  the  global  savannahs  tied  to  landscape  fragmentation  and  changing  rainfall  patterns, 
 global  BA  has  fallen  since  the  beginning  of  this  century  by  around  one-quarter  (Andela  et  al., 
 2017;  Jones  et  al.,  2022;  Chen  et  al.,  2024).  Critically,  this  decline  in  fire  extent  masks  major 
 shifts  in  the  distribution  of  fires  globally,  with  regions  such  as  eastern  Siberia  and  the 
 western  US  and  Canada  experiencing  a  more  than  40%  increase  in  BA  since  2000  (Jones  et 
 al.,  2022;  Zheng  et  al.,  2021)  and  regions  such  as  southeast  Australia  also  showing 
 significant  increases  over  longer  periods  despite  high  interannual  variability  (Canadell  et  al., 
 2021).  Likewise,  there  have  been  shifts  in  the  global  distribution  of  BA  from  non-forests  to 
 forests  globally  and  from  the  tropics  to  the  extratropics,  with  the  increased  prevalence  and 
 severity  of  forest  fires  emitting  increasing  quantities  of  forest  carbon  stocks  each  year  and 
 driving  increasing  fire  carbon  (C)  emissions  globally  (Kelley  et  al.,  2019;  Jones  et  al.,  2024a). 
 Hence,  focussing  exclusively  on  global  aggregated  BA  extent  underplays  the  scale  and 
 magnitude  of  the  significant  shifts  in  wildfire  activity  and  impacts  that  are  underway  across 
 many  world  regions.  An  increase  in  forest  and  peatland  burning  is  particularly  concerning 
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 due  to  the  rich  ecosystem  services  that  these  regions  provide,  including  C  storage  and 
 biological  and  cultural  diversity  (UNEP,  2022b).  The  intensification  of  fire  regimes  in 
 environments  that  are  less  fire-adapted  is  of  high  importance  because  these  ecosystems  are 
 expected  to  be  least  resilient  to  such  changes  (Grau-Andrés  et  al.,  2024)  and  because  they 
 are  often  home  to  communities  relying  directly  on  the  forest  (Newton  et  al.,  2022;  Shepherd 
 et al., 2020; Schleicher et al., 2018). 

 The  extreme  wildfire  events  of  recent  years  have  significantly  impacted  societies  and 
 ecosystems  across  the  globe  (Cunningham  et  al.,  2024a,  2024b;  2025).  Since  1990,  wildfire 
 disasters  have  directly  killed  or  injured  at  least  ~18,000  people,  a  conservative  measure 
 based  on  incomplete  records  and  reporting  biased  to  the  global  Northern  countries  (updated 
 from  Jones  et  al.,  2022;  Centre  for  Research  on  the  Epidemiology  of  Disasters,  2024).  In 
 2023,  232,000  people  were  evacuated  due  to  wildfires  in  Canada  alone  (Jain  et  al.,  2024; 
 Kolden  et  al.,  2024).  Also  since  1990,  fires  are  estimated  to  have  caused  on  the  order  of  1.5 
 million  premature  deaths  globally  per  year  through  degraded  air  quality  related  to  fine 
 particulate  matter  (PM  2.5  ;  Johnston  et  al.,  2021;  Xu  et  al.,  2024;  Chen  et  al.,  2021).  Degraded 
 air  quality  related  to  fires  is  experienced  most  strongly  in  the  tropics  (Pai  et  al.,  2022)  and 
 often  disproportionately  affects  the  elderly,  the  young,  the  infirm,  and  traditional  communities 
 with  poor  public  services  or  means  of  protection  (Carmenta  et  al.,  2021;  Johnston  et  al., 
 2021). 

 As  anthropogenic  emissions  of  CO  2  remain  persistently  high,  the  world’s  natural  C  sinks  in 
 forests,  peatlands,  and  other  ecosystems  are  increasingly  pivotal  to  moderating  increases  in 
 atmospheric  CO  2  concentration  (Friedlingstein  et  al.,  2025).  Intact  forests  are  often  relied 
 upon  for  delivering  national  plans  for  reaching  Net  Zero  (Smith  et  al.,  2023)  and  offering  sites 
 for  nature  based  solutions  (NBS).  Yet,  massive  wildfire  emissions  from  boreal  forests  and 
 soils  in  Siberia  and  Canada  across  the  years  2020,  2021,  and  2023  amount  to  over  1  billion 
 tonnes  of  C,  a  gross  flux  comparable  in  magnitude  to  annual  CO  2  emissions  from  fossil  fuel 
 combustion  in  India,  the  EU27  or  the  USA  (Friedlingstein  et  al.,  2025;  Zheng  et  al.,  2023).  In 
 a  natural  fire  regime,  these  gross  emissions  would  likely  be  recuperated  through  post-fire 
 recovery.  However,  the  greater  vegetation  mortality  and  loss  of  ecosystem  function 
 associated  with  more  widespread  and  severe  fires  contribute  to  shifts  in  local  to  regional 
 terrestrial  carbon  budgets  from  sinks  to  sources  (Zheng  et  al.,  2021;  Gatti  et  al.,  2021;  Nolan 
 et  al.,  2021a;  Phillips  et  al.,  2022;  Harrison  et  al.,  2018;  Jones  et  al.,  2024a).  Loss  of 
 vegetation  during  extreme  fire  seasons  can  also  have  wider  lasting  effects  on  ecosystems, 
 for  instance  by  reducing  the  habitat  area  available  to  endemic  species  (Ward  et  al.,  2020; 
 Carmenta et al., 2025). 

 Extreme  fires  can  moreover  impact  the  livelihoods  of  various  communities  and  landowners 
 who  depend  on  intact  natural  landscapes.  For  example,  the  lands,  territories  and  cultural 
 heritage  of  traditional  communities  and  Indigenous  Peoples  can  be  degraded  and 
 transformed  by  wildfires,  raising  climate  justice  issues  that  compound  a  legacy  of 
 colonisation,  dispossession  and  forced  cessation  of  cultural  practices  (Garnett  et  al.,  2018; 
 Barlow  et  al.,  2018;  Lapola  et  al.,  2023;  Pascoe  et  al.,  2024).  Further,  conflating  the 
 detrimental  impacts  of  wildfire  types  has  also  stigmatised  small-scale  intergenerational  fire 
 use  and  led  to  prohibitive  fire  governance  that  affects  local  communities  (Carmenta  et  al., 
 2021; Barlow et al., 2020; Pascoe et al., 2024). 

 Mitigating  and  adapting  to  increases  in  wildfire  potential  are  growing  priorities  of 
 policymakers  and  require  coordination  with  many  other  stakeholders.  National  and 
 international  disaster  management  centres  are  seeking  to  enhance  predictive  capacity,  while 
 fire  management  agencies  are  expanding  or  re-allocating  their  resources  to  rapidly  suppress 
 fires  to  avoid  them  becoming  too  large,  fast,  or  intense  (e.g.  Bowman  et  al.,  2020).  A  number 
 of  international  organisations  such  as  the  UN  Environment  Programme  (UNEP,  2022a),  the 
 World  Bank  (2020,  2024a),  the  Organisation  for  Economic  Co-operation  and  Development 
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 (OECD,  2023),  and  a  range  of  other  inter-  or  non-  governmental  organisations  are  producing 
 reports  that  consolidate  evidence  on  the  changing  risk  of  extreme  fires  and  identify  best 
 practices  for  mitigating  their  impacts,  including  through  land  management  and  urban/rural 
 planning.  Many  land  managers  are  developing  and  implementing  approaches  such  as  fuel 
 reduction  (Fernandes  and  Botelho,  2003;  Stephens  et  al.,  2012;  Moreira  et  al.,  2020; 
 Chuvieco  et  al.,  2023;  Hsu  et  al.,  2025).  Wildfire  response  agencies  are  exploring  innovative 
 approaches  to  detecting  and  responding  to  fires,  and  there  is  rising  interest  in  the  prospect 
 of  integrated  fire  management  around  the  world  (Food  and  Agriculture  Organization  of  the 
 United  Nations,  2024).  Operators  of  C  market  projects  and  forest  carbon-conservation 
 initiatives,  such  as  REDD+  are  particularly  wary  of  the  risks  that  wildfires  present  to  the 
 permanence  of  C  offsets,  which  often  feature  as  a  key  tool  in  national  policies  and 
 international  initiatives  for  achieving  Net  Zero  emissions  (Barlow  et  al.,  2012;  Smith  et  al., 
 2023). 

 Amidst  extreme  wildfires  and  wildfire  seasons,  stakeholders  increasingly  turn  to  scientists  for 
 answers.  How  extreme  was  this  fire  event  in  a  historical  context?  Is  climate  change 
 amplifying  fire  occurrence?  Can  we  disentangle  the  factors  responsible  in  order  to  target 
 those  in  policy  and  management?  Will  we  see  more  wildfires  like  this  in  the  future?  Did  land 
 use  or  management  factors  exacerbate  or  ameliorate  the  problem?  Could  we  have  predicted 
 these  events  and  how  can  we  improve  early  warning  systems  and  preparedness  in  the 
 future?  What  is  the  role  of  climate  and  socioeconomic  factors,  such  as  land  use,  in  reducing 
 risk of extreme wildfires in future? 

  While  observational,  statistical,  and  modelling  tools  for  assessing  extreme  wildfire  drivers 
 and  predicting  wildfire  occurrence  are  advancing  rapidly,  their  application  to  studying 
 extreme  wildfire  seasons  or  events  on  timescales  relevant  to  public  and  political  interest 
 remains  limited.  The  State  of  Wildfires  report  represents  a  new  initiative  to  systematically 
 catalogue  extreme  wildfire  events  at  annual  frequency  and  explain  their  occurrence, 
 predictability  and  attribution  to  climate  and  land  use  changes.  The  report  incorporates  recent 
 methodological  advances  in  disentangling  the  drivers  of  four  selected  extreme  wildfire 
 events  to  fuel  dryness,  fuel  load,  and  weather,  and  ignition  and  suppression  factors.  By 
 applying  these  methodological  advances  in  conjunction  with  models  of  global  change,  we 
 quantify  the  change  in  likelihood  of  the  past  year’s  events  under  climate  and  land  use 
 changes.  Observable  fire  metrics  (e.g.  BA)  are  the  target  variable  of  our  causal  inference 
 and  attribution  work,  which  thereby  advances  on  more  common  climate  attribution  studies 
 that  attribute  change  in  fire-favourable  meteorological  conditions  to  climate  change.  Overall, 
 this  report  capitalises  on  recent  advances  in  the  study  of  extreme  fire  events  and  seasons  to 
 provide  timely  information  about  shifting  fire  regimes  and  their  causes.  The  findings  of  the 
 report  are  relevant  to  organisations  involved  in  prevention  and  combat  efforts,  policymakers, 
 the media, and the wider public. 

 1.2.  Objectives of this Report 

 The  State  of  Wildfires  report  aims  to  deliver  actionable  information  to  policy  and  practice 
 stakeholders  and  wider  society.  In  rising  to  this  challenge,  we  aim  to  spur  scientific  and 
 technological  innovation  including  stimulating  development  of  better  tools  for  understanding 
 and predicting extreme fires. In this edition we: 

 1.  Regionally  identify  extreme  individual  wildfires  or  extreme  wildfire  seasons  of  the 
 period March 2004-February 2025, and place them in context of recent trends. 

 2.  Quantify  the  impacts  of  extreme  events  in  terms  of  the  exposure  of  population, 
 physical  assets  (built  environment),  and  carbon  projects  to  fire  as  well  as  degraded 
 air quality. 
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 3.  Shortlist  a  selection  of  four  extremes  (extreme  individual  wildfires  or  extreme  wildfire 
 seasons)  with  notable  impacts  on  society  or  the  environment,  which  we  term  the 
 ‘focal events’. 

 4.  Diagnose  the  contributions  of  both  fuel  dryness  and  load,  ignitions,  and  suppression 
 to the occurrence of each focal event. 

 5.  Assess the capacity of operational predictive systems to predict each focal event. 
 6.  Attribute  each  focal  event  to  anthropogenic  influences  by  testing  the  role  of  climate 

 change  and  socioeconomic  factors  such  as  land  use,  land  use  change,  and  human 
 ignitions. 

 7.  Provide  an  outlook  on  the  probability  of  extreme  events  in  the  coming  fire  season 
 (commencing March 2025). 

 8.  Project  future  changes  in  the  probability  of  each  focal  event  under  future  climate 
 scenarios. 

 Key  methodologies  used  to  achieve  the  above  objectives  are  summarised  as  follows.  To 
 address  objectives  1  and  2,  we  build  a  comprehensive  dataset  of  fire  metrics  including  BA, 
 fire  counts,  fire  C  emissions,  and  individual  fire  properties  (size  and  rate  of  growth)  for 
 consistent  world  regions  and  quantitatively  identify  anomalies  in  these  metrics  during  the 
 past  fire  season  (Giglio  et  al.,  2018;  van  der  Werf  et  al.,  2017;  Andela  et  al.,  2019).  To 
 address  objectives  3  and  4,  we  leverage  weather  forecasts  from  the  European  Centre  for 
 Medium-Range  Weather  Forecasts  (ECMWF)  at  different  time  horizon  from  medium  (1-15 
 days)  to  long  range  (up  to  4  months  ahead)  and  additionally  employ  two  state-of-the-art  fire 
 models,  Controlar  Fogo  Local  Analise  pela  Máxima  Entropia  -  English  “Local  Fire  Control 
 Analysis  by  Maximum  Entropy”  (ConFLAME;  Kelley  et  al.,  2019;  Barbosa  et  al.,  2025b)  and 
 Probability  of  Fire  (PoF;  McNorton  et  al.,  2024)  to  pinpoint  the  causes  of  the  extreme  fire 
 events  of  2024-25.  To  address  objective  5,  we  employ  projections  of  fire  weather  from  the 
 Hadley  Centre  Large  Ensemble  (HadGEM3-A,  Ciavarella  et  al.,  2018)  to  attribute  change  in 
 the  Fire  Weather  Index  (FWI)  to  climate  change,  and  we  drive  ConFLAME  (Kelley  et  al., 
 2019;  Barbosa  et  al.,  2025b)  with  outputs  from  both  HadGEM3-A  and  separately  with  the 
 Intersectoral  Impacts  Model  Intercomparison  Project  3a  (ISIMIP3a)  and  Joint  UK  Land 
 Environment  Simulator  Earth  System  model  (JULES-ES;  Mathison  et  al.,  2023)  to  attribute 
 extreme  BA  to  climate  and  land  use  changes  (Burton,  Lampe  et  al.,  2024).  To  address 
 objective  6,  we  use  seasonal  outlook  of  FWI  from  the  Copernicus  Emergency  Management 
 Service  (Di  Giuseppe  et  al.,  2024).  To  address  objective  7,  we  again  pair  ConFLAME  with 
 JULES-ES  (Mathison  et  al.,  2023)  to  project  future  changes  in  BA  under  several  future 
 climate  and  land  use  scenarios  and  provide  a  comprehensive  assessment  of  past  and  future 
 extreme wildfire events. 

 The  State  of  Wildfires  report  was  launched  in  2024  and  is  an  annual  report  that  can  harness 
 and  adopt  new  methodologies  brought  forward  by  the  scientific  community  in  the  interim 
 between  its  yearly  publication.  Over  the  coming  years  and  decades,  we  aim  to  enhance  the 
 tools  presented  in  this  report  to  predict  extremes  with  increasing  lead  times,  monitor 
 emerging  situations  in  near-real  time,  and  explain  their  causes  rapidly,  thus  enhancing  our 
 ability to deliver timely insights to decision-makers when they are most needed. 

 2.  Extreme Wildfire Events of 2024-25 

 2.1.  Methods 

 We  catalogued  the  extreme  regional  wildfire  events  or  annual  fire  seasons  in  the  period 
 March  2024-February  2025  based  on  a  combination  of  anomalies  in  the  distribution  of 
 several  observable  fire  metrics  from  Earth  observations  (  Section  2.1.1  and  Section  2.1.2  ). 
 In  this  work,  the  global  fire  season  is  defined  as  occurring  in  March-February  windows 
 oriented  around  the  annual  minima  of  global  fire  activity  in  boreal  spring  (see  further  details 
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 in  Section  2.1.1.2  ).  As  a  new  development  for  this  edition  of  the  report,  we  added  statistics 
 describing  anomalies  in  fire  intensity  during  the  2024-25  fire  season,  complementing 
 anomaly  statistics  provided  in  the  prior  edition  related  to  BA,  fire  emissions,  fire  size,  and 
 rate of growth. 

 Due  to  the  diversity  of  environmental  settings  in  which  fires  occur  and  the  range  of 
 ecological,  economic,  or  societal  impacts  caused,  defining  an  extreme  fire  or  an  extreme  fire 
 season  remains  inherently  challenging.  To  date,  extreme  fires  have  commonly  been  defined 
 by  their  BA  extent,  by  their  feedback  on  the  global  climate,  and  by  their  socio-economic  and 
 ecological  impacts  (Linley  et  al.,  2022,  2025;  Driscoll  et  al.,  2024).  We  reviewed  the  range  of 
 approaches  that  can  be  taken  to  identify  extreme  wildfire  events  in  our  inaugural  report  (see 
 Appendix A  of Jones et al., 2024b) and so do not revisit  this in the current article. 

 While  an  extreme  fire  event  or  extreme  fire  season  may  be  visible  as  a  significant  anomaly 
 against  historical  Earth  observations,  the  scientific  community  seeks  to  apply  a  more 
 comprehensive  definition  of  extreme  fire,  including  its  impacts  on  society  and  the 
 environment.  To  catalogue  extreme  events  that  were  not  necessarily  visible  in  Earth 
 observations,  regional  expert  panels  were  constructed  and  given  responsibility  for  identifying 
 extreme  events  of  the  past  fire  season  (  Section  2.1.3  ).  The  expert  panels  were  given 
 flexibility  to  identify  and  catalogue  wildfire  characteristics  or  impacts  that  are  considered 
 regionally  extreme  but  are  not  necessarily  captured  by  Earth  observations.  Examples  of 
 extremes  that  can  be  captured  by  expert  assessment  (but  not  by  Earth  observations) 
 include:  suppression  difficulty;  fatalities  and  structure  loss;  impacts  on  human  health  and 
 wellbeing;  impacts  on  agricultural  and  other  economic  sectors;  impacts  on  biodiversity,  and; 
 impacts  on  diverse  ecosystem  services  such  as  recreation,  tourism,  or  other  cultural  values. 
 Hence,  Section  2.2  identifies  a  variety  of  impactful  events  displaying  a  broad  range  of 
 characteristics  and  impacts  that  can  occur  across  diverse  fire  regimes  (e.g.  Archibald  et  al., 
 2009; Cunningham et al., 2024a, 2024b; Keeley, 2009). 

 As  a  new  development  for  this  report,  we  added  several  new  analyses  providing  context  to 
 the  observed  extremes  in  fire  during  the  past  fire  season  (  Section  2.1.4  ).  Specifically,  we 
 added  an  analysis  of  extreme  fire  weather  days  for  the  2024-2025  fire  season  allowing  the 
 spatial and temporal context of extreme fires with extreme fire weather to be described. 

 2.1.1.  Earth Observations of Fire 

 2.1.1.1.  Input Datasets 

 We  assembled  observations  of  burned  area  (BA),  synonymous  with  fire  extent,  for  the  period 
 March  2002-February  2025  from  the  National  Aeronautics  and  Space  Administration  (NASA) 
 product  MCD64A1  (collection  6.1).  MCD64A1  provides  daily  BA  observations  at  500  m 
 spatial  resolution  with  global  coverage  and  is  based  on  retrievals  from  the  Moderate 
 Resolution  Imaging  Spectroradiometer  (MODIS)  sensors  mounted  to  the  Terra  and  Aqua 
 satellites (Giglio et al., 2018, 2021). 

 We  also  produced  a  global  record  of  individual  fires  for  the  period  March  2002-February 
 2025  by  updating  the  Global  Fire  Atlas  (Andela  et  al.,  2019)  through  February  2025,  driven 
 by  the  500m  MODIS  BA  data.  The  Global  Fire  Atlas  algorithm  clusters  burned  cells  into 
 individual  fires,  tracks  their  daily  progression,  and  logs  attributes  such  as  fire  size  and  mean 
 daily  rate  of  growth.  Our  updates  are  provided  at  Andela  and  Jones  (2025).  The  Global  Fire 
 Atlas  is  one  of  several  products  tracking  daily  fire  progression  and  identifying  individual  fires 
 at  global  scale  based  on  moderate  resolution  satellite  data  (Andela  et  al.,  2019;  Laurent  et 
 al.,  2018;  Artés  et  al.,  2019).  The  product  uses  the  MODIS  BA  product.  The  smallest  unit  of 
 disaggregation  is  500m  and  the  shortest  timestep  on  which  the  expansion  of  a  fire  can  be 
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 observed  is  daily.  Given  its  resolution,  the  Global  Fire  Atlas  is  expected  to  represent  the 
 dynamics of large fires better than smaller fast-moving fires. 

 In  addition,  we  gathered  estimates  of  fire  carbon  (C)  emissions  for  the  period  March 
 2024-February  2025  from  two  models  driven  by  Earth  observations  of  active  fires  or  BA: 
 firstly,  the  Global  Fire  Assimilation  System  (GFAS)  product,  provided  operationally  by  the 
 Copernicus  Atmospheric  Services  (CAMS)  at  0.1  degree  spatial  resolution  and  daily 
 temporal  resolution  (Kaiser  et  al.,  2012;  European  Centre  for  Medium-Range  Weather 
 Forecasts,  2024),  and;  secondly,  the  Global  Fire  Emissions  Database  (GFED;  version  4.1s) 
 product  at  0.25  degree  spatial  resolution  and  daily  temporal  resolution  (van  der  Werf  et  al., 
 2017).  GFAS  is  driven  by  the  fire  radiative  power  (FRP)  retrievals  in  the  MODIS  active  fire 
 product  MCD14A1  and  biome-level  relationships  between  FRP  and  biomass  consumed 
 based  on  GFED3  (Kaiser  et  al.,  2012).  For  the  1997-2016  period,  GFED4s  is  driven  by 
 MODIS  BA  data  (MCD64A1  collection  5)  supplemented  with  small  fire  BA  based  on  MODIS 
 active  fire  data,  and  a  model  for  biomass  productivity  and  fuel  consumption  (van  der  Werf  et 
 al.,  2017).  For  the  post-2016  period,  emissions  are  based  on  active  fire  detections  scaled  to 
 emissions using pixel-based scaling factors derived from the 2003-2016 overlapping period. 

 As  a  new  analysis  developed  for  the  2024-25  report,  we  added  summaries  of  the  peak  (95th 
 percentile)  intensity  of  the  fires  detected  in  the  Global  Fire  Atlas.  The  underlying  data  for  this 
 analysis  were  daily  observations  of  fire  radiative  power  (FRP)  from  the  NASA  active  fire 
 products  MOD14A1  and  MYD14A1  (Giglio  et  al.,  2016).  FRP  measures  the  rate  of  radiant 
 energy  emitted  by  a  fire,  which  is  directly  related  to  the  fire's  intensity  and  fuel  consumption. 
 MOD14A1  and  MYD14A1  each  provide  FRP  observations  at  two  different  times  of  the  day, 
 with  the  MOD14A1  dataset  produced  based  on  retrievals  from  the  MODIS  sensor  aboard 
 NASA’s  Terra  satellite,  which  overpasses  at  around  10:30  AM  and  10:30  PM  local  time,  and 
 the  MYD14A1  dataset  produced  based  on  retrievals  from  the  MODIS  sensor  aboard  NASA’s 
 Aqua  satellite,  which  overpasses  at  around  1:30  PM  and  1:30  AM  local  time.  In  our  case, 
 daytime  and  nighttime  observations  of  FRP  were  combined  into  a  single  dataset  of  active  fire 
 detections  obtained  from  any  satellite  overpass  and  either  MODIS  sensor.  To  minimize 
 potential  uncertainties,  we  excluded  FRP  measurements  associated  with  large  MODIS  scan 
 angles (>50°), and normalized the FRP measurements by pixel size (Li et al., 2024). 

 The  upcoming  decommissioning  of  the  Terra  and  Aqua  satellites  on  which  the  MODIS 
 instruments  are  mounted  pose  potential  challenges  for  evaluating  long-term  data  records  of 
 BA  and  estimated  emissions  from  wildfires.  The  wider  community  requires  continued 
 development  of  BA  and  active  fire  products  from  sensors  such  as  VIIRS  (e.g.,  Parrington  et 
 al., 2025). 

 2.1.1.2.  Input Data Uncertainties 

 We  note  that  the  MODIS  BA  product  data  used  in  our  analyses  of  anomalies  in  BA  and 
 individual  fire  properties  (via  the  Global  Fire  Atlas)  are  known  to  be  conservative  due  to  the 
 limitations  to  detecting  small  fires  (e.g.  agricultural  fires)  based  on  surface  spectral  changes 
 at  500m  resolution.  Recent  work  has  shown  that  including  detections  of  small  active  fires 
 increases  global  BA  estimates  by  93%  (Chen  et  al.,  2023).  However,  variability  and  trends  in 
 regional  BA  totals  using  datasets  that  include  small  fires  do  not  differ  significantly  from  the 
 variability  and  trends  present  in  the  MODIS  BA  product  (Chen  et  al.,  2023).  Hence,  inclusion 
 or  exclusion  of  small  fires  tends  to  generate  biases  in  central  estimates  of  BA  in  one 
 direction  or  the  other,  in  line  with  the  sensitivity  of  different  sensors  to  different  fire  types. 
 Uncertainty  in  the  detection  of  small  fires  is  larger  than  in  the  case  of  fires  detected  in  the 
 MODIS  BA  product,  due  to  limited  validation  (van  der  Werf  et  al.,  2017).  The  MODIS  BA 
 product  with  resolution  of  500  m  is  deemed  highly  suitable  for  addressing  the  research 
 questions of this report, which focus on more impactful fires that tend to burn larger areas. 

 9 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

https://doi.org/10.5194/essd-2025-483
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 Uncertainties  in  the  BA  estimation  can  be  approached  by  comparing  different  existing  global 
 BA  products.  For  instance  the  estimations  of  BA  from  the  NASA  MCD64A1  product,  which  is 
 the  basis  for  the  calculations  of  this  paper  are  40%  lower  than  ESA  FireCCIS311,  based  on 
 Sentinel-3  reflectance  and  VIIRS  active  fires,  and  20%  lower  than  the  estimations  provided 
 by  the  Copernicus  Land  service  (March  2024-Feb  2025  period).  Comparing  these  estimates 
 with  the  BA  derived  from  higher  resolution  sensors,  such  as  Sentinel-2  MSI  would  probably 
 double  the  estimations  of  MCD64A1,  as  it  was  observed  in  Africa  (Chuvieco  et  al.,  2022)  and 
 the GFED5 BA product (Chen et al., 2024). 

 Uncertainties  in  fire  carbon  emissions  estimates  from  GFED4.1s  are  on  the  order  of 
 ±20-25%  at  1  standard  deviation  for  global  totals  (van  der  Werf  et  al.,  2017;  van  der  Werf  et 
 al.,  2010).  Uncertainties  in  GFED4.1s  stem  from  uncertainties  in  BA,  the  amount  of  biomass 
 consumed  per  unit  BA,  and  the  carbon  emitted  per  unit  biomass  burned.  Revisions  to  BA 
 input  data,  discussed  above,  have  tended  to  influence  GFED  central  estimates  of  fire  C 
 emissions  to  a  greater  degree  than  the  uncertainties  around  central  estimates  (van  der  Werf 
 et  al.,  2017;  Chen  et  al.,  2023).  Uncertainties  in  fire  carbon  emissions  estimates  from  GFAS 
 are  on  the  order  of  approximately  ±25%  at  1  standard  deviation  for  global  totals. 
 Uncertainties  are  introduced  by  missed  active  fire  detections,  either  below  the  detection 
 threshold  of  the  MODIS  instruments,  or  not  observed  during  the  limited  diurnal  coverage  of 
 Low  Earth  Orbiting  satellites,  assumptions  made  for  biome  classifications,  coefficients  used 
 to  convert  observed  thermal  anomalies  to  consumed  dry  matter,  and  emission  factors  used 
 to  estimate  emitted  quantities  of  carbon  and  pyrogenic  pollutants.  Variation  in  C  emissions 
 estimates  on  the  order  of  approximately  20-60%  has  been  observed  in  studies  comparing 
 multiple emissions products (Wiedinmyer et al., 2023). 

 The  fire  radiative  power  (FRP)  data  provided  by  the  MOD14A1  and  MYD14A1  products  are 
 subject  to  several  well-documented  uncertainties  that  affect  both  the  detection  of  active  fires 
 and  the  precision  of  retrieved  energy  estimates  (Giglio  et  al.,  2016;  Wooster  et  al.,  2021). 
 Omission  errors  typically  arise  when  fires  are  obscured  by  clouds  or,  in  some  cases,  dense 
 smoke  incorrectly  flagged  as  clouds  during  masking  procedures  (Atwood  et  al.,  2016). 
 Additional  omissions  occur  when  the  mid-infrared  (MIR)  radiance  levels  of  small, 
 low-intensity  fires  fall  below  detection  thresholds,  which  is  most  common  in  the  case  of 
 sub-canopy  or  peatland  combustion  (Schroeder  et  al.,  2008;  Roberts  et  al.,  2018).  Temporal 
 gaps  in  satellite  coverage  also  contribute,  as  MODIS  instruments  observe  any  given  location 
 only  up  to  four  times  per  day,  often  missing  short-lived  events  or  peak  fire  activity  in  the  late 
 afternoon  (Roberts  and  Wooster,  2014).  Commission  errors,  by  contrast,  typically  occur 
 when  non-fire  thermal  anomalies  are  misclassified  as  active  fires.  False  positives  can  be 
 caused  by  sunglint  on  water  or  clouds  or  by  thermally  anomalous  surfaces  such  as  bare 
 soils,  urban  infrastructure,  gas  flares,  and  volcanic  eruptions,  which  produce  elevated  MIR 
 radiance  that  mimics  fire  signatures  (Wooster  et  al.,  2021).  Contextual  detection  algorithms 
 help  mitigate  these  errors  by  comparing  candidate  pixels  to  local  background  conditions. 
 These  approaches  have  been  particularly  successful  in  reducing  commission  errors,  which 
 are  often  below  10%  (Giglio  et  al.,  2016;  Wooster  et  al.,  2021).  In  contrast,  uncertainties  in 
 omission  errors  and  FRP  observations  remain  less  well  characterised  (Wooster  et  al.,  2021; 
 Li et al., 2024). 

 2.1.1.3.  Regional Burned Area, Carbon Emissions and Fire Count Totals 

 We  calculated  regional  totals  of  BA  and  C  emissions  based  on  a  variety  of  regional  layers 
 defined  in  Table  1  .  The  regional  layers  represent  a  range  of  biogeographical  boundaries 
 (e.g.  biomes),  geopolitical  boundaries  (e.g.  countries),  and  values  used  in  scientific  reports 
 (e.g.  by  the  Intergovernmental  Panel  on  Climate  Change;  IPCC).  We  calculated  monthly 
 totals  of  BA  and  fire  C  emissions  for  each  region  by  aggregating  monthly  BA  and  daily  C 
 emissions  data,  summing  the  data  from  the  input  datasets  both  spatially  and  temporally  as 
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 required.  In  the  case  of  fire  C  emissions,  we  also  calculated  the  mean  estimate  of  fire  C 
 emissions from GFED4.1s and GFAS, regionally. 

 We  adopt  a  March-February  definition  of  the  global  fire  season  (e.g.  the  latest  global  fire 
 season  spans  March  2024-February  2025).  Due  to  an  annual  lull  in  the  global  fire  calendar 
 in  the  boreal  spring  months,  fire  season  BA  totals  are  least  sensitive  to  the  shifts  in  fire 
 season  cutoffs  of  1-2  months  if  the  fire  season  centres  on  spring  (Boschetti  and  Roy,  2008). 
 This  makes  the  global  fire  season  centred  on  spring  a  pragmatic  option  for  the  study  of 
 interannual  variability  or  trends  in  fire  extent  (Boschetti  and  Roy,  2008).  The  period 
 March-February  is  specifically  oriented  at  the  end  of  the  austral  fire  season  and  before 
 widespread  fires  have  begun  in  the  boreal  extratropics.  The  regions  where  this  global 
 definition  of  the  fire  season  is  most  problematic  are:  northern  hemisphere  South  America, 
 Southeast Asia, and Central America (Giglio et al., 2013). 

 In  addition,  we  calculated  totals  of  regional  fire  counts  for  each  global  fire  season  based  on 
 the  number  of  individual  fire  ignition  points  present  within  each  region,  using  ignition  point 
 vectors  from  the  Global  Fire  Atlas.  The  resolution  of  the  MODIS  data  supplied  to  the  Global 
 Fire  Atlas  algorithm  is  500  m  and  hence  fires  that  are  smaller  in  scale  are  omitted.  Regional 
 or national systems may record greater fire counts due to the inclusion of smaller fires. 
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 Table  1:  Regional  layers  to  which  global  Earth  observations  were  disaggregated  and  used  to 
 define  regions  with  extreme  wildfire  seasons  or  extreme  individual  wildfire  attributes. 
 Regional layers are available from Jones et al. (2025). 

 Layer  Short Form  Source  Notes 

 Biomes  NA  Olson et al. (2001) 

 Continents  NA  ArcGIS Hub (2024) 

 Continental Biomes  NA  Olson et al. (2001), 
 ArcGIS Hub (2024) 

 Spatial intersect of biomes 
 and continents. 

 Ecoregions  NA  Olson et al. (2001)  Ecoregions are 
 geographically inset within 
 biomes. 

 Countries  NA  EU Eurostat (2020) 

 UC Davis Global 
 Administrative Areas 
 (GADM) Level 1 

 GADM-L1  UC Davis (2022)  First sub-national 
 administrative level, such 
 as states of the US or 
 provinces of China. Version 
 4.1. 

 Intergovernmental Panel on 
 Climate Change  Sixth 
 Assessment Report (AR6) 
 Working Group I (WGI) 
 Reference Regions 

 IPCC AR6 WGI 
 Regions 

 Iturbide et al. (2020) 

 Global C Project  Regional C 
 Cycle Assessment and 
 Processes (RECCAP2) 
 Reference Regions 

 RECCAP2 
 Regions 

 Ciais et al. (2022) 

 Global Fire Emissions 
 Database (GFED) Basis 
 Regions 

 GFED4.1s 
 Regions 

 van der Werf et al. 
 (2006) 

 2.1.1.4.  Cross-Product Intercomparison of Regional Burned Area Totals 

 In  this  report,  to  characterise  the  dependence  of  our  findings  on  BA  product  choices,  we  add 
 a  supplementary  comparison  between  the  regional  BA  totals  detected  by  the  MCD64A1  BA 
 product  and  two  other  BA  products.  The  first  product  was  the  ESA  Climate  Change  Initiative 
 FireCCIS311  product,  derived  from  Sentinel-3  SYN  reflectance  and  Visible  Infrared  Imaging 
 Radiometer  Suite  (VIIRS)  active  fires  (Lizundia-Loiola  et  al.,  2022;  see  Figure  S1  ). 
 FireCCIS311  is  provided  at  a  spatial  resolution  of  300  m  and  is  based  on  a  contextual 
 algorithm  based  on  Sentinel-3  SYN  surface  reflectance  (SYN  combines  OLCI  and  SLSTR 
 reflectance),  guided  by  active  fire  detections  from  VIIRS.  The  second  product  is  NASA’s 
 VIIRS  BA  product  (VNP64A1  v002;  Zubkova  et  al.,  2024;  Giglio  et  al.,  2024;  see  Figure  S1  ), 
 generated  using  an  adaptation  of  the  MODIS  MCD64A1  Collection  6.1  algorithm,  applied  to 
 750  m  VIIRS  imagery  and  active  fire  detections.  The  hybrid  algorithm  uses  dynamic 
 thresholds  on  composite  imagery  derived  from  a  burn-sensitive  vegetation  index  and 
 temporal  texture  measures,  enabling  it  to  distinguish  fire-induced  changes  from  other  land 
 surface  changes.  It  identifies  the  burn  date  at  500  m  resolution  for  each  grid  cell,  with  prior 
 probabilities  of  burned/unburned  areas  informed  by  cumulative  VIIRS  active  fire 
 observations. 
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 The  FireCCIS311  product  has  been  computed  since  2019,  and  hence  our  cross-product 
 comparisons  focus  on  the  fire  seasons  March  2019-February  2025.  We  followed  identical 
 approaches  as  described  in  prior  sections  to  calculate  regional  BA  totals  and  to  quantify 
 anomalies  of  the  past  fire  season.  With  very  few  exceptions,  we  find  a  high  level  of 
 consistency  between  the  MCD64A1,  FireCCIS311,  and  VIIRS  VNP64A1  BA  products  with 
 regards  to  both  the  regional  BA  totals  and  the  geographical  distribution  of  anomalies  and 
 rankings  of  BA  in  the  2024-25  fire  season  versus  previous  fire  seasons  since  2019  (  Figure 
 S1;  Jones  et  al.,  2025).  This  analysis  adds  confidence  that  regional  anomalies  identified  in 
 the  MCD64A1  BA  product  are  generally  replicated  across  products  from  different  space 
 agencies  using  different  algorithms  applied  to  different  combinations  of  Earth-observing 
 sensors.  The  MCD64A1  BA  product  will  soon  discontinue  due  to  the  decommissioning  of 
 MODIS  sensors  aboard  NASA’s  Terra  and  Aqua  satellites.  Consistency  across  products  is 
 an encouraging finding for the continuity of our annual reporting. 

 2.1.2.  Identifying  Extreme  Fire  Seasons  and  Events  from  Earth 
 Observations 

 2.1.2.1.  Regions with Extreme Wildfire Seasons 

 Anomalies  in  BA,  fire  C  emissions,  and  fire  counts  in  the  latest  global  fire  season  (March 
 2024-February 2025) were calculated in several ways: 

 (i)  as  relative  anomalies  (expressed  in  %)  from  the  annual  mean  during  all  previous 
 March-February periods since 2002 (2003 for fire C emissions); 
 (ii)  as  standardised  anomalies  (standard  deviations)  from  the  annual  mean  during  all 
 previous March-February periods since 2002 (2003 for C emissions); 
 (iii)  as  a  rank  amongst  all  March-February  periods  since  2002  (2003  for  fire  C  emissions), 
 March 2024-February 2025 inclusive. 

 In  this  report,  anomalies  in  fire  C  emissions  are  reported  based  on  the  two-model  mean 
 estimate  from  GFED4.1s  and  GFAS,  however  anomalies  based  on  the  GFED4.1s  or  GFAS 
 estimates individually are also available via Jones et al. (2025). 

 We  identified  regions  in  which  the  latest  fire  season  was  potentially  classifiable  as  ‘extreme’ 
 based  on  the  rank  of  BA,  C  emissions,  and  fire  count  amongst  all  fire  seasons.  For 
 visualisation  purposes,  we  identified  regions  in  which  the  latest  fire  season  ranked  in  the  top 
 5  of  all  annual  fire  seasons  on  record  (see  Section  2.2.1  ).  The  BA  data  for  the  period  March 
 2002-February  2025  includes  23  fire  seasons,  while  the  C  emissions  data  for  the  period 
 March  2003-February  2025  includes  21  fire  seasons.  Hence,  a  top-5  ranking  translates 
 approximately to a fire season in the upper quartile of those on record. 

 We  further  characterised  the  onset,  peak,  and  cessation  of  anomalous  monthly  BA  in  March 
 2024-February  2025.  First,  we  identified  the  month  of  the  event’s  peak  as  the  maximum 
 difference  between  monthly  BA  values  in  March  2024-February  2025  and  the  climatological 
 mean  monthly  values  from  the  prior  March-February  periods.  Thereafter,  the  event’s  onset 
 and  cessation  were  defined  as  the  bounds  of  consecutive  months  with  above-average  BA 
 prior to and following the peak but limited to the March 2024-February 2025 period. 

 The  annual  data  and  anomalies  produced  using  these  methods  are  available  from  Jones  et 
 al. (2025). 
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 2.1.2.2.  Regions with Extreme Individual Wildfire Attributes 

 We  identified  regions  in  which  large  or  fast-moving  fires  occurred  in  the  latest  fire  season 
 based  on  records  of  individual  fires  from  the  Global  Fire  Atlas  (Andela  et  al.,  2019).  For  each 
 region  (  Table  1)  and  year,  we  estimated  the  size  of  the  largest  fire,  the  daily  rate  of  growth  of 
 the  fire  that  spread  most  rapidly,  the  size  of  the  95th  percentile  fire,  and  the  daily  rate  of 
 growth  of  the  95th  percentile  fire.  In  the  Global  Fire  Atlas,  the  daily  rate  of  growth  for  any 
 given  fire  is  determined  by  calculating  the  average  daily  rate  of  growth  at  which  the  fire 
 advanced  across  all  its  constituent  cells.  This  method  includes  cells  burned  by  the  head, 
 flank,  and  backfire  and  produces  lower  spread  rates  than  if  the  calculation  were  based  solely 
 on the cells burned by the head fire. 

 As  a  new  analysis  developed  for  the  2024-25  report,  we  also  identified  regions  in  which 
 intense  fires  occurred  in  the  latest  fire  season  based  on  the  Global  Fire  Atlas  and  FRP 
 observations  from  the  MODIS  active  fire  datasets  (MOD14A1  and  MYD14A1).  Regional 
 values  were  calculated  per  fire  season  across  two  steps  as  follows.  First,  each  fire  present  in 
 the  Global  Fire  Atlas  was  assigned  a  peak  intensity  value  equivalent  to  the  95th  percentile  of 
 all  FRP  measurements  (daytime  and  nighttime)  occurring  within  the  perimeter  and  date 
 range  of  the  fire.  Second,  the  regional  summary  values  were  taken  to  be  the  mean  of  all 
 peak  (95th  percentile)  intensity  values  from  the  cohort  of  fires  occurring  in  a  region  and  fire 
 season.  This  approach  effectively  masks  FRP  measurements  to  fires  that  occur  in  the  Global 
 Fire  Atlas  prior  to  averaging,  meaning  that  the  fire  intensity  anomalies  presented  here  relate 
 to the same set of fires as the fire size and fire rate of growth statistics. 

 Anomalies  in  each  fire  attribute  were  calculated  relative  to  other  fire  seasons  since  2003 
 using  the  same  metrics  as  for  BA  (see  i-iii  above),  and  we  identified  regions  in  which  the 
 latest  fire  season  featured  fires  with  potentially  extreme  attributes  based  on  the  ranking  of 
 the individual fire metrics amongst all fire seasons. 

 The  annual  data  and  anomalies  produced  using  these  methods  are  available  from  Jones  et 
 al. (2025). 

 2.1.3.  Identifying  Extreme  Fire  Seasons  and  Events  from  Expert 
 Consultation 

 2.1.3.1.  Role of Expert Consultation 

 We  assembled  a  panel  of  regional  experts  from  each  continent  (  Table  A1  )  to  contribute  to 
 the  identification,  description,  and  characterisation  of  extreme  wildfire  seasons  or  impactful 
 events  in  the  latest  fire  season.  A  key  role  of  the  expert  panel  was  to  catalogue  regional 
 events  that  significantly  impacted  society  or  the  environment  but  which  may  not  have  been 
 detected  by  Earth-observing  satellites  due  to  issues  such  as  scale,  short  duration,  timing  of 
 overpass,  and  cloud  or  canopy  cover.  This  includes  (but  is  not  limited  to)  wildfires  that 
 impacted  society  by  causing  fatalities,  evacuations,  displacement  (e.g.  homelessness), 
 direct  structure  or  infrastructure  loss  or  damage,  degradation  of  air  or  water  quality,  loss  of 
 livelihood,  cultural  practice  or  other  ways  of  life,  and  loss  of  economic  productivity.  This 
 definition  also  includes  (but  is  not  limited  to)  wildfires  that  impact  the  environment  via 
 disturbance  to  vulnerable  ecosystems,  biodiverse  areas,  or  ecosystem  services  such  as  C 
 storage.  This  approach  recognises  that  Earth  observations  do  not  provide  a  complete  record 
 of  all  impactful  fires.  We  do  not  define  ubiquitous  quantitative  thresholds  of  impact  by  any  of 
 the  measures  outlined  above,  but  rather  invite  in-region  experts  to  identify  events  that 
 triggered  impacts  that  were  sufficient  in  magnitude  to  infiltrate  public  and  political  discourse. 
 The  sources  of  information  available  for  cataloguing  regional  events  include  national/regional 
 fire  records,  land  and  fire  management  agencies  reports,  disaster  management  reports, 
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 news  reports,  and  social  media.  A  second  key  role  of  our  expert  panel  was  to  describe  and 
 contextualise  the  impacts  of  the  fire  seasons  highlighted  as  extreme  by  Earth  observations 
 or regional assessment (see  Section 2.2.3  ). 

 The year in review by continent, produced by the expert panel, is presented in  Appendix A  . 

 2.1.3.2.  Shortlisting of Focal Events 

 In  later  sections  of  this  report,  we  conducted  various  analyses  to  understand  the  causes  and 
 predictability  of  a  selection  of  extreme  wildfire  seasons  or  events  during  March 
 2024-February  2025  (see  Sections  4-6  ).  We  limited  the  number  of  analyses  to  three  globally 
 prominent  focal  events  of  the  2024-25  global  fire  season  because  the  approaches  used  are 
 not operational and time is required to train and optimise our models regionally. 

 In  discussion  with  our  expert  panel,  we  prioritised  the  three  events  studied  in  this  report  by 
 weighing  up  the  anomalies  in  Earth  observations  during  the  latest  fire  season  as  well  as  a 
 suite  of  impacts  that  these  extremes  had  on  people  and  the  environment.  The  focal  events 
 are  notable  for  their  international  significance  even  where  they  have  not  attracted 
 international  media  attention  and  where  they  have  been  highly  relevant  and  recognized 
 within and beyond their region. 

 2.1.4.  Contextualising Analyses 

 2.1.4.1.  Contemporaneous Extremes in Fire Weather 

 In  the  supplementary  material  edition  of  this  report,  we  introduce  routine  summaries  of  the 
 extreme  (95  th  percentile)  fire  weather  days  during  the  March  2024-February  2025  global  fire 
 season  based  on  the  Fire  Weather  Index  (FWI),  a  common  metric  of  fire  danger  developed 
 by  the  Canadian  Forest  Service  as  part  of  the  Canadian  Forest  Fire  Danger  Rating  System 
 (CFFDRS;  van  Wagner,  1987).  The  FWI  comprises  various  components  that  consider  the 
 influence  of  weather  on  fire  danger,  with  2m  temperature,  10m  wind  speed,  precipitation,  and 
 2m  relative  humidity  as  prerequisite  variables.Higher  FWI  values  are  generally  seen  during 
 droughts,  heatwaves  and  strong  winds  as  these  conditions  are  conducive  to  wildfires  in 
 environments  with  sufficient  fuel  load  (Jolly  et  al.,  2015;  Di  Giuseppe,  2016;  Jones  et  al., 
 2022).  We  base  our  analysis  of  extreme  (95th  percentile)  fire  weather  on  the  FWI  dataset 
 derived  from  the  Copernicus  Climate  Change  Service  ERA5  reanalysis  (Hersbach  et  al., 
 2020;  Vitolo  et  al.,  2020)  and  maintained  by  the  Copernicus  Emergency  Management 
 Service  (CEMS,  version  4.1,  2019).  The  same  statistics  are  reported  for  the  2024-25  fire 
 season  as  in  the  case  of  fire  observational  datasets,  including  (i)  ranks,  (ii)  proportional 
 anomalies,  and  (iii)  standardised  anomalies  amongst  all  fire  seasons  since  2002  (  Figure 
 S2  ).  Full  discussion  of  the  methodology  and  results  are  provided  in  Supplementary  Text 
 S2  . The data produced using these methods are available  from Turco et al. (2025). 

 2.1.4.2.  21  st  Century Trends in Burned Area 

 To  place  recent  extremes  in  the  context  of  fire  trends  of  the  past  two  decades,  we  update  our 
 regional  analyses  of  trends  in  annual  BA  from  Jones  et  al.  (2022).  In  addition  to  reporting 
 trends  in  total  BA,  we  also  present  trends  in  forest  BA  as  these  regularly  diverge  from  total 
 BA  trends  (  Figure  S3  ),  following  Jones  et  al.  (2024a).  Full  discussion  of  the  methodology 
 and results are provided in  Supplementary Material  S2  . 
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 2.2.  Results 

 2.2.1.  Extreme Fire Seasons and Events of 2024-25 from Global Earth 
 Observations 

 2.2.1.1.  Global Summary 

 According  to  the  MODIS  BA  product,  3.7  million  km  2  burned  globally  during  the  2024-25 
 global  fire  season  (March  2024-February  2025),  9%  below  the  average  of  previous  fire 
 seasons  (4.0  million  km  2  )  since  2002  and  overall  ranking  16th  (i.e.,  8th  lowest)  of  all  fire 
 seasons  since  2002  (Jones  et  al.,  2025).  Despite  this,  fire  C  emissions  were  9%  above 
 average  at  2.2  Pg  C  during  the  2024-25  global  fire  season,  which  ranks  6th  amongst  all  fire 
 seasons  since  2003  (based  on  annual  averages  of  GFED4.1s  and  GFAS  estimates;  see 
 Section  2.1.2  ;  Jones  et  al.,  2025).  The  2024-25  fire  season  therefore  followed  a  similar 
 pattern  as  in  the  2023-24  fire  season,  with  above-average  emissions  occurring  despite 
 below-average  BA  at  the  global  level.  These  anomalies,  signifying  lesser  fire  extent  but  more 
 severe  fires  than  average,  are  emblematic  of  a  reported  trend  towards  increased  fire  extent 
 and  intensity  in  carbon-rich  environments  such  as  forests  (Jones  et  al.,  2024a).  It  is 
 important  to  note  that  the  MODIS  BA  product  is  uncorrected  for  missed  small  fire  detections 
 as  in  the  case  other  estimates  (e.g.  Chen  et  al.,  2023;  Lizundia-Loiola  et  al.,  2022),  meaning 
 that  the  estimated  BA  extents  from  MODIS  are  conservative  (i.e.,  at  least  3.7  million  km  2 

 burned globally during 2024-25). 

 Stark  regional  contrasts  in  the  anomalies  in  BA,  fire  C  emissions  and  individual  fire 
 properties  are  visible  in  the  Earth  observations  at  various  regional  scales  (  Figure  1  ,  Figure 
 2,  Figure  3  ).  The  three  countries  with  greatest  positive  anomalies  in  BA  and  C  emissions 
 during  2024-25  were  Bolivia,  Brazil,  and  Canada  (  Table  2  ,  Table  3  ),  marking  a  second 
 consecutive year in which the Americas experienced an anomalous fire season. 

 On  the  scale  of  continental  biomes  (  Figure  1,  Figure  2,  Figure  3  ),  the  greatest  BA  and  fire 
 C  emissions  anomalies  of  2024-25  were  seen  in  the  North  American  boreal  forests  (mostly 
 in  Canada),  the  South  American  moist  tropical  forests  (mostly  in  Amazonia),  the  South 
 American  dry  tropical  forests  (mostly  in  the  Chiquitano  dry  forests  of  Bolivia),  and  the  South 
 American  grassland  and  savannah  biome  (mostly  in  the  Cerrado  region).  On  the  other  hand, 
 it  was  a  second  consecutive  year  the  African  savannahs  experienced  a  low  fire  season.  In 
 the  world’s  tropical  savannah  regions,  which  contribute  around  70%  towards  global  BA,  the 
 total  BA  in  the  2024-25  fire  season  was  290  thousand  km  2  (12%)  below  average  in  Africa, 
 slightly  above  average  in  South  America,  and  slightly  above  average  in  Australia  (  Figure  2  ). 
 Total  BA  across  the  global  (sub)tropical  grassland,  savannah,  and  shrubland  biome  was  290 
 thousand  km  2  (10%)  below  average,  and  the  6th  lowest  on  record,  but  still  contributed  70% 
 towards  total  global  BA  during  2024-25.  Correspondingly,  the  C  emitted  by  fires  in  global 
 savannahs was 102 Tg C (10%) below average in 2024-25. 
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 Figure  1:  Anomalies  in  burned  area  (BA)  and  carbon  (C)  emissions  for  selected  continental 
 biomes  in  the  2024-25  global  fire  season  (March  2024-February  2025),  versus  the  average 
 of  prior  fire  seasons  since  2002.  The  selected  regions  all  experienced  BA  anomalies  of  over 
 ±20  thousand  km  2  or  C  emissions  anomalies  over  ±30  Tg  C  during  the  2024-25  global  fire 
 season.  Relative  changes  (%)  are  also  marked  by  triangular  symbols  and  can  be  read  on  the 
 secondary axis. 
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 Figure  2:  Ranks  of  BA  during  March  2024-February  2025  versus  previous  March-February 
 periods  (n  =  23  global  fire  seasons),  at  the  scales  of  (top  left)  continental  biomes,  (top 
 right)  ecoregions,  (bottom  left)  countries  and  (bottom  right)  level  1  administrative  regions. 
 Results  for  regions  with  high-ranking  (top  5  years)  or  low-ranking  (bottom  5  years)  events 
 are highlighted. The timing of BA anomalies is shown in  Figure S4  . 

 Figure  3  :  Rank  of  fire  C  emissions  during  March  2024-February  2025  versus  all 
 March-January  periods  since  2003  (n  =  22  global  fire  seasons),  at  the  scales  of  (top  left) 
 continental  biomes,  (top  right)  ecoregions,  (bottom  left)  countries  and  (bottom  right)  level 
 1  administrative  regions.  We  consider  C  emissions  estimates  from  two  products  (GFAS  and 
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 GFED),  first  calculating  the  mean  emissions  value  from  the  two  products,  then  ranking  the 
 values. 

 Table  2:  Summary  of  the  largest  positive  anomalies  in  burned  area  (BA)  during  the  2024-25 
 fire  season  on  national  and  sub-national  scales.  Anomalies  are  expressed  relative  to  all 
 previous  fire  seasons  2002-2024  (n  =  23).  The  table  includes  the  top  ten  countries  ranked  by 
 the  magnitude  of  their  absolute  BA  anomalies  and  the  top  30  level  1  administrative  regions 
 (e.g.  states  or  provinces)  grouped  into  countries  where  applicable.  Extended  data  for  all 
 countries and region layers are available from Jones et al. (2025). 

 Region Name 
 BA during the 2024-25 

 fire season 
 (thousand km  2  ) 

 Absolute BA 
 anomaly 

 (thousand km  2  ) 

 Relative BA 
 Anomaly 

 (%) 

 Ranking of 
 the 2024-25 
 fire season 

 Bolivia  107  +67  +169  1 
 Santa Cruz (Department of Bolivia)  65  +49  +311  1 
 Beni (Department of Bolivia)  36  +15  +74  4 

 Brazil  243  +59  +32  3 
 Mato Grosso (State of Brazil)  68  +22  +49  4 
 Pará (State of Brazil)  36  +20  +119  1 
 Mato Grosso do Sul (State of Brazil)  23  +11  +90  2 
 Amazonas (State of Brazil)  9  +6  +254  1 
 São Paulo (State of Brazil)  10  +4  +67  4 

 Canada  46  +21  +86  2 
 Northwest Territories (Territory of Canada)  16  +12  +281  3 
 British Columbia (Province of Canada)  8  +5  +154  4 
 Alberta (Province of Canada)  7  +4  +123  2 

 Venezuela  43  +15  +52  2 
 Apure (State of Venezuela)  16  +5  +41  2 
 Bolívar (State of Venezuela)  6  +3  +133  1 

 Niger  13  +10  +257  1 
 Tahoua (Department of Niger)  5  +4  +967  1 

 Burkina Faso  33  +9  +39  5 
 Sahel (Region of Burkina Faso)  6  +6  +1226  1 

 Angola  374  +9  +2  8 
 Moxico (Province of Angola)  61  +8  +15  3 
 Huíla (Province of Angola)  20  +6  +49  1 
 Cunene (Province of Angola)  18  +5  +35  5 
 Bié (Province of Angola)  20  +4  +25  1 

 Congo (Republic of the)  41  +8  +25  1 
 Sudan  82  +8  +11  8 
 North Darfur (State of Sudan)  15  +9  +168  1 

 Mali  77  +7  +10  6 
 Gao (Region of Mali)  13  +12  +1383  1 

 Other 
 Queensland (State of Australia)  100  +19  +24  5 
 Heilongjiang (Province of China)  23  +14  +164  2 
 Zabaykal'ye (Territory of Russia)  23  +11  +88  3 
 North-Western (Province of Zambia)  45  +10  +29  1 
 Sakha (Republic of Russia)  27  +9  +55  6 
 Amur (Region of Russia)  20  +8  +70  4 
 Zamfara (State of Nigeria)  9  +5  +95  4 
 Oregon (State of United States)  7  +5  +285  1 
 Jilin (Province of China)  7  +4  +186  4 
 Sankuru (Province of Dem. Rep. Congo)  11  +4  +58  1 
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 Table  3:  Summary  of  the  largest  positive  anomalies  in  carbon  (C)  emissions  during  the 
 2024-25  fire  season  on  national  and  sub-national  scales.  Anomalies  are  expressed  relative 
 to  all  previous  fire  seasons  2003-2024  (n  =  22).  The  table  includes  the  top  ten  countries 
 ranked  by  the  magnitude  of  their  absolute  C  emissions  anomalies  and  the  top  30  level  1 
 administrative  regions  (e.g.  states  or  provinces)  grouped  into  countries  where  applicable. 
 Extended data for all countries and region layers are available from Jones et al. (2025). 

 Region Name 
 C emitted during the 
 2024-25 fire season 

 (Tg C) 

 Absolute C 
 emissions anomaly 

 (Tg C) 

 Relative C 
 emissions 
 Anomaly 

 (%) 

 Ranking of 
 the 

 2024-25 
 fire season 

 Canada  282  +189  +204  2 
 Northwest Territories (Territory of Canada)  104  +85  +441  2 
 Alberta (Province of Canada)  56  +42  +297  2 
 British Columbia (Province of Canada)  55  +36  +196  2 
 Saskatchewan (Province of Canada)  43  +28  +184  3 
 Manitoba (Province of Canada)  11  +5  +74  4 

 Bolivia  187  +148  +383  1 
 Santa Cruz (Department of Bolivia)  157  +136  +637  1 
 Beni (Department of Bolivia)  23  +11  +86  3 
 La Paz (Department of Bolivia)  4  +2  +79  4 

 Brazil  314  +111  +55  4 
 Mato Grosso (State of Brazil)  86  +29  +50  6 
 Amazonas (State of Brazil)  35  +25  +237  1 
 Mato Grosso do Sul (State of Brazil)  30  +23  +323  1 
 Pará (State of Brazil)  59  +22  +61  4 
 Tocantins (State of Brazil)  22  +5  +33  5 
 São Paulo (State of Brazil)  8  +5  +190  1 
 Rondônia (State of Brazil)  22  +3  +16  7 
 Roraima (State of Brazil)  5  +2  +81  5 

 Venezuela  26  +8  +47  3 
 Bolívar (State of Venezuela)  5  +2  +97  1 

 Mexico  29  +6  +26  5 
 South Africa  18  +3  +24  2 
 Angola  146  +3  +2  9 
 Moxico (Province of Angola)  28  +5  +21  3 
 Bié (Province of Angola)  9  +2  +35  1 
 Huíla (Province of Angola)  7  +2  +37  1 

 Peru  7  +2  +51  2 
 Russian Federation  179  +2  +1  9 
 Sakha (Republic of Russia)  75  +32  +74  3 
 Zabaykal'ye (Territory of Russia)  31  +14  +78  4 
 Amur (Region of Russia)  25  +8  +46  5 
 Arkhangel'sk (Region of Russia)  2  +2  +1776  1 

 Congo (Republic of the)  10  +2  +24  2 
 Other 
 Queensland (State of Australia)  31  +4  +14  7 
 Oregon (State of United States)  7  +4  +130  3 
 Idaho (State of United States)  5  +3  +139  3 
 North-Western (Province of Zambia)  22  +2  +12  1 
 Alto Paraguay (Department of Paraguay)  6  +2  +55  2 
 Mai-Ndombe (Province of Dem. Rep. Congo)  7  +2  +36  1 
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 2.2.1.2.  An Unprecedented Fire Season in South America 

 There  were  pronounced  and  widespread  positive  anomalies  in  BA  in  2024-25  across  South 
 America  during  2024-25  (  Figure  1,  Figure  2  ).  Several  South  American  biomes  experienced 
 extremely  high  or  even  record-setting  BA  in  the  2024-25  fire  season  (  Figure  1  ).  The  South 
 American  (sub)tropical  dry  broadleaf  forests,  principally  comprising  the  Chiquitano  and 
 Chaco  dry  forests,  experienced  a  record-breaking  fire  season,  with  the  42  thousand  km  2 

 burned  exceeding  the  average  since  2002  by  a  factor  of  3.6  and  the  100  Tg  C  emitted 
 exceeding  the  average  since  2003  by  a  factor  of  6.  In  the  South  American  (sub)tropical  moist 
 broadleaf  forests,  principally  comprising  the  Amazon  rainforest,  BA  was  47  thousand  km  2 

 (75%)  above  the  average  since  2002,  which  is  the  second-highest  year  on  record,  and  C 
 emissions  were  correspondingly  76  Tg  C  (58%)  above  average.  Finally,  in  the  South 
 American  Flooded  grassland  and  savannah  biome,  which  principally  includes  the  seasonally 
 inundated  Pantanal  region,  BA  was  26  thousand  km  2  (119%)  above  the  average  since  2002, 
 which  is  also  the  second-highest  year  on  record,  and  C  emissions  were  correspondingly  67 
 Tg  C  (397%)  above  average.  Across  South  America  as  a  whole,  BA  was  120  thousand  km  2 

 (35%)  above  average  and  C  emissions  were  263  Tg  C  (84%)  above  average,  producing  the 
 highest C emissions total on record for the continent. 

 The  spatial  breadth  of  the  record-setting  or  high-ranking  anomalies  in  fire  extent,  emissions, 
 size,  rate  or  spread  and  intensity  (  Figure  2,  Figure  3  ,  Figure  4  ),  as  well  as  their  impact  on 
 society  and  the  environment,  made  the  last  fire  season  unprecedented  on  the  continent. 
 Appendix  A  (  Section  A6  )  discusses  the  unprecedented  South  American  fire  season  of 
 2024-25  in  greater  detail,  including  its  impacts  and  regional  context,  relying  also  on 
 information from regional fire monitoring systems and reporting. 

 Fifteen  of  South  America’s  115  ecoregions  experienced  new  record  levels  of  BA  or  C 
 emissions  during  2024-25  (  Figure  2,  Figure  3  )  and  72  of  South  America’s  ecoregions 
 experienced  BA  or  C  emissions  in  the  top  three  years  on  record  (  Figure  2,  Figure  3  ). 
 Regions  with  record  levels  of  BA  or  C  emissions  included  the  Chiquitano  dry  forests  and  the 
 Pantanal  wetlands  of  Bolivia  and  central-west  Brazil.  In  nearby  southern  and  southwestern 
 parts  of  Amazonia,  five  moist  forest  and  seasonally  flooded  (várzea)  ecoregions  also 
 showed  record-breaking  BA  or  C  emissions.  The  widespread  positive  BA  anomalies  in 
 southern  and  southwest  Amazonia,  the  Chiquitano  and  the  Pantanal  were  visible  in  the 
 MODIS  BA  dataset  from  March  and  April  2024,  peaking  in  August-November  2024  before 
 subsiding  around  November  (  Figure  S4  ).  In  the  Guianan  shield  region,  encompassing  much 
 of  Northeast  Amazonia  (north  of  the  Amazon  river  and  the  Rio  Negro  tributary)  and  the 
 Guianan  forests  of  Venezuela,  Guyana,  and  Suriname,  four  moist  forest  and  swamp  forest 
 ecoregions  also  experienced  record-breaking  levels  of  BA  or  C  emissions  (  Figure  2,  Figure 
 3  ).  Here,  BA  anomalies  peaked  around  March-April  before  subsiding  in  May  in  northern 
 parts but persisted through to December in areas closer to the equator (  Figure S4  ). 

 At  the  national  level  within  South  America,  the  most  significant  anomalies  in  BA  during  the 
 2024-25  fire  season  occurred  in  Bolivia,  where  BA  was  67  thousand  km  2  (169%)  above 
 average  and  fire  C  emissions  were  148  Tg  C  (383%)  above  average,  the  greatest  values  on 
 record  in  the  country  (  Figure  2  ,  Figure  3;  Table  2,  Table  3  ).  In  Brazil,  BA  was  59  thousand 
 km  2  (32%)  above  average  and  emissions  were  111  Tg  C  (55%)  above  average  during 
 2024-25,  making  it  the  country’s  third  highest  fire  season  on  record  for  BA  after  2007-08  and 
 2010-11.  Additionally,  Venezuela  recorded  an  anomaly  of  +15  thousand  km  2  (+52%),  its 
 second-highest  BA  total  after  2023-24.  Anomalies  in  these  three  countries  are  highlighted 
 due  to  global  totals  of  BA  and  C  emissions  (  Table  2  ,  Table  3  ).  On  sub-national  scales,  the 
 2024-25  fire  season  saw  record-breaking  BA  or  C  emissions  in  four  states  of  Brazil  (Pará, 
 Amazonas,  Mato  Grosso  do  Sul,  and  São  Paulo),  one  department  of  Bolivia  (Santa  Cruz),  3 
 States  of  Venezuela  (Bolivar,  Delta  Amacuro,  Monagas).  Other  record-breaking  anomalies 
 were  seen  at  sub-national  levels  across  South  America  (  Figure  2,  Figure  3  ),  including  in  6 
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 regions  of  Guyana,  7  regions  of  Peru,  2  districts  of  Suriname,  8  provinces  of  Ecuador,  as 
 well  as  some  parts  of  Chile  and  Colombia  (  Figure  2  ,  Figure  3  ),  clearly  signalling  the  large 
 geographical breadth of the extremes on the continent during the 2024-25 fire season. 

 For  most  regions  of  South  America,  the  anomalies  in  BA  and  C  emissions  were  explained  by 
 particularly  large,  fast  moving  and  intense  fires,  rather  than  above-average  fire  counts 
 (  Figure  4  ).  In  Brazil,  data  on  individual  fire  characteristics  from  the  Global  Fire  Atlas  showed 
 new  record  fire  sizes  at  the  95th  percentile  threshold  for  6  states  (Amapá,  Mato  Grosso, 
 Mato  Grosso  do  Sul,  Paraná,  Rondônia,  and  São  Paulo).  In  Mato  Grosso,  Mato  Grosso  do 
 Sul,  and  São  Paulo,  95th  percentile  fire  sizes  were  105-266%  above  average,  driving  record 
 breaking  BA  despite  fire  counts  being  18-54%  below  average.  Meanwhile,  three  states  (Mato 
 Grosso,  Mato  Grosso  do  Sul,  and  São  Paulo)  all  saw  the  fastest  rates  of  growth  at  the  95th 
 percentile  threshold,  and  5  states  (Mato  Grosso  do  Sul,  Paraná,  Rio  de  Janeiro,  Roraima, 
 and  São  Paulo)  experienced  the  most  intense  fires  on  record  (measured  per  the  average 
 fire’s  95th  percentile  intensity  value;  Figure  4  ).  Unlike  in  other  parts  of  Brazil,  the  fire  count 
 anomaly  (+154%)  was  record-breaking  in  Amazonas  during  2024-25,  combining  with  the 
 95th  percentile  fire  size  anomaly  (+60%)  to  produce  the  record-breaking  BA.  Similar  patterns 
 were  observed  across  South  America,  with  anomalies  in  fire  size,  rates  of  growth,  and 
 intensities  generally  being  more  widespread  than  anomalies  in  fire  count  (  Figure  4  ).  Some 
 notable  exceptions  were  5  regions  of  Peru,  5  regions  of  Ecuador,  3  regions  of  Colombia,  and 
 3  regions  of  Guyana,  where  record-setting  fire  counts  were  observed,  as  well  as  in  parts  of 
 Venezuela where high-ranking fire counts occurred (  Figure 4  ). 

 Figure  4:  Ranks  of  selected  individual  fire  properties  during  the  March  2024-February  2025 
 fire  season  versus  previous  March-February  periods  (n  =  23  global  fire  seasons),  including 
 (top  left)  fire  count,  (top  right)  95th  percentile  fire  size,  (bottom  left)  the  average  value  of  a 
 the  peak  intensity  (95th  percentile  FRP  within  fire  perimeters)  considering  all  regional  fires, 
 and  (bottom  right)  95th  percentile  daily  rate  of  growth.  Results  are  shown  at  the  scale  of 
 states or provinces (GADM administrative level 1 regions). 
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 2.2.1.3.  A Second Consecutive Extreme Fire Year in North America 

 The  2024-25  fire  season  was  the  second-highest  fire  year  on  record  for  BA  and  C  emissions 
 in  the  North  American  boreal  forests,  with  BA  86%  above  the  average  since  2002  (+20 
 thousand  km  2  )  and  C  emissions  3  times  the  average  since  2003  (+168  Tg  C).  These  large 
 anomalies  follow  the  record-breaking  2023-24  fire  season  when  BA  was  five  times  above 
 average  and  C  emissions  were  seven  times  above  average,  marking  two  consecutive  years 
 of  extreme  fire  activity  in  the  North  American  boreal  forests.  Elsewhere,  BA  extent  was  in  the 
 top  three  years  on  record  in  the  North  American  (sub)tropical  moist  broadleaf  forest 
 (concentrated  in  Latin  America),  and  in  the  North  American  mediterranean  forests, 
 woodlands  and  scrub  (concentrated  in  Southern  California).  Across  North  America  as  a 
 whole,  BA  was  31  thousand  km  2  (35%)  above  average  and  C  emissions  were  194  Tg  C 
 (112%) above average, the second highest totals on record for both metrics. 

 Eleven  of  North  America’s  189  ecoregions  experienced  new  record  levels  of  BA  or  C 
 emissions  during  2024-25  (  Figure  2,  Figure  3  ),  with  these  regions  principally  concentrated 
 in  northwest  Canadian  taiga  and  tundra,  mountain  forests  of  the  northwest  US  and 
 southwest  Canada  (principally  in  Oregon  and  Alberta),  and  moist  tropical  forest  ecoregions 
 of  mesoamerica  (principally  in  Mexico),  but  also  including  the  Central  Valley  grasslands  of 
 California  and  the  northeast  coastal  forests  of  the  US.  More  broadly,  but  with  a  similar 
 geographical  distribution,  44  North  American  ecoregions  experienced  BA  or  C  emissions  in 
 the  top  three  years  on  record  (  Figure  2,  Figure  3  ).  The  positive  BA  anomalies  in 
 extratropical  North  America  were  visible  in  the  MODIS  BA  dataset  from  April  2024  in  western 
 regions  (e.g.  mountain  forests  of  the  northwest  US  and  southwest  Canada),  July-August 
 2024  in  the  central  regions  (e.g.  Canadian  tundra  and  taiga),  and  late  into  the  2024  summer 
 in  eastern  regions  (e.g.  northeast  coastal  forests;  Figure  S4  ).  Thereafter,  BA  anomalies 
 were  consistently  observed  through  summer  (July-September  2024)  and  in  some  cases 
 persisted through October 2024. 

 In  Canada,  BA  was  21,000  km  2  (86%)  above  average  and  C  emissions  were  189  Tg  C 
 (204%)  above  average  during  2024-25,  marking  the  country’s  second  highest  fire  season  on 
 record  immediately  following  the  record-breaking  fire  season  of  2023-24  (  Figure  2  ,  Figure 
 3;  Table  2  ,  Table  3  ).  Notably,  the  anomalies  of  2024-25  were  concentrated  in  the  western 
 Canadian  states  of  British  Columbia,  Alberta  and  northwest  Territories  which  all  saw  the 
 second-highest  BA  or  C  emissions  on  record,  with  large  anomalies  in  the  range  of 
 120-440%,  second  only  to  the  2023-24  fire  season.  More  generally,  record  levels  of  BA  or  C 
 emissions  were  less  spatially  extensive  in  North  America  than  in  South  America,  though  the 
 US  states  of  Oregon,  Wyoming,  and  New  York  saw  record  BA,  as  did  several  mesoamerican 
 states of Mexico, Guatemala, and Costa Rica (  Figure  2  ,  Figure 3  ). 

 For  western  Canada,  individual  fire  metrics  from  the  Global  Fire  Atlas  were  also  anomalous 
 and  highly-ranked  amongst  previous  years,  but  generally  fell  short  of  the  records  set  in  the 
 2023-24  fire  season  (  Figure  4  ).  For  example,  fire  counts  were  170-190%  above  average  in 
 Alberta  and  British  Columbia,  ranked  second  (behind  2023-24),  whereas  anomalies  in  95th 
 percentile  fire  size  and  rate  of  growth  were  not  particularly  large.  Meanwhile,  the  explanation 
 for  the  anomalous  BA  in  some  states  of  the  northwest  US  was  not  consistent,  with  some 
 states  experiencing  above-average  fire  counts,  some  experiencing  above-average  fire  sizes, 
 but few experiencing both. 

 Appendix  A  (  Section  A4  )  provides  a  more  complete  summary  of  the  fire  season  in  North 
 America based on the regional panel assessment. 
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 2.2.1.4.  A Mixed Picture in Africa 

 For  the  second  consecutive  year,  BA  was  around  290  thousand  km  2  (12%)  below  the 
 average  of  previous  fire  seasons  in  the  African  (sub)tropical  grassland,  savannah  and 
 shrubland  biome,  and  the  3rd  lowest  on  record  (  Figure  2  ),  but  still  contributed  56%  towards 
 the  global  BA  total  and  86%  towards  total  BA  in  Africa.  BA  anomalies  in  the  African 
 savannahs  have  a  significant  influence  on  the  continental  BA  anomalies,  and  indeed  BA 
 across Africa as a whole was 313 thousand km  2  (12%)  below average. 

 Despite  the  low  fire  activity  in  Africa  during  2023,  several  exceptions  emerged  in  both  central 
 and  northern  Africa.  Record  levels  of  BA  were  observed  in  several  parts  of  the  Congo  Basin 
 (  Figure  2,  Figure  3  )  due  to  an  unusually  high  number  of  fires  (  Figure  4  ).  BA  in  the  Republic 
 of  Congo  was  25%  above  average,  the  highest  on  record,  and  similarly  fire  C  emissions 
 were  25%  above  average  (  Table  2  ,  Table  3  ).  In  the  Democratic  Republic  of  the  Congo,  the 
 Mai-Ndombe  and  Sankuru  provinces  each  experienced  record  levels  of  BA  or  fire  C 
 emissions  with  anomalies  in  the  range  of  36-58%  (  Table  2  ,  Table  3  ).  These  anomalies  were 
 centred  on  several  western  ecoregions  of  the  Congo  Basin,  including  the  Atlantic  Equatorial 
 coastal  forests  where  BA  was  more  than  triple  the  annual  mean,  Western  Congolian  swamp 
 forests  where  BA  was  twice  the  annual  average  and  the  Central  Congolian  lowland  forests 
 where  BA  was  77%  above  average,  and  the  Northwestern  Congolian  lowland  forests  where 
 BA was 55% above average. 

 Likewise,  several  northern  regions  of  Angola  experienced  record  BA  (  Figure  2  ,  Figure  3  , 
 Table  2  ,  Table  3  ).  In  northern  Africa,  Mali,  Niger,  Chad  and  Sudan  all  saw  high  BA  in  various 
 states  or  regions  that  encompass  the  semi-arid  Sahel  region,  though  these  anomalies 
 notably  occur  against  a  low  baseline  in  most  cases  due  to  the  typically  sparse  vegetation 
 fuel  loadings  in  such  regions.  Appendix  A  (  Section  A1  )  provides  a  more  complete  summary 
 of the fire season in Africa based on the regional panel assessment. 

 2.2.1.5.  A Low Fire Year in Eurasia 

 Asian  and  European  biomes  generally  experienced  a  low  fire  year  that  contributed  towards 
 the  below-average  global  BA  total  in  2024-25  (  Figure  1  ,  Figure  2  ).  BA  was  around  50 
 thousand  km  2  (71%)  below  average  in  the  Asian  temperate  grassland,  savannah  and 
 shrubland  biome,  42  thousands  km  2  (62%)  below  average  in  the  Asian  xeric  shrublands,  and 
 9  thousand  km  2  (11%)  below  average  in  the  Asian  (sub)tropical  broadleaf  forests.  The 
 below-average  fire  extent  in  all  of  these  regions  translated  into  below-average  C  emissions, 
 though  not  in  direct  proportion  because  the  combustion  of  vegetation  per  unit  BA  also  varied 
 compared  with  previous  years  (  Figure  1  ).  For  example,  while  BA  was  11%  below  average  in 
 the  Asian  (sub)tropical  broadleaf  forests,  C  emissions  were  54%  (85  Tg  C)  below  average 
 signifying  that  areas  that  did  burn  tended  to  do  so  with  anomalously  low  severity.  Across 
 Asia  as  a  whole,  the  total  BA  was  99  thousand  km  2  (26%)  below  average  during  2024-25, 
 the  4th  lowest  annual  total  on  record,  and  C  emissions  were  119  Tg  C  (28%)  below  average, 
 the 5th lowest on record. 

 While  most  regions  of  Asia  experienced  a  low  fire  year  in  general,  there  were  some  notable 
 exceptions.  Many  states  of  northeast  India  and  Nepal  experienced  high-ranking  or 
 record-breaking  levels  of  BA  or  C  emissions  (  Figure  2,  Figure  3  ),  highlighting  a  coherent 
 regional-scale  anomaly  during  2024-25.  Similarly,  in  northeast  Asia  where  2  provinces  of 
 China  (Heilongjiang  and  Jilin;  Table  2  ),  2  provinces  of  South  Korea,  and  7  prefectures  of 
 Japan  experienced  record-breaking  BA  or  C  emissions  and  many  neighbouring  regions 
 likewise  experienced  high-ranking  fire  years  (  Figure  2  ,  Figure  3  ).  Appendix  A  (  Section  A2  ) 
 provides a more complete assessment of the fire season in Asia. 
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 Though  less  impactful  on  the  global  BA  and  C  emissions  totals  than  in  the  vast  Asian 
 biomes,  the  2024-25  fire  season  was  notably  another  low  fire  year  in  Europe.  For  example, 
 BA  was  13  thousand  km  2  (59%)  below  average  in  the  European  temperate  broadleaf  and 
 mixed  forests,  12  thousand  km  2  (40%)  below  average  in  the  European  temperate  grassland, 
 savannah  and  shrubland  biome.  Across  Europe  as  a  whole,  the  total  BA  was  30  thousand 
 km  2  (49%)  below  average  during  2024-25,  the  4th  lowest  annual  total  on  record,  and  C 
 emissions were 5 Tg C (22%) below average, the 7th lowest on record. 

 Despite  the  low  fire  activity  in  Europe,  there  were  several  exceptions  in  southeast  Europe.  In 
 regions  of  Serbia,  North  Macedonia,  and  western  Turkey  experienced  record  high  BA  or  C 
 emissions  in  2024-25.  Further  north,  several  eastern  regions  of  Ukraine  experienced 
 record-breaking  fire  C  emissions,  with  some  suggesting  a  link  between  elevated  ignitions 
 and  the  ongoing  conflict  in  the  country  (European  Commission  Joint  Research  Centre, 
 2025).  Appendix  A  (  Section  A3  )  provides  a  more  complete  assessment  of  the  fire  season 
 in Europe based on regional panel assessment. 

 2.2.2.  Focal Events of this Report 

 In  this  year’s  report,  we  identify  four  focal  events  with  global  relevance  for  further  study 
 across  Sections  4-6  .  The  four  events  are  Northeast  Amazonia,  the  Pantanal-Chiquitano, 
 Southern  California,  and  the  Congo  Basin  (  Figure  5  ),  and  our  reasons  for  selecting  these 
 particular  events  are  detailed  below.  In  Sections  4-6  ,  our  analyses  explain  the  causes  of 
 each  of  the  events  (  Section  4  ),  evaluate  the  predictability  of  the  events  (  Section  4  ),  attribute 
 the  events  to  climate  change  and  land  use  factors  (  Section  5  ),  and  predict  the  likelihood  of 
 similar events under future climate change scenarios (  Section 6  ). 
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 Figure  5:  Spatial  distribution  of  burned  area  (BA)  anomalies  during  2024-25  relative  to  the 
 mean  annual  BA  (%).  BA  is  shown  at  0.25°  resolution  (Northeast  Amazonia  and  Congo 
 Basin)  or  0.05°  resolution  (Pantanal  and  southern  California).  Fire  ignition  points  (open 
 circles)  from  the  Global  Fire  Atlas  are  also  shown  for  the  fires  with  sizes  in  the  upper  quartile 
 regionally  during  2002-2025,  with  the  largest  fires  for  each  region  displaying  as  the  largest 
 and most visible circles. 

 2.2.2.1.  Northeast Amazonia (January-March 2024) 

 The  Northeast  Amazonia  region  here  refers  to  the  moist  tropical  forest  ecoregions  northeast 
 of  the  Amazon  river  and  the  Rio  Negro  tributary,  mostly  including  Amazonia  but  also 
 including  the  Guianan  Shield  forests  that  extend  into  Venezuela,  Guyana,  Suriname,  and 
 French  Guiana  (  Figure  5  ).  We  specifically  target  the  period  January-March  2024.  In  this 
 region,  as  in  other  parts  of  the  northern  hemisphere  tropics,  our  global  March-February  fire 
 season  definition  can  be  misaligned  with  local  fire  seasonality,  specifically  where  fire 
 seasons  span  two  calendar  years.  Although  this  event  straddles  the  boundary  between  the 
 2023-24  and  2024-25  fire  seasons,  we  include  it  here  to  ensure  that  significant  fire  activity  is 
 not  excluded  solely  due  to  the  constraints  of  our  reporting  framework.  Section  2.2.1 
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 discusses  the  regional  anomalies  that  led  this  region  to  be  identified  (e.g.  Figure  2  ,  Figure 
 3  ),  with  further  review  of  the  fire  season  provided  by  our  expert  panel  in  Appendix  A 
 (  Section A6  ). It emerges as a major event of global  relevance for the following reasons: 

 ●  Record-breaking  burned  area  in  forests:  The  area  of  forest  burned  was  more  than 
 four  times  (+332%)  the  average,  and  the  highest  on  record,  while  total  BA  (including 
 non-forests)  was  also  67%  above  average.  In  forests,  8  continuous  months  of  the  fire 
 season  (March-September  2024)  had  BA  above  the  climatological  mean,  peaking  in 
 March  2024.  The  most  pronounced  anomalies  occurred  in  the  Northern  Amazonian 
 savannas  around  Roraima,  the  forest-savanna  transition  zones  of  northern 
 Venezuela  and  southern  Guyana,  and  the  coastal  ecosystems  near  the 
 Guyana-Suriname border (  Figure S5  ). 

 ●  Carryover  from  the  previous  fire  season:  A  new  record  for  total  BA  had  been  set 
 in  the  previous  fire  season  (2023-24)  mostly  due  to  an  anomalously  high  count  of 
 large  fires  in  non-forests.  The  transition  of  anomalously  high  fire  activity  into  forest 
 environments during the 2024-25 fire season was a distinguishing factor. 

 ●  Anomalous  fire  counts:  The  large  BA  anomalies  were  explained  by  an  anomalously 
 high number of fires, with 1,500 (52%) more fires than the average fire season. 

 ●  Widespread  forest  loss:  Highest  rates  of  forest  loss  (stand-replacing  fire  extent) 
 since 2016 recorded in Amazonia with 60% attributed to wildfires. 

 ●  Disproportionate  impact  on  rural,  traditional  populations  and  Indigenous 
 territories:  Fires  degraded  air  quality  and  destroyed  crops,  homes,  and  native 
 vegetation,  intensifying  food  and  water  insecurity  for  those  living  in  the  region, 
 including  Indigenous  peoples.  The  compounded  effects  of  fire  and  drought  deepened 
 the  humanitarian  crisis  in  the  Yanomami  Territory  and  local  organizations  estimate  at 
 least 70,000 people across urban and rural areas without access to clean water. 

 2.2.2.2.  Pantanal and Chiquitano (August-September 2024) 

 The  Pantanal-Chiquitano  region  here  refers  to  the  areas  draining  into  the  Pantanal  (IBGE, 
 2021),  the  world’s  largest  tropical  wetland  area,  and  the  Chiquitano  dry  forest  ecoregion  in 
 Bolivia  (  Figure  5  ).  We  specifically  target  the  period  January-March  2024,  when  the  most 
 substantial  anomalies  in  BA  were  observed  (  Figure  S6  ).  Section  2.2.1  discusses  the 
 regional  anomalies  in  Brazil  and  Bolivia  that  led  this  region  to  be  identified  (e.g.  Figure  2  , 
 Figure  3  ),  with  further  review  of  the  fire  season  provided  by  our  expert  panel  in  Appendix  A 
 (  Section A6  ). It emerges as a major event of global  relevance for the following reasons: 

 ●  Record-Breaking  burned  area:  BA  in  the  Pantanal-Chiquitano  region  was  almost 
 triple  (+196%)  the  annual  average,  and  the  highest  on  record.  This  anomaly  included 
 a  +466%  BA  anomaly  in  forests.  There  were  8  continuous  months  (March-October) 
 with BA above the climatological mean, oriented around a peak in August 2024. 

 ●  Record-Breaking  carbon  emissions:  Fire  C  emissions  were  6  times  (+502%)  the 
 annual mean, driven up by the large anomaly in forest fire C emissions in the period. 

 ●  Record  fire  size  and  spread:  The  95th  percentile  fire  size  for  the  region  was  over 
 three  times  (+226%)  the  average  and  the  95th  percentile  rate  of  growth  was  88% 
 above  average,  signifying  that  large,  fast-spreading  fires  drove  up  the  anomalous  BA 
 total in the region. 

 ●  Severe  air  quality  degradation:  Over  900  µg/m³  of  fine  particulate  matter  (PM  2.5  ) 
 was recorded in September 2024, which is 60 times above WHO standard. 

 ●  Economic  losses:  Agribusiness  losses  due  to  wildfires  reached  R$  1.2  billion 
 (~US$222 million) in the Pantanal, the biome’s main economic sector. 

 ●  Challenges  in  response:  78  days  of  firefighting  effort  which  involved  multiple  actors 
 was  marked  by  significant  access  and  logistical  challenges  in  remote  regions,  making 
 it difficult to reach and support isolated communities. 
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 2.2.2.3.  Southern California (January 2025) 

 Southern  California  here  refers  to  the  Mediterranean  portions  of  seven  counties  in  California 
 (Los  Angeles,  Orange,  Riverside,  San  Bernardino,  San  Diego,  Santa  Barbara,  and  Ventura; 
 Figure  5  ).  The  Mediterranean  portions  are  defined  based  on  the  ecoregional  definition  of  the 
 US  Environmental  Protection  Agency  (EPA,  2024).  Although  California  as  a  whole  did  not 
 experience  a  particularly  strong  fire  season  in  2024-25  from  the  vantage  of  BA  or  fire  C 
 emissions  (e.g.  Figure  2  ,  Figure  3  ),  the  regional  expert  panel  identified  the  numerous 
 wildfires  affecting  LA  and  surrounding  counties  in  January  2025  as  a  major  event  of  the 
 2024-25  fire  season  (see  Appendix  A  Section  A4  ),  with  the  Palisades  and  Eaton  fires  in 
 particular  leading  to  loss  and  damage  in  the  suburbs  of  LA.  We  specifically  target  the  period 
 January  2025  when  the  most  substantial  anomalies  were  observed  (  Figure  S7  ).  Southern 
 California emerges as a major event of global relevance for the following reasons: 

 ●  High  fatalities  and  structure  loss.  Over  11,500  homes  were  destroyed  across  Los 
 Angeles  County,  and  at  least  30  lives  were  lost  (Los  Angeles  County  Coroner,  2025; 
 Wikipedia,  2025).  The  Palisades  Fire  damaged  or  destroyed  nearly  8,000  structures, 
 while  the  Eaton  Fire  impacted  over  10,000  structures  (CALFIRE,  2025;  Wikipedia, 
 2025). 

 ●  Mass  evacuations.  At  least  153,000  people  evacuated,  with  up  to  200,000  under 
 evacuation  warnings  or  orders  during  the  peak  of  the  crisis  (USGS,  2025b;  NPR, 
 2025; Wikipedia, 2025). 

 ●  Air  quality  impacts  .  Air  and  municipal  water  quality  were  heavily  impacted  by  the 
 fires,  contributing  to  negative  health  outcomes  for  thousands.  During  the  fires,  peak 
 PM  2.5  levels  were  recorded  at  483µg/m³  (an  order  of  magnitude  greater  than  the  35 
 µg/m³  daily  standard  set  by  the  US  Environmental  Protection  Association),  part  of  a 
 prolonged period of Hazardous air quality (California Air Resources Board, 2025). 

 ●  Water  quality  impacts.  Municipal  water  supplies  were  considered  unsafe  for  several 
 weeks  following  the  fires  for  tens  of  thousands  of  residents  in  the  affected  areas  (City 
 of  Pasadena,  2025).  In  response  to  the  fires  outside  Los  Angeles,  over  8.3  million 
 cubic  meters  of  water  from  federal  reservoirs  in  central  California,  a  move  which  has 
 been  criticised  because  this  water  did  not  supply  southern  California,  happened  well 
 after  the  fires  were  controlled,  and  because  it  would  otherwise  have  been  used  for 
 irrigation in the Central Valley (Levin et al., 2025). 

 ●  Exceptional  economic  loss.  Total  economic  losses  were  estimated  at  US$140B 
 including  property  destruction,  health  costs,  business  disruption,  and  infrastructure 
 impacts,  making  this  one  of  the  most  costly  wildfire  events  in  US  history  (LAEDC, 
 2025; UCLA Anderson School of Management, 2025). 

 ●  Wider  economic  disruption.  The  fires  are  projected  to  cause  US$4.6-8.9  billion  in 
 lost  economic  output  over  five  years,  25,000-50,000  job-years  lost,  and  labour 
 income  reductions  of  US$1.9-3.7  billion  (LAEDC,  2025).  The  Palisades  and  Eaton 
 fires  affected  almost  2,000  businesses  (LAEDC,  2025).  As  LA  is  also  the  largest  port 
 on  the  US  Pacific  coast,  the  fires  impacted  broader  supply  chains  that  run  through 
 the port of LA (Terrill, 2025). 

 ●  High  insured  losses.  Industry  estimates  have  placed  insured  losses  in  the  range  of 
 to  US$20-75  billion  (Li  and  Yu,  2025;  Morningstar  DBRS,  2025;  Insurance  Insider, 
 2025),  placing  substantial  additional  stress  on  the  already  volatile  home  insurance 
 market in California and on most global reinsurers. 

 ●  Housing  and  affordability  crisis.  Thousands  of  affordable  housing  units  were 
 destroyed,  worsening  Southern  California’s  housing  shortage,  displacing  large 
 numbers  of  lower-income  residents,  and  exacerbating  the  problem  of  homelessness 
 in  the  region  (Mattson-Teig,  2025;  Li  and  Yu,  2025;  Booth,  2025).  This  triggered  a 
 ripple  mass  displacement  into  both  surrounding  communities  and  beyond  in  the 
 months following the fires (NYT, 2025). 
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 ●  Debris  flows.  The  geology  of  southern  California  is  highly  conducive  to  erosion  and 
 debris  flows  after  wildfires.  Several  debris  flows  following  high-intensity  rainfall  events 
 in  the  weeks  after  the  fire  produced  further  damage  and  required  hundreds  of 
 additional evacuations in and near the affected areas (USGS, 2025a). 

 The  fires  in  Southern  California  have  already  been  subject  to  several  detailed  investigations, 
 which  found  that  the  fires  were  driven  by  exceptionally  late  onset  of  winter  rains  that 
 extended  the  fire  season  into  January,  unseasonably  warm  winter  temperatures,  fuel  buildup 
 from  very  wet  conditions  in  the  prior  year  to  two,  and  powerful  Santa  Ana  winds  exceeding 
 130  km/h,  creating  extreme  fire  weather  conditions  that  propelled  fires  to  progress  downhill 
 from  wildlands  into  the  built  environment  and  become  an  urban  conflagration  (Barnes  et  al., 
 2025;  Garrett,  2025).  The  potential  for  extreme  wildfires  to  develop  under  dry  downslope 
 winds  was  predicted  several  days  in  advance,  including  by  the  National  Interagency  Fire 
 Center  (NIFC),  the  National  Weather  Service  (NWS),  and  the  Storm  Prediction  Center  (SPC; 
 see summary by Wikipedia, 2025) as well as by specialist commentators (e.g. Swain, 2025). 

 2.2.2.4.  Congo Basin (July-August 2024) 

 The  Congo  Basin  region  here  refers  to  the  moist  tropical  forest  ecoregions  of  equatorial 
 Africa  (  Figure  5  ).  Section  2.2.1  discusses  the  regional  anomalies  that  led  this  region  to  be 
 identified  (e.g.  Figure  2  ,  Figure  3  ),  with  further  review  of  the  fire  season  provided  by  our 
 expert  panel  in  Appendix  A  (  Section  A6  ).  It  emerges  as  a  major  event  of  global  relevance 
 for the following reasons: 

 ●  Record-breaking  burned  area:  Highest-ranked  BA  on  record  at  28%  above  the 
 annual  mean  due  to  there  being  4,000  (20%)  more  fires  than  in  the  average  year. 
 There  were  7  continuous  months  with  BA  above  the  climatological  mean.  The  largest 
 fire  anomalies  were  observed  during  July  and  August  (  Figure  S8  ),  especially  in 
 southern  Democratic  Republic  of  the  Congo,  northern  Angola,  and  parts  of  the 
 Republic of the Congo. 

 ●  Unprecedented  role  of  fire  in  primary  forest  loss:  Forest  loss  statistics  from  the 
 recent  Global  Forest  Watch  report  (Goldman  et  al.,  2025)  showed  that  wildfires  were 
 the  dominant  driver  of  a  more  than  doubling  (+150%)  of  rates  of  forest  loss  in  the 
 Republic  of  the  Congo  and  the  Democratic  Republic  of  the  Congo  during  2024 
 versus 2023, representing the highest rates of primary forest loss since 2015. 

 ●  Sparse  reporting  and  poor  media  coverage:  Reporting  on  the  occurrence,  drivers, 
 and  consequences  of  fire  is  extremely  sparse  in  this  region,  including  by  government 
 agencies  and  the  international  and  national  news  media.  This  demonstrates  that 
 extreme  fire  events  in  this  region  are  often  overlooked,  making  it  an  intriguing  case 
 study to investigate in this report. 

 3.  Impact Assessments 

 In  this  edition  of  the  report,  we  introduce  new  routine  regional  assessments  of  fire  impacts 
 on  society  in  terms  of  population  exposure  to  fire,  physical  asset  exposure  to  fire,  the 
 exposure  of  carbon  projects  to  fire,  and  the  degradation  of  air  quality  through  emissions  of 
 fine  particulate  matter  (PM  2.5  ).  For  our  air  quality  analysis,  estimates  are  generated  for  the 
 focal  events  only  (  Section  2.2.2  ).  In  all  other  cases,  estimates  are  provided  for  each  of  the 
 regional  layers  detailed  in  Table  1  ,  mirroring  our  approach  to  providing  regional  summaries 
 of BA, C emissions, and individual fire properties (  Section 2.1.2  ). 
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 3.1.  Methods 

 3.1.1.  Population Exposure Assessment 

 Population  exposure  estimates  are  produced  using  the  global  risk  assessment  platform 
 CLIMADA  (Aznar-Siguan  and  Bresch  2019).  CLIMADA  has  previously  been  validated  and 
 applied  to  systematically  quantify  exposed  population  to  a  variety  of  natural  hazards  globally, 
 such  as  river  floods  (Kam  et  al.  2021)  and  tropical  cyclones  (Stalhandske  et  al.,  2024;  Kam 
 et  al.  2024).  The  BA  hazard  set  is  set  up  using  the  MCD64A1  MODIS  BA  product  (Giglio  et 
 al.  2018).  The  original  BA  data  are  aggregated  monthly  on  a  regular  grid  with  a  resolution  of 
 150  arcsec  and  expressed  as  the  fraction  of  total  cell  area  burned.  For  the  spatial  distribution 
 of  exposed  population,  we  use  Gridded  Population  of  the  World  (Doxsey-Whitfield  et  al., 
 2015),  which  is  spatially  reaggregated  on  the  same  grid  as  the  hazard  using  the  LitPop 
 exposure  layer  (Eberenz  et  al.  2020).  The  population  exposed  to  wildfires  is  estimated  by 
 multiplying  the  BA  fraction  (BA  expressed  as  a  fraction  of  burnable  area)  of  each  cell  by  the 
 population  present  in  each  grid  cell.  As  a  complementary  approximation  to  the  main 
 analysis,  a  single  displacement  share  is  derived  by  comparing  population  exposure 
 estimates  with  reported  displacement  figures  from  the  Internal  Displacement  Monitoring 
 Center  (IDMC,  2025),  acknowledging  that  exposure  only  partially  translates  into  impact. 
 Event  records  are  matched  to  BA  observations  following  the  methodology  described  in 
 Riedel  et  al.  (2025).  We  compute  the  ratio  between  recorded  impacts  and  exposed  values 
 for each event and provide the median of these damage ratios across events. 

 The data produced using these methods are available from Steinmann et al. (2025). 

 3.1.2.  Physical Asset Exposure Assessment 

 Physical  asset  exposure  estimates  are  produced  using  the  global  risk  assessment  platform 
 CLIMADA  (Aznar-Siguan  and  Bresch  2019).  CLIMADA  has  previously  been  validated  and 
 applied  to  systematically  quantify  economic  impacts  resulting  from  exposure  of  physical 
 assets  to  a  variety  of  natural  hazards  globally  (Stalhandske  et  al.  2024),  including  fires  (Lüthi 
 et  al.  2021).  The  exposure  layer  LitPop  (Eberenz  et  al.  2020)  was  used  to  spatially  distribute 
 national-scale  macroeconomic  indicators  as  a  function  of  night  light  intensity  (Román  et  al. 
 2018)  and  population  density  (Doxsey-Whitfield  et  al.,  2015)  within  national  geographical 
 domains.  We  disaggregate  country-based  produced  capital  estimates  (World  Bank,  2024c) 
 for  the  year  2018  to  approximate  physical  asset  density  in  US  dollars  (US$).  Physical  asset 
 exposure  to  wildfires  is  estimated  by  multiplying  the  BA  fraction  of  each  cell  by  the  physical 
 asset  totals  present  in  each  grid  cell  (analogous  to  our  analysis  of  population  exposure, 
 Section  3.1.1  ).  In  addition  to  this  analysis,  a  single  overall  loss  fraction  is  provided 
 recognising  that  exposure  tends  to  overstate  actual  asset  damage.  This  fraction  is  derived 
 by  comparing  modelled  exposure  estimates  with  asset  damages  from  wildfire  events,  as 
 reported  in  the  Emergency  Events  Database  (EM-DAT;  Delforge  et  al.  2025)  maintained  by 
 the  Centre  for  Research  on  the  Epidemiology  of  Disasters  (CRED).  Event  records  are 
 matched  to  BA  observations  following  the  methodology  described  in  Riedel  et  al.  (2025).  We 
 compute  the  ratio  between  recorded  impacts  and  exposed  values  for  each  event  and  provide 
 the median of these damage ratios across events. 

 The data produced using these methods are available from Steinmann et al. (2025). 

 3.1.3.  Carbon Projects Exposure 

 We  estimated  the  exposure  of  carbon  offset  projects  to  fire  by  combining  a  large  set  (n=927) 
 of  project  boundaries  for  forestry  projects  in  Latin  America  (n=394),  northern  America 
 (n=316),  Eurasia  (n=150),  Africa  (n=60),  and  Australasia  (7)  with  information  on  fire  and 
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 climate.  Project  boundaries  were  sourced  from  BeZero  Carbon  Ltd.,  who  have  collated  and 
 digitised  boundaries  for  all  nature-based  projects  in  the  Voluntary  Carbon  Market  (VCM). 
 Information  on  annual  BA  was  derived  from  the  MCD64A1  collection  6.1  data  (Giglio  et  al., 
 2018)  and  this  was  combined  with  information  on  land  cover  from  MCD12Q1  collection  6.1 
 (Sulla-Menashe  et  al.,  2019)  to  separate  forest  from  non-forest  fires.  To  evaluate  drought 
 conditions,  we  calculated  the  12-month  Standardized  Precipitation  Evapotranspiration  Index 
 (SPEI)  using  data  from  ERA5-Land  (Muñoz-Sabater  et  al.,  2021)  calibrated  over  the 
 1980-2014 period. 

 We  evaluated  fire  activity  during  the  2024  calendar  year  in  the  context  of  long-term  trends  in 
 drought  and  fire  risk.  First,  to  assess  how  2024  compared  to  previous  years  since  2001,  we 
 calculated  the  number  of  carbon  projects  affected  by  fire  in  each  year  and  the  average 
 percentage  of  project  area  burned  per  year  (%).  Second,  to  place  this  in  the  context  of 
 climate  change,  we  calculated  the  2024  drought  anomaly  as  the  2024  SPEI  minus  the 
 long-term average SPEI (1980-2023). 

 3.1.4.  Air Quality Impact Assessment 

 The  human  health  risks  associated  with  fire  smoke  pollution  are  well  established.  Smoke 
 contains  a  toxic  mix  of  gases,  including  ozone  and  carbon  monoxide,  as  well  as  fine 
 particulate  matter  (PM  2.5  )  that  can  carry  heavy  metals  and  environmentally  persistent  free 
 radicals  (Hamilton  et  al.,  2021;  Andreae,  2019;  Fang  et  al.,  2023).  Even  short-term  exposure 
 to  these  pollutants  has  been  associated  with  increased  risk  of  cardiovascular  and  respiratory 
 illnesses,  including  asthma  exacerbation,  reduced  lung  function,  and  acute  infections 
 (Johnston  et  al.,  2021;  Xu  et  al.,  2024;  Chen  et  al.,  2021;  Xu  et  al.,  2023;  Aguilera  et  al., 
 2021;  Zhang  et  al.,  2025).  Furthermore,  wildfire  smoke  contributes  to  increased  mortality, 
 particularly  among  vulnerable  populations.  In  addition  to  these  physiological  effects,  heavy 
 smoke  can  significantly  reduce  visibility,  compounding  health  risks  by  increasing  the 
 likelihood of injuries during regular driving, evacuation, or emergency response (Gill and 
 Britz-McKibbin,  2020),  and  generates  lasting  mental  health  effects  amongst  exposed  or 
 displaced communities (Humphreys et al., 2022). 

 To  quantify  the  contribution  of  fires  to  degraded  air  quality  we  used  the  global  model 
 framework  utilised  by  the  Copernicus  Atmosphere  Monitoring  Service  (CAMS)  to  simulate 
 concentrations  of  fine  (<2.5  µm  diameter)  particulate  matter  (PM  2.5  ;  Peuch  et  al.,  2022).  One 
 of  the  key  objectives  of  CAMS  is  to  monitor  and  forecast  global  atmospheric  composition 
 including  smoke  from  vegetation  fires.  Fires  in  CAMS  are  prescribed  by  the  Global  Fire 
 Assimilation  System  (GFAS;  Kaiser  et  al.,  2012),  which  calculates  hourly  estimates  of 
 biomass  burning  emissions  by  assimilating  fire  radiative  power  (FRP)  observations  from 
 satellite-based  sensors  and  by  means  of  land  cover-dependent  conversion  (FRP  to  dry 
 matter)  and  emission  factors  (dry  matter  to  emitted  gas  or  aerosol  species  per  biome) 
 describing  the  rate  at  which  about  40  smoke  constituents  are  released  into  the  atmosphere. 
 This  study  uses  GFAS  version  1.4,  which  is  the  version  used  currently  for  the  NRT 
 production  input  of  CAMS  global  and  regional  forecast  services,  plus  some  improvements 
 that  include  the  use  of  VIIRS  FRP  retrievals.  Spurious  FRP  observations  of  no  vegetation 
 fire  origin  are  filtered  out  in  GFAS  with  a  static  map.  GFAS  ingests  active  fire  information 
 together  with  a  characterization  of  its  uncertainty,  including  an  uncertainty  component  related 
 to the satellite sensor detection limit and a solution for partial observational cloud coverage. 

 Simulations  are  run  with  the  Integrated  Forecasting  System  extended  with  modules  of 
 atmospheric  composition  (IFS-COMPO),  which  describe  source,  sink,  and  transport 
 processes  of  the  main  reactive  trace  gases  (Flemming  et  al.,  2015;  Huijnen  et  al.,  2016)  and 
 aerosol  species  (Morcrette  et  al.,  2009;  Remy  et  al.,  2022,  2024)  and  which,  together  with 
 satellite  observations,  is  at  the  core  of  the  CAMS  system  for  the  global  domain.  Mass  fluxes 
 of  atmospheric  constituents  from  the  surface  into  the  atmosphere  are  either  prescribed  from 
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 CAMS  pre-compiled  emissions  inventories,  with  some  aspects  of  on-line  simulated  temporal 
 variability,  as  in  the  case  of  pollutants  from  the  burning  of  fossil  fuels  for  transportation  and 
 electricity,  or  estimated  online  at  every  time  step  in  the  IFS  when  strongly  dependent  on 
 meteorological  conditions  as  in  the  case  of  desert  dust  and  sea  salt  aerosol  and  of  biogenic 
 fluxes  of  CO  2  .  The  resolution  used  is  the  current  operational  resolution  of  40 km,  with  137 
 vertical  levels.  GFAS  biomass  burning  emissions  are  estimated  at  0.1°  resolution  based  on 
 FRP  observations  from  the  MODIS  sensor  on  both  the  Terra  and  Aqua  satellites  (Giglio  et 
 al.,  2016)  and  from  the  VIIRS  sensor  on  the  Suomi  NPP  satellite  (Csiszar  et  al.,  2014).  The 
 vertical  distribution  of  fire  emissions  within  the  simulation  follows  the  GFAS  IS4FIRES 
 injection height estimation (Sofiev et al., 2012; Remy et al., 2017). 

 To  isolate  the  contribution  of  extreme  fire  events  to  atmospheric  PM  2.5  concentrations,  two 
 sets  of  forecast  experiments  are  run  for  specific  focal  events  using  a  similar  assessment 
 framework.  In  the  first  (“with  local  fires”),  all  emission  sources  of  PM  2.5  were  considered 
 including  those  of  anthropogenic,  dust,  biogenic  and  other  natural  origin.  In  the  second  (“no 
 local  fires”),  biomass  burning  emissions  from  within  the  focal  event  are  excluded.  The 
 difference  in  simulated  PM  2.5  concentrations  between  the  two  runs  then  represents  the  fire 
 contribution to PM  2.5  within the region. 

 After  PM  2.5  concentrations  had  been  simulated  at  a  3-hourly  temporal,  and  40  km  spatial, 
 resolution,  we  summarised  the  influence  of  fires  in  the  region  to  a  daily  population-weighted 
 mean  PM  2.5  concentration  at  ground-level  (in  units  of  µg/m  3  )  for  each  focal  region.  Population 
 data  for  the  year  2020  from  the  Gridded  Population  of  the  World  (GPW)  dataset  version  4 
 (Doxsey-Whitfield  et  al.,  2015)  were  used  to  weight  the  values  of  PM  2.5  concentration  in  each 
 grid  cell  of  the  focal  regions,  producing  a  weighted  mean  value  for  PM  2.5  concentration  for 
 each  simulated  date.  This  process  was  repeated  for  each  simulation  (“with  local  fires”  and 
 “no  local  fires”),  and  daily  differences  between  the  simulations  were  used  to  assess  the 
 additional number of days with poor air quality caused by fires in the focal regions. 

 To  illustrate  the  scale  and  intensity  of  wildfire  smoke  health-relevant  exposure  within  the 
 2024-2025  fire  season,  total  population-weighted  PM  2.5  and  the  isolated  contribution  of  fires 
 to  population-weighted  PM  2.5  in  a  focal  region  are  compared  against  the  World  Health 
 Organisation 24-hour mean (15 µg/m  3  ) standard for  daily PM  2.5  exposure (WHO, 2021). 

 3.2.  Results 

 3.2.1.  Population Exposure 

 During  the  2024-25  fire  season,  we  estimate  approximately  100  million  people  to  have  been 
 exposed  to  wildfires  worldwide.  Exposure  was  most  pronounced  across  South  and 
 Southeast  Asia,  as  well  as  Central  and  East  Africa.  At  the  country  level,  India  and  the 
 Democratic  Republic  of  the  Congo  show  the  highest  numbers,  with  around  15  million  people 
 affected  in  each  (Figure  6;  Figure  S9)  .  Nigeria,  China,  Mozambique,  and  South  Sudan  also 
 were  also  exposed  substantially,  each  with  more  than  5  million  people  affected.  At  the 
 subnational  level,  we  estimate  the  highest  population  exposures  in  Uttar  Pradesh  State 
 (India)  with  over  4.6  million  people,  Heilongjiang  Province  (China)  with  3.7  million,  and 
 Punjab  State  (India)  with  3.6  million  exposed  (Figure  6;  Figure  S9)  .  Several  provinces  in  the 
 Democratic  Republic  of  the  Congo  also  exceed  2  million,  illustrating  how  national-level 
 exposure is often driven by a few highly affected administrative regions. 

 Some  of  the  countries  with  the  most  extreme  anomalies  in  fire  BA  and  C  emissions,  most 
 notably  Bolivia,  Brazil,  and  Canada,  accounted  for  only  a  small  share  of  absolute  global 
 population  exposure,  and  showed  negative  (Canada)  to  modest  positive  (e.g.  Bolivia  and 
 Brazil)  anomalies  (  Figure  6;  Figure  S9)  .  This  decoupling  highlights  the  relevance  of  the 
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 spatial  distributions  of  both  BA  and  population  to  population  exposure,  which  might  be  low 
 when extensive fires occur in remote places. 

 Several  of  the  countries  with  the  highest  absolute  exposures,  such  as  in  India  and  the 
 Democratic  Republic  of  the  Congo,  showed  negative  anomalies  on  a  national  level,  related 
 to  the  fact  that  fire-related  population  exposure  in  these  regions  is  more  recurrent. 
 Nonetheless,  on  a  subnational  level,  some  regions  of  these  countries  show  considerable 
 positive  anomalies,  such  as  in  India’s  Uttar  Pradesh  State  where  4.6  million  people  were 
 exposed  (146%  above  average)  and  about  half  a  million  being  exposed  in  the  provinces 
 Kasaï-Central (+33%) and Kongo-Central (+27%) in the DRC. 

 Population  exposure  anomalies  were  also  high  in  relative  terms  across  parts  of  the  Middle 
 East  and  the  Balkans  (e.g,  Jordan,  Iran,  Iraq,  North  Macedonia,  Albania),  the  Andes  region 
 (e.g.,  Peru,  Ecuador),  the  Northern  coast  of  South  America  (Venezuela,  Guyana,  Suriname; 
 broadly  encompassing  our  focal  region  of  Northeast  Amazonia),  and  Central  Sahel  (e.g., 
 Niger),  as  well  as  isolated  cases  such  as  Nepal  and  Iceland.  For  example,  Jordan  shows 
 divergent  anomalies  in  population  exposure  (+201%)  resulting  from  large  subnational 
 regions  of  Balqa  (+322%)  and  Irbid  (+393%).  These  patterns  of  exposure  mostly  align  with 
 patterns  in  BA  and  carbon  emissions  (Section  2)  ,  in  the  Middle  East  and  the  the  Balkans, 
 Andes,  Northern  coast  of  South  America  and  Central  Sahel.  Although  the  absolute  number 
 of  people  affected  in  some  of  these  countries  remains  low,  the  relative  anomaly  marks  a 
 sharp departure from historical patterns. 

 It  is  important  to  distinguish  between  the  exposed  and  affected  population.  Based  on  521 
 events  in  the  years  2008-2025  recorded  by  IDMC  (2025),  we  estimate  the  damage  ratio  of 
 exposed  to  displaced  population  to  amount  to  3.0%.  While  nearly  100  million  people  were 
 exposed  to  wildfire  activity  in  the  2024-25  season,  only  a  small  fraction  -  20,046  people 
 (IDMC,  2025)  -  were  formally  displaced  (0.02%).  Note,  however,  that  this  figure  likely 
 understates  the  true  scale  of  disruption,  as  displacement  records  are  incomplete.  Many 
 affected  individuals  may  not  be  forced  to  leave  their  homes  but  still  experience  substantial 
 short-  and  long-term  consequences,  including  health  burdens  (Gould  et  al.,  2024)  and 
 financial  distress  such  as  short-term  earning  disruptions  (Borgschulte  et  al.,  2024),  increased 
 missed  mortgage  payments  (Ho  et  al.,  2023),  declines  in  property  values  (Huang  and 
 Skidmore,  2024),  and  lasting  reductions  in  income  later  in  life  (Meier  et  al.,  2025).  Moreover, 
 recent  cases  have  emphasised  that  the  number  of  people  impacted  by  wildfire  smoke  can  be 
 many  times  higher  than  the  number  of  people  directly  exposed  to  fire  (Jones  et  al.,  2024b; 
 Kolden  et  al.,  2024,  2025;  Johnston  et  al.,  2021).  As  such,  these  records  should  be  viewed 
 as a conservative lower bound on the broader human impacts of wildfire exposure. 
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 Figure  6:  (left  panels)  Population  and  (right  panels)  physical  assets  exposed  to  burned 
 area  (BA)  during  the  2024-25  global  fire  season.  The  figure  shows  (top  panels)  the  number 
 of  people  or  the  asset  value  (billion  US$)  exposed  to  fire  and  (bottom  panels)  the  relative 
 anomaly versus all years since 2002. Results are shown at the national scale in  Figure S9  . 

 3.2.2.  Physical Asset Exposure 

 We  estimate  that  physical  assets  exposed  to  wildfires  during  the  2024-25  season  amounted 
 to  US$215  billion  worldwide.  The  highest  asset  exposures  were  concentrated  in  a  mix  of 
 middle-  and  high-income  countries,  led  by  India  (US$44  billion),  the  United  States  (US$26 
 billion)  and  China  (US$17  billion),  followed  by  Venezuela,  South  Africa,  and  Brazil  (Figure  6; 
 Figure  S9)  .  While  India,  and  to  a  lesser  extent  Brazil  and  China,  ranked  highly  in  both 
 population  and  asset  exposure,  the  asset  exposure  landscape  broadens  to  include 
 developed  countries  such  as  the  United  States  and  South  Africa  (US$14  billion).  This 
 divergence  not  only  reveals  different  spatial  patterns  of  wealth  and  infrastructure  but  also  the 
 concentration  of  high-value  assets  in  certain  subnation  regions  (Figure  6;  Figure  S9)  .  For 
 instance,  South  Africa’s  Gauteng  province,  its  economic  hub,  ranked  among  the  most 
 exposed  globally  at  US$8  billion,  despite  the  country’s  moderate  population  exposure. 
 Similarly,  in  the  United  States,  California  alone  accounted  for  over  US$17  billion  in  exposed 
 assets,  driven  largely  by  the  severe  January  2025  wildfires  (US$14  billion)  discussed  in 
 Section  2.2.3  .  These  estimates  are  still  low  in  comparison  to  damage  records  provided  by 
 EM-DAT  for  the  LA  fires  (US$52.5  billion).  This  difference  is  likely  caused  by  an 
 underestimation  of  the  affected  exposure,  which  consisted  of  exceptionally  high-value 
 structures  not  represented  by  LitPop.  This  also  explains  the  underestimation  of  the  asset 
 exposure  anomaly  in  California,  which  is  less  pronounced  (+60%)  than  in  other  states  and 
 regions of the world (  Figure 6  ). 

 In  contrast,  Central  African  countries  such  as  the  Democratic  Republic  of  the  Congo, 
 Nigeria,  and  Mozambique,  which  featured  prominently  in  population  exposure,  did  not  rank 
 highly  in  terms  of  exposed  assets  (Figure  6;  Figure  S9)  .  The  exception  is  South  Sudan 
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 (US$4  billion),  where  asset  exposure  remains  substantial.  The  data  also  highlights  high 
 absolute  asset  exposure  in  Mexico,  Turkey,  and  the  Russian  Federation,  each  with  national 
 totals  around  US$8  billion.  At  the  subnational  level,  exposure  was  concentrated  in 
 economically  important  regions,  including  Izmir  in  Turkey  (US$3  billion),  Mexico  City  (Distrito 
 Federal;  US$3  billion),  and  Russia’s  Kemerovo  and  Rostov  regions  (approximately  US$3 
 billion  each).  These  patterns  underscore  how  wildfire-related  asset  exposure  is  shaped  by 
 the intersection of fire occurrence with concentrated infrastructure and economic activity. 

 Asset  exposure  anomalies  for  the  2024-25  fire  season,  expressed  relative  to  the  same 
 months  of  all  previous  fire  seasons  from  2002-2024  (n  =  23),  reveal  several  hotspots  with 
 unusually  high  physical  asset  exposure.  Notable  positive  national-level  anomalies  were 
 concentrated  across  the  Middle  East  (e.g.,  Iraq,  Syria),  Southeast  Europe  and  the  Balkans 
 (e.g.,  Albania,  Bosnia  and  Herzegovina,  Greece),  parts  of  the  Sahel  and  Horn  of  Africa  (e.g., 
 Niger,  Eritrea),  and  the  northern  tropical  of  South  America  (e.g.,  Ecuador,  Colombia, 
 Guyana)  (Figure  6;  Figure  S9)  .  At  the  subnational  level  (Figure  6;  Figure  S9)  ,  pronounced 
 relative  anomalies  were  observed  in  regions  not  necessarily  among  the  highest  in  absolute 
 asset  exposure.  For  example,  many  of  the  strongest  asset  exposure  anomalies  were  highly 
 localised,  including  regions  of  Chad,  Sudan,  Brazil,  and  Pakistan,  where  this  season’s 
 values  sharply  deviate  from  past  levels  (Figure  6;  Figure  S9)  .  In  contrast,  while  California 
 recorded  the  highest  total  asset  exposure,  its  relative  anomaly  was  modest,  reflecting  its 
 regular  exposure  to  fire.  These  spatial  contrasts  underscore  that  extreme  fire  seasons  can 
 affect both high-value regions and those with historically lower risk. 

 A  comparison  between  asset  exposure  anomalies  and  BA  anomalies  (Figure  6)  shows 
 areas  of  both  alignment  and  divergence.  Overlaps  are  evident  in  Venezuela,  western  Brazil, 
 Niger,  and  parts  of  India  and  Bolivia,  where  elevated  fire  activity  coincided  with  high  asset 
 exposure.  In  contrast,  strong  BA  anomalies  in  parts  of  equatorial  Africa  and  Russia  were  not 
 matched  by  anomalous  asset  exposure.  This  disconnect  underscores  that  fire  activity  alone 
 is  not  a  sufficient  proxy  for  physical  asset  impact.  Rather,  extensive  burns  in  remote  or 
 forested  areas  may  have  limited  consequences  for  built  infrastructure,  whereas  smaller  fires 
 near  wildland-urban  interfaces  can  generate  disproportionately  high  asset  exposure  (Calkin 
 et al., 2023). 

 As  with  population  exposure,  asset  exposure  does  not  equate  to  realised  impact.  Comparing 
 modelled  exposed  assets  with  reported  EM-DAT  figures,  economic  losses  from  105  historic 
 wildfire  events  in  the  time  period  2002-2025  show  a  damage  ratio  of  around  29%  of  exposed 
 asset  value.  While  a  modelled  US$215  billion  in  physical  assets  were  exposed  to  wildfires  in 
 2024-25,  a  smaller  sum  of  US$57  billion  in  realised  damages  was  recorded  by  EM-DAT,  or 
 around  one-quarter  of  our  exposure  estimate.  Note,  that  these  figures  reflect  differences  in 
 scope  and  data  quality.  EM-DAT’s  total  economic  damage  records  may  include  indirect 
 losses,  such  as  business  interruption  and  sectoral  impacts.  Its  definition  is  broad, 
 source-dependent,  and  rarely  disaggregated.  Thus,  reporting  is  uneven  and  regionally 
 biased  due  to  variation  in  local  capacity  and  data  availability  (Mazhin  et  al.,  2021,  Jones  et 
 al.,  2023).  In  contrast,  our  modelled  asset  exposure  offers  a  consistent  estimate  of  physical 
 assets  at  risk,  representing  the  maximum  potential  asset  loss.  Yet,  it  does  not  represent 
 realised  or  total  economic  damage.  While  both  measures  have  limitations,  together  they  help 
 to characterise the scale of global wildfire-related economic impacts. 

 3.2.3.  Carbon Projects Exposure 

 Forestry  projects  can  provide  cost  effective  climate  mitigation  and  co-benefits  to  society  and 
 biodiversity,  though  their  outcomes  depend  on  complex  interactions  between  project 
 activities  and  their  local  ecological  and  social  context  (Holl  and  Brancalion,  2020).  Wildfires 
 present  a  growing  threat  to  forest  carbon  offset  projects,  posing  risks  to  the  permanence  of 
 stored  carbon  (Anderegg  et  al.,  2020)  and  thus  credit  integrity  (Badgley  et  al.,  2022)  and  the 
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 financial  viability  of  project  activities  (Conte  and  Kotchen  2010,  Michaelowa  et  al.,  2021). 
 Forestry  projects  can  focus  on  emissions  avoidance  (e.g.  REDD+),  emissions  removal  (e.g. 
 afforestation  or  forest  restoration),  or  a  combination  (e.g.  improved  forest  management). 
 Here  we  evaluate  fire  activity  during  the  2024  calendar  year  across  an  unprecedented 
 number  of  forestry  projects  in  the  Voluntary  Carbon  Market  (VCM),  and  place  results  in  the 
 context of long term trends in fire risk. 

 The  2024  fire  season  was  characterized  by  anomalously  high  fire  activity  across  the  927 
 projects  evaluated.  In  total  169,  or  18%  of  projects  recorded  BA  in  2024,  a  record  over  the 
 observational  period  (2001-2024)  (Figure  S10  (a)).  This  coincided  with  record  annual  BA 
 with  1.6%  of  project  areas  affected  on  average  (Figure  S10  (b)).  Regional  drought  extremes 
 were  likely  responsible  for  the  observed  uptick  in  fire  activity  during  2024,  with  drought 
 conditions  in  72%  of  projects  exceeding  the  long-term  (1980-2023)  average  and,  in  13%  of 
 projects, exceeding extreme (SPEI < -2) drought conditions (Figure S10 (c)). 

 Interestingly,  observed  anomalies  vary  regionally  and  further  depend  on  project  activities. 
 Exceptional  drought  conditions  in  Latin  America  resulted  in  a  record  number  of  projects 
 being  affected  by  fire  but  total  BA  was  just  short  of  previous  peak  years.  In  this  region,  many 
 projects  focus  on  the  avoidance  of  deforestation  (38%),  and  in  addition  to  climate,  fire  risk  is 
 driven  by  changing  land  cover  and  land  use  over  time  (Alencar  et  al.,  2015).  In  comparison, 
 in  northern  America  a  smaller  number  of  projects  are  prone  to  fire  annually  and  the  majority 
 (93%)  of  projects  focus  on  improved  forest  management.  Here,  a  record  average  burned 
 area  was  observed,  but  the  total  number  of  projects  affected  was  modest  and  aligned  with 
 average  drought  conditions.  Africa  had  the  highest  average  BA  but  2024  was  a  low  fire  year, 
 aligned  with  long  term  BA  trends  in  African  savannas  and  woodlands  (Andela  et  al.,  2014), 
 and  a  relatively  large  number  of  projects  focused  on  afforestation  or  forest  restoration  (52%), 
 which may result in decreasing fire activity over time. 

 Notably,  despite  increasing  fire  risk,  about  46%  of  projects  did  not  experience  any  BA  over 
 the  observational  period,  and  67%  of  projects  were  at  moderately  low  risk  from  fire  (with  less 
 than 0.5% burned annually in the forests within a 50-km buffer zone around the project). 

 Aligned  with  long-term  changes  in  fire  weather  (Jolly  et  al.,  2015,  Abatzoglou  et  al.,  2019), 
 we  found  that  the  majority  of  forest  carbon  projects  faced  anomalous  drought  conditions  in 
 2024.  The  2024  fire  season  affected  a  record  number  of  forest  carbon  projects  globally, 
 resulting  in  an  unprecedented  annual  percentage  of  BA  within  project  boundaries. 
 High-integrity  forest  carbon  projects  can  help  to  mitigate  global  climate  change,  and  we  find 
 some  evidence  that  these  interventions  are  also  reducing  fire  risk  locally.  Nonetheless,  the 
 quality  of  carbon  credits  issued  by  nature-based  projects  depends  on  the  permanence  of  the 
 carbon emissions avoided or removed, which we show to be increasingly at risk. 

 3.2.4.  Air Quality Impact 

 Here,  we  present  estimates  of  the  concentration  of  fine  particulate  matter  (PM  2.5  )  that  the 
 average  person  in  the  Pantanal-Chiquitano  region  experienced  due  to  wildfire  smoke 
 emissions  (the  population-weighted  PM  2.5  concentration;  Figure  7  ).  In  the 
 Pantanal-Chiquitano,  the  population-weighted  PM  2.5  concentration  exceeded  the  WHO  daily 
 PM  2.5  daily  standard  of  15  µg/m³  on  most  days  from  August  to  November  (  Figure  7  ),  with 
 only  30  days  between  July  and  October  falling  below  the  threshold,  most  of  which  were  in 
 early  July.  Considering  fire  emissions  alone,  the  average  person  experienced  PM  2.5  above 
 15  µg/m³  on  16  additional  days  between  July  to  October  due  to  local  fire  emissions,  which  is 
 slightly  lower  (20%)  than  previous  30%  estimate  of  the  contribution  of  Brazilian  deforestation 
 fires  to  PM  2.5  (Reddington  et  al.  2015).  September  marked  the  peak  pollution  month  where 
 the  average  person  experienced  PM  2.5  concentrations  of  61  µg/m³  and  fires  accounted  for 
 approximately  59%  of  the  pollution  mass  (~36  µg/m³).  In  comparison  to  Figure  7  , 
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 non-population  weighted  daily  concentrations  met  or  exceeded  the  US  Environmental 
 Protection  Agency’s  24-hour  maximum  standard  of  150 µg/m³  on  five  days.  Though  no 
 comparable  single-day  maxima  standard  exists  under  WHO  or  Brazilian  air  quality 
 regulations,  this  highlights  the  potential  of  extreme  pollution  exposure  in  low  population 
 regions  closer  downwind  of  South  American  fire  occurrence.  Furthermore,  even  in  the 
 absence  of  fires,  background  pollution  levels  are  already  severely  degraded;  the  presence  of 
 fire  emissions,  however,  significantly  worsens  air  quality  conditions.  Furthermore,  this 
 analysis  has  focused  only  on  the  impact  of  local  fires,  yet  the  overall  seasonality  of  PM 
 matches  the  fire  season  in  South  America.  This  suggests  that  while  local  fires  are  enhancing 
 exposure  to  pollution  there  is  likely  to  be  a  significant  contribution  from  longer-range  fire 
 smoke transport to the region. 

 To  help  contextualize  model  findings,  we  also  examined  model  results  for  the  January  2025 
 Los  Angeles  (LA)  wildfire  (not  shown).  The  modelled  PM  2.5  results  for  the  LA  region  were 
 muted,  with  a  maximum  population-weighted  daily  concentration  of  29 µg/m³  on  January  17. 
 However,  observational  reports  of  the  LA  fire  document  much  more  extreme  pollution, 
 including  a  480 µg/m³  one  hour  peak  and  a  93  µg/m³  daily  mean  peak  on  January  8th  (US 
 EPA,  2025;  Briscoe  and  Rainey,  2025).  This  discrepancy  likely  stems  from  insufficient  spatial 
 and  temporal  resolution  in  both  the  model  and  the  analysis  region,  which  cannot  capture  the 
 rapid  and  highly  localized  plume  behaviour  typical  of  urban  or  wildland-urban  interface  fires. 
 It  illustrates  why  high-resolution  modelling  that  captures  community  scale  air  quality  analysis 
 of  short-lived  extreme  events  are  needed  for  comprehensive  impact  assessments  of  fires  as 
 they  encroach  into  populated  regions.  Benchmarking  model  performance  against 
 documented  local  maxima  could  guide  improvements  and  enhance  reliability  for  future 
 health risk evaluations in all burning environments. 

 Figure  7:  Poor  air  quality  days  caused  by  anomalous  fire  activity  in  the  Pantanal-Chiquitano 
 region  during  the  2024-25  fire  season.  (Left  panel)  shows  the  additional  number  of  days 
 exceeding  the  World  Health  Organisation  (WHO)  daily  standard  of  15  µg/m  3  as  a  result  of 
 fire  emissions  occurring  within  the  defined  regions  (red  outlines),  over  and  above  the  number 
 of  poor  air  quality  days  caused  by  all  other  sources  of  PM  2.5  (e.g.  industrial,  transport,  and 
 residential)  and  from  fires  occurring  outside  of  the  defined  regions.  (Right  panel)  shows  a 
 daily  time  series  of  population-weighted  PM  2.5  concentrations  (µg/m  3  )  under  scenarios  that 
 include  or  exclude  local  fires.  The  WHO  daily  standard  of  15  µg/m  3  is  shown  and  days 
 exceeding that threshold are counted as poor air quality days. 
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 4.  Diagnosing Causes and Assessing Predictability 

 4.1.  Methods 

 4.1.1.  Predictability of Focal Events of the 2024-25 Fire Season 

 4.1.1.1.  Short to Medium Range Forecasts 

 We  evaluated  the  capacity  of  two  distinct  methods  to  predict  fire  occurrence  over  short  to 
 medium  -range  time  periods  (1  to  15  days):  the  Fire  Weather  Index  (FWI;  van  Wagner,  1987; 
 Vitolo et al., 2020) and the Probability of Fire (PoF; McNorton et al., 2024). 

 FWI  is  a  well-established  empirical  indicator  of  fire  danger  mostly  reflecting  the  influence  of 
 meteorological  conditions  on  landscape  flammability.  It  is  based  on  4  prerequisite  weather 
 variables  and  it  describes  the  impact  that  atmospheric  conditions  have  on  fuel  dryness  (see 
 Section  2.1.4.1  ).  It  was  originally  calibrated  for  the  boreal  forests  of  Canada  and  assumes 
 constant  fuel  characteristics.  Due  to  its  ease  of  implementation  it  is  now  widely  used  around 
 the  world  (Bedia  et  al.,  2015;  Di  Giuseppe  et  al.,  2016;  Abatzoglou  et  al.,  2018;  Vitolo  et  al., 
 2020;  Jones  et  al.,  2022).  Here,  we  used  weather  inputs  from  the  ECMWF  Integrated 
 Forecasting system in its operational configurations at 9 km resolutions. 

 PoF  is  one  of  the  outputs  of  the  ECMWF  Sparky  fire  model  and  aims  to  improve  upon  the 
 fire  forecasting  skill  of  the  FWI  (McNorton  et  al.,  2024;  Di  Giuseppe  et  al.,  2025).  The 
 Sparky-PoF  is  a  data-driven  fire  prediction  system  that  advances  on  fire  danger  metrics  by 
 modelling  not  only  the  effect  of  meteorological  variables  on  fire  likelihood  but  also  (i)  the 
 temporal  evolution  of  fuel  load  and  fuel  moisture  content  and  (ii)  ignition  events  informed  by 
 lightning  forecasts,  human  population  density,  and  road  networks.  PoF  is  an  example  of  a 
 new  generation  of  indicators  based  on  machine  learning  methods  that  have  recently  been 
 created  to  produce  more  informative  operational  predictions  of  wildfire  (Shmuel  et  al.,  2025; 
 Di  Giuseppe,  2023).  One  of  the  practical  advantages  of  PoF  is  that  it  can  directly  output  a 
 prediction  of  the  number  of  fire  hotspots  when  averaged  over  vast  areas  which  is  directly 
 comparable  to  active  fire  observations.  While  these  approaches  are  relatively  new,  they  hold 
 great  promise  for  improving  fire  forecasting,  particularly  in  fuel-limited  biomes  where  FWI  is  a 
 weaker  predictor  of  fire  activity  (Bedia  et  al.,  2015;  Jones  et  al.  2022).  PoF  leverages 
 medium-range  (up  to  15  days  horizon)  weather  forecasts  and  fuel  variables  that  are 
 available  from  an  experimental  configuration  where  IFS  is  coupled  with  the  Sparky  fire  model 
 to  drive  a  data-driven  classifier,  trained  on  observed  hotspots  using  a  XGBoost  methodology 
 (Shmuel  and  Heifetz,  2025;  Jain  et  al.,  2020).  Predictions  of  PoF  from  Sparky  showed  better 
 skills  than  FWI  in  recent  events  and  are  available  operationally  with  forecasts  up  to  10  days 
 in advance (Di Giuseppe et al., 2025). 

 In  general,  FWI  is  effective  at  capturing  the  immediate  emergence  of  fire-conducive  weather 
 conditions  across  much  of  the  globe.  However,  it  does  not  consider  the  fuel  build-up  and  the 
 state  of  vegetation  in  specific  biomes  other  than  boreal  forests,  which  is  often  a  critical  factor 
 in  fire  occurrence  As  a  result,  FWI-based  systems  may  predict  fire-prone  conditions  too  far  in 
 advance  of  actual  fire  emergence,  particularly  in  ecosystems  where  vegetation  availability 
 (i.e.,  fuel)  governs  ignition  potential.  In  contrast,  data-driven  models  like  PoF,  which 
 incorporate  information  on  both  dead  and  live  fuel  moisture  content  are  better  able  to  reflect 
 the  delayed  response  of  ecosystems  to  dry  conditions.  These  models  provide  a  more 
 realistic  representation  of  fire  potential  in  fuel-limited  landscapes  or  in  regions  where  the 
 hydroclimatic  cascade  delays  fire  onset.  This  is  especially  relevant  for  wetland  biomes, 
 which have been a key focus of analysis this year. 
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 4.1.1.2.  Subseasonal to Seasonal Forecast 

 4.1.1.2.1.  Fire weather 

 The  prediction  of  fire  weather  over  sub-seasonal  to  seasonal  (up  to  6  months  ahead)  is  a 
 relatively  unexplored  field  of  research  (Roads  et  al.,  2005).  Until  recently,  only  a  few  studies 
 had  specifically  examined  the  prediction  and  predictability  of  fire  weather-related  quantities 
 and  their  connection  to  actual  fire  activity  globally  (Di  Giuseppe  et  al.,  2024).  Here,  we 
 evaluate  the  ability  of  cutting-edge  seasonal  prediction  systems  to  predict  anomalies  in  the 
 FWI,  using  data  available  through  the  Copernicus  Emergency  Management  Service  which 
 uses  ECMWF’s  SEAS5  seasonal  forecasts  as  forcing  (Di  Giuseppe  et  al.,  2024).  We 
 probabilistically  quantify  the  likelihood  of  FWI  values  exceeding  the  seasonal  mean 
 prediction  time  steps  ranging  from  1  to  3  months  considering  a  climate  that  spans  the  period 
 1991-2016.  These  predictions  are  not  designed  to  inform  on  the  exact  location  of  fire 
 outbreaks,  but  rather  to  serve  as  an  indicator  of  landscape  preconditioning  to  burn.  The 
 predictions  highlight  regions  where  anomalous  fire  weather  may  emerge  and  thus  merit 
 closer monitoring, offering an early signal of where fires could become a concern. 

 On  seasonal  timescales,  patterns  of  fire  weather  are  significantly  influenced  by  large-scale 
 climate  modes  such  as  the  El  Niño-Southern  Oscillation  (ENSO)  through  variation  in 
 temperature  and  rainfall  patterns  across  the  tropics  (Latif  et  al.,  1998;  Chen  et  al.,  2017; 
 Bedia  et  al.,  2018).  In  some  tropical  countries,  forecasts  of  ENSO  have  been  used  directly  to 
 predict  risk  of  fire  and  to  implement  preemptive  fire  management  actions  including  bans  on 
 fire  (Pan  et  al.,  2018).  For  example,  major  fire  anomalies  and  regional  haze  events  in 
 southeast  Asia  are  thought  to  have  been  avoided  during  the  2023-2024  El  Niño,  following 
 the  implementation  of  new  predictive  systems  and  policy  interventions  since  earlier  El  Niño 
 years  (e.g.  2015)  (World  Resources  Institute,  2016).  The  effect  of  other  large-scale  climate 
 modes  is  also  present  in  other  world  regions,  such  as  in  the  case  of  the  Indian  Ocean  Dipole 
 (IOD)  in  the  case  of  Australia  (Harris  and  Lucas,  2019)  and  several  Atlantic  and  Pacific 
 oscillations  in  the  case  of  Amazonia  (Aragão  et  al.,  2018).  The  ECMWF’s  SEAS5  forecasts 
 have  been  shown  to  accurately  predict  the  meteorological  variability  associated  with  ENSO 
 and  their  effects  on  fire  activity  over  timescales  of  1  to  2  months  ahead  (Johnson  et  al., 
 2019; Di Giuseppe et al., 2024). 

 4.1.1.2.2.  Burned Area 

 While  FWI  forecasts  can  successfully  identify  regions  with  elevated  fire  danger  aligning  with 
 observed  BA  anomalies,  they  tend  to  indicate  broad  areas  at  risk  and  lack  the  specificity 
 needed  to  pinpoint  where  fires  are  most  likely  to  occur.  This  reflects  a  key  limitation: 
 translating  fire  weather  anomalies  into  accurate  predictions  of  seasonal  fire  activity  is  not 
 straightforward,  as  it  requires  incorporating  additional  drivers,  namely  fuel  availability,  ignition 
 sources,  and  suppression  capacity.  Modeling  the  complex  dynamics  among  fire  and  its 
 bioclimatic  and  human  drivers  remains  a  challenge  and  is  the  focus  of  extensive  research 
 (e.g.  Jones  et  al.,  2022).  Nevertheless,  when  considering  forecasting  ability  in  the  long  range 
 and  accuracy,  climate  remains  the  most  reliable  parameter  among  the  drivers  of  fire  activity. 
 Accordingly,  we  examine  the  potential  of  machine  learning  techniques  to  forecast  BA 
 anomalies,  which  are  being  developed  to  provide  targeted  forecasts  that  guide  the 
 deployment  and  coordination  of  limited  firefighting  resources  amidst  increasingly 
 synchronous  wildfires  (Torres-Vázquez  et  al.,  2025a;  Abatzoglou  et  al.  2021).  We  employ  the 
 model  developed  by  Torres-Vázquez  et  al.  (2025b),  which  is  a  hybrid  approach  combining 
 dynamical  seasonal  drought  forecasts  with  a  statistical  climate-fire  model  based  on  the 
 Random  Forest  (RF)  algorithm.  This  model  leverages  the  Standardised  Precipitation  Index 
 (SPI),  aggregated  over  periods  of  3,  6,  or  12  months,  to  capture  both  antecedent  and 
 concurrent  climatic  conditions  that  influence  fire  activity.  Calibrated  with  historical  BA  and 
 SPI  data,  the  RF  model  forecasts  BA  anomalies  one  month  ahead  of  the  fire  season.  The 
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 system  has  shown  promising  predictive  skill,  successfully  capturing  BA  anomalies  across  the 
 globe (Torres-Vázquez et al., 2025b). 

 4.1.1.3.  Uncertainties and forecast skills 

 Uncertainty  is  a  key  factor  in  prediction  and  is  likely  to  increase  with  forecast  horizon.  The 
 forecast  uncertainty  is  provided  as  the  spread  across  a  set  of  ensemble  simulations  from 
 possible  scenarios  or  by  expressing  the  forecast  as  probability.  Variability  across  the 
 ensemble  of  forecast  realizations  was  previously  estimated  to  be  in  the  range  of  10%-15% 
 for  FWI  (Vitolo  et  al.,  2020),  and  in  this  study  is  reported  as  variance  in  the  forecast  values. 
 PoF  is  a  measure  that  is  probabilistic  in  nature  and  is  reported  as  probability  of  occurrence. 
 For  long-range  predictions,  uncertainty  is  also  explicitly  incorporated  by  expressing  forecasts 
 in  probabilistic  terms,  specifically  as  the  probability  of  exceeding  (or  falling  below)  certain 
 thresholds, such as the upper and lower tercile. 

 The  quality  of  fire  forecasts  is  assessed  by  visually  examining  how  well  the  forecasts  capture 
 the  likelihood  of  key  focal  fire  events.  This  approach  mirrors  the  way  fire  management 
 agencies  typically  interpret  and  use  these  indicators  during  the  fire  season.  It  is  designed  to 
 partially  reflect  the  operational  context  in  which  such  indices  are  applied.  Similarly,  the 
 seasonal  predictions  of  FWI  and  the  probability  of  above-median  BA  aim  to  demonstrate  the 
 type  of  information  currently  available  to  support  informed  decision-making  for  resource 
 planning at extended lead times. 

 4.1.2.  Identifying Causes of Focal Events 

 We  assess  the  main  or  concurrent  causes  of  the  2024-25  focal  fire  events  using  two 
 complementary  modelling  frameworks:  the  Probability  of  Fire  as  part  of  the  Sparky  modelling 
 complex  (McNorton  et  al.,  2024)  and  the  ConFLAME  attribution  framework  (Kelley  et  al., 
 2021;  Barbosa  et  al.  2025b).  PoF  is  applied  to  satellite  observations  of  active  fires  (Giglio  et 
 al.,  2018;  regridded  to  0.1  °  )  and  targets  a  prediction  of  absolute  fire  counts  on  daily 
 timescales.  Meanwhile,  ConFLAME  is  applied  to  satellite  observations  of  BA  from  MODIS 
 (Giglio  et  al.,  2018;  regridded  to  0.5  °)  ,  enabling  causality  analysis  of  fire  events  to  key 
 environmental  and  human-related  causes.  The  ConFLAME  analysis  is  performed  on 
 absolute  BA  fraction  and  anomalies  from  the  2002-2025  climatological  mean  and  includes 
 full  regional  summaries  to  provide  broader  context  and  to  better  support  interpretation  of 
 region-wide  drivers  and  trends.  Used  together,  as  in  this  report,  the  two  systems  provide 
 complementary analyses of the causes of both active fire hotspots and BA anomalies. 

 Each  model  groups  predictors  into  broader  categories  of  causation:  weather,  fuel  and 
 ignitions  (  Table  S1  in  Supplementary  Material  S4  ).  Some  predictors  are  shared  or  overlap 
 between  categories  due  to  their  interconnected  nature  (e.g.,  fuel  moisture  and  weather),  but 
 the  models  are  designed  to  avoid  double-counting.  To  identify  the  main  causes  of  the  fire 
 event,  PoF  uses  an  ensemble-based  gradient-boosted  decision  tree  classifier  (XGBoost), 
 with  attribution  provided  through  SHapley  Additive  exPlanations  (SHAP)  method  taken  from 
 the  SHAP  library  (Lundberg  and  Lee,  2017)  values  to  quantify  the  influence  of  each  driver 
 group on predicted fire hotspots. 

 ConFLAME,  in  contrast,  uses  a  probabilistic  Bayesian  approach  to  assess  the  contribution  of 
 each  driver  group  to  observed  BA,  accounting  for  model  uncertainty  and  fire  stochasticity. 
 While  PoF  is  trained  globally,  ConFLAME  is  trained  separately  for  each  region  to  capture 
 regional  variation  in  the  relationship  between  fire  drivers  and  BA.  Regional  influence  is 
 particularly  relevant  for  explaining  the  final  BA  as  it  depends  on  the  local  variations  of  fuel 
 and  ignition.  Local  ecology  shapes  how  vegetation  and  biomass  affect  burning  (Lehmann  et 
 al.  2014)  and  human  control  can  result  in  promoting  fire  (e.g.  through  deforestation  or  water 
 extraction)  or  suppressing  it  (Andela  et  al.  2017).  In  ConFLAME  causes  are  combined 
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 through  logistic  functions,  with  results  expressed  in  terms  of  likelihoods  for  a  detectable  BA 
 to be associated to a specific cause. 

 Both  systems  include  uncertainty  estimates.  PoF  reflects  uncertainty  via  probabilistic 
 ensemble  outputs  and  a  measure  is  provided  by  the  error  in  the  predicted  number  of 
 hotspots.  ConFLAME  directly  quantifies  uncertainty  from  both  drivers  and  model  structure, 
 providing  confidence  intervals  for  predictions.  While  neither  system  is  free  of  limitations,  this 
 dual-model  setup  allows  for  a  more  robust  assessment  of  fire  causes  across  different  spatial 
 and  temporal  scales,  with  prediction  of  hotspots  providing  a  fine-scale  measure  of  fire 
 activity and BA an integrated assessment of landscape impacts. 

 The  PoF  model  does  not  assume  that  each  factor  always  pushes  fire  activity  in  the  same 
 direction.  For  example,  while  increased  fuel  moisture  generally  reduces  fire  activity  by 
 dampening  ignition  and  spread,  in  some  regions,  higher  antecedent  rainfall  can  lead  to  greater 
 vegetation  growth,  increasing  available  fuel  and  potentially  resulting  in  more  intense  fires  later.  In 
 fuel-limited  regions,  where  grasses  and  herbaceous  plants  dominate,  high  rainfall  can  boost 
 fuel  growth  and  lead  to  more  burning.  But  in  fuel-rich  areas  with  lots  of  trees,  that  same 
 rainfall  mostly  increases  fuel  moisture,  potentially  decreasing  fire  activity.  In  contrast, 
 ConFLAME  allows  you  to  specify  the  expected  direction  of  influence.  When  a  factor  can  both 
 increase  or  decrease  fire  activity  depending  on  context,  those  effects  are  represented 
 separately  in  the  model.  See  Supplementary  Material  for  Section  4  for  a  detailed 
 description. 

 4.2.  Results 

 4.2.1.  Predictability of Focal Events 

 4.2.1.1.  Short to Medium Range Forecasts 

 4.2.1.1.1.  Northeast Amazonia 

 Between  January  and  March,  satellites  detected  over  30,200  fire  hotspots,  marking  the 
 highest  number  recorded  for  that  period  since  monitoring  began  in  1999  (Eschenbacher, 
 2024).  These  fires  were  intensified  by  persistent  extreme  drought  conditions  associated  with 
 the  El  Niño  phenomenon,  which  led  to  higher  temperatures  and  reduced  rainfall  (NASA 
 Earth  Observatory,  2024c;  Figure  8  ).  This  part  of  the  region  lies  in  the  Northern  Hemisphere 
 tropics,  where  the  peak  of  the  fire  season  aligns  with  boreal  winter  months.  The  region  is 
 lesser-studied  than  parts  of  southern  hemisphere  Amazonia  (Brando  et  al.,  2020;  Alencar  et 
 al., 2015). 

 Both  FWI  and  PoF  systems  identified  two  main  fire  seasons  in  2024:  February-April  and 
 August-November.  However,  around  80%  of  the  total  BA  concentrated  in  the  early  months  of 
 the  year  and  only  20%  during  the  second  dry  season.  The  total  probabilities  of  PoF  values 
 over  the  focal  region  translates  into  a  number  of  predicted  hotspots  and  this  is  directly 
 comparable  to  the  detections  from  MODIS.  In  March,  when  approximately  60%  of  the  annual 
 BA  was  recorded,  the  PoF  reached  its  peak  predicting  nearly  700  fire  hotspots  in  a  single 
 day,  closely  matching  the  ~600  observed  hotspots.  While  the  FWI  also  indicated 
 anomalously  high  fire  risk,  its  peak  occurred  later  in  September.  The  onset  of  the  first  fire 
 wave  aligned  closely  with  the  emergence  of  fire-prone  weather  conditions  (  Figure  8  ), 
 highlighting  the  role  of  weather  in  enabling  fire  activity.  In  this  region,  where  over  90%  of 
 ignitions  are  human-driven  and  fuel  availability  remains  high,  atmospheric  conditions 
 primarily act as the trigger for widespread burning. 
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 Interestingly,  both  the  PoF  and  FWI  systems  failed  to  capture  a  lull  in  fire  activity  during  the 
 second  emergence  in  August-November  of  fire-conducive  conditions  showing  the  limitations 
 of  forecasting  fire  activity  rather  than  fire  danger.  One  possible  explanation  is  that  these 
 conditions  fell  outside  typical  burning  cycles,  for  example,  in  agricultural  areas  where  fires 
 are  often  timed  around  harvest.  This  raises  an  important  possibility  that  the  models  failed  to 
 represent  the  quiet  September  period  because  they  have  only  limited  information  on  human 
 ignition  patterns,  land  ownership  and  use  types,  and  lesser-studied  factors  such  as  fire 
 suppression,  policy  interventions,  and  managed  or  cultural  burning  practices,  underscoring 
 the  need  for  improved  human  activity  data  that  could  significantly  improve  fire  prediction 
 (Jones et al., 2022). 

 Figure  8:  Northeast  Amazonia  forecasts  of  the  FWI  and  PoF  with  lead  times  up  to  10  days 
 prior  for  the  period  February  2024-February  2025  as  an  average  value  over  the  focal  area. 
 The  total  percentage  of  PoF  values  over  the  focal  region  translates  into  a  number  of 
 predicted  hotspots  and  this  is  directly  comparable  to  the  detections  observed  by  MODIS. 
 The  x-axis  corresponds  to  specific  dates  throughout  the  year,  while  the  y-axis  denotes  either 
 observations  or  the  time  leading  up  to  the  date  when  a  forecast  was  generated.  The  vertical 
 colour  coherence  allows  for  quick  identification  of  the  time  windows  of  predictability 
 associated  with  the  observed  fire  activity  both  provided  in  terms  of  number  of  detected  active 
 fires  per  day  and  total  monthly  BA  (circles).  The  maps  represent  a  snapshot  in  time  at  day  0 
 to  allow  the  comparison  of  the  spatial  distribution  of  the  forecasts  and  the  recorded  fire 
 activity by MODIS. 
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 4.2.1.1.2.  Pantanal and Chiquitano 

 The  Pantanal  and  Chiquitano  have  been  enduring  a  prolonged  dry  period  since  2019  leading 
 to  the  2024  worst  water  crisis  ever  recorded  in  the  biome  (World  Wildlife  Fund,  2024). 
 Notably,  the  Pantanal  did  not  experience  its  typical  flood  season  in  early  2024  and  the 
 average  area  covered  by  water  during  the  first  four  months  was  smaller  than  that  of  the 
 previous  year's  dry  periods  (Van  Dijk  et  al.,  2025).  By  the  end  of  May  2024,  almost  the  entire 
 Pantanal  and  Chiquitano  region  was  classified  as  experiencing  extreme  drought,  the 
 second-highest  classification  of  drought  intensity  on  the  Integrated  Drought  Index  (NASA 
 Earth  Observatory,  2025a,  2024c).  As  the  Pantanal  is  a  wetland  ecosystem,  the 
 establishment  of  dry  conditions  is  a  prerequisite  for  the  onset  of  fire  activity.  A  full 
 hydrological  cascade  must  occur  before  widespread  burning  can  take  place:  prolonged 
 precipitation  deficits  must  lead  to  the  reduction  of  flooded  areas,  their  replacement  by 
 grasslands,  and  the  progressive  desiccation  of  both  live  and  dead  vegetation.  This  sequence 
 introduces  a  natural  delay,  which  explains  why  fire  activity  in  the  region  peaked  in  August 
 and  September,  well  after  the  onset  of  dry  weather  in  June  (  Figure  S11  in  Supplementary 
 Material S4  ). 

 The  total  percentage  of  PoF  values  over  the  focal  region  translates  into  a  number  of 
 predicted  hotspots  and  this  is  directly  comparable  to  the  detections  from  MODIS.  The  most 
 severe  PoF  forecast,  predicting  971  hotspots,  closely  matches  the  885  observed  in  late 
 August.  At  large  scales,  the  FWI  offers  a  useful  overview  of  fire-conducive  weather 
 conditions.  However,  it  is  the  inclusion  of  fuel  characteristics  in  the  PoF  that  provides  the 
 finer  spatial  granularity  (maps  in  Figure  S11  in  Supplementary  Material  S4  )  needed  for 
 more accurate and actionable fire risk assessments. 

 4.2.1.1.3.  Southern California 

 California  is  arguably  one  of  the  most  extensively  studied  regions  in  terms  of  shifts  in  fire 
 regimes  (see,  e.g.,  Billmire  et  al.,  2014;  Littell  et  al.,  2016;  Williams  et  al.,  2019;  Swain  et  al, 
 2025).  In  2024,  Southern  California  experienced  severe  burning  in  September,  with  a  total  of 
 1,200  km  2  burned.  Although  these  fires  fell  within  the  typical  fire  season,  the  total  BA  was 
 unremarkable  for  the  region  compared  to  previous  years.  However,  the  most  significant  fire 
 event  took  place  much  later,  in  January  2025,  well  outside  the  typical  fire  period,  when  the 
 Palisades  and  Eaton  fires  broke  out  in  Los  Angeles  county.  The  events  sparked  widespread 
 public debate about how prepared we are to anticipate off-season fires (Woolcott, 2025). 

 As  shown  in  Figure  S12  (  Supplementary  Material  S4  ),  fire-prone  weather  conditions 
 persist  across  much  of  the  year,  extending  well  into  autumn,  a  reflection  of  the  expanding  fire 
 season  driven  by  climate  warming.  Yet,  in  regions  like  Southern  California,  fire  prediction 
 based  solely  on  weather  indicators  is  often  inadequate.  The  primary  causes  of  the  severity  of 
 these  events  was  an  intensification  of  the  hydrological  cycle  that  exacerbated  both  wet  and 
 dry  extremes.  Southern  California  experienced  an  unusually  wet  antecedent  period  prior  to 
 intense  drying  in  an  unusually  dry  winter,  which  created  an  accumulation  of  dry  fuel  setting 
 the  ideal  conditions  for  intense  fire  activity  (Swain  et  al.,  2025).  Fuel  accumulation  is  a 
 persistent  feature  throughout  the  fire  season,  and  therefore  does  not  result  in  a  large 
 difference  between  the  PoF  and  FWI  forecasts  when  averaged  over  the  Mediterranean 
 areas  of  California.  However,  its  inclusion  in  the  prediction  system  allows  for  the 
 identification  of  zones  with  higher  susceptibility,  which  are  clearly  visible  in  the 
 accompanying  map.  Neither  the  FWI  nor  PoF  metrics  could  provide  adequate  warning 
 regarding  the  magnitude  of  the  winter  fire  event  affecting  the  wildland-urban  interface.  These 
 events  were  driven  by  atmospheric  phenomena  influenced  by  steep  orography,  which  are 
 not  resolved  by  current  weather  forecasting  models.  The  lack  of  the  required  resolution 
 impacts  equally  on  empirical  and  machine  learning  methods.  This  highlights  the  need  for 
 improved high resolution forecasting for fire danger in the wildland-urban interface 
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 4.2.1.1.4.  Congo Basin 

 The  2024  dry  anomaly  in  Central  Africa  has  been  partly  attributed  to  the  co-occurrence  of  a 
 positive  El  Niño  phase  and  a  warm  Indian  Ocean  Dipole  (McPhaden  et  al.,  2024).  These 
 conditions  tend  to  shift  the  West  African  monsoon  northward,  leading  to  suppressed 
 precipitation  over  the  Congo  Basin  during  the  core  of  the  rainy  season,  a  pattern  observed 
 globally  in  recent  years  (Toreti  et  al.,  2024).  This  event  also  aligns  with  a  broader  trend  of  a 
 lengthening  and  intensifying  dry  season  in  the  Congo  rainforest.  Satellite  analyses  over  the 
 past  few  decades  show  that  the  dry  season  is  starting  earlier  and  ending  later,  increasing  the 
 region's  vulnerability  (Jiang,  2019).  There  are  typically  two  main  fire  seasons  in  the  Congo 
 Basin:  from  December  to  March  north  of  the  equator,  and  from  June  to  September  south  of 
 the  equator.  In  the  equatorial  zone,  however,  fires  are  not  naturally  occurring,  as  precipitation 
 is  distributed  throughout  the  year.  The  expansion  of  dry  seasons  both  north  and  south  of  the 
 equator  has  led  to  a  situation  where  fire  seasons  in  the  Congo  Basin  now  span  almost  the 
 entire  year  with  peak  activities  between  July  and  August  and  December  and  March. 
 Compounding  this,  a  decline  in  lightning  activity  over  the  region  (Chakraborty  and  Menghal, 
 2025)  suggests  that  fires  are  increasingly  of  human  rather  than  natural  origin.  This 
 combination  of  persistent  drier-than-average  conditions  and  human-driven  ignition  means 
 that  fire  activity  is  now  widespread  and  weakly  correlated  with  weather  patterns.  As  a  result, 
 predictions  have  a  very  short  predictability  window  of  only  a  few  days  (horizon  at  correlation 
 of  lines  in  Figure  S13  ).  The  detachment  of  fire  activity  from  natural  conditions  in  the  Congo 
 Basin  presents  a  significant  challenge  for  forecasting  (  Figure  S13  ).  In  these  regions,  the 
 discriminatory  power  between  fire-prone  and  non-prone  conditions  is  greatly  reduced,  and 
 both  FWI  and  PoF  tend  to  overpredict  fire  occurrence.  In  particular,  FWI  fails  to  capture  the 
 complex  interactions  among  fuel  availability,  ignition  sources,  and  human  activity.  This 
 limitation  is  especially  pronounced  in  areas  where  natural  ignitions  are  infrequent,  and  fuel 
 dynamics, rather than weather alone, drive fire occurrence and behaviour (  Figure S13  ). 

 4.2.1.2.  Seasonal Predictability from Fire Weather Forecasts 

 The  year  2024  has  been  officially  declared  the  warmest  year  on  record,  surpassing  previous 
 temperature  benchmarks  (WMO,  2025;  NOAA,  2025a).  This  exceptional  warmth  has  been 
 driven  not  only  by  long-term  global  warming  (IPCC,  2023),  but  also  by  a  combination  of 
 short-term  ocean-atmosphere  anomalies.  In  particular,  extensive  and  persistent  oceanic  heat 
 waves  have  been  observed  across  multiple  ocean  basins,  contributing  to  elevated  sea 
 surface  temperatures  (Holbrook  et  al.,  2019).  These  marine  heatwaves  have  been  further 
 reinforced  by  an  unusual  reduction  in  low-level  cloud  cover  over  parts  of  the  Atlantic  Ocean, 
 allowing  for  increased  solar  radiation  absorption  at  the  ocean  surface  and  amplifying  the 
 warming (Ceppi and Nowack, 2021). 

 Given  this  overall  picture,  seasonal  forecasts  of  FWI  anomalies  successfully  captured  the 
 broad  regional  patterns  of  elevated  fire  danger,  particularly  in  Northeast  Amazonia  and  parts 
 of  Bolivia  and  Venezuela  (  Figure  9  ).  These  forecasts  aligned  with  the  widespread  drought 
 and  above-average  temperatures  linked  to  the  strongest  El  Niño  since  2015,  a  concurrent 
 positive  Indian  Ocean  Dipole,  and  record-breaking  ocean  heatwaves.  Together,  these  factors 
 intensified  drying  across  equatorial  South  America,  expanding  fire-prone  conditions  well 
 beyond the regions that ultimately experienced the most extreme burning. 

 All  forecasts  issued  one  month  before  the  fire  season  showed  high  confidence  (between  60 
 and  90%)  in  the  development  of  above-normal  conditions  in  our  focal  regions,  all  exceeding 
 the 66th percentile of climatological values. 

 Figure  9  demonstrates  both  the  strengths  and  limitations  of  FWI-based  seasonal  forecasts. 
 While  they  provide  valuable  early  warnings  by  detecting  fire  weather  anomalies,  their 
 broad-scale  nature  can  lead  to  overestimations  of  fire  impact  if  not  combined  with 
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 information  on  fire  susceptibility.  These  findings  reinforce  the  value  of  FWI  in  anticipating 
 periods  of  increased  landscape  flammability,  but  also  highlight  the  need  to  more 
 appropriately  model  anomalies  in  fuel  load  and  moisture  and  to  integrate  non-climatic 
 factors,  such  as  ignition  sources,  land  use  practices,  suppression  capacity,  and  landscape 
 accessibility,  into  fire  impact  forecasting  models  to  improve  precision  and  operational 
 relevance.  Future  seasonal-scale  forecasts  may  seek  to  implement  PoF  as  a  predictive  tool, 
 which  improves  upon  FWI  by  tracking  fuel  loads  and  moisture  and  thus  the  legacy  effects  of 
 antecedent conditions on landscape flammability. 

 Figure  S14  presents  an  example  of  the  burned-area  anomaly  forecasting  system  using  our 
 hybrid  dynamical  and  Random  Forest  (RF)  approach  (  Section  4.1.1.2.2  and  Torres-Vázquez 
 et  al.,  2025b).  The  maps  illustrate  the  predicted  probability  of  a  BA  anomaly  and  whether 
 these  predictions  could  trigger  alerts  for  BA  anomalous  seasons  within  a  potential 
 early-warning  system.  Following  Torres-Vázquez  et  al.  (2025b),  alerts  are  issued  when 
 predicted  probabilities  exceed  thresholds  optimized  to  balance  correct  detections  and  false 
 alarms.  For  the  2024  season,  anomalies  in  South  America,  notably  in  drought-affected 
 regions  influenced  by  El  Niño  conditions,  were  reasonably  well  anticipated.  However,  in 
 other  regions,  particularly  parts  of  Africa  including  the  Congo  basin,  there  were  numerous 
 false  alarms,  reflecting  current  limitations  in  fully  capturing  regional  complexities  and 
 non-climatic  fire  drivers.  This  first  implementation  demonstrates  operational  potential,  and 
 future  refinements  (such  as  incorporating  extended  fire  records  and  adjusting  region-specific 
 thresholds) could  enhance skills  by  reducing  false positives. 
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 Figure  9:  Seasonal  prediction  of  Fire  Weather  Index  (FWI)  during  the  periods  relevant  to  our 
 focal  events,  presented  in  probabilistic  terms  that  indicate  the  likelihood  of  an  increased  or 
 decreased anomalous fire season. 

 4.2.2.  Identifying Causes of Focal Events 

 Weather,  fuel,  and  ignitions  are  the  three  primary  controls  influencing  the  occurrence  and 
 intensity  of  fire  events  (Di  Giuseppe  et  el.,  2025).  These  broad  categories  can  be  further 
 examined  to  pinpoint  individual  factors,  for  example,  precipitation  and  temperature  within  the 
 weather  category  or  fuel  moisture  from  dead  and  live  vegetation  in  the  fuel  category. 
 Analysing  the  single  factors  can  give  an  idea  not  only  of  the  probability  of  the  fire  to  occur 
 but  also  on  their  intensity  and  behaviour.  For  example  anomalies  above  the  expected  climate 
 (here  2003-2023)  in  the  moisture  of  dead  fuel,  due  to  its  lower  moisture  content  and  higher 
 combustibility,  often  plays  a  significant  role  in  determining  ignition  potential.  Low  live  fuel 
 moisture  increases  vegetation  flammability,  thereby  contributing  significantly  to  greater  fire 
 severity and intensity. 

 Beyond  this  descriptive  approach,  the  PoF  and  ConFLAME  causality  models  enable  a 
 probabilistic  attribution  of  fire  occurrence  to  the  three  primary  controls.  These  models 
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 provide  attribution  even  when  no  fire  is  recorded:  a  low  probability  across  all  controls  reflects 
 an  accurate  forecast  of  no  fire,  while  a  high  probability  without  observed  fire  activity  could 
 point  to  successful  suppression  efforts,  fire-prevention  policies,  or  other  unaccounted  human 
 factors  not  included  in  the  model  forecasts.  The  discrepancies  between  the  model  prediction 
 and  the  observed  fire  activity  (fire  hotspots  or  BA  anomalies)  are  included  to  provide  a 
 measure of the model uncertainties. 

 4.2.2.1.  Causes of Fire Hotspots during Focal Events 

 4.2.2.1.1.  Northeast Amazonia 

 According  to  our  Sparky-PoF  analysis,  the  extreme  fire  activity  during  the  2024-25  fire 
 season  in  Northeast  Amazonia  (described  in  Section  2.2.2.1  ),  was  predominantly  driven  by 
 anomalous  dry  weather.  Northeast  Amazonia  experienced  an  exceptionally  severe  fire 
 season  between  January  and  April  (  Figure  10  ),  driven  by  extreme  drought  which  started  in 
 2023,  intensified  by  the  combined  effects  of  El  Niño  and  the  Atlantic  Meridional  Mode,  which 
 brought  unusually  high  temperatures  and  suppressed  rainfall.  At  the  peak  of  the  season, 
 during  the  week  of  20-26  March,  nearly  2,000  fire  hotspots  were  observed.  Fires  were  fueled 
 by  prolonged  and  intense  drying  across  the  entire  landscape,  which  made  vegetation  highly 
 flammable  and  enabled  rapid  fire  spread  across  large  areas.  On  the  most  severe  week  of 
 burns  our  causation  analysis  shows  that  weather  conditions  were  the  dominant  factor, 
 accounting  for  about  60%  of  fire  activity,  while  fuel  availability  and  ignition  sources  each 
 contributed  around  20%.  During  the  first  part  of  the  year  the  exceptional  dryness  meant  that 
 soil  humidity  levels  and  moisture  in  both  dead  and  live  vegetation  fell  to  among  the  driest  2% 
 of  historical  conditions,  while  deep  soil  moisture  dropped  below  1%.  The  time  series  of 
 lightning  activity  (  Figure  10  ,  bottom  panel)  further  illustrates  that  ignitions  in  the  region  are 
 predominantly  human-driven.  During  the  May-August  period,  lightning  activity  is  high  and  is 
 linked  to  storms  and  rainfall,  which  tend  to  suppress  fire  ignition  and  spread.  As  a  result, 
 even  though  lightning  increases  the  relative  contribution  of  ignition  to  predicted  fire  activity, 
 doubling  its  weight  to  around  40%,  this  is  not  reflected  in  actual  fire  occurrence  or  BA.  A 
 second,  less  intense  onset  of  fires  occurred  between  September  and  January.  This  was 
 driven  by  a  more  superficial  drying  of  the  landscape  that  did  not  extend  into  deeper  soil 
 layers.  Unlike  the  earlier  season,  which  was  associated  with  hydrological  drought,  this  later 
 period was more reflective of meteorological drought (precipitation deficit). 
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 Figure  10:  Drivers  explaining  fire  hotspots  prediction  in  Northeast  Amazonia.  Daily  fire 
 activity  and  contributing  drivers  from  February  2024  to  February  2025.  (  Top  panel)  Daily 
 count  of  grid  cells  with  detected  fire  hotspots,  stacked  by  dominant  driver  category,  fuel, 
 weather,  or  ignition/suppression.  A  dominant  driver  is  assigned  only  if  its  contribution 
 exceeds  50%  of  the  total  attribution;  otherwise,  the  grid  cell  is  left  unclassified  (gray).  An 
 inset  map  shows  the  spatial  distribution  of  dominant  drivers  during  the  peak  fire  week, 
 highlighting  regional  heterogeneity  in  fire  causation.  (  Middle  panel)  Relative  contributions 
 (%)  of  each  driver  category  to  predicted  fire  occurrence,  with  shaded  bands  indicating 
 model-observation  uncertainty.  (  Bottom  panel)  Standardized  anomalies  (in  units  of  standard 
 deviation)  for  each  input  driver  variable,  including  lightning  flash  density.  Asterisks  (*) 
 indicate reversed anomalies. 

 48 

 1982 

 1983 

 1984 

 1985 

 1986 

 1987 

 1988 

 1989 

 1990 

 1991 

 1992 

 1993 

 1994 

https://doi.org/10.5194/essd-2025-483
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 4.2.2.1.2.  Pantanal and Chiquitano 

 According  to  our  Sparky-PoF  analysis,  the  extreme  fire  activity  during  the  2024-25  fire 
 season  in  the  Pantanal-Chiquitano  (described  in  Section  2.2.2.2  ),  was  mainly  the  result  of 
 extremely  dry  weather  which  had  started  since  2023.  Drought  conditions  affecting  the 
 Pantanal  and  Chiquitano  continued  into  the  early  months  of  the  2024-25  fire  season 
 following  multiple  years  of  below-average  rainfall  (  Figure  11  ).  Although  the  year  began  with 
 relatively  moist  surface  conditions,  deep  soil  moisture  remained  in  the  driest  15%  of 
 observed  records  or  1-2  standard  deviations  below  the  mean  (  Figure  11  ).  A  wet  phase  in 
 February-April  allowed  moisture  transfer  from  the  atmosphere  to  surface  fuels,  but  it  did  not 
 infiltrate  deeply  into  the  soil.  As  a  result,  when  surface  conditions  dried  out  again  at  the 
 beginning of June, vegetation quickly became highly flammable and primed to ignite. 

 While  fire  activity  in  this  region  was  predominantly  controlled  by  weather  (71%  mean 
 contribution  throughout  the  year),  the  role  of  fuel  became  increasingly  important  during  the 
 most  intense  burning  phases  (up  to  40%  during  the  most  intense  week  between  5  and  14 
 August  2024).  In  fact,  the  contribution  of  fuel  conditions  doubles  during  these  peak  events, 
 indicating  that  the  persistence  of  fire-conducive  weather  over  time,  rather  than  the  specific 
 daily weather, plays a dominant role in driving the most severe fires. 

 In  the  Pantanal  and  Chiquitano,  the  lack  of  correlation  between  fire  occurrence  and  natural 
 ignition  sources,  such  as  lightning  density  (  Figure  11  ,  bottom  panel),  is  even  more  evident 
 than  in  other  regions.  When  lightning  does  occur,  it  is  typically  accompanied  by  rainfall  due 
 to  the  convective  nature  of  tropical  storm  systems,  further  reducing  the  likelihood  of  fire 
 ignition.  The  only  notable  ‘dry  lightning’  event,  observed  in  mid-May,  caused  a  spike  in  the 
 modelled  PoF  which  translated  into  a  spike  of  fire  activity  that  was  observable  though  small 
 in  magnitude.  Humans  are  the  main  source  of  ignitions  in  the  region  (Menezes  et  al.,  2022) 
 and,  while  weather  remains  the  main  driver  of  fire  activity  overall,  fuel  conditions  are  playing 
 an  increasingly  important  role  in  determining  the  severity  and  extent  of  extreme  fire  events 
 (  Figure 11  ). 
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 Figure 11:  Drivers explaining fire hotspots in the  Pantanal-Chiquitano (as for  Figure 10  ). 

 4.2.2.1.3.  Southern California 

 According  to  our  Sparky  PoF  analysis  of  the  extreme  fire  activity  during  the  2024-25  fire 
 season  in  Southern  California  (described  in  Section  2.2.2.3),  the  results  point  to  a 
 combination  of  drivers,  weather,  fuel,  and  ignitions,  each  playing  an  almost  equal  role  in 
 creating  the  fire  prone  conditions  observed  during  the  two  major  events  in  January  2025 
 (Palisades and Eton fires). 

 Early  in  the  2024-25  fire  season,  Southern  California  was  emerging  from  a  two-year  period 
 of  very  wet  conditions,  with  deep  soil  moisture  levels  at  2  to  3  standard  deviations  wetter 
 than  the  climatological  average  (  Figure  S15  ).  During  the  summer  of  2024,  lightning  may 
 have  contributed  to  ignitions,  although  in  these  areas  most  fires  are  typically  human-induced. 
 Overall, fire activity remained relatively low and below the climatological average. 
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 However,  the  Palisades  and  Eaton  fires  in  January  2025  were  well  outside  the  typical  fire 
 season.  These  fires  were  clear  outliers  in  terms  of  their  seasonality,  triggered  by  a  rare 
 alignment  of  short-lived  but  intense  fire-prone  conditions  while  fuel  moistures  remained  low 
 (  Figure  S15  ).  Between  5  and  25  January,  favourable  weather,  fuel  availability,  and  ignition 
 sources aligned leading to create ideal conditions for ignition and rapid fire spread. 

 In  the  week  preceding  the  fires,  fire  weather  conditions  contributed  around  40%  to  the 
 predicted  fire  probability,  fuel  availability  30%,  and  ignition  sources  the  remaining  20%. 
 Despite  the  generally  moist  deep  soil  conditions,  a  brief  but  extreme  episode  of  surface 
 drying  (reaching  3  standard  deviations  below  normal)  combined  with  unusually  strong  winds 
 (also  3  standard  deviations  above  average),  was  sufficient  to  create  highly  flammable 
 conditions at the wildland-urban interface, enabling the fires to ignite and spread rapidly. 

 4.2.2.1.4.  Congo Basin 

 According  to  our  Sparky-PoF  analysis,  the  extreme  fire  activity  during  the  2024-25  fire 
 season  in  the  Congo  basin  (described  in  Section  2.2.2.4  ),  was  the  result  of  the  extreme 
 drought that has affected the regions in recent years. 

 In  2024-2025,  fire  activity  in  the  Congo  occurred  year-round  in  a  region  marked  by  abundant 
 and  widespread  vegetation  cover.  The  spring  wet  season  (March-May)  did  not  materialise 
 due  to  extreme  and  persistent  drought  conditions.  As  a  result,  the  second  wet  season  later  in 
 the  year  also  brought  limited  relief,  leaving  deep  soil  layers  significantly  dry  (up  to  2  standard 
 deviations  below  climatological  norms).  The  region  remains  in  a  prolonged  state  of  water 
 deficit until now (  Figure S16  ). 

 Throughout  the  year,  weather  conditions  were  the  dominant  and  most  stable  factor 
 influencing  both  the  number,  intensity  and  duration  of  fire  events.  A  combination  of  low 
 rainfall  (67%  below  the  climatological  average)  and  elevated  temperatures  (90%  above  the 
 climatological  average)  led  to  sustained  drying  of  both  vegetation  and  soil,  placing  them 
 among  the  driest  2%  and  1%  of  the  climatological  record,  respectively.  These  conditions 
 maintained highly flammable landscapes across the region (  Figure S16  ) 

 Most  fire  ignitions  in  the  Congo  basin  can  be  attributed  to  human  activity.  Although  lightning 
 occurs  year-round  (  Figure  S16  ),  it  is  more  frequent  during  the  wet  season  due  to  the 
 convective  nature  of  tropical  precipitation.  However,  during  these  wetter  periods,  high 
 moisture  levels  typically  prevent  fire  ignition  and  spread.  In  contrast,  during  prolonged  dry 
 spells,  even  a  small  number  of  human-caused  ignitions  can  trigger  widespread  and 
 persistent fire outbreaks, owing to the highly combustible state of the vegetation. 

 4.2.2.2.  Causes of Burned Area Anomalies during Focal Events 

 4.2.2.2.1.  Northeast Amazonia 

 According  to  our  ConFLAME  analysis  of  the  extreme  BA  during  the  2024-25  fire  season  in 
 Northeast  Amazonia  (described  in  Section  2.2.2.1  ),  weather  conditions  explained  about 
 40-60%  of  the  BA  anomalies,  though  with  fuel  conditions  acting  as  an  important  determinant 
 cause  during  the  periods  with  greatest  fire  extent  (  Figure  12  ).  In  the  peak  month  of  March 
 2024,  BA  exceeded  the  long-term  average  (2002-2024)  by  over  12,000  km².  Nearly  half  of 
 the  March  2024  anomaly  could  be  attributed  to  fuel  conditions,  while  weather  anomalies 
 potentially  accounted  for  between  50%  and  150%  of  the  BA  anomaly  (a  high-end  value  of 
 150%  would  suggest  that  weather  alone  would  have  caused  anomalies  exceeding  the 
 observed  values,  but  below-average  ignitions  moderated  the  BA  response;  Figure  12  ). 
 During  the  secondary  peak  in  BA  anomalies  during  October-November,  fuel  and  weather 
 contributed  similarly  with  fuel  rising  in  importance  due  to  the  insufficient  water  recharge  from 
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 the  wet  season.  Weather  and  fuel  together  accounted  for  between  1,000  km²  and  over 
 10,000 km² of BA anomalies. 

 Consistent  with  active  fire  analysis  (  Section  4.2.1.1  ),  fuel  played  a  key  role  in  determining 
 the  geographical  distribution  of  BA  during  the  2024-25  fire  season  (  Figure  S19  ).  This  is 
 visible  in  northern  regions  such  as  the  Forest-Savanna  Transition  Zone  in  northern 
 Venezuela  and  southern  Guyana,  and  the  Northern  Amazonia  Savannas  of  Roraima  and 
 northern  Pará,  where  savanna  outcrops  are  surrounded  by  rainforest  (see  maps  in  Figure 
 S19  ).  In  the  forest  landscapes,  fuel  anomalies  and  fire  weather  anomalies  drove  the 
 predicted  anomalies  in  BA.  Interestingly,  predicted  BA  anomalies  were  large  in  some  parts  of 
 the  region  (e.g.  Suriname)  but  went  undetected  by  the  MODIS  BA  product.  The  causality 
 framework  is  very  confident  in  its  prediction,  raising  the  question  of  whether  detections  were 
 missed, possibly due to dense canopy and persistent cloud cover (Giglio et al., 2006). 

 Despite  widespread  BA  in  early  2024,  many  parts  of  the  region  remained  largely  unburned. 
 Understanding  why  is  as  important  as  knowing  what  drove  the  fires.  Our  analysis  shows  that 
 in  areas  with  very  low  BA  fraction  (less  than  0.5%  of  burnable  area),  no  single  factor  (fuel, 
 weather,  or  human  activity)  clearly  limited  fire  spread  (refer  to  Figure  S18  ).  Instead,  a 
 combination  of  factors,  such  as  low  ignition  rates,  patchy  fuels,  or  short  dry  spells,  likely 
 prevented  fires  from  taking  hold.  On  the  other  hand,  in  the  most  severely  burned  areas  (top 
 5%  of  BA),  the  relative  importance  of  fuel  and  weather  was  reversed  compared  to  broader 
 patterns.  Here,  fuel  moisture  emerged  as  the  primary  driver  of  BA.  Drier  conditions  could 
 have  increased  BA  by  30-40%.  Weather  still  played  a  role  contributing  an  additional  20% 
 increase, but its influence was secondary to that of fuel. 
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 Figure  12:  Anomalies  in  burned  area  (BA)  and  driver  contributions  for  each  focus  region 
 during  2024,  relative  to  the  2002-2024  average.  Columns  represent  regions;  rows  show 
 different  variables.  (Top  row)  Modelled  and  observed  BA  anomalies,  expressed 
 thousand km  2  .  Model  output  shows  median,  interquartile  range  (shaded),  and  5th-95th 
 percentile  range  (lighter  shading).  (Other  rows)  Modelled  contributions  to  BA  anomalies 
 from  fuel  conditions,  fire  weather,  and  human/ignition-related  factors,  also  shown  in 
 thousand km  2  .  These  panels  highlight  which  drivers  contributed  most  to  regional  fire 
 deviations from the historical average in 2024. 

 4.2.2.2.2.  Pantanal and Chiquitano 

 According  to  our  ConFLAME  analysis  of  the  extreme  BA  during  the  2024-25  fire  season  in 
 the  Pantanal-Chiquitano  (described  in  Section  2.2.2.2  ),  weather  conditions  explained  half  of 
 the  BA  anomalies  and  fuel  conditions  explained  almost  30%  (  Figure  12  ).  June,  July,  and 
 August  accounted  for  the  most  extensive  burning  in  the  Pantanal,  with  25-75%  of  the 
 landscape  experiencing  some  fire  activity,  even  if  large  parts  featured  only  small  anomalies. 
 The  peak  occurred  in  June,  when  the  BA  exceeded  climatological  values  by  more  than  5,000 
 km²  (almost  triple  than  the  annual  mean).  This  anomaly  was  primarily  driven  by  weather 
 conditions  (50-60%)  with  fuel  (10-20%)  and  ignition  (10-20%)  contributing  equally.  Although 
 fire  weather  remained  favourable  in  September  and  October  due  to  persistently  high 
 temperatures,  overall  fire  activity  was  lower  than  during  the  earlier  peak  (  Figure  12  and 
 S20  ). 

 We  found  that  ignition  sources  contributed  only  10-20%  to  the  anomalously  high  fire  activity 
 in  2024.  However,  we  caution  that  our  modelling  framework  only  partially  captures  ignition 
 dynamics,  particularly  those  related  to  human  activities  such  as  farming.  This  limited 
 representation  is  reflected  in  the  wide  uncertainty  range  assigned  to  ignition  within  the 
 causality  framework.  Key  factors  like  land  clearing,  water  extraction,  and  the  proximity  of 
 ignitions  to  protected  areas  are  known  contributors  to  extreme  fires  in  the  Pantanal  (Barbosa 
 et al., 2022) and they are not fully accounted for in our analysis. 

 Regional  differences  in  fire  drivers  were  evident  (  Figure  S20  ).  Fuel  conditions  played  a  key 
 role  in  the  fine-scale  geographical  distribution  of  BA  anomalies.  Exceptionally  dry  fuels 
 affected  the  Chiquitano  dry  forests  in  the  east,  while  weather  was  the  dominant  driver  in 
 upland  regions  along  the  edge  of  the  Pantanal  wetlands,  such  as  the  Serra  do  Amolar  hills  in 
 western  Brazil.  The  most  extreme  fires  were  observed  where  these  two  influences 
 overlapped,  where  vegetation  was  both  unusually  flammable  and  atmospheric  conditions 
 were conducive to burning. 
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 As  for  what  prevented  the  fires  from  becoming  even  more  severe  (  Figure  S18  ),  no  single 
 factor  alone  limited  fire  spread,  even  in  the  areas  that  burned  most  intensely.  However,  small 
 shifts  in  conditions,  such  as  drier  weather,  drier  fuels,  or  fewer  land-use  barriers,  could  have 
 led  to  2-12%  more  BA  in  the  model  cells  experiencing  the  greatest  fire  anomalies  regions 
 (top 5% of anomalies). 

 4.2.2.2.3.  Southern California 

 According  to  our  ConFLAME  analysis  of  the  extreme  BA  during  the  2024-25  fire  season  in 
 Southern  California  (described  in  Section  2.2.2.3  ),  the  most  important  cause  of  the  extent  of 
 burned  areas  was  fuel  (30%  to  60%)  closely  followed  by  weather  (20-40%),  while  ignitions 
 (20%)  was  less  pronounced  that  in  previous  years  and  acted  as  reducing  factor  (  Figure  12  ). 
 During  January  2025,  unusually  dry  fuel  conditions  played  a  key  role  in  promoting  BA 
 anomalies,  explaining  up  to  500  km²  of  the  800  km²  of  the  anomalous  BA  in  that  month.  Fire 
 weather  conditions,  starting  as  early  as  October  2024,  were  also  anomalous  versus  previous 
 years.  Focusing  on  the  areas  with  the  most  extensive  burning  (top  5%  of  BA),  we  found  that 
 anomalies  could  have  been  30-60%  larger  under  drier  fuel  conditions  and  more  extreme  fire 
 weather,  with  an  additional  5%  increase  if  fuel  availability  anomalies  had  also  been  higher 
 (  Figure  S17  and  Figure  4.11  ).  The  substantial  suppression  efforts  deployed  is  unaccounted 
 for  in  our  modelling  framework  and  could  be  one  of  the  possible  reasons  the  fires  did  not 
 escalate even further. 

 4.2.2.2.4.  Congo Basin 

 According  to  our  ConFLAME  analysis  of  the  extreme  BA  during  the  2024-25  fire  season  in 
 the  Congo  basin  (described  in  Section  2.2.2.4  ),  weather  conditions  explained  about  30-60% 
 of  the  BA  anomalies,  with  fuel  conditions  acting  as  an  important  secondary  control  during  the 
 periods  with  greatest  fire  extent  (  Figure  12  ).  Fuel  conditions  in  the  Congo  Basin  remained 
 relatively  stable  throughout  2024,  contributing  between  10-35%  to  fire  activity  year-round.  In 
 contrast,  the  influence  of  weather  conditions  varied  more  substantially,  with  virtually  no 
 fire-conducive  weather  in  October-November,  outside  the  typical  fire  season,  and  moderate 
 levels  (5-15%)  during  peak  fire  periods,  particularly  in  January  and  July  (see  also  Figure 
 S17  ).  July  stood  out  as  the  month  with  the  largest  deviation  from  typical  fire  patterns.  During 
 this time, fuel conditions and fire weather contributed almost equally to the BA (  Figure S22  ). 

 ConFLAME  indicates  widespread  anomalous  BA  across  the  southern  part  of  the  Congo 
 basin.  These  model  estimates  of  BA  are  larger  than  the  BA  detected  by  satellites  (Figure 
 S22).  Dense  canopy  in  these  remote  regions  may  have  led  to  missed  detections  of  BA. 
 Particularly  high  fire-conducive  conditions  were  predicted  across  much  of  southern 
 Democratic  Republic  of  the  Congo  (DRC),  as  well  as  northern  Angola  and  parts  of  the 
 Republic  of  the  Congo.  However,  two  notable  pockets,  in  the  far  northeast  of  the  basin, 
 around  the  border  of  northeast  DRC  and  South  Sudan,  and  a  smaller  zone  just  east  of  the 
 border  between  the  DRC  and  Republic  of  the  Congo  in  the  north,  did  not  emerge  in  our 
 analysis. 

 Despite  these  broad  areas  of  fire-favourable  conditions,  fires  did  not  become  much  larger  in 
 many  places.  The  key  reasons  for  this  were  moisture  and  weather  limitations.  Looking  at 
 areas  at  the  top  5%  of  burning,  up  to  15%  more  fire  could  have  occurred  if  fuel  had  been 
 even drier or if atmospheric conditions had been slightly more favourable. 
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 5.  Attribution to Global Change Factors 

 Many  of  the  direct  drivers  and  controls  on  fire  events,  outlined  in  Section  4  (e.g.  weather, 
 fuel,  moisture,  ignition  and  suppression),  are  influenced  by  global  change  factors  such  as 
 climate  and  land-use  change.  Since  the  pre-industrial  era,  global  mean  temperature  has 
 increased  by  ~1.3˚C  (Betts  et  al.,  2023;  Forster  et  al.,  2025),  with  greater  rates  of  warming  at 
 higher  latitudes,  adding  potential  for  fuel  drying.  Climate  change  has  also  resulted  in  altered 
 precipitation  patterns,  with  total  rainfall  and  dry  season  length  increasing  or  decreasing 
 variably  across  regions  (Polade  et  al.,  2014;  Swain  et  al.,  2018;  IPCC,  2023a).  Meanwhile, 
 changes  to  fuel  load  and  ignition  rates  are  driven  by  emissions,  climate  change  and  land-use 
 change,  with  varying  effects  regionally  (Foley  et  al.,  2005;  Finney  et  al.,  2018;  Romps,  2019; 
 Wang et al., 2024). 

 5.1.  Methods 

 5.1.1.  Overview of Attribution Approaches 

 Fire  is  a  complex  phenomenon  that  impacts  societies  and  ecosystems  in  many  ways,  from 
 the  extent  of  BA  to  the  severity  of  individual  fire  events.  Different  user  groups  seek 
 information  on  different  aspects  of  fire  risk,  whether  policymakers,  communities,  fire 
 managers,  litigators,  or  those  working  to  build  a  broader  scientific  evidence  base.  To  provide 
 results  relevant  for  a  wide  range  of  stakeholders  we  apply  various  modelling  approaches  to 
 fire  attribution,  drawing  on  different  metrics  and  attribution  techniques,  to  build  a  more 
 comprehensive  understanding  of  human  influence  on  recent  extreme  fire  activity.  Our 
 approach  includes  analyses  of  fire  weather  indices  and  BA,  alongside  a  range  of  attribution 
 metrics  suited  to  these  different  contexts.  Our  BA  attribution  also  provides  the  evidence,  in 
 the  form  of  a  calibrated  probabilistic  model,  needed  to  perform  future  risk  projections  in 
 Section 6  . 

 While  most  attribution  research  has  focused  on  the  contribution  of  anthropogenic  climate 
 change,  humans  influence  fire  occurrence  and  risk  in  multiple  other  ways:  the  direct 
 influence  of  people  via  activities  such  as  land  use  change  and  landscape  configuration; 
 changes  in  ignition  probability,  fire  suppression,  among  others.  Considering  human-driven 
 climate  change  separately  to  changes  in  human  activity,  in  addition  to  their  combined  effect, 
 allows us to disentangle the contributions of local and global environmental change. 

 Understanding  the  influence  of  people  or  climate  on  fire  and  its  drivers  is  inherently 
 challenging,  given  the  complexity  of  fire  processes  and  the  interactions  between  natural  and 
 human  systems.  Integrating  these  range  of  complementary  methods  -  each  with  its  own 
 strengths  and  limitations,  additionally  helps  build  confidence  in  attribution  results  that  no 
 single  method  could  provide  alone.  We  can  therefore  identify  where  there  is  broad 
 agreement across methods. 

 To  quantify  the  different  ways  people  affect  fire,  we  apply  four  types  of  attribution  in  this 
 report  (  Table  4  ),  designed  to  meet  diverse  user  needs  and  to  align  with  the  modelling 
 frameworks currently available: 

 ●  i)  Firstly,  our  attribution  to  anthropogenic  climate  forcing  explicitly  targets  the  changes 
 driven  by  anthropogenic  greenhouse  gas  emissions  and  land-use  change,  following 
 the  IPCC  WGI  definition  (Hegerl  et  al.,  2009;  Mengel  et  al.,  2021).  We  prescribe 
 these  emissions  in  a  model  to  specifically  isolate  human  forcing  from  natural 
 variability  (Section 5.1.2 and 5.1.3  ). 

 ●  ii)  Our  attribution  to  total  climate  forcing  considers  changes  driven  by  climate  change 
 since  the  pre-industrial  period,  including  both  anthropogenic  climate  forcing  and 
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 natural  variability  in  line  with  the  IPCC  WGII  and  the  Intersectoral  Impacts  Model 
 Intercomparison  Project  3a  (ISIMIP3a)  definition  of  climate  change  impact  attribution 
 (IPCC,  2023b;  IPCC  2023c;  Mengel  et  al.,  2021).  This  involves  comparing 
 simulations  driven  with  historical  reanalysis,  our  factual,  to  a  detrended 
 counterfactual  simulation,  where  the  trend  in  each  climate  variable  is  removed  (with 
 both  simulations  including  historical  transient  land-use  change).  Therefore  only  the 
 impacts  of  climate  change  are  attributed,  not  distinguishing  between  anthropogenic 
 or  natural  causes  (Mengel  et  al.,  2021;  Burton,  Lampe  et  al.,  2024).  We  perform  this 
 between  2003-2019,  the  overlap  between  available  counterfactual  simulations  and 
 satellite data used for training in Burton, Lampe et al., 2024. 

 ●  iii)  Our  attribution  to  socio-economic  factors  is  applied  via  the  same  set  of  simulations 
 as  our  attribution  to  total  climate  forcing  .  We  isolate  the  role  of  socio-economic 
 factors  by  comparing  the  early  industrial  period  to  the  late  industrial  period 
 (1901-1917  versus  2003-2019)  using  detrended  ISIMIP3a  data,  in  which  only 
 land-use and population density are allowed to change (Burton, Lampe et al., 2024). 

 ●  iv)  Our  attribution  to  all  forcings  compares  the  early  industrial  period  in  the 
 counterfactual  scenario  to  the  last  industrial  period  in  the  factual  scenario,  which 
 gives  the  net  effect  of  all  forcings  combined  (  anthropogenic  climate  forcing  +  total 
 climate forcing + socio-economic factors  ). 

 The  attribution  methods  described  above  enable  us  to  assess  the  influence  of  climate  and 
 socio-economic  forcings  on  fire  in  each  focal  region  with  respect  to  three  different  target 
 variables: 

 ●  i)  Extremes  in  fire  weather  during  2024-25  .  The  FWI  is  a  weather-based  indicator 
 of  landscape  flammability  and  can  provide  insight  into  how  fire-prone  conditions  are 
 likely to be affected by a changing climate. 

 Using  the  HadGEM3-A  large  ensemble,  we  attribute  changes  in  the  probability  of 
 extreme  fire  weather  conditions  to  anthropogenic  climate  forcing  .  This  analysis 
 specifically  targets  the  months  identified  as  extreme  for  each  focal  event  as  outlined 
 in  Section  2.2.2  focusing  on  sub-regional  extremes  that  occur  in  the  model  grid  cells 
 with  the  highest  FWI  values  (top  5%  of  all  regional  grid  cells).  By  focusing  exclusively 
 on  these  areas  of  most  severe  fire  weather,  this  approach  provides  a  proxy  for 
 understanding  how  each  forcing  influences  the  locations  and  times  of  highest  fire  risk 
 within  the  region.  We  used  this  methodology  as  in  last  year’s  report.  See  Section 
 5.1.2  for details. 

 ●  ii)  Region-wide  extreme  BA  during  2024-25  focal  events.  Event  specific  BA 
 reflects  how  climate  and  human  factors  jointly  influence  the  actual  extent  of  burning 
 during  major  fire  events,  offering  a  direct  measure  of  fire  impact  on  people  and 
 ecosystems. 

 Using  the  ConFLAME  model  framework  we  attribute  changes  in  the  likelihood  of  the 
 2024-25  observed  total  BA  across  the  entire  focal  region  to  anthropogenic  climate 
 forcing  ,  total  climate  forcing,  socio-economic  factors,  and  all  forcings  combined.  Like 
 our  FWI  analysis  focuses  on  the  observed  peak  burning  months  and  captures  the 
 overall  influence  of  each  forcing  on  the  extent  of  fire  activity  at  the  regional  scale. 
 See  Section 5.1.3  for details. 

 ●  iii)  Background  changes  in  BA  this  century  using  median  monthly  over  recent 
 decades.  Background  BA  shows  how  climate  change  is  reshaping  regional  fire 
 regimes  over  the  long  term,  revealing  gradual  shifts  in  baseline  fire  activity  that  may 
 go unnoticed in year-to-year variability. 
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 Using  fire-enabled  dynamic  global  vegetation  models  (DGVMs)  participating  in  the 
 Fire  Model  Intercomparison  Project  (FireMIP),  we  attribute  changes  in  median 
 monthly  BA  averaged  over  recent  decades  (2003-2019)  to  total  climate  forcing  , 
 socio-economic  factors  ,  and  all  forcings  combined.  This  approach  provides  context 
 on  longer-term  background  fire  activity  and  applies  the  same  methodology  as  last 
 year’s  report,  though  this  year  focussing  on  specific  focal  regions.  See  Section  5.1.4 
 for details. 

 In  each  approach  we  include  an  explicit  estimate  of  uncertainty.  We  use  bootstrapping  to 
 give  uncertainty  estimates  for  the  FWI  Risk  Ratios  (RR)  defined  as  the  ratio  between  the 
 probability  of  seeing  the  observed  FWI  with  the  target  forcing  vs  without  anthropogenic 
 climate  forcing,  reported  here  at  90%  confidence  intervals.  ConFLAME  is  designed  as  an 
 uncertainty  quantification  model  (as  per  our  driver  assessment,  Section  4.2.4  ),  giving  the 
 likelihood  of  all  possible  BA  outcomes  for  each  region  based  on  a  probabilistic  analysis  of  past 
 burn  patterns  and  environmental  conditions  .  We  combine  the  information  from  the  FireMIP 
 models  in  a  weighted  multi-model  ensemble  to  give  uncertainty  ranges  across  the  models. 
 Each result therefore presents a 5-95  th  percentile  probability estimate. 

 For  consistency  with  last  year’s  report  we  also  report  attribution  estimates  based  on  methods 
 used in the State of Wildfires 2023-24 report (Jones et al., 2024b): 

 ●  iv)  Sub-regional  extreme  BA  during  2024-25.  We  attribute  changes  in  the 
 likelihood  of  extreme  BA  occurring  within  the  model  grid  cells  with  the  highest  BA  (top 
 5%  of  all  regional  grid  cells),  focusing  on  areas  where  fire  activity  was  most  spatially 
 concentrated  during  peak  burning  months.  This  analysis  uses  the  same  ConFLAME 
 simulations  and  forcing  scenarios  as  the  region-wide  BA  attribution  and  provides 
 insight  into  how  forcings  affect  the  most  severely  impacted  locations  within  the 
 region. See  Supplementary Text S5.2.3  for discussion  of results. 

 In  the  coming  years,  our  project  seeks  to  incorporate  attribution  results  based  on  a  broader 
 set  of  Earth  System  Models  (ESM)  to  better  sample  the  structural  uncertainty  arising  from 
 differences  in  process  representation  across  different  models  (i.e.  beyond  HadGEM3-A).  In 
 this report, we introduce results based on the one ESM as follows: 

 ●  v)  Background  changes  in  fire  weather  this  decade.  Using  the  Canadian  Earth 
 System  Model  (CanESM5;  Swart  et  al.,  2019),  we  attribute  changes  in  the  frequency 
 of  extreme  fire  weather  to  total  climate  forcing  with  the  Canadian  Fire  Weather  Index 
 (FWI),  identifying  how  the  likelihood  of  extreme  fire  weather  has  changed  by 
 comparing  the  frequency  of  high  Fire  Weather  Index  (FWI)  values  in  pre-industrial 
 and  present-day  climates.  Our  analysis  covers  the  years  2016  to  2025,  focusing  on 
 the  climatological  months  of  peak  burning  during  the  2024-2025  fire  season.  See 
 Supplementary  Text  S5.1.2  for  methodology  and  Supplementary  Text  S5.2.2  for 
 discussion of results. 
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 Table  4  :  Summary  of  the  attribution  approaches  used  in  this  report.  See  Table  S2  for  a 
 breakdown on the what each attribution type includes and what each modelling targets. 

 Term  Definition  Experiments compared  Framework  Application 

 Event attribution for fire weather and burned area 

 Anthropogenic 
 climate forcing 

 Change  in  fire 
 weather  driven  by 
 anthropogenic 
 emissions  from 
 greenhouse  gases, 
 land-use  change  and 
 aerosols.  As  per 
 (Ciavarella  et  al., 
 2018; Li et al., 2021) 

 Factual:  HadGEM3-A_ALL: 
 with  natural  forcing  plus 
 human emissions 
 Counterfactual: 
 HadGEM3-A  _  NAT  with 
 natural-only  forcing  from 
 solar  variability  and 
 volcanoes 

 HadGEM3-A 
 attribution 
 ensemble.  0.83  x 
 0.56  degree 
 resolution 

 Fire  weather 
 (FWI) 

 ConFLAME 
 (Kelley  et  al. 
 2021;  Barbosa  et 
 al.  2025b)  with 
 merged 
 ERA5/HadGEM3 
 -A product 

 Burned  Area  with 
 ConFLAME 

 Impacts attribution for fire weather and burned area 

 Total climate forcing  Changes  in  FWI  since 
 pre-industrial 

 Factual  (2016-2025)  : 
 present-day  climate  from 
 CanESM5 SSP585 
 Counterfactual  1850-1859)  : 
 Pre-industrial  climate 
 simulation 

 CanESM5 
 CMIP6 ensemble 

 FWI 

 Changes  in  BA  due  to 
 climate  change, 
 irrespective  of  the 
 cause  of  warming.  As 
 per  ISIMIP 
 (Intersectoral  Impacts 
 Model 
 Intercomparison 
 Project)  (Mengel  et 
 al.,  2021  and  Frieler 
 et al., 2024) 

 Factual  (2003-2019)  : 
 present-day  climate  (driven 
 by  GSWP3-W5E5 
 reanalysis),  CO2,  land-use 
 and population 
 Counterfactual  (2003-2019)  : 
 Historical  climate  detrended 
 using  seasonally-varying 
 regression  on  global  mean 
 temperature  (ATTRICI 
 method,  CO2  fixed  at  1901 
 value,  present-day  land-use 
 and population 

 ISIMIP3a  impact 
 attribution.  0.5 
 degree resolution 

 FireMIP 
 ensemble  and 
 ConFLAME 

 Socio-economic 
 factors  Changes  in  BA  due  to 

 land-use  and 
 population  change.  As 
 per  (Burton,  Lampe  et 
 al., 2024) 

 Counterfactual  (1901-1917)  : 
 Warming  trend  removed 
 using  ATTRICI  method,  fixed 
 1901  CO2,  limited  land  use 
 and population change 
 Counterfactual  (2003-2019): 
 Warming  trend  removed 
 using  ATTRICI  method,  fixed 
 1901  CO2,  present-day  land 
 use and population 

 All forcings  Changes  in  BA  due  to 
 climate,  land-use  and 
 population  change.  As 
 per  (Burton,  Lampe  et 
 al., 2024) 

 Counterfactual  (1901-1917)  : 
 Warming  trend  removed 
 using  ATTRICI  method,  fixed 
 1901  CO2,  limited  land  use 
 and population change 
 Factual  (2003-2019)  : 
 Historical  climate  driven  by 
 reanalysis 

 ISIMIP3a  impact 
 attribution 

 FireMIP 
 ensemble 

 5.1.2.  Attributing Extremes in Fire Weather during 2024-25 

 We  use  two  complementary  approaches  to  attribute  changes  in  the  probability  of  high  fire 
 weather,  measured  using  the  Canadian  Fire  Weather  Index  (FWI),  to  anthropogenic  climate 
 change.  The  first  method  uses  a  targeted  large-ensemble  weather  model  simulation  to 
 assess  the  influence  of  climate  change  on  the  2024/25  fire  seasons  directly.  The  second 
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 method  applies  a  longer-term,  probabilistic  framework  using  simulations  from  a  fully  coupled 
 Earth system model. 

 The  first  approach  follows  the  same  methodology  used  in  the  previous  State  of  Wildfires 
 report  (Jones  et  al.  2024b).  This  is  an  established  approach  to  attribute  changes  in  the 
 probability  of  high  fire  weather,  measured  using  FWI,  to  anthropogenic  climate  forcing.  This 
 method  has  been  previously  used  by  the  World  Weather  Attribution  (Barnes  et  al.,  2023; 
 Barnes  et  al.,  2024;  Barnes  et  al.,  2025),  using  outputs  from  the  HadGEM3-A  large 
 ensemble  (Ciavarella  et  al.,  2018).  Our  approach  builds  on  the  methodology  introduced  by 
 Stott  et  al.  (2004)  for  attributing  extreme  weather  events,  and  it  has  been  applied  in  other 
 attribution studies targeting fire weather, such as Li et al. (2021). 

 As  outlined  in  Section  4.1.1  ,  the  FWI  is  used  operationally  and  in  research  contexts  to  rate 
 fire  danger  based  on  meteorological  conditions.  Due  to  the  availability  of  model  output 
 variables  we  use  maximum  daily  temperature  at  1.5  m  as  a  proxy  for  noon  values,  total  daily 
 precipitation,  mean  daily  relative  humidity  at  1.5  m,  and  mean  daily  wind  speed  at  10  m, 
 following  Perry  et  al.  (2022).  We  calculate  the  daily  FWI  for  the  months  of  2024-25  peak  BA 
 anomaly  for  each  focus  region,  using  the  same  month  and  region  for  validation  over  the 
 historical  time  series  (1960-2013).  Note  that  at  time  of  writing,  data  for  HadGEM3-A  was  only 
 available  till  the  end  of  2024,  so  we  do  not  report  on  Southern  California  fires  using  this 
 method. 

 We  validate  and  bias-adjust  the  model  estimates  of  high  FWI  for  the  period  1960-2013  by 
 comparing  a  15-member  HadGEM3-A  ensemble  with  ERA5  reanalysis  data  (C3S,  2024) 
 representing  “observed”  FWI.  The  0.25  degree  resolution  observed  FWI  from  ERA5  was 
 coarsened  by  linear  interpolation  (calculated  by  extending  the  gradient  of  the  closest  two 
 points)  to  match  the  0.5  degree  model  grid.  We  compare  the  time  series  of  individual 
 components  of  the  FWI  (Figure  S49-S55  ),  and  the  distribution  of  the  modelled  and  observed 
 FWI  (  Figure  S56-S58)  ,  and  apply  a  simple  linear  regression  to  find  the  bias  correction 
 required  for  the  2023  model  output.  Before  bias-adjustment,  the  modelled  FWI  is  generally 
 higher  than  the  observed  FWI  for  Amazonia  and  Congo,  which  modelled  FWI  compares 
 more  favourably  to  ERA5  in  the  Pantanal.  The  correction  adjusts  the  trend  and  absolute 
 value  while  maintaining  variability,  and  the  model  successfully  reproduces  the  observed 
 distribution after applying the correction in each region (see  Supplementary Text S9  ). 

 For  the  events  occurring  in  the  2024  fire  season,  we  calculate  the  FWI  from  the  HadGEM3-A 
 model  simulations  comprising  2  experiments  of  525  members  each,  one  driven  by  all 
 forcings  including  historical  greenhouse  gas  emissions,  aerosols,  zonal-mean  ozone 
 concentrations,  land-use  change  and  natural  forcing  (ALL),  and  a  second  counterfactual 
 simulation  with  natural-only  forcing  from  solar  variability  and  volcanic  emissions,  and  1850 
 land-use  (NAT)  (  see  Table  4  ).  By  applying  the  bias-adjustment  from  the  previous  step,  and 
 comparing  the  fire  weather  in  the  two  simulations  to  the  2024-25  observed  FWI  from  ERA5, 
 we  calculate  the  change  in  probability  of  high  fire  weather  due  to  anthropogenic  climate 
 forcing.  The  standard  definition  of  "high  fire  weather"  that  we  use  is  the  95th  percentile  of 
 daily  Fire  Weather  Index  (FWI)  values  across  all  grid  cells  and  days  during  the  season. 
 However,  as  in  last  year's  report  and  in  Burton  et  al.  (2025),  when  the  region  is  small  or 
 when  climate  conditions  significantly  influence  the  higher  FWI  in  our  counterfactual,  leading 
 to  few  ensemble  members  reaching  higher  FWI  values,  we  need  to  adjust  our  definition  of 
 extreme.  In  this  year's  assessment,  we  apply  the  90th  percentile  threshold  for  the 
 Northeastern  Amazonia  and  Congo  regions,  as  the  differences  between  the  factual  and 
 counterfactual  ensembles  are  so  large  that  very  few  counterfactual  members  reach  the  95th 
 percentile of the factual distribution, making the calculation of risk ratios unreliable. 
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 5.1.3.  Attributing Region-wide Extreme BA during 2024-25 

 We  use  the  ConFLAME  framework  for  direct  BA  attribution.  For  this  report,  we  apply  two 
 configurations  of  the  ConFLAME  attribution  framework  to  attribute  anomalies  in  BA  fraction 
 during the peak burning months of the 2024-25 fire season: 

 ●  A  near  real-time  (NRT)  setup  for  targeting  anthropogenic  climate  forcing,  which 
 largely  mirrors  the  configuration  used  in  the  drivers  attribution  section  (see  Section 
 4  ),  assesses  how  human  influences  affected  the  likelihood  of  BA  via  meteorological 
 driver  of  fire  conditions  observed  during  the  specific  2024  events.  This  setup  targets 
 the  actual  environmental  conditions  leading  up  to  and  during  the  events,  providing 
 the  most  up-to-date  picture  of  climate  and  socioeconomic  influences.  By  focusing  on 
 the  precise  timing  and  location  of  the  event,  the  NRT  configuration  provides  an 
 up-to-date  and  high-resolution  picture  of  how  anthropogenic  climate  forcings  have 
 influenced the likelihood of extreme fire activity. 

 ●  The  Inter-Sectoral  Impact  Model  Intercomparison  Project  (ISIMIP)  3a  setup  , 
 previously  used  with  ConFire  in  last  year’s  report.  This  setup  enables  the  analysis  of 
 how  often  fire  events  such  as  those  in  2024  might  occur  under  environmental 
 conditions  from  2002  to  2019.  While  2024  itself  is  excluded,  we  look  for  similar 
 events  in  this  earlier  period  to  understand  how  likely  they  would  be  without  the  recent 
 changes  in  climate  and  land  use.  This  broader,  long-term  setup  helps  us  assess  how 
 the  background  risk  is  shifting  over  time  and  complements  the  more  event-specific 
 analysis  shown  earlier.  This  setup  also  directly  links  to  the  future  projections 
 presented  in  Section  6  ,  which  also  use  ISIMIP.  As  an  addition  to  last  year's  report’s 
 set  up,  our  ISIMIP  set  up  also  includes  changes  in  land  use  and  cover  (measured  as 
 the  difference  between  tree  cover  and  agricultural  fraction  since  the  previous  year)  in 
 the direct socioeconomic forcing attribution (see  Table S3  ). 

 As  each  configuration  uses  data  that  is  somewhat  similar  to  our  Fire  Weather  (in  the  case  of 
 NRT)  or  FireMIP  (when  using  ISIMIP)  set  ups,  neither  setup  is  fully  independent  of  our  other 
 two  modelling  approaches.  However,  the  fire  modelling  in  ConFLAME  captures  different 
 components  of  fire  than  FWI  or  FireMIP  by  attributing  BA  during  the  events  themselves.  The 
 advantage  of  ConFLAME  is  that  it  bridges  the  gap  between  event-focused  real-time 
 attribution  and  global  process-based  fire  models.  That  said,  future  iterations  would  benefit 
 from  incorporating  more  independent,  preferably  observation-driven  input  datasets  to 
 improve robustness and reduce potential structural alignment across methods. 

 Each  attribution  experiment  involved  training  ConFLAME  using  “observed”  or  reanalysis 
 driving  data  against  MODIS  BA  (as  described  in  Section  4).  We  then  ran  the  framework  with 
 factual  driving  data  followed  by  a  separate  run  counterfactual  with  the  effect  we  aim  to 
 attribute  (e.g.,  all  forcings,  climate,  or  socioeconomic  drivers)  removed.  We  conducted 
 paired  ConFLAME  factual  and  counterfactual  predictive  model  simulations  at  monthly 
 resolution,  using  a  structure  similar  to  that  in  Section  4.1.2  ,  with  specific  drivers  grouped  into 
 controls  in  Table  S1  and  evaluated  the  model  following  Barbosa  (2025;  Section  4.1.2  ).  We 
 separately  train  ConFLAME  on  50%  of  the  data  between  2003-2011  and  perform  evaluation 
 on  years  2012-2019.  Further  details  of  the  model  fitting  and  validation  can  be  found  in 
 Supplementary Text S5.1.3  and  Supplementary Text  S9.1  , respectively. 

 To  determine  the  impact  of  total  climate  forcing,  socioeconomic  factors  and  total  forcing  on 
 increased  BA  during  our  focal  events  using  the  ISIMIP  configuration,  we  conducted  paired 
 sampling  of  monthly  BA  in  the  target  months  (see  Table  4).  Total  climate  forcing’s  factual 
 driving  data  uses  the  same  2003-2019  GSWP3-W5W5  reanalysis  data  used  for  training  for 
 factual,  while  we  use  detrended  data  for  the  counterfactual,  whereas  socioeconomic  used 
 detrended  data  2003-2019  for  factual  and  1901-1917  for  counterfactual.  Total  forcing  used 
 2003-2019  from  GWSP3-W5W5  for  the  factual  and  1901-1917  from  detrended 
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 GWSP3-W5W5  for  the  counterfactual.  We  used  paired  sampling  to  account  for  uncertainty  in 
 the  relationships  between  drivers  and  BA,  ensuring  co-variation  between  experiments  (as  in 
 Kelley  et  al.,  2021).  In  total,  we  drew  1,000  samples  across  the  17  years  of  each  simulation, 
 resulting in 17,000 paired samples. 

 We  use  two  key  metrics  to  assess  how  our  target  factors  have  influenced  BA  during  extreme 
 fire  events.  We  report  attribution  metrics  both  for  the  entire  region  (reported  in  the  main  text, 
 Section  5.2.2  )  and  for  "sub-regional  extremes"  -  the  grid  cells  with  the  top  5%  of  BA,  to  also 
 assess  how  anthropogenic  factors  may  have  influenced  the  most  severely  affected  areas  (in 
 Supplementary  Material  S5.2.2  )  The  Amplification  Factor  (AF)  tells  us  how  much  bigger  (or 
 smaller)  the  BA  was  because  of  a  specific  factor.  It  works  by  comparing  factual  BA  for  BAs 
 as  large  or  larger  than  what  was  observed  during  the  target  months  versus  counterfactual. 
 Observed  BA  is  calculated  in  a  manner  consistent  with  the  model  outputs,  by  averaging  BA 
 across  either  the  entire  region  or  the  top  5%  of  BA  within  the  target  region  and  month. 
 Observations  are  derived  from  monthly  MCD64A1  data.  In  near-real-time  (NRT)  mode,  we 
 do  this  for  the  specific  year  of  interest.  In  the  ISIMIP  setup,  we  compare  across  many  years 
 (2003-2019).  An  AF  greater  than  1  means  climate  change  increased  BA.  For  example,  an 
 AF  of  2  means  twice  as  much  area  burned.  We  calculate  this  across  our  model  simulations 
 and  report  both  the  central  estimate  (median)  value  and  the  range  of  uncertainties  based  on 
 10th  to  90th  percentiles.  Because  the  Early  Industrial  factual  simulation  in  our  ISIMIP  setup 
 includes  no  human  influence  on  the  climate,  we  first  adjusted  the  target  event’s  BA  to  the 
 level  expected  without  climate  change.  This  adjustment  involved  identifying  the  percentile  of 
 the  observed  BA  in  the  factual  simulation,  and  then  finding  the  BA  at  that  same  percentile  in 
 the counterfactual simulation 

 For  the  NRT  set  up,  we  can  also  use  the  Risk  Ratio  (RR),  which  shows  how  much  more  (or 
 less)  likely  the  target  factor  made  a  fire  event  of  this  size.  Similarly  to  Section  5.1.2  ,  it 
 compares  the  chance  of  seeing  the  observed  BA  under  today’s  climate  to  the  chance  under 
 a  climate  without  human  influence.  A  RR  above  1  means  climate  change  made  the  event 
 more likely; a RR below 1 means it made it less likely. 

 5.1.4.  Attributing Background Changes in Burned Area this Century 

 We  assess  how  BA  has  changed  over  recent  decades  due  to  climate  and  socio-economic 
 drivers  using  the  FireMIP  (“Fire  Model  Intercomparison  Project”)  attribution  framework 
 developed  by  Burton,  Lampe  et  al.  (2024).  This  method  uses  state-of-the-art  global  FireMIP 
 models,  employing  each  model's  native  fire  scheme,  to  estimate  the  contribution  of  different 
 drivers  to  BA  by  comparing  simulated  fire  activity  under  different  ISMIP3a  experiments 
 setup.  We  quantify  the  effect  of  climate  forcings  on  BA  by  comparing  the  present-day  factual 
 burned  area  to  the  present-day  counterfactual  BA.  The  effect  of  socio-economic  forcings  is 
 assessed  by  comparing  the  present-day  of  the  counterfactual  simulations  to  the 
 early-industrial  of  the  counterfactual  simulations  since  long-term  climate  is  stationary  in 
 these  simulations.  Lastly,  we  find  the  effect  of  all  forcings  by  comparing  the  present-day 
 factual BA to the early-industrial counterfactual BA. 

 The  attribution  focuses  on  changes  in  median  monthly  BA  during  2003-2019  and  uses  a 
 weighted  multi-model  ensemble,  where  weights  reflect  each  model’s  ability  to  reproduce 
 observed  regional  fire  anomalies  in  GFED5  and  FireCCI  datasets.  All  results  are  reported  as 
 relative  anomalies,  and  uncertainty  is  assessed  via  a  random  resampling  of  the  weighted 
 ensemble,  including  a  stochastic  parameter  which  accounts  for  uncertainty  on  the 
 performance  of  the  entire  ensemble.  This  approach  provides  a  robust  and  conservative 
 estimate of trends, particularly suited to assessing regional-scale fire responses. 
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 In  contrast  to  last  year’s  report,  where  results  were  reported  for  IPCC  AR6  regions 
 containing  the  focal  fire  zones,  this  year  we  refined  the  analysis  by  tailoring  the  attribution 
 directly  to  the  specific  areas  featured  in  the  report.  This  regional  adjustment  enhances  the 
 relevance and interpretability of the attribution results for each case study. 

 For  full  details  on  the  method,  model  evaluation,  and  baseline  results  across  all  IPCC 
 regions, see Burton, Lampe et al. (2024). 

 5.2.  Results 

 5.2.1.  Extremes in Fire weather during the 2024-25 Focal Events 

 5.2.1.1.  Northeast Amazonia 

 We  find  that  the  fire  weather  conditions  in  Northeast  Amazonia  during  January-March  2024 
 were  significantly  more  likely  due  to  anthropogenic  climate  forcing,  with  the  probability  of 
 experiencing  fire  weather  at  or  above  the  levels  observed  during  the  event  being  32  to  73 
 times  higher  in  the  factual  simulations  compared  to  the  counterfactual  simulations  (  Figure 
 13  ).  A  substantially  larger  proportion  of  the  factual  ensemble  exceeds  the  observed  90th 
 percentile  of  FWI  from  the  ERA5  reanalysis  than  in  the  counterfactual  ensemble  (  Figure  13  ), 
 indicating  that  high  fire  weather  conditions  during  early  2024  were  much  more  likely  in  a 
 climate influenced by anthropogenic emissions. 

 Figure  13:  High  fire  weather  conditions  in  2024/25:  Probability  distributions  of  FWI  in  the 
 HadGEM3  ensemble  for  the  focal  fire  season  in  each  region,  comparing  simulations  with 
 anthropogenic  and  natural  forcings  (red;  factual)  to  natural-only  forcings  (teal; 
 counterfactual).  Black  line  shows  ERA5  reanalysis.  The  x-axis  shows  the  regional  average  of 
 high-percentile  FWI  days:  89th  percentile  for  Jan-Mar  in  Northeast  Amazonia  (left),  95th 
 percentile  for  Aug-Sep  in  the  Pantanal  and  Chiquitano  (middle),  and  90th  percentile  for 
 Jun-Aug in the Congo Basin (right). 

 5.2.1.2.  Pantanal and Chiquitano 

 The  high  fire  weather  conditions  experienced  during  the  peak  anomaly  in  fire  activity  in 
 August-September  2024  were  4.2-5.5  times  more  likely  due  to  anthropogenic  climate  forcing 
 (  Figure  13  ).  While  this  increase  is  smaller  than  that  estimated  for  Northeast  Amazonia,  the 
 narrower  range  suggests  we  have  greater  confidence  that  human  influence  increased  the 
 probability of extreme fire weather conditions in this region. 

 Our  results  largely  agree  with  the  rapid  attribution  analysis  from  the  World  Weather 
 Attribution  (WWA)  initiative  (Barnes  et  al.,  2024),  though  with  smaller  uncertainty  ranges, 
 WWA  found  that  the  accumulated  fire  weather  conditions,  represented  by  the  June  Daily 
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 Severity  Rating  (DSR),  were  4.6  (1.1  to  20)  times  more  likely  due  to  human-induced  climate 
 change.  The  DSR,  a  fire-suppression  oriented  rescaling  of  the  FWI,  is  commonly  used  to 
 assess  the  cumulative  fire  weather  danger  over  monthly  timescales  (Van  Wagner,  1987). 
 WWA  focused  on  June  conditions  because  of  their  role  in  setting  up  the  severe  fire  season 
 that  followed,  and  their  direct  relevance  to  the  large  BA  that  severely  impacted  wildlife  and 
 livelihoods  in  the  Pantanal.  Observations  also  indicated  a  decrease  in  annual  rainfall  of 
 -23.5%  (−46%  to  +5%)  in  the  region,  though  this  trend  was  not  reproduced  by  climate 
 models (Barnes et al., 2024). 

 5.2.1.3.  Southern California 

 Due  to  the  lack  of  data  availability  from  HadGEM3-A  for  2025,  we  were  unable  to  perform 
 bespoke  FWI  attribution  analysis  for  Southern  California.  However,  in  previously  published 
 analysis,  the  rapid  attribution  study  by  WWA  (Barnes  et  al.,  2025)  found  that  the  extreme  fire 
 weather  conditions  (peak  FWI)  in  the  coastal  southern  California  ecoregion  surrounding  Los 
 Angeles  during  January  2025  were  1.37  (0.48  to  3.6)  times  more  likely  in  comparison  to  the 
 pre-industrial  climate,  suggesting  that  climate  change  may  have  lead  to  a  moderate  increase 
 in  fire  weather,  though  causing  a  reduction  in  fire  weather  is  also  plausible  and  within  the 
 confidence  range.  As  the  impacts  of  Los  Angeles  fires  related  to  extreme  single  days  of 
 wildfire  spread,  the  monthly  maximum  FWI  value  averaged  over  the  study  region  was  used 
 here.  This  result  is  complemented  by  the  increasing  likelihood  of  an  extended  dry  season  in 
 the  region.  Decreased  October-December  precipitation  allowed  for  protracted  fuel  drying, 
 resulting  in  a  more  likely  overlap  between  dry  conditions  and  the  winter  Santa  Ana  winds. 
 Observed  trends  (ERA5)  in  the  October-December  standardised  precipitation  index  found 
 that  the  dry  conditions  leading  up  to  the  LA  fires  were  2.4  (0.33  to  20.9)  times  more  likely 
 than  in  the  pre-industrial  climate.  Using  analogue-based  attribution  (Vautard  et  al.,  2016),  the 
 cut-off-low  circulation  pattern  associated  with  the  strong  Santa  Ana  winds  around  Los 
 Angeles was found to have increased in likelihood by 2.5 (0.4 to 17) times. 

 5.2.1.4.  Congo Basin 

 The  high  fire  weather  conditions  observed  across  the  Congo  Basin  during  June-August  2024 
 were  unusual  in  both  the  factual  and  counterfactual  simulations.  Our  analysis  indicates  that 
 these  conditions  were  3.0-8.0  times  more  likely  due  to  anthropogenic  climate  forcing  (  Figure 
 13  ).  The  entire  FWI  distribution  in  the  factual  ensemble  is  shifted  toward  higher  values 
 compared  to  the  counterfactual  ensemble.  This  means  that  across  the  full  range  of  fire 
 weather  conditions,  the  probability  of  conditions  conducive  to  burning  is  substantially  greater 
 in a climate influenced by human emissions. 

 5.2.2.  Region-wide extreme BA during 2024-25 
 5.2.2.1.  Northeast Amazonia 

 We  find  strong  evidence  that  anthropogenic  climate  forcing  contributed  to  increased  regional 
 BA  during  the  January-March  2024  fire  season  in  Northeast  Amazonia.  Our  analysis  shows 
 a  96%  likelihood  (very  likely  under  IPCC  definitions  of  confidence)  that  BA  was  higher  than  it 
 would  have  been  without  anthropogenic  climate  forcing  (  Figure  14  ).  We  estimate  that 
 regional  BA  was  approximately  4.3  times  larger  (our  Amplification  Factor  )  than  it  would  have 
 been  in  a  counterfactual  world  without  anthropogenic  climate  forcing  (  Figure  14;  Table  5  ), 
 with  a  90%  confidence  range  of  1.02  to  25.32.  While  the  central  estimate  suggests  a 
 quadrupling  of  BA,  the  wide  uncertainty  range  reflects  the  natural  variability  of  fire 
 processes. Nonetheless, even the lower bound supports a small but clear increase. 

 We  assess  the  risk  ratio,  the  likelihood  of  an  event  like  January-March  2024  occurring  under 
 current  climate  conditions  versus  a  pre-industrial  baseline  (  Table  5  ).  Based  on  historical  data 
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 provided  as  evidence  for  the  model,  we  estimate  that  a  similar  event  is  now  2.1  times  more 
 likely  due  to  anthropogenic  climate  forcing.  This  figure  captures  the  longer-term  climate 
 signal  that  would  shape  the  overall  frequency  of  such  events.  When  we  control  for 
 meteorological  variability  by  comparing  simulations  with  and  without  anthropogenic  forcing 
 but  using  identical  weather  patterns  from  2024,  we  see  slightly  stronger  effects  (  Table  5  ). 
 The  risk  ratio  rises  to  2.7,  and  the  upper  bound  of  our  Amplification  Factor  increases 
 dramatically  (over  100-fold  in  some  ensemble  members).  This  suggests  that  climate  forcing 
 alone  could  account  for  much,  or  possibly  all,  of  the  burning  under  certain  conditions, 
 although the central estimate remains close to our previous assessment. 

 Climate  influence  was  widespread  across  Northeast  Amazonia,  most  of  the  entire  region 
 showing  a  greater  likelihood  of  increased  BA  due  to  anthropogenic  forcing  (  Figure  15  ).  The 
 strongest  attribution  signal  occurred  in  the  Southern  Guiana  Shield  Fringe  Forests,  where 
 climate  change  was  very  likely  (≥90%  confidence)  to  have  increased  BA.  These  forests  are 
 particularly  important  due  to  their  extensive  areas  of  primary  rainforest  and  high  ecological 
 sensitivity.  In  contrast,  attribution  confidence  tapered  to  around  70-80%  in  the  Guiana 
 Coastal  Plain,  and  only  a  few  localized  areas,  particularly  in  savanna  mosaics,  showed  weak 
 or no signal. 

 The  region’s  ecological  heterogeneity,  encompassing  floodplain  forests,  natural  grasslands, 
 and  savanna  formations,  means  fire  impacts  vary  considerably.  Some  savanna  systems  are 
 naturally  adapted  to  low-intensity  surface  fires  (Alvarado  et  al.,  2020;  Pivello  et  al.,  2021), 
 but  increased  frequency  and  intensity  of  burning  can  overwhelm  their  resilience. 
 Fire-sensitive  ecosystems,  such  as  humid  forests  and  wetlands,  are  even  more  vulnerable, 
 with  increased  fire  pressure  posing  a  long-term  threat  to  ecosystem  stability  and  biodiversity 
 (Alvarado  et  al.,  2020),  and  it  is  these  ecosystems  where  anthropogenic  climate  forcing  is 
 most likely causing increase in burning. 

 For  regional  BA  totals,  the  likelihood  that  socioeconomic  drivers  increased  BA  was  47% 
 (  Figure  14  ),  indicating  no  clear  signal  that  human  landscape  modification  influences  the 
 extent  of  burning  in  seasons  like  early  2024.  The  estimated  Amplification  Factor  was  1.08, 
 but  with  a  wide  90%  confidence  interval  of  0.44  to  7.21  (  Table  5  ).  The  wide  confidence 
 range,from  potential  halving  of  BA  to  a  seven-fold  increase,  indicates  that  our  model  finds 
 socioeconomic  drivers  to  have  a  highly  uncertain  influence  on  regional  fire  activity  during  this 
 period.  This  uncertainty  likely  reflects  both  the  limited  resolution  of  the  socioeconomic 
 variables  used  (e.g.  population  density,  broad  land  cover  classes)  and  the  challenge  of 
 capturing  the  complex  ways  that  human  activities  interact  with  fire.  It  is  also  possible  that 
 opposing  effects  such  as  suppression  in  one  area  versus  ignition  pressure  in  another,  could 
 be  offsetting  each  other  in  regional  statistics,  though  the  modelling  framework  does  not 
 resolve these interactions explicitly. 
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 Figure  14:  Probability  density  of  the  Amplification  Factor  (AF)  for  each  region,  showing  how 
 different  factors  influenced  the  extent  of  burning  for  each  focal  region.  The  top  panel  displays 
 results  for  the  entire  region,  while  the  bottom  panel  focuses  on  sub-regional  extremes 
 (defined  as  the  grid  cells  in  the  top  5%  of  BA  fraction).  Anthropogenic  climate  forcing  targets 
 the  2024/25  focal  moths  using  NRT  set  up  with  counterfactuals  using  all  HadGEM  ensemble 
 members;  socioeconomic  factors  uses  the  ISIMIP  set  up,  looking  at  increased  likelihood  of 
 2024/255  like  events  in  2003-2019  with  climate  trends  removed  vs  1900-1917.  An  AF 
 greater  than  1  indicates  that  the  factor  contributed  to  an  increase  in  burned  area  extent;  a  AF 
 less  than  1  indicates  a  reducing  influence;  a  value  near  1  suggests  no  change.  Vases  show 
 probability  distribution  of  AF,  dots  within  each  vase  show  central  estimate  and  bars  show 
 90th  percentile  confidence  range  The  percentages  lower  left  of  each  vase  shows  the 
 likelihood of each factor increasing burned area. 

 5.2.2.2.  Pantanal and Chiquitano 

 The  Pantanal  and  Chiquitano  regions  showed  one  of  the  strongest  anthropogenic  climate 
 change  signals    of  all  focal  regions  studied  here  or  in  previous  reports  (Jones  et  al.,  2024b). 
 The  likelihood  that  anthropogenic  climate  forcing  increased  the  observed  regional  BA  is 
 estimated  at  88%  (  Figure  14  ),  indicating  anthropogenic  climate  forcing  likely  drove  an 
 increase  in  BA  (  Table  5  ).  The  total  BA  was  34.5  times  higher  (our  amplification  factor  )  in  the 
 factual  ensemble  than  in  the  counterfactual,  although  the  wide  uncertainty  range  of  0.84  to 
 100  suggests  the  effect  of  anthropogenic  climate  change  could  range  from  minimal  to 
 extremely  large  (  Table  5  ).  When  internal  meteorological  variability  is  removed  (using 
 ensemble-mean),  the  estimated  amplification  factor  remains  largely  unchanged.  The 
 model-based  risk  ratio  for  the  event  is  3.3,  meaning  the  observed  extent  was  roughly  three 
 times more likely due to anthropogenic climate change. 

 Climate  influence  was  relatively  consistent  across  the  region  (  Figure  15  ).  Uniformity  in 
 attribution  results  may  reflect  the  broad  scale  influence  of  anthropogenic  climate  change.  It 
 also  suggests  that  climate  change  is  amplifying  fire  risk  even  in  areas  with  relatively  intact 
 ecosystems  or  seasonal  wetlands,  underscoring  the  vulnerability  of  these  landscapes  to  the 
 ongoing  warming.  However,  the  wide  range  in  uncertainty  highlights  the  need  for  improved 
 observational  data  and  better  representation  of  fuel-moisture  dynamics  in  fire-prone  wetland 
 mosaics such as Pantanal. 
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 Socioeconomic  factors  show  a  very  strong  role  for  direct  human  influence  in  shaping  BA 
 anomalies  during  2024-like  events  in  the  Pantanal  and  Chiquitano  region.  At  the  regional 
 scale,  the  likelihood  that  socioeconomic  factors  increased  BA  is  99%,  with  an  estimated 
 amplification  factor  (AF)  exceeding  100  (90%  confidence  interval:  2.12  to  100).  This  means 
 that  even  under  conservative  estimates,  human  activity  at  least  doubled  BA  during 
 comparable  fire  years.  In  sub-regional  extremes,  the  Amplification  Factor  range  is  even  more 
 extreme  with  a  central  estimate  of  more  than  100  (lower  90%  confidence  bound  of  16.24), 
 with  a  similarly  high  likelihood  (>99%)  that  human  activity  contributed.  This  implies  that  the 
 vast  majority  of  burning  in  these  most  severely  affected  areas  was  directly  linked  to 
 socioeconomic drivers and would have been extremely unlikely in their absence. 

 These  results  confirm  that  direct  human  influences,  such  as  land  use  effects  and  human 
 ignition  sources,  can  be  as  significant,  or  more  so,  than  climate  change  in  raising  the 
 likelihood  of  extreme  wildfire  events  in  the  Pantanal-Chiquitano  region.  This  is  particularly 
 important  and  promising  because  these  factors  can  be  directly  addressed  through  local 
 policies,  incentives  and  enforcement  actions,  offering  clear  and  locally  isolated  pathways  for 
 intervention  and  risk  reduction  alongside  global  action  on  climate  change.  The  consistency 
 between  regional  and  sub-regional  attribution  indicates  that  these  influences  are  not  just 
 diffuse  but  are  concentrated  in  areas  of  greatest  impact.  Even  the  lower  bounds  of  the 
 confidence  intervals  provide  compelling  evidence  that  anthropogenic  pressure  substantially 
 elevated fire outcomes. 

 These  results  agree  with  a  growing  body  of  evidence  pointing  to  compounding  non-linear 
 effects  of  human  and  climatic  drivers  in  the  Pantanal  (Marques  et  al.,  2021,  Barbosa  et  al., 
 2022,  Santos  et  al.,  2024).  While  this  attribution  includes  some  of  the  human  drivers 
 identified  in  the  region,  such  as  land  use  change,  other  key  drivers,  like  wetland  degradation 
 and  water  extraction  (which  can  intensify  fire  risk  by  drying  out  the  landscape;  Barbosa  et  al., 
 2022, 2025b), are not captured here. 
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 Figure  15:  Regions  where  anthropogenic  climate  forcing  most  likely  influenced  fire  activity 
 during  the  2024-25  fire  season,  based  on  the  ConFLAME  Near  Real-Time  setup.  Maps  show 
 the  probability  that  burned  area  (BA)  was  higher  in  the  factual  (climate  change-influenced) 
 scenario  compared  to  the  counterfactual  (no  climate  change)  scenario-based  on  the 
 proportion  of  ensemble  members  where  BA  was  greater  in  the  factual  than  in  the 
 counterfactual  scenario..  Results  are  shown  for  focal  fire  periods  in  each  region: 
 January-March  2024  for  Northeast  Amazonia;  August-September  2024  for  the  Pantanal  and 
 Chiquitano;  June-August  2024  for  the  Congo  Basin;  and  January  2025  for  Southern 
 California.  Colourbar  descriptive  labels  are  based  on  IPCC  uncertainty  definitions 
 (  Mastrandrea et al. 2010  ). 

 5.2.2.3.  Southern California 

 Anthropogenic  climate  forcing  likely  contributed  to  the  high  levels  of  BA  observed  in 
 Southern  California  in  January  2025,  with  a  likelihood  of  increased  burning  of  89%.  The 
 amplification  factor  (AF)  was  estimated  at  24.8,  though  with  a  wide  uncertainty  range  (90% 
 confidence  interval  0.89  to  100),  indicating  that  the  influence  could  have  ranged  from 
 negligible  to  extremely  large.  Despite  this  spread,  the  ensemble-mean  counterfactual  results 
 largely  agree,  reinforcing  confidence  that  anthropogenic  climate  forcing  increased  the 
 likelihood  of  the  event.  The  risk  ratio  of  2.3  suggests  that  similar  fire  conditions  are  more 
 than  twice  as  likely  in  the  present-day  climate  compared  to  a  scenario  without  climate 
 change.  This  elevated  risk  was  in  January,  outside  the  region’s  typical  peak  fire  season, 
 suggesting  that  anthropogenic  forcing  may  be  expanding  the  seasonal  window  during  which 
 large fire events can occur. 

 There  is  no  clear  evidence  that  socioeconomic  factors  occurring  on  the  landscape  increased 
 the  likelihood  of  January  2025-like  regional  BA  in  Southern  California  during  2002-2019.  The 
 estimated  likelihood  of  an  increase  is  55%,  with  a  highly  uncertain  amplification  factor 
 (AF = 1.04  [0.17-85.58]).  As  with  the  climate  attribution,  this  likely  reflects  the  small  size  of 
 the region and limited signal in long-term data. 

 5.2.2.4.  Congo Basin 

 Anthropogenic  climate  forcing  likely  increased  the  total  area  burned  across  the  Congo  Basin 
 during  June  to  August  2024.  The  likelihood  of  an  increase  is  estimated  at  92%,  with  an 
 amplification  factor  (AF)  of  2.69,  meaning  the  event-scale  BA  was  nearly  three  times  higher 
 than  it  would  have  been  without  forcing.  However,  there  remains  some  uncertainty:  while  the 
 best  estimate  points  to  a  substantial  increase,  the  range  spans  from  a  very  small  influence  to 
 a more than 30-fold increase (90% confidence range of 0.96 to 33.96). 

 When  we  account  for  internal  climate  variability  by  averaging  across  all  ensemble 
 simulations  (rather  than  using  only  the  observed  event  conditions),  the  signal  strengthens 
 substantially.  In  this  case,  anthropogenic  climate  change  appears  to  have  increased  BA  by  a 
 factor  of  15  (90%  confidence  range:  0.97  to  over  100),  with  a  risk  ratio  of  2.6,  which  shows  a 
 more  consistent  pattern  of  increased  fire  risk  due  to  long-term  warming  and  drying 
 trends.Unlike  other  regions,  where  most  of  the  uncertainty  stems  from  how  fire  responds  to 
 environmental  conditions,  in  the  Congo  Basin  uncertainty  in  the  meteorological  response  to 
 climate change itself plays a larger role. 

 The  influence  of  climate  change  also  varied  significantly  within  the  region.  The  strongest 
 signal  appears  in  the  southern  parts  of  the  Congo  Basin,  particularly  the  Southern  Moist 
 Forests,  where  our  modeling  frameworks  suggest  climate  change  very  likely  (90-95% 
 likelihood),  using  IPCC  terms  definition  Figure  15  )  increased  BA.  Further  north,  in  the 
 DRC’s  northern  moist  forests,  the  likelihood  was  lower  (50-80%),  and  in  the  Southern  Gabon 
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 transition  forests,  there  was  little  to  no  signal.  These  spatial  differences  may  reflect  varying 
 sensitivities  to  rainfall  patterns,  fuel  conditions,  or  other  landscape  features,  and  highlight  the 
 importance of region-specific analysis. 

 There  is  no  clear  signal  that  socioeconomic  factors  increased  BA  during  the  June-August 
 2024  fires  in  the  Congo.  Across  the  region  as  a  whole,  the  likelihood  of  increased  burning 
 due  to  population  density  and  land-use  change  was  26%,  with  an  amplification  factor  (AF)  of 
 0.94  (90%  confidence  interval:  0.70  to  1.17),  suggesting  a  small  or  even  slightly  dampening 
 influence.  At  the  sub-regional  level,  attribution  remains  uncertain.  The  likelihood  of  increased 
 BA in the most affected grid cells was estimated at 62%, with an AF of 1.00 [0.68-1.69]. 
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 5.2.3.  Background Changes in Burned Area this Century 

 We  assess  how  climate  and  socio-economic  drivers  have  influenced  changes  in  background 
 levels  of  BA  for  each  focus  region  using  the  global  fire  model  attribution  framework 
 introduced  by  Burton,  Lampe  et  al.  (2024),  adapted  this  year  to  match  the  specific 
 geographic  areas  analysed  in  this  report  (see  methods  in  Section  5.1.4  ).  Results  represent 
 the  change  in  median  monthly  BA  during  2003-2019  compared  to  a  counterfactual  scenario 
 in  which  anthropogenic  climate  change  or  changes  in  socio-economic  factors  were  removed. 
 This  is  distinct  from  our  analyses  focussing  on  the  attribution  of  individual  focal  events  in 
 Sections 5.2.1  and  5.2.2  . 

 5.2.3.1.  Northeast Amazonia 

 Total  climate  forcing  led  to  a  modest  but  consistent  decrease  in  background  BA  between 
 2003-2019,  with  a  median  change  of  -6%  [-11%,  -2%]  compared  to  a  counterfactual  without 
 climate  change.  Unlike  the  earlier  attribution  method  (  Section  5.2.2  ),  which  focused  on 
 extreme  2024-like  events,  this  model  captures  long-term,  background  fire  activity,  including 
 broader fuel-climate interactions. 

 The  reduction  in  BA  may  reflect  increased  moisture  or  changes  in  vegetation  structure  that 
 reduce  flammability,  though  the  exact  mechanism  is  unclear.  Recent  observational  analyses 
 suggest  a  rise  in  wet-season  (December  to  May)  rainfall  and  a  reduction  in  dry  days  in 
 northern  Amazonia  over  the  past  two  decades  (Barichivich  et  al.,  2018;  Almeida  et  al., 
 2017),  which  could  contribute  to  these  trends  if  captured  in  the  climate  inputs.  The 
 underlying  models  used  in  this  attribution  framework  used  here  also  features  tighter  coupling 
 between  vegetation,  climate,  and  fire  than  the  event-based  approach,  which  may  explain 
 some  of  the  differences,  though  it  remains  difficult  to  determine  whether  these  are  due  to 
 improved  fuel  representation  or  simply  reflect  a  contrast  between  background  and  extreme 
 conditions. 

 Socioeconomic  changes  are  estimated  to  have  increased  the  background  BA  in  Northeast 
 Amazonia  by  +10%  [3%,  17%]  in  2003-2019  compared  to  1901-1917.  This  signal  aligns  well 
 with  the  earlier  analysis  of  2024-like  events  (  Section  5.2.2.1  )  but  is  more  narrowly 
 constrained,  reinforcing  the  role  of  human-driven  changes  as  a  key  influence  on  regional  fire 
 activity,  as  identified  in  many  previous  studies.  For  instance,  recent  studies  on  land  use  and 
 fire  dynamics  in  the  Amazonia  region  points  to  rising  fire  activity  associated  with  expanding 
 agricultural  areas,  secondary  vegetation,  and  newly  deforested  areas  (Silveira  et  al.,  2022). 
 Human  activities  remain  the  primary  source  of  ignition,  mainly  through  practices  such  as 
 deforestation,  pasture  maintenance,  and  crop  field  burning,  often  intensified  under  dry 
 conditions (Lapola et al., 2023). 

 5.2.3.2.  Pantanal and Chiquitano 

 We  find  a  modest  but  robust  signal  of  climate-driven  change  in  background  fire  activity. 
 Between  2003  and  2019,  total  climate  forcing  is  estimated  to  have  increased  the  average  BA 
 by  10%  [6%,  15%].  The  relatively  narrow  confidence  range  suggests  strong  model 
 agreement  and  indicates  that  the  region’s  area  burned  has  already  been  measurably 
 affected  by  long-term  climatic  shifts.  This  aligns  with  broader  lines  of  evidence  that  highlight 
 the  Pantanal’s  vulnerability  to  changes  in  rainfall  patterns  and  dry  season  intensity,  which 
 influence  both  fuel  availability  and  flammability  (  Section  4.2  ).  These  findings  are  also 
 consistent  with  attribution  results  for  extreme  events  in  2024  (  Section  5.2.2.2)  ,  which  also 
 showed a high likelihood of increased burning, albeit with greater uncertainty. 
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 We  estimate  that  socioeconomic  drivers  contributed  a  reduction  in  background  BA  of  7% 
 [-12%,  -2%]  compared  to  pre-industrial  conditions.  This  suggests  that  long-term  changes  in 
 land  use  and  management,  including  shifts  in  agricultural  practices,  may  have  contributed  to 
 a  modest  but  consistent  suppression  of  average  fire  activity  over  the  past  two  decades.  The 
 attribution  of  socioeconomic  influence  on  BA  in  the  Pantanal  presents  an  interesting  contrast 
 with  the  attribution  of  focal  event  BA  in  the  previous  section,  which  suggests  that 
 socioeconomic  factors  very  likely  increased  BA  (  Section  5.2.2.2  ).  This  contrast  may  point  to 
 important temporal and functional differences: 

 ●  Long-term  socioeconomic  changes,  such  as  improved  fire  control  in  settled  areas  or 
 changes in land use, could suppress background fire activity. 

 ●  Yet,  during  extreme  conditions,  these  same  systems  may  fail  to  contain  fires,  or 
 different  areas  (e.g.the  interface  between  private  properties  and  protected  areas  , 
 Barbosa et al., 2022) may dominate the fire signal. 

 Still,  the  disagreement  raises  a  cautionary  flag.  While  the  two  methods  target  different 
 timescales  and  use  different  models,  their  confidence  intervals  do  not  fully  overlap, 
 suggesting  that  at  least  one  framework  may  be  underestimating  uncertainty  or  missing  key 
 processes.  It  also  reinforces  the  importance  of  using  multiple,  independent  lines  of  evidence 
 in  attribution  work  and,  specifically  for  the  Pantanal,  shows  that  more  work  is  needed  to 
 assess  the  balance  between  human  impact  on  background  vs  extreme  BA  along  with  the 
 modelling techniques used to assess this. 

 5.2.3.3.  Southern California 

 In  Southern  California,  the  models  attribute  a  +7%  [2%,  12%]  increase  in  median 
 background  BA  to  total  climate  forcing.  This  is  consistent  with  the  attribution  results  for 
 2025-like  events  (  Section  5.2.2.3  ),  though  with  higher  confidence.  The  agreement  across 
 these  distinct  approaches,  despite  targeting  different  fire  outcomes  (seasonal  extremes  vs 
 general  background  activity),  provides  additional  confidence  that  long-term  climate  change  is 
 influencing baseline fire conditions in the region. 

 Socio-economic  influences  contributed  a  -3%  change  in  background  BA,  with  an  uncertainty 
 range  of  [-7%,  1%].  While  not  statistically  significant,  this  result  is  more  tightly  constrained 
 than  those  from  the  earlier  analysis  of  2025-like  events.  The  modest  downward  influence 
 may  reflect  intensifying  suppression  capacity,  declines  in  human-caused  fires  due  to 
 fire-prevention  policies  including  those  targeted  to  electrical  utilities  (Jorge  et  al.,  2025; 
 Abatzoglou et al., 2020), or other urban interface factors, though uncertainty remains high. 

 5.2.3.4.  Congo Basin 

 In  the  Congo  Basin,  we  estimate  that  total  climate  change  has  driven  an  increase  in  mean 
 annual  BA  of  54%,  with  a  tight  confidence  range  of  [45%,  63%].  This  makes  it  one  of  the 
 most  robust  signals  of  climate  influence  across  the  background  fire  analyses.  These  results 
 are  consistent  with,  though  slightly  stronger  and  more  confident  than,  the  attribution  using 
 2024-like  extreme  events.  The  agreement  between  methods  strengthens  confidence  that 
 climate change is already amplifying baseline fire activity in the region. 

 This  signal  likely  reflects  a  clear  climate  influence  on  fire-conducive  weather,  particularly  in 
 the  southern  part  of  the  basin  (  Section  4.2.2.2.4  ).  While  fuel  limitations  played  a  role  in 
 moderating  fire  spread  (  Figure  12)  ,  the  background  increase  in  BA  appears  strongly  tied  to 
 meteorological shifts linked to climate change. 
 Socioeconomic  influences  appear  to  have  played  a  moderating  role  in  background  fire 
 activity  across  the  Congo  Basin.  In  our  process-based  model  analysis,  socioeconomic 
 drivers,  including  changes  in  land  use,  land  cover,  and  population,  led  to  a  16%  reduction  in 
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 background  BA  between  2003-2019,  with  a  90%  confidence  range  of  -21%  to  -11%.  This 
 suggests  a  consistent  and  substantial  dampening  effect  on  fire,  possibly  reflecting  a 
 combination  of  land  fragmentation,  land  use  conversion,  or  reduced  fire  use.  These  results 
 are  broadly  in  line  with,  though  more  confidently  constrained  than,  the  amplification  factor 
 estimated  for  2024-like  events  in  the  previous  attribution  method,  which  indicated  limited 
 influence from socioeconomic factors. 

 6.  Seasonal and Multi-Decadal Outlook 

 6.1.  Methods 

 6.1.1.  Seasonal Forecasts 

 6.1.1.1.  Fire Weather Index 

 In  Section  4  ,  we  introduced  the  use  of  seasonal  forecasts  of  FWI  and  examined  how  they 
 performed  during  the  focal  events  of  the  2024-25  fire  season.  In  this  section,  we  present 
 global  FWI  forecasts  from  the  ECMWF’s  SEAS5  seasonal  prediction  system  for  the  months 
 June-August  2025,  extending  the  same  approach  employed  in  Section  4  throughout  the 
 boreal summer months of 2025 (see  Section 4.1.1.2.1  for methods). 

 6.1.1.2.  Burned Area 

 In  Section  4  ,  we  introduced  the  use  of  seasonal  forecasts  of  burned  areas  using  a 
 combination  of  weather  driver  and  ML  and  examined  how  they  performed  during  the  focal 
 events  of  the  2024-25  fire  season.  In  this  section,  we  present  global  BA  forecasts  from  the 
 same  system  for  the  months  July-September  2025,  extending  the  same  approach  employed 
 in  Section  4  throughout  the  boreal  summer  months  of  2025  (see  Section  4.1.1.2.2  for 
 methods). 

 6.1.2.  Multi-Decadal Projections 

 6.1.2.1.  Fire Weather Index at Future Global Warming Levels 

 To  calculate  how  the  risk  of  fire  weather  extremes  might  evolve  with  future  warming,  we 
 apply  the  same  framework  described  in  Supplementary  Material  S5.1.1  but  instead  of 
 comparing  recent  climate  to  the  past,  we  compare  it  to  a  set  of  global  warming  levels:  1.5  °C, 
 2.0 °C, 3.0 °C, and 4.0 °C above recent past climate (2016-2025). 

 For  each  level  of  warming,  we  identify  years  in  the  CanESM5  ensemble  where  the  smoothed 
 11-year  running  global  mean  temperature  aligns  with  the  target  level,  and  then  assess  the 
 frequency  of  extreme  7-day  FWI  events  in  those  years,  as  per  Liu  et  al.  (2023b)  and  similar 
 to  Otto  et  al.  (2018).  Comparing  this  to  the  2016-2025  climate  baseline  gives  us  a 
 forward-looking  set  of  Risk  Ratios  (RR)  —  RR1.5,  RR2.0,  etc.  These  indicate  how  much 
 more likely such extremes become as the planet warms. 

 As  with  the  attribution  to  past  climate  (  Section  S5.1.1  ),  uncertainties  are  captured  through 
 bootstrapped  confidence  intervals,  enabling  meaningful  comparison  of  future  risks  even 
 when rare extremes are involved. 
 6.1.2.2.  Burned Area in Future Emissions Scenarios 

 In  order  to  project  future  changes  in  BA,  we  extended  the  ConFLAME  ISIMIP3a  modelling 
 approach  used  in  Section  5.1.3  to  future  decades  under  Shared  Socioeconomic  Pathway 
 (SSP)  scenarios  SSP126,  SSP370,  and  SSP585,  following  a  similar  protocol  to  UNEP 

 73 

 2882 

 2883 

 2884 

 2885 

 2886 

 2887 

 2888 

 2889 

 2890 

 2891 

 2892 

 2893 

 2894 

 2895 

 2896 

 2897 

 2898 

 2899 

 2900 

 2901 

 2902 

 2903 

 2904 

 2905 

 2906 

 2907 

 2908 

 2909 

 2910 

 2911 

 2912 

 2913 

 2914 

 2915 

 2916 

 2917 

 2918 

 2919 

 2920 

 2921 

 2922 

 2923 

 2924 

 2925 

 2926 

 2927 

 2928 

 2929 

 2930 

https://doi.org/10.5194/essd-2025-483
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 (2022a).  We  use  the  same  optimised  model  as  in  Section  5.1.3  ,  but  here  we  employ 
 bias-corrected  global  climate  model  (GCM)  outputs  from  ISIMIP3b  (Frieler  et  al.  2025)  for 
 prediction.  While  ISIMIP3a  uses  reanalysis  data  for  historical  analysis,  ISIMIP3b  employs 
 GCM  data  to  project  future  climates  and  is  designed  for  usage  cases  requiring  a  seamless 
 continuation of the historical period into future scenarios. 

 ISIMIP3b  utilizes  five  bias-corrected  GCMs,  including  historical  model  output  up  to  2014  and 
 future  scenarios  from  2015-2100  under  the  three  SSPs.  ISIMIP3b  uses  surface-based 
 meteorological  outputs  from  ScenarioMIP  simulations,  which  include  future  forcings  from 
 greenhouse  gases,  aerosols,  land-use  change,  and  short-lived  climate  forcers.  The  five 
 GCMs  used  are:  GFDL-ESM4  (Held  et  al.,  2019),  IPSL-CM6A-LR  (Boucher  et  al.,  2020), 
 MPI-ESM1-2-HR  (Mauritsen  et  al.,  2019),  MRI-ESM2-0  (Yukimoto  et  al.,  2019),  and 
 UKESM1-0-LL  (Tang  et  al.,  2019;  Sellar  et  al.,  2019).  As  part  of  ISIMIP3b,  each  GCM  is 
 bias-corrected as described in Lange (2019). 

 Future  ISIMIP3b  projections  for  socioeconomic  drivers  such  as  population  density  or  land 
 use  change  were  not  available  at  time  of  analysis.  As  such,  our  simulations  exclude  future 
 changes  in  ignition  sources  or  direct  land-use  modification  on  both  fire  and  vegetation.  To 
 simulate  vegetation  structure  and  fuel  availability,  the  JULES-ES  dynamic  vegetation  model 
 was  run  offline,  driven  by  surface  climate  variables  from  each  of  the  five  bias-corrected 
 GCMs  under  each  SSP  scenario,  and  scenario-specific  CO2  concentrations  to  represent 
 CO2  fertilization,  along  with  prescribed  nitrogen  deposition  but  excluding  changes  in  fertiliser 
 application,  along  with  prescribed  nitrogen  deposition  but  excluding  changes  in  fertiliser 
 application.  The  land  cover  output  from  JULES-ES  was  then  bias-corrected  (using  the  same 
 mapping  procedure  as  Section  5.1.3  ,  based  on  biases  between  JULES-ES  driven  by 
 reanalysis  and  VCF  observations)  to  maintain  consistency  with  the  GCM  bias-correction 
 procedures.  Our  approach  provides  a  probability  distribution  of  future  BA  representing  the 
 uncertainty  range  from  cross-model  (GCM)  spread  in  the  response  of  climate  and  vegetation 
 to  emissions  for  each  scenario  and  year  in  the  period  2010-2100.  Years  2010-2014  were 
 adopted  from  the  historical  experiment  for  each  GCM,  and  post-2014  from  branched  SSP 
 and  model  specific  projections.  We  describe  future  changes  as  significant  if  the  range  across 
 GCM  projections  for  a  future  period  does  not  overlap  with  the  range  given  by  the  GCMs  for 
 2010s. 

 Using  this  driving  data,  we  generate  1,000-member  ensembles  for  each  region  and  each 
 GCM/SSP  combination,  using  the  trained  ConFLAME-ISIMIP  model  described  in  Section 
 5.1.3  .  For  each  10-year  period,  we  calculate  the  likelihood  of  extreme  fires  by  determining 
 the  fraction  of  years  within  each  ensemble  member  where  burned  area  during  the  event 
 months  exceeds  that  of  the  observed  focal  event.  We  then  average  this  exceedance  fraction 
 across  all  1,000  ensemble  members  to  estimate  the  likelihood  for  that  decade.  This  process 
 is repeated for each GCM and SSP. 

 For  decades  beyond  2010s,  we  then  calculate  the  increase  in  the  likelihood  of  2024/25-like 
 events  by  taking  the  ratio  of  the  exceedance  frequency  in  each  future  decade  relative  to  the 
 2010s  baseline.  This  is  analogous  to  the  risk  ratio  used  in  Section  4  ,  where  the  future  period 
 acts  as  the  “factual”  and  2010s  as  the  “counterfactual”  baseline.  Following  methods  outlined 
 in  Section  4  ,  we  perform  this  analysis  for  the  entire  region  and  for  "sub-regional  extremes"  - 
 the grid cells with the top 5% of BA. 

 Lastly,  we  calculated  the  integrated  probability  of  experiencing  a  fire  event  of  similar 
 magnitude  to  our  target  region  within  the  expected  lifespan  of  a  citizen  born  in  2023  (the 
 year  of  the  latest  estimate).  According  to  UN  population  statistics  (United  Nations  Population 
 Division,  2023),  life  expectancy  at  birth  is  75.8  years  for  Brazil,  79.3  years  for  the  USA,  and 
 61.9  years  for  the  Democratic  Republic  of  the  Congo  (DRC).  While  the  Northeast  Amazonia 
 and  Congo  Basin  regions  span  multiple  countries,  most  fire  anomalies  in  these  regions 
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 occurred  in  Brazil  and  the  DRC,  respectively  (  Figure  5  ).  To  account  for  years  beyond  2100 
 in  the  life  expectancy  of  Brazil  and  the  USA,  we  extrapolated  the  annual  trend  in  event 
 probabilities.  The  integrated  probability  is  calculated  as  one  minus  the  product  of  the  annual 
 probabilities  of  not  experiencing  a  fire  event  like  the  focal  event,  across  each  year  from 
 2025. 

 6.2.  Results 

 6.2.1.  Seasonal Forecasts of Fire Weather Index and Burned Area Anomalies 

 As  of  mid-2025,  neither  La  Niña  nor  El  Niño  conditions  are  present  in  the  tropical  Pacific. 
 Instead,  the  climate  system  has  entered  an  ENSO-neutral  phase,  according  to  the  latest 
 report  from  the  National  Oceanic  and  Atmospheric  Administration  (NOAA,  2025c).  This 
 neutral  phase  is  expected  to  persist  through  the  remainder  of  summer,  and  into  at  least  early 
 autumn.  While  neutral  ENSO  conditions  typically  indicate  a  reduced  influence  of  Pacific  sea 
 surface  temperature  anomalies  on  global  weather  patterns,  the  persistence  of  anomalously 
 warm  ocean  conditions  and  other  climate  drivers  may  continue  to  exert  significant  influence 
 on  regional  and  global  climate  variability  in  the  months  ahead  (Frölicher  and  Laufkötter, 
 2018). 

 May  2025  was  the  second-warmest  May  on  record  globally,  with  an  average  temperature  of 
 15.79 °C,  0.53 °C  above  the  1991-2020  climate  and  1.4 °C  above  pre-industrial  levels 
 (Copernicus  Climate  Changes  Service,  2025).  While  this  marked  a  brief  drop  below  recent 
 consecutive  months  exceeding  1.5 °C  from  pre-industrial  record,  it  still  reflects  the  persistent 
 trend  of  global  climate  warming  (Horton,  2025).  Unusually  low  rainfall  and  soil  moisture 
 across  northwestern  Europe,  including  the  UK,  reached  their  lowest  levels  since  1871.  This 
 raises  serious  concerns  about  crop  failures,  potential  water  shortages  and  wildfire  risk 
 (European  Commission  Joint  Research  Centre,  2025;  UK  Environment  Agency,  2025). 
 Similar  conditions  were  reported  in  the  US,  particularly  across  Arizona  and  Texas,  where 
 exceptional  drought  levels  led  to  reservoir  depletion,  strict  water  restrictions,  and  increased 
 wildfire  activity  (National  Centers  for  Environmental  Information,  2025;  National  Interagency 
 Fire Center, 2025). 

 Starting  from  May,  and  according  to  the  outlook  for  the  Northern  Hemisphere  boreal  summer 
 of  2025  (June-July-August),  anomalous  fire  weather  conditions  are  anticipated  across 
 several  key  regions  with  high  levels  of  confidence  (in  places  reaching  80  %).  Anomalous  fire 
 danger  season  is  expected  in  Canada,  US  western  states  (also  see  National  Interagency 
 Fire  Center,  2025),  northeast  Europe  (notably  the  UK),  and  parts  of  Siberia  (  Figure  16  ).  In 
 the  equatorial  zone,  persistent  dryness  and  hydroclimatic  anomalies  are  expected  to 
 increase  fire  danger  (confidence  level  of  60%  and  higher)  in  Northeast  Amazonia,  the  Congo 
 Basin,  and  the  Himalayan  foothills  (affecting  areas  of  India  and  Nepal).  In  contrast,  a 
 relatively  quiet  fire  season  is  projected  for  the  Southern  Hemisphere,  with  only  Chile  and 
 southern Australia showing fire-prone conditions at a moderate level of confidence (>50%). 

 The  BA  anomaly  forecast  (bottom  panel  of  Figure  16  )  displays  a  distinct  pattern  from  that  of 
 FWI,  as  it  models  the  expected  fire  response  conditioned  on  both  coincident  and  antecedent 
 climate  variables,  based  on  region-specific  statistical  relationships.  For  instance,  elevated 
 probabilities  of  above-median  BA  are  projected  in  the  western  part  of  South  America, 
 southern  California,  localized  areas  of  Central  America,  and  central  North  America.  In  central 
 Asia,  medium-to-high  probabilities  emerge,  particularly  in  the  eastern  regions.  In  Africa, 
 significant  signals  are  observed  over  the  central  continent,  while  in  Australia,  elevated 
 probabilities  are  mainly  found  in  the  northern  regions.  Over  central  Europe,  despite  a  high 
 FWI  forecast,  limited  historical  fire  activity  prevents  reliable  calibration  of  the  climate-fire 
 model, and therefore no BA forecast is issued for this region. 
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 Figure  16:  Seasonal  prediction  of  Fire  Weather  Index  (FWI)  and  burned  area  (BA) 
 anomalies  for  the  boreal  summer  of  2025  (June-July-August).  Both  forecasts  are  issued  in 
 June  2025  and  are  presented  in  probabilistic  terms:  FWI  prediction  shows  the  likelihood  for 
 increased  (above  the  upper  tercile)  or  decreased  (below  the  lower  tercile)  fire-weather 
 conditions;  whereas  BA  prediction  shows  the  probability  of  BA  anomalies  being  above  the 
 climatological  median.  Grey  areas  are  masked  where  insufficient  BA  statistics  are  available 
 to perform the predicted mean. 
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 6.2.2.  Future Changes in Likelihood of Extreme Fire Weather Events 

 In  three  of  the  focal  regions  where  climate  change  significantly  increased  the  likelihood  of  a 
 2024-25-level  fire  weather  event  (  Section  5.2.1  ),  even  greater  increases  are  projected  under 
 future warming levels of 1.5 °C, 2 °C, 3 °C, and 4 °C (  Figure 17  ). 

 Figure  17  :  Risk  Ratio  (RR)  estimates  based  on  the  comparison  between  (a  )  the  past  climate 
 of  1850-1859  and  the  recent  climate  of  2016-2025,  (b)  the  recent  climate  of  2016-2025  and 
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 the  period  that  global  mean  surface  temperature  (GMST)  reached  (b)  1.5  °C,  (c)  2  °C,  (d)  3 
 °C  and  (e)  4  °C  for  the  four  extreme  wildfire  events  between  2024  and  early  2025  using 
 CanESM5. Bars show 95% confidence intervals (CIs) and central values are shown in bold. 

 6.2.2.1.  Northeast Amazonia 

 In  Northeast  Amazonia  the  increased  fire  weather  risk  found  in  Section  5.2.1.1  during 
 January-March  is  projected  to  continue  rising  under  future  warming,  with  increases  in 
 probability  of  1.5  (95%  CI:  1.3-10.8),  1.6  (1.4-16.3),  2.0  (1.6-31.4)  and  2.4  (1.7-49.5)  at 
 1.5 °C,  2 °C,  3 °C,  and  4 °C  of  warming,  respectively  .  Compared  to  southern  Amazonia,  fires 
 in  Northeast  Amazonia  have  gathered  less  attention  from  the  scientific  community  and  little 
 is known about how future changes in fire weather conditions may impact this region. 

 Amazonia  spans  multiple  countries,  making  coordinated  fire  governance  particularly 
 challenging.  These  countries  often  have  differing  political  priorities  and  economic  interests, 
 which  shape  land  use  policies,  enforcement  capacity,  and  investment  in  fire  monitoring  and 
 response  systems.  Such  disparities  can  hinder  the  implementation  of  integrated  fire 
 management  strategies,  especially  in  border  regions  where  transboundary  fires  may  occur 
 but  fall  under  fragmented  jurisdictional  and  institutional  frameworks.  These  institutional  and 
 policy  asymmetries  introduce  further  uncertainty  about  how  fire  risk  will  evolve  in  a  warming 
 climate.  As  fire  weather  intensifies,  the  region’s  unique  fire  season  and  cross-border 
 governance  dynamics  should  be  explicitly  considered  in  fire  risk  assessments  and  regional 
 adaptation strategies. 

 6.2.2.2.  Pantanal and Chiquitano 

 The  Pantanal  and  Chiquitano  region,  which  showed  the  largest  historical  increase  with  4.75 
 (95%  CI.  4.2-5.5,  Section  5.2.1.2  ),  is  set  to  continue  to  increase  with  global  warming,  with 
 projected  increases  in  probability  of  3.0  (95%  CI:  2.6-3.6),  3.7  (3.2-4.6),  5.1  (4.4-6.5),  and 
 6.4  (5.4-8.3)  at  1.5 °C,  2 °C,  3 °C,  and  4 °C  of  warming,  respectively  (  Figure  17,  b-e  ).  This  is 
 especially  concerning  for  the  Pantanal  and  Chiquitano,  where  fires  are  strongly  driven  by 
 climate,  particularly  through  extreme  (Silva  et  al.,  2022;  Barbosa  et  al.,  2022)  and  compound 
 events  (Ribeiro  et  al.,  2022;  Libonati  et  al.,  2022).  The  ongoing  reduction  of  wetlands  in  the 
 Pantanal,  often  replaced  by  flammable  grasslands  (Damasceno-Junior  et  al.,  2021), 
 combined  with  the  projected  increase  of  fire  weather  conditions  (Feron  et  al.,  2024),  may 
 indicate  a  permanent  shift  in  the  landscape  and  its  fire  regime.  This  increases  the 
 vulnerability  of  fire-sensitive  vegetation  and  wildlife  habitats,  while  also  threatening  economic 
 activities that rely on seasonal flooding. 

 6.2.2.3.  Southern California 

 Southern  California  shows  a  similar  pattern,  with  the  likelihood  of  2024-25  extreme  fire 
 weather  being  about  1.7  times  higher  (95%  CI:  1.6-1.8)  than  in  the  past,  and  projected 
 increases in likelihood ranging from 1.1 to 1.3 with rising global temperatures. 

 6.2.2.4.  Congo Basin 

 In  contrast,  the  Congo  Basin  shows  a  more  modest  and  statistically  non-significant  change, 
 with  the  likelihood  of  a  similar  extreme  fire  weather  event  to  that  of  the  2024-25  season 
 increasing  by  a  factor  of  1.3  from  the  past  to  the  present.  Future  projections  suggest  a  wide 
 but uncertain range of change, between 0.5 and 2.7 depending on the warming level. 
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 6.2.3.  Future Changes in Likelihood of Extreme Fire Events 

 6.2.3.1.  Northeast Amazonia 

 By  the  2040s,  under  SSP585,  the  likelihood  of  an  event  similar  to  those  of  the  2024-25 
 season  increases  modestly  but  significantly  to  0.12-0.14%,  a  ~17%  increase  in  frequency 
 compared  to  the  2010s  (  Figure  18;  Table  6  ).  Other  scenarios  show  smaller  or  even 
 negligible  changes  over  this  period.  By  the  end  of  the  century,  however,  all  scenarios  project 
 notable  increases  in  event  frequency.  SSP585  shows  the  largest  rise,  with  the  probability  of 
 such  an  event  nearly  doubling  (up  to  1.92  times  more  frequent).  SSP370,  reflecting  current 
 emissions  trajectories,  projects  a  1.19-1.57  times  increase.  In  contrast,  SSP126  illustrates 
 the  mitigation  potential  of  low-emission  pathways,  limiting  increases  to  just  1.09  times  (under 
 10%  increase)  by  2100,  significantly  lower  than  under  higher-emission  scenarios.  SSP370 
 only  clearly  diverges  from  SSP126  by  late  century  (2090s),  though  the  potential  for  larger 
 increases  appears  earlier  (  Figure  18  ).  This  divergence  between  the  two  scenarios  is 
 especially  pronounced  when  focusing  on  areas  with  the  highest  BA  (top  5%  of  grid  cells, 
 Figure  S29  ).  These  regions  of  extreme  burning  could  see  a  doubling  in  fire  extent  by 
 mid-century  and  at  least  doubling  (potentially  tripling)  by  2100  under  SSP370,  with 
 substantial overlap with SSP585 projections (where extreme BA could almost quadruple). 

 By  2100,  SSP126  still  shows  marginal  increases  in  the  likelihood  of  BA  events  such  as  those 
 in  2024  (  Figure  18  ),  though  sub-regional  extreme  BA  see  much  less  significant  change 
 (  Table  6;  Figure  S29)  ,  with  frequency  ranging  from  slight  decreases  (by  a  factor  of  0.91)  to 
 modest increases (1.34). 

 These  increases  are  mainly  driven  by  projected  declines  in  moisture  availability  (Figure  18 
 Figure  S29)  .  Although  fuel  availability  is  expected  to  decline  somewhat,  this  only  marginally 
 offsets  the  rise  in  extreme  BA  likelihood  across  the  region  and  has  virtually  no  mitigating 
 effect  on  the  highest  BA  areas.  No  changes  in  fuel  are  statistically  significant  in  our 
 projections. 

 Most  regions  of  Northeast  Amazonia  see  increases  in  January-March  (JFM)  average  BA  by 
 2100  (  Figure  S32)  .  However,  under  SSP126,  increases  in  the  north,  French  Guiana, 
 Suriname,  and  Guyana,  are  less  certain  and,  if  they  occur,  are  smaller.  This  is  reflected  in  a 
 decreased  frequency  of  extremes  across  these  areas  (  Figure  S32)  .  Under  SSP370,  climate 
 change  drives  widespread  increases  in  BA,  with  corresponding  rises  in  extremes  nearly 
 everywhere  except  Roraima  (Brazil).  Most  of  Brazil  and  Venezuela  are  very  likely  to  see 
 increases  in  BA  even  under  SSP126,  with  some  moist  regions  showing  rises  in  extremes 
 under  SSP126  and  widespread  increases  under  SSP370.  Results  for  SSP585  are  similar  to 
 those  of  SSP370,  with  widespread  increases  in  BA  and  extremes  throughout  the  region. 
 Importantly,  increases  in  extremes  begin  in  some  areas  in  the  near  future  (  Figures  S30-31  ). 
 By  the  2030-2040s,  Amapá  (Brazil),  northern  Pará  (Brazil),  and  southern  Suriname  are 
 projected  to  experience  more  frequent  extreme  BA  events  and  increased  BA  under  the 
 SSP585  scenario  (  Figure  S30  ).  Increases  in  BA  are  less  certain  but  still  likely  under 
 SSP370, with mitigation under SSP126 helping to limit these trends. 

 Finally,  we  explored  what  this  means  for  people’s  lived  experience  (  Figure  19  ).  A  person 
 born  75.8  years  ago  (Brazil’s  current  life  expectancy)  would  have  had  a  33-36%  likelihood  of 
 witnessing  a  fire  event  like  January-March  2024  during  their  lifetime.  This  suggests  that, 
 although  anthropogenic  changes  have  increased  the  likelihood  of  such  fires  (see  Section  5  ), 
 these  events  remain  far  from  certain.  Even  the  modest  increases  in  frequency  projected 
 under  SSP126  would  raise  that  lifetime  likelihood  to  41-55%  for  someone  born  today  (i.e, 
 2025-2021).  Under  SSP370  (our  current  path),  the  chance  rises  substantially  to  52-69%,  and 
 under  SSP585,  to  55-76%.  There  is  also  a  substantial  rise  in  the  probability  of  experiencing 
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 multiple  such  events  within  a  lifetime,  for  example,  under  SSP370,  there  is  a  17-32%  chance 
 of seeing two such events, compared to just 6-8% for those born in the 1940s. 

 Figure  18:  Future  projections  from  ConFLAME  of  the  change  in  likelihood  of  BA  extent  of 
 the  magnitude  seen  in  the  2024-25  season,  along  with  the  contribution  of  fuel  and  moisture 
 conditions  in  years  in  which  BA  exceeds  the  2024-25  thresholds.  Each  set  of  bars  shows 
 changes  for  each  decade  relative  to  the  2010-2020  baseline,  with  each  bar  representing  a 
 different  SSP  scenario  and  the  spread  of  bars  indicating  the  variation  across  GCMs,  with 
 individual bars representing different GCMs. 
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 Figure  19:  Likelihood  of  experiencing  extreme  fire  events  similar  to  those  of  2024-2025 
 during  the  average  lifetime  of  a  citizen,  based  on  current  life  expectancy  (2023):  Brazil  (75.8 
 years,  Northeast  Amazonia,  the  Pantanal-Chiquitano),  USA  (79.3  years,  Southern 
 California),  and  Democratic  Republic  of  Congo  (61.9  years,  Congo  Basin).  Bars  show  the 
 probability  of  experiencing  at  least  one,  two,  or  three  such  events  if  born  today  under 
 different  scenarios:  historical  climate  (bottom  bar  in  each  group),  SSP126,  SSP370,  and 
 SSP585  (subsequent  bars,  bottom  to  top).  Black  vertical  lines  indicate  individual  GCM 
 estimates; bar heights show the range across models. 

 6.2.3.2.  Pantanal and Chiquitano 

 By  mid-century  (2050),  no  scenario  shows  significant  increases  in  the  frequency  of  BA  levels 
 such  as  2024  at  the  regional  scale  (  Table  6  ).  All  scenarios  project  modest  increases  by  this 
 point:  about  1.14-1.15  times  more  frequent  in  SSP126  and  SSP370,  with  slightly  higher 
 increases  in  SSP585  (up  to  1.22  times).  However,  substantial  changes  emerge  later  in  the 
 century  (  Figure  18  ).  Under  SSP370,  the  likelihood  of  these  fires  becomes  significantly 
 higher  by  the  2070s,  with  a  1.2-fold  (20%)  increase  relative  to  historical  conditions.  By  2100, 
 SSP585  shows  the  greatest  increases,  up  to  1.44  times  more  frequent,  while  SSP370 
 projects  1.34  times  (  Table  6  ).  SSP126  demonstrates  clear  mitigation  potential,  limiting 
 increases to about 1.13 times, with no significant change throughout the century. 

 For  areas  with  the  highest  BA  (top  5%  grid  cells),  future  changes  in  the  frequency  of 
 2024-like  events  are  significantly  different  from  2010-2020  for  both  mid-century  (2050)  and 
 by  2100  (  Table  6  ).  Increases  at  the  sub-regional  level  are  larger  than  regional  averages, 
 though  not  as  dramatic  as  in  Northeast  Amazonia:  by  the  end  of  the  century  events  such  as 
 those  from  the  2024-25  season  are  expected  to  increase  1.26  to  1.75  times  under  SSP585, 
 while  SSP126  keeps  increases  much  smaller  (1.03-1.24  times).  SSP370  projections  fall 
 between  these  (1.21-1.45  times),  demonstrating  that  mitigation  could  still  meaningfully  limit 
 the  occurrence  of  extreme  fire.  Increases  in  the  likelihood  of  extreme  BA  in  high  burning 
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 cells  could  begin  as  early  as  the  2030s  under  SSP126,  driven  in  part  by  potential  increases 
 in  fuel  availability,  though  this  effect  could  level  off  or  reverse  by  mid-century  (  Figure  S29  ). 
 Under  SSP370  and  SSP585,  increases  in  frequency  of  extreme  BA  start  to  take  hold  by  the 
 2040s, though large changes may not emerge until after 2060. 

 These  future  extremes  will  mainly  be  driven  by  declining  moisture  availability  over  the  entire 
 region  (  Figure  18  ).  For  the  most  extreme  BA  areas,  this  moisture  signal  is  less  certain,  and 
 changes  in  fuel,  though  uncertain,  could  be  large  enough  to  modulate  moisture  effects 
 (  Figure S29  ). 

 Increases  in  BA  will  likely  occur  across  the  region  by  2090  under  all  scenarios  except  in  the 
 wetland  core  of  the  Pantanal  (  Figure  S35  ),  where  responses  are  much  more  uncertain. 
 Areas  of  increased  extreme  fire  behaviour  exist  even  under  SSP126,  but  most  of  the  region 
 is  projected  to  see  reductions  or  little  change  in  extremes.  In  contrast,  SSP370  drives 
 widespread  increases  in  extreme  BA  across  almost  the  entire  region,  except  the  wetlands. 
 However,  as  Section  5  and  other  studies  (e.g.  Barbosa  et  al.,  2022,  2025b)  highlight,  recent 
 increases  in  extreme  fire  have  been  driven  by  the  combined  effects  of  climate  change  and 
 wetland  degradation,  factor  not  considered  in  the  future  projections.  This  means  increases  in 
 wetland  fire  extremes  could  arise  sooner,  even  by  the  2030s  or  2040s  under  SSP126.  Under 
 SSP585,  widespread  increases  in  extreme  BA  may  arise  as  soon  as  2030  (  Figure  S33  ),  and 
 by  2040  even  SSP126  shows  large  areas  of  the  Pantanal  and  Chiquitano  with  much  higher 
 chances  of  a  1-in-100  event  (  Figure  S34  ).  Under  the  SSP126  scenario,  the  lower  chances 
 of  extreme  events  by  2100  compared  to  mid-century  (2040-2050)  reinforce  how  strong 
 mitigation strategies may alter wildfire trajectory throughout the 21st century in this region. 

 Finally,  in  terms  of  lived  experience,  someone  born  in  the  1940s  would  already  have  had  a 
 high  chance  (78-85%)  of  witnessing  a  fire  event  like  2024  during  their  lifetime  (  Figure  19  ), 
 with  Section  5  showing  climate  and  human  factors  likely  contributed  substantially.  Even 
 under  SSP126,  this  rises  to  86-91%  for  someone  born  today.  The  difference  is  most  striking 
 for  multiple-event  likelihoods.  Historically,  someone  born  in  the  1940s  would  have  had  a 
 19-29%  chance  of  seeing  three  such  events.  Under  SSP370,  this  rises  sharply  to  34-49%, 
 similar  to  SSP585  (34-50%).  Even  under  SSP126,  the  likelihood  of  seeing  two  such  events 
 exceeds 50% (58-68%), compared to 45-57% historically. 

 6.2.3.3.  Southern California 

 While  January  2025  fire  activity  was  likely  influenced  by  anthropogenic  climate  change 
 (  Section  5.2.2.3  ),  future  projections  suggest  that  similar-scale  BA  extremes  may  become 
 less  frequent  (  Table  6;  Figure  18  ).  However,  this  depends  strongly  on  how  local  vegetation 
 responds to rising CO₂ and climate change. 

 Looking  ahead,  models  do  not  project  a  significant  increase  in  the  frequency  of  these 
 regional-scale  extremes  (  Figure  18  ).  In  fact,  under  SSP370  -  a  scenario  closely  aligned  with 
 current  emissions  trajectories,  the  likelihood  of  2025-like  events  in  terms  of  January  BA 
 slightly  declines  by  a  factor  of  0.79  to  0.95  by  the  2090s  versus  2010s.  Similar  trends  are 
 seen  under  SSP585,  though  with  the  potential  for  stronger  decreases.  SSP126,  however, 
 showed no robust change by the end of the century. 

 The  projected  decline  in  extreme  fire  activity  in  Southern  California  appears  to  be  driven 
 primarily  by  modelled  increases  in  tree  cover,  which  occurs  even  with  GCMs  with  declining 
 precipitation,  suggesting  that  it  is  largely  driven  by  CO₂  fertilisation  and  enhanced  water-use 
 efficiency  (  Figure  S28  ).  This  effect  is  more  pronounced  in  drier  climates  like  Southern 
 California,  where  rising  CO₂  concentrations  reduce  water  stress  on  plants  and  promote 
 vegetation  growth.  While  this  leads  to  greater  fuel  loads,  our  framework  also  represents  tree 
 covers  influences  on  fuel  moisture,  which  can  suppress  fire  risk  tipping  the  balance  toward 
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 fewer  extreme  fire  events  in  many  model  simulations.  CO₂  concentrations  are  higher  in 
 SSP585  and  SSP370  compared  to  SSP126,  which  explains  why  this  effect  is  more 
 pronounced  in  these  scenarios.  However,  when  tree  cover  is  held  constant  at  present-day 
 levels,  this  signal  weakens  considerably.  Under  these  “fixed  tree”  simulations,  future 
 projections  of  extreme  fire  activity  become  much  more  uncertain,  with  wide  variation  across 
 scenarios  all  the  way  to  the  2090s  (  Figure  18  ).  Climate  projections  themselves  for  the  region 
 are  mixed.  Some  models  show  increases  in  January  precipitation  and  fewer  dry  days,  while 
 others  suggest  drier  conditions  (  Figure  S42  ).  These  divergent  signals  further  contribute  to 
 uncertainty in fuel moisture and fire behaviour over the coming decade. 

 Our  projections,  therefore,  rely  on  modelled  tree  and  shrub  cover  from  a  global  land  surface 
 model,  which,  while  bias-corrected  using  historical  observation  (  Figure  S28  ),  is  primarily 
 designed  to  capture  broad-scale  vegetation  patterns.  The  model  includes  global  plant 
 functional  types  (PFTs)  such  as  evergreen  and  deciduous  shrubs,  which  encompass 
 Mediterranean  shrublands  like  those  found  in  Southern  California,  but  also  represent 
 structurally  similar  ecosystems  in  very  different  climatic  and  ecological  settings  (e.g.,  tropical 
 savannas,  tundra  scrub).  As  a  result,  while  the  model  tends  to  perform  reasonably  well  in 
 estimating  total  woody  cover,  it  may  not  fully  capture  the  fine-scale  ecological  gradients  or 
 the  dominant  shrubland  dynamics  that  drive  fire  activity  in  this  region.  In  particular,  it  may 
 miss  key  features  of  chaparral  systems  and  their  interannual  variability.  Future  work  using 
 regionally  calibrated  vegetation  models  or  integrating  remote  sensing  estimates  of  fuel 
 structure  may  help  increase  confidence  in  projections  for  fire-prone  shrub-dominated 
 systems like Southern California. 

 Therefore,  while  our  models  suggest  a  potential  future  decrease  in  large-scale  fire  extremes 
 in  Southern  California,  this  outcome  depends  on  how  burned  area  responds  to  increasing 
 tree  cover,  and  how  vegetation  itself  responds  to  rising  CO₂  and  changing  climate.  Both 
 relationships  remain  uncertain  and  will  require  further  investigation.  Understanding  the 
 evolving  links  between  fuel  load,  fuel  moisture,  and  ignition  risk  in  the  region  is  essential  to 
 refining future fire risk projections in this region. 

 6.2.3.4.  Congo Basin 

 By  the  2050s,  none  of  the  emission  scenarios  project  a  significant  increase  in  the  frequency 
 of  regional-scale  2024-like  fire  events  (  Table  6  ).  Both  SSP126  and  SSP370  project  modest 
 changes,  ranging  from  slight  decreases  to  increases  of  up  to  1.28  times  more  frequent, 
 though  wide  uncertainty  means  small  decreases  remain  possible.  Substantial  increases 
 emerge  by  2100,  especially  under  higher-emissions  scenarios.  Under  SSP370,  the  likelihood 
 of  large  fire  events  rises  by  1.11-1.52  times,  with  SSP585  showing  similar  values.  In 
 contrast,  SSP126  holds  the  increase  to  just  1.03-1.11  times,  indicating  a  meaningful 
 mitigation potential. 

 For  the  most  extreme  fire  events  (top  5%  of  grid  cells),  projected  increases  in  frequency  are 
 more  substantial  (  Table  6  ).  No  scenario  shows  significant  differences  by  2050.  However, 
 significant  and  potentially  large  changes  emerge  by  2100.  Under  SSP370,  the  frequency  of 
 these  high-BA  extremes  could  rise  by  up  to  5  times  relative  to  historical  conditions  (range: 
 1.59-5.07),  slightly  higher  than  the  4-fold  increase  under  SSP585  (2.57-3.97).  SSP126  limits 
 this  increase  substantially  to  just  1.02-1.42  times.  These  results  show  that  even  under  a 
 mitigation  pathway,  some  increase  in  extreme  BA  is  likely,  but  the  scale  of  that  increase  is 
 drastically reduced. 

 The  primary  driver  of  increased  fire  risk  in  the  region  is  declining  moisture  availability,  with 
 drier  conditions  projected  across  much  of  the  basin  (  Figure  18  ).  In  the  higher-emissions 
 scenarios  (SSP370  and  SSP585),  increased  fuel  availability  may  amplify  this  effect.  For  the 
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 most  extreme  fire-prone  areas,  however,  fuel  controls  show  little  change,  suggesting  that 
 moisture stress will be the dominant factor shaping future fire behavior (  Figure S29  ). 

 Spatially,  increases  in  BA  are  relatively  uniform  across  the  region,  though  some  local 
 differences  emerge  (  Figures  S39-41  ).  The  eastern  DRC  may  experience  small  decreases  in 
 July  average  BA,  though  increases  remain  more  likely.  In  contrast,  Gabon,  Equatorial 
 Guinea,  and  central  DRC  (particularly  south  of  the  Congo  River)  are  projected  to  see  the 
 largest  increases,  with  BA  doubling  or  even  quadrupling  in  some  areas.  Some  of  these 
 increases,  particularly  along  the  Gabonese  and  Equatoguinean  coasts,  may  begin  as  early 
 as the 2030s. 

 In  terms  of  lived  experience,  someone  born  in  the  DRC  in  1963  with  a  life  expectancy  of  61.9 
 years,  would  have  had  a  38-53%  chance  of  experiencing  at  least  one  event  like  that  of  July 
 2024  (  Figure  19  ).  For  those  born  today,  this  rises  to  49-63%  under  SSP126,  61-87%  under 
 SSP370,  and  as  high  as  67-91%  under  SSP585.  The  likelihood  of  experiencing  multiple 
 such  events  also  increases  markedly.  Under  SSP585,  someone  born  today  would  have  a 
 30-69%  chance  of  seeing  two  events,  and  a  10-43%  chance  of  seeing  three.  In  contrast, 
 SSP126  limits  this  to  15-26%  for  two  events  and  just  3-8%  for  three,  highlighting  the 
 powerful  influence  of  mitigation.  Indeed,  the  chance  of  seeing  just  one  event  under  SSP126 
 is comparable to seeing two under SSP585. 
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 7.  Conclusions: Summary of the State of Wildfires in 2024-25 

 7.1.  Extreme Wildfire Events of 2024-25 

 ●  Global:  A  total  of  3.7  million  km²  burned  globally  during  the  2024-25  fire  season,  9% 
 below  the  average  of  previous  seasons  (4.0  million  km²),  ranking  16th  of  all  fire 
 seasons  since  2002.  Despite  the  relatively  low  area  burned,  global  fire  carbon 
 emissions  were  2.2  Pg  C,  9%  above  average  and  the  6th  highest  on  record,  driven 
 by  intense  and  high-emission  fires  in  South  America  and  Canada.  This  pattern 
 reinforces  a  trend  towards  growing  fire  impacts  in  carbon-rich  forest  ecosystems, 
 even during years with below-average fire extent globally. 

 ●  South  America:  South  America  experienced  an  unprecedented  fire  season  setting  a 
 new  record  for  carbon  emissions.  Emissions  reached  263  Tg  C  (84%  above 
 average),  with  BA  also  120,000  km²  (35%)  above  average.  Bolivia,  Brazil,  and 
 Venezuela  each  saw  high  or  record-breaking  anomalies,  with  Bolivia  setting  national 
 records  for  both  BA  and  C  emissions.  Record  fire  activity  occurred  across  multiple 
 biomes  including  the  Chiquitano  dry  forests,  Pantanal  wetlands,  and  southern  and 
 Northeast  Amazonia.  These  fires  were  characterised  by  extremely  large, 
 fast-spreading,  and  intense  events  despite  fire  counts  often  being  average  or  below 
 average,  highlighting  a  pattern  of  fewer  but  larger  and  more  intense  fires  on  the 
 continent. Highlights: 

 ○  Northeast  Amazonia  (Focal  Event):  Record-breaking  fire  activity  affected 
 the  moist  tropical  forests  north  of  the  Amazon  River  and  Rio  Negro,  including 
 large  portions  of  Venezuela,  Guyana,  Suriname,  and  northern  Brazil.  Several 
 ecoregions  experienced  all-time  highs  in  burned  area  or  carbon  emissions, 
 with  fire  activity  peaking  March-April  and  again  in  late  2024.  Air  quality 
 impacts and environmental degradation were reported across the region. 

 ○  Pantanal-Chiquitano  (Focal  Event):  Extreme  fire  season  across  Bolivia  and 
 adjacent  Brazil,  with  the  Chiquitano  dry  forest  and  Pantanal  wetlands  (the 
 world’s  largest  wetlands)  seeing  some  of  the  largest  fires  on  record.  Bolivia 
 experienced  the  highest  national  carbon  emissions  total  ever  recorded  (187 
 Tg  C),  with  the  Santa  Cruz  department  (Bolivia)  alone  responsible  for  157  Tg 
 C.  Fires  destroyed  critical  habitat,  caused  severe  air  pollution,  and  threatened 
 biodiversity  hotspots.  The  pantanal  recorded  PM2.5  concentrations  of 
 903.2 µg/m³ in September 2024, 60 times the WHO daily standard. 

 ○  Amazonas  State,  Brazil:  A  record-breaking  year  for  fire  activity  in  this  moist 
 tropical  forest  region.  Fire  counts  were  up  +154%  versus  the  long-term 
 average,  and  BA  and  fire  size  reached  record  levels.  The  95th  percentile  fire 
 size  anomaly  was  +60%.  This  was  one  of  the  few  regions  in  South  America 
 where high fire counts  and  severe individual fire  behaviour co-occurred. 

 ○  Mato  Grosso  and  Mato  Grosso  do  Sul  States,  Brazil:  Both  states  saw 
 record-breaking  fire  intensity  and  rate  of  spread.  In  Mato  Grosso,  95th 
 percentile  fire  size  was  266%  above  average,  despite  fire  counts  being  54% 
 below  average.  Mato  Grosso  do  Sul  experienced  record  emissions  (+323%) 
 and  fire  growth  rates,  pointing  to  fast,  intense  fires  likely  driven  by  land-use 
 change and drought. 

 ○  Pará  State,  Brazil:  This  state  recorded  its  highest-ever  BA  (36,000  km²)  and 
 major  emissions  anomalies  (+61%).  Fire  activity  expanded  deep  into  forested 
 areas,  likely  linked  to  land  clearing.  It  was  among  the  most  significant 
 subnational contributors to Brazil’s fire totals in 2024-25. 

 ○  São  Paulo  State,  Brazil:  Unusually  high-intensity  fires  occurred  despite  a 
 relatively  small  area  burned.  95th  percentile  fire  size  and  intensity  both  set 
 new  records.  Carbon  emissions  were  nearly  double  the  historical  average 
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 (+190%),  driven  by  a  combination  of  unseasonal  drought  and  land-use 
 pressures. 

 ○  Bolívar  and  Delta  Amacuro,  Venezuela:  Two  states  in  northeast  Venezuela 
 experienced  record  emissions  and  BA,  with  Bolívar  seeing  a  +133%  BA 
 anomaly  and  Delta  Amacuro  impacted  by  early-season  fire  peaks.  These  fires 
 affected swamp forests and grassland regions. 

 ○  Coastal  and  Andean  Ecuador,  Peru,  and  Colombia:  Subnational  analysis 
 reveals  record  or  high-ranking  anomalies  in  8  provinces  of  Ecuador,  7  regions 
 of  Peru,  and  multiple  Colombian  ecoregions.  These  include  areas  in 
 southwestern  Amazonia  and  the  eastern  Andean  slopes,  where  record  fire 
 sizes and intensities occurred despite average fire counts. 

 ○  Guyana  and  Suriname:  Six  ecoregions  in  Guyana  and  two  districts  in 
 Suriname  experienced  record  fire  counts  and  BA,  contributing  to  the  focal 
 Northeast  Amazonia  event  but  deserving  standalone  mention  given  the  extent 
 and duration of the anomalies. 

 ●  North  America:  The  2024-25  fire  season  was  the  second  most  severe  on  record  for 
 North  America,  with  total  C  emissions  of  194  Tg  C  (112%  above  average)  and  BA  of 
 31,000  km²  (35%  above  average).  Canada  again  saw  extreme  fire  activity  for  the 
 second  year  running,  with  282  Tg  C  emitted  and  over  46,000  km²  burned,  second 
 only  to  the  record-breaking  2023-24  season.  In  the  US,  the  catastrophic  Palisades 
 and  Eaton  Fires  in  California  in  January  2025,  which  killed  at  least  30  people, 
 destroyed over 11,500 homes, and caused over $140 billion in damages. Highlights: 

 ○  Southern  California,  USA  (Focal  Event):  The  most  disastrous  wildfire  event 
 in  modern  US  history  occurred  in  Los  Angeles  County  in  January  2025  during 
 a  severe  Santa  Ana  wind  event.  The  Palisades  and  Eaton  Fires  destroyed 
 over  11,500  homes,  killed  at  least  30  people,  displaced  over  150,000,  and 
 caused  economic  losses  exceeding  US$140  billion  (including  insured  losses 
 of  US$20-75  billion).  Fires  also  disrupted  water  supplies,  worsened  the 
 housing crisis, and led to mass evacuations and air quality emergencies. 

 ○  Western  Canada:  Northwest  Territories,  British  Columbia,  Alberta  and 
 Saskatchewan  experienced  their  second-highest  emissions  year  on  record 
 with  a  combined  emissions  anomaly  of  +191  Tg  C  and  provincial  anomalies  in 
 the range of +184-441% 

 ○  Mexico:  According  to  national  statistics,  Mexico  experienced  its  worst  wildfire 
 season  on  record  with  over  8,000  wildfires  and  more  than  16,500  km²  burned. 
 Particularly  severe  activity  occurred  in  March-May,  reportedly  driven  by 
 drought  and  elevated  temperatures.  This  record  is  not  captured  in  our 
 analyses  based  on  global  satellite  products,  warranting  further  investigation  of 
 the differences. 

 ○  Alberta,  Canada:  Extreme  wildfires  in  summer  2024  destroyed  358 
 structures  and  led  to  $1.23  billion  in  damages,  second  only  to  the  Fort 
 McMurray  fire  of  2016.  The  town  of  Jasper  was  evacuated.  Two  firefighter 
 fatalities occurred. 

 ○  New  York,  USA:  In  an  unusual  late-season  outbreak,  every  borough 
 experienced  multiple  wildfires  during  a  two-week  span  in  October-November 
 2024,  an  unprecedented  fire  signal  in  a  densely  populated  urban 
 environment. 

 ●  Africa:  For  the  second  consecutive  year,  fire  extent  in  Africa  was  well  below 
 average,  with  BA  in  the  African  savannah  biome  12%  below  average,  the  third  lowest 
 on  record.  However,  several  regions  experienced  notable  fire  anomalies,  particularly 
 the  Congo  Basin,  northern  Angola,  and  South  Africa.  Record-setting  BA  and  C 
 emissions  were  recorded  in  some  regions  of  the  Republic  of  Congo  and  the 
 Democratic  Republic  of  Congo.  Despite  the  extent  of  these  events,  many  went 
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 under-reported  in  the  media,  reinforcing  the  importance  of  Earth  observation-based 
 monitoring. Highlights: 

 ○  Congo  Basin  (Focal  Event):  Record  fire  activity  and  C  emissions  in  the 
 Republic  of  Congo  and  Democratic  Republic  of  the  Congo.  Fires  contributed 
 to  the  region’s  highest  primary  forest  loss  since  2015  and  caused  hazardous 
 air  pollution,  with  DRC  reporting  PM  2.5  levels  11  times  the  WHO  standards. 
 Fires  in  western  ecoregions  such  as  the  Atlantic  Equatorial  and  Central 
 Congolian lowland forests were particularly intense. 

 ○  South  Africa:  Fires  killed  34  people,  including  6  firefighters,  and  destroyed 
 thousands  of  livestock  and  homes.  KwaZulu-Natal  Province  was  particularly 
 affected.  High  fuel  loads  from  previous  wet  years  reportedly  contributed  to  the 
 intensity. 

 ○  Côte  d’Ivoire:  Fires  in  Séguéla  (Worodougou  region)  burned  50,000  ha, 
 destroyed  homes  and  plantations,  and  killed  23  people.  Other  fatal  incidents 
 occurred in Bouna, Bongouanou, and Taabo. 

 ●  Asia:  Overall,  Asia  experienced  a  below-average  fire  season,  with  BA  26%  below 
 average  and  C  emissions  28%  below  average.  However,  significant  regional 
 extremes were observed. Highlights: 

 ○  Nepal:  Nepal  endured  its  second-worst  fire  season  since  2002,  with  over 
 1,000  wildfires.  Wildfires  killed  more  than  100  people,  with  significant 
 destruction  of  forests  and  homes.  In  the  Lumbini  Province,  wildfires 
 devastated  11,448  ha  of  forests  and  destroyed  more  than  230  houses  and 
 livestock shelters. 

 ○  Northern  India:  Uttar  Pradesh  experienced  its  most  severe  wildfire  season 
 on  record,  reportedly  driven  by  crop  burning,  heatwaves,  and  dry  fuel 
 accumulation.  Regional  fires  contributed  to  severe  haze  episodes  in  New 
 Delhi  in  November  2024,  with  PM  2.5  concentrations  exceeding  200  µg/m³ 
 across large parts of Northern India (13 times the WHO daily standard). 

 ○  Iran:  Worst  fire  season  since  2002.  Fires  burned  key  national  parks  and 
 forest  areas.  Carbon  emissions,  fire  counts,  and  BA  all  reached  record  highs, 
 reportedly driven by a combination of climate stress and human pressures. 

 ○  South  Korea  and  Japan:  Japan’s  largest  wildfire  in  over  50  years  took  place 
 in  Iwate  Prefecture  in  February  2025,  destroying  221  buildings.  South  Korea's 
 deadliest  wildfires  occurred  in  March  2025  (just  outside  of  the  2024-25  fire 
 season), killing 31 and damaging 4,000 homes. 

 ○  Sichuan  and  Guizhou,  China:  A  fire  in  Sichuan  lasted  14  days,  displaced 
 3,000  people,  and  impacted  multiple  villages.  Strong  winds  and  dry  spring 
 conditions reportedly drove unusually large wildfires. 

 ○  Heilongjiang  and  Jilin,  China:  Record  BA  occurred  in  both  provinces. 
 Though  not  widely  reported,  these  events  underscore  rising  fire  activity  in 
 northeast  Asia,  which  has  been  linked  to  agricultural  burning  and  shifting 
 policy enforcement. 

 ○  Republic  of  Sakha  and  Zabaikalsky  krai,  Russia  :  Fires  in  these  regions 
 accounted  for  65%  of  total  forest  area  burned  across  Russia  and  forced  58 
 redeployments of firefighting resources involving 1,861 firefighters. 

 ●  Europe:  Europe  recorded  its  fourth  lowest  BA  since  2002,  with  30,000  km²  burned 
 (49%  below  average)  and  C  emissions  22%  below  average.  However,  there  were 
 stark regional contrasts. Highlights: 

 ○  Portugal:  Most  destructive  fire  season  since  2017.  Over  137,000  ha  burned, 
 with  16  fatalities  and  €180  million  in  damages.  Fires  in  September  affected 
 wildland-urban  interface  areas  in  the  northwest.  A  5,000  ha  fire  in  Madeira 
 entered  the  laurel  forest,  a  rare  cloud  forest  and  UNESCO  World  Heritage 

 89 

 3431 

 3432 

 3433 

 3434 

 3435 

 3436 

 3437 

 3438 

 3439 

 3440 

 3441 

 3442 

 3443 

 3444 

 3445 

 3446 

 3447 

 3448 

 3449 

 3450 

 3451 

 3452 

 3453 

 3454 

 3455 

 3456 

 3457 

 3458 

 3459 

 3460 

 3461 

 3462 

 3463 

 3464 

 3465 

 3466 

 3467 

 3468 

 3469 

 3470 

 3471 

 3472 

 3473 

 3474 

 3475 

 3476 

 3477 

 3478 

 3479 

 3480 

 3481 

 3482 

https://doi.org/10.5194/essd-2025-483
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 site.  This  incident  highlighted  the  vulnerability  of  non-fire-adapted  ecosystems 
 under increasing fire pressure. 

 ○  Serbia,  North  Macedonia,  and  Bulgaria:  Worst  wildfire  seasons  in  two 
 decades.  Large-scale  fires  led  to  EUCPM  activations  and  widespread 
 evacuations, including four fires >10,000 ha in North Macedonia alone. 

 ○  Ukraine:  Nearly  1  million  ha  burned  during  2024-25,  mostly  in 
 conflict-affected  eastern  areas.  Fires  were  likely  exacerbated  by  warfare,  with 
 higher-than-usual forest losses reported. 

 ○  Romanian  Danube  Delta:  An  unusually  dry  winter  led  to  45,000  ha  of 
 wetlands  burning  in  February  2025.  Though  a  recurring  phenomenon,  this 
 was  one  of  the  most  extensive  burn  events  yet,  and  emblematic  of  changing 
 fire regimes in sensitive wetland ecosystems. 

 ○  Turkey  (Mardin  Province):  A  rapidly  spreading  fire  in  June  2024  burned 
 farmland  and  villages,  killing  15  people  and  injuring  at  least  70.  It  was  one  of 
 the deadliest fire events in the Eastern Mediterranean this season. 

 ○  Austria  and  Germany:  While  Central  Europe  had  a  quiet  fire  year  overall, 
 Austria  recorded  its  highest  number  of  fires  and  largest  BA  since  2012,  and 
 Germany  had  a  slightly  above-average  season,  consistent  with  a  slow  but 
 steady upward trend. 

 ●  Oceania:  Oceania  experienced  a  moderate  fire  season  overall,  but  numerous 
 high-impact events were recorded. Highlights: 

 ○  Western  Australia:  Over  1,000  large  fires  burned  ~470,000 ha  amid  record 
 heat  and  severe  dryness  between  Perth  and  Carnarvon.  The  Skeleton  Rocks 
 fire  (44,000 ha)  impacted  long  fire-interval  ecosystems  and  a  lithium  mine, 
 while  the  largest  fire  near  Cervantes  burned  80,000 ha  and  disrupted  regional 
 honey  production.  Manjimup  fires  affected  over  42,000 ha  of  native  forest  and 
 required interstate response. 

 ○  Central  Australia:  Over  5.7  million ha  burned  by  October  2024,  including  a 
 450,000 ha  fire  near  Devil’s  Marbles  that  forced  closures  of  major 
 infrastructure.  In  January,  80,000 ha  burned  in  the  West  MacDonnell  Ranges, 
 including national parks and Aboriginal land trusts. 

 ○  Victoria  and  Tasmania:  Severe  dry  lightning  outbreaks  triggered  major  fires 
 in  culturally  sensitive  landscapes.  Victoria’s  Grampians  National  Park  saw 
 two-thirds  of  its  area  burned,  and  the  Little  Desert  fire  burned  90,000 ha  in 
 under  8  hours.  Tasmania’s  northwest  fires  burned  100,000 ha,  affecting  the 
 Tarkine and Cradle Mountain. 

 ○  Queensland:  Firefighters  responded  to  40  incidents  at  Mount  Isa,  with  one 
 fire  burning  over  100,000 ha  for  nearly  two  months.  Smoke  exposure  caused 
 hospital  admissions  and  endangered  species  such  as  the  Carpentarian 
 Grasswren were threatened. 

 ○  New  Zealand:  Peat  fires  at  Whangamarino  Wetland  and  Tiwai  Peninsula 
 each  burned  ~1,000 ha,  likely  generating  significant  CO  2  emissions  after 
 similar events in 2022 emitted 0.6 million tonnes CO  2  . 

 7.2.  Focal Regions 

 In  this  year’s  report,  our  detailed  analyses  target  three  tropical  regions  and  Southern 
 California. The extreme nature of events in these focal regions are given in Section 2.. 

 ●  Northeast  Amazonia  saw  record  forest  fire  activity,  with  burned  area  +332%  above 
 average,  the  highest  since  records  began.  Fires  severely  impacted  Indigenous 
 communities, displacing thousands and degrading air and water access. 

 ●  The  Pantanal-Chiquitano  experienced  its  worst  fire  season  on  record,  with  burned 
 areas  nearly  triple  the  average  and  carbon  emissions  six  times  above  average.  Fires 
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 affected  both  the  Pantanal  wetlands,  the  world’s  largest  tropical  wetland,  and  the 
 Chiquitano  dry  forests  of  Bolivia.  PM  2.5  pollution  reached  hazardous  levels  of 
 900 µg/m³, carrying strong potential for detrimental health and economic impacts. 

 ●  Southern  California  recorded  catastrophic  wildfire  losses,  with  30  deaths,  11,500 
 homes  destroyed,  and  US$140  billion  in  total  damages.  PM  2.5  levels  peaked  at 
 483 µg/m³, triggering a regional housing and insurance crisis. 

 ●  The  Congo  Basin  had  its  highest  recorded  fire  activity  at  28%  above  the  annual 
 mean,  contributing  to  a  +150%  increase  in  primary  forest  loss  in  2024  versus  2023. 
 Fires  were  the  main  driver  of  deforestation  but  received  minimal  media  or  institutional 
 attention,  highlighting  a  broader  lack  of  media  coverage  of  fires  affecting  equatorial 
 Africa. 

 7.3.  Impact Assessments 

 In  this  year’s  report,  we  incorporate  new  assessments  of  the  impact  of  fires  on  society, 
 specifically  via  the  exposure  of  populations,  physical  assets,  and  carbon  projects  to  fire  and 
 via smoke degrading air quality. Key findings from our analyses were as follows. 

 Population exposure: 

 ●  We estimate that ~100 million people were exposed to wildfire activity globally during 
 the 2024-25 fire season, with the highest exposures in India and the Democratic 
 Republic of the Congo (15 million each). 

 ○  Uttar Pradesh (India) recorded the highest subnational exposure at 4.6 million 
 people, a 146% increase over average, followed by Heilongjiang (China, 3.7 
 million) and Punjab (India, 3.6 million). 

 ○  Despite severe fire seasons, Canada, Brazil, and Bolivia contributed modestly 
 to global population exposure due to the remoteness of areas burned. 

 ○  Other countries experiencing large  relative  anomalies  in population exposure 
 included: Jordan, Peru and Ecuador (Andes); Venezuela, Guyana, and 
 Suriname (northern South America), Nepal and Niger. 

 ●  20 thousand people were officially displaced according to IDMC displacement 
 records, or 0.02% of those exposed according to our analysis. This reflects a gap 
 between exposure and formal displacement, though true disruption is likely higher 
 than in the IDMC records due to known issues with underreporting. 

 ●  Exposed communities may still suffer serious health, economic, and psychological 
 consequences (e.g., missed income, increased debt, long-term health declines), 
 even if they are not formally displaced. 

 Physical asset exposure: 

 ●  According  to  our  analysis,  an  estimated  US$215  billion  in  physical  assets  were 
 exposed  to  wildfires  in  2024-25.  Top  countries  by  asset  exposure  were  India  (US$44 
 billion),  United  States  (US$26  billion),  China  (US$17  billion),  South  Africa  (US$14 
 billion). 

 ○  Other  countries  with  high  absolute  asset  exposure  were:  Mexico,  Turkey,  and 
 Russia (~US$8 billion each). 

 ○  Other  countries  experiencing  large  relative  anomalies  in  physical  asset 
 exposure  were:  Pakistan,  Sudan,  Chad,  Albania,  Greece,  Iraq,  Syria,  and 
 Eritrea. 

 ●  US$57  billion  in  direct  losses  were  recorded  in  the  international  disaster  database 
 EM-DAT, including $53 billion caused by fires affecting LA and southern California. 

 ○  Direct  financial  losses  are  generally  smaller  than  our  estimates  of  physical 
 asset  exposure  (the  detection  of  fire  in  proximity  to  the  built  environment) 
 because exposure is a measure of potential for loss, and not of loss itself. 
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 ○  In  the  case  of  southern  California,  recorded  direct  financial  losses  from  fires 
 were  three  times  larger  than  our  estimates  of  exposed  physical  assets  due  to 
 the  underestimation  of  asset  density  in  our  analysis.  A  lesson  from  this  work 
 is  that  analyses  of  exposure  must  account  for  the  significant  variation  in  the 
 density  of  real  estate  value  across  states  of  the  USA,  and  likely  in  other 
 countries as well. 

 Carbon project exposure: 

 ●  The  2024  fire  season  saw  record  BA  across  forestry  projects  in  the  Voluntary  Carbon 
 Market  (VCM):  169  of  927  projects  (18%)  experienced  fire,  the  highest  on  record 
 since 2001, with burned area in 2024 affecting 1.6% of project areas on average. 

 ●  72%  of  projects  experienced  above-average  drought  contributing  to  elevated  risk  of 
 fire, with 13% exceeding extreme drought thresholds (SPEI < -2). 

 ●  The  2024  fire  season  had  an  above  average  impact  on  carbon  projects  in  Latin  and 
 northern  America,  average  BA  was  recorded  in  Eurasia  and  below  average  in  Africa. 
 In  addition  to  climate,  land  use  and  land  cover  changes  and  project  activities  also 
 contributed to regional differences in observed extremes. 

 ●  Despite  elevated  BA  in  the  latest  fire  season,  46%  of  all  carbon  projects  experienced 
 no  fire  in  the  entire  period  since  2001,  while  67%  experienced  little  fire  (defined  as 
 <0.5% burned annually in the surrounding 50-km buffer). 

 ●  The  2024  season  underscores  that  while  high-integrity  forest  carbon  projects  remain 
 a  key  climate  change  mitigation  tool,  the  permanence  of  carbon  stored  or  avoided  is 
 increasingly  threatened  by  extreme  fire  years,  especially  under  worsening  climate 
 extremes. 

 Air quality: 

 ●  Our  analysis  of  air  quality  impact  in  this  report  focuses  exclusively  on  the 
 Pantanal-Chiquitano  focal  region,  where  population-weighted  PM  2.5  exceeded  the 
 WHO  daily  standard  (15 µg/m³)  on  43  days  between  July  to  October  (over  a  third  of 
 all  days  in  the  period)  from  July  to  October  and  peaked  at  a  regional 
 population-weighted  average  of  61 µg/m  3  in  September,  with  fires  accounting  for 
 ~58%  of  the  pollution.  Smoke  emissions  from  fires  were  the  sole  cause  of 
 exceedances of the WHO daily standard on 50 days in the period July-October. 

 ●  Wildfire  smoke  emissions  exposed  communities  to  extremely  harmful  air  quality  in 
 various  world  regions,  according  to  direct  measurements  (  Appendix  A  ).  For 
 example,  communities  in  the  Brazilian  Pantanal,  Southern  California,  Bolivia,  and 
 northern  India  were  exposed  to  PM  2.5  concentrations  of  over  60,  30,  30,  and  13  times 
 the WHO daily standard of 15 µg/m  3  , respectively. 

 7.4.  Diagnosing Causes and Assessing Predictability 

 ●  Weather  was  the  dominant  driver  of  fire  activity  during  all  of  the  2024-25  focal 
 events  targeted in this report, contributing 40% to  70% of the explainable cause. 

 ○  Fuel  availability  and  dryness  increased  in  importance  during  the  most  severe 
 fires (up to 40% of explainability) and determined the final extent of BA. 

 ○  Ignitions  were  consistently  dominated  by  human  influence,  but  they  did  not 
 emerge  as  a  primary  cause  of  fire  activity  during  the  2024-25  focal  events 
 (only around 10% of explainability). 

 ●  In  Northeast  Amazonia  fire  activity  was  predominantly  driven  by  persistent, 
 large-scale  drought  conditions  that  depleted  deep  soil  moisture  reserves.  These 
 droughts  suppressed  fuel  moisture  recovery  for  extended  periods,  even  during  rain 
 periods.  Soil  moisture  anomalies  reached  up  to  3  standard  deviations  below  the 
 climatological  mean,  with  values  dropping  to  as  little  as  2%  of  average.  The 
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 prolonged  drought  significantly  increased  fuel  dryness  and,  during  the  period  of  most 
 intense  burning,  fuel  importance  rose  up  to  20%  above  its  annual  baseline.  Fuel  also 
 determined  the  final  burned  area  extent,  contributing  significantly  to  the  observed 
 anomalies  in  BA,  accounting  for  up  to  50%  in  the  sub-regions  where  BA  anomalies 
 were  most  extreme.  Human-caused  ignitions  were  present  but  did  not  emerge  as  a 
 leading  cause  of  fire  (10-20%).  Their  contribution  remained  limited  and  at  times 
 negative  compared  to  what  is  considered  usual  (thus  reducing  the  total  extent),  likely 
 reflecting limited ignition opportunities or active suppression efforts to limit BA. 

 ●  In  the  Pantanal-Chiquitano  ,  extreme  fire  activity  was  primarily  driven  by  antecedent 
 drought  persisting  since  2023.  Deep  soil  moisture  remained  in  the  driest  15%  of 
 records,  1-2  standard  deviations  below  average,  despite  wetter  conditions  in  early 
 2024.  Although  February-April  rains  moistened  surface  fuels,  they  failed  to  recharge 
 deeper  layers.  Weather  dominated  fire  activity  (71%  average  contribution),  with  fuel 
 importance  rising  to  40%  during  the  peak  burning  week  in  early  August  and 
 explaining  over  50%  of  final  BA  anomalies.  Lightning  played  a  minimal  ignition  role, 
 often  occurring  in  association  with  convective  downpour.  Human-caused  ignitions, 
 though  still  dominant,  were  lower  than  in  previous  years  and  at  times  limited  burned 
 area extent. 

 ●  In  the  Congo  Basin  extreme  fire  activity  was  driven  by  prolonged  and  severe 
 drought  persisting  over  recent  years.  The  usual  spring  wet  season  (March-May) 
 failed  to  occur,  and  the  second  wet  season  later  in  the  year  provided  limited  relief, 
 leaving  deep  soil  moisture  up  to  2  standard  deviations  below  climatological  norms. 
 Weather  was  the  dominant  driver  of  fire  activity,  with  rainfall  67%  below  and 
 temperatures  90%  above  climatological  averages,  placing  vegetation  and  soil 
 dryness  among  the  driest  1-2%  of  records  (2003-2023).  Human  activity  accounted  for 
 most  fire  ignitions  but  as  for  the  other  2  tropical  regions  they  were  not  the  main 
 causes of the fire severity and actually acted to reduce the final BA 

 ●  In  Southern  California,  the  2024-25  fire  season  was  marked  by  atypical  seasonality, 
 with  extreme  fire  activity  occurring  in  January  well  outside  the  usual  summer  peak. 
 The  Palisades  and  Eaton  fires  were  driven  by  a  rare  convergence  of  weather,  fuel, 
 and  ignition  factors,  each  contributing  significantly  (weather:  40%,  fuel:  30%,  ignition: 
 20%).  Despite  preceding  years  of  exceptional  wetness,  a  short-lived  but  extreme 
 drying  of  surface  fuels  (3  standard  deviation  below  normal)  and  intense  winds  (3 
 standard  deviation  above  normal)  created  highly  flammable  conditions.  These  fires 
 ignited  and  spread  rapidly  at  the  wildland-urban  interface,  highlighting  how  brief 
 windows  of  extreme  weather  can  override  generally  moist  background  conditions  and 
 trigger major off-season events in these parts of the world. 

 ●  There were  distinct challenges to the forecasting  of all focal events  : 
 ○  In  Northeast  Amazonia  ,  our  models  correctly  identified  two  high-risk  fire 

 seasons,  but  most  of  the  burning  occurred  during  the  first  (February-April), 
 not  the  second  (August-November),  despite  similar  fire  danger  forecasts.  This 
 disconnect  highlights  a  key  limitation:  high  fire  danger  does  not  always  lead  to 
 high  fire  activity.  Human  factors,  such  as  suppression,  fire  bans,  or  shifts  in 
 land  use,  likely  played  a  role  and  are  currently  underrepresented  in  fire 
 prediction systems. 

 ○  In  the  Pantanal  and  Chiquitano  ,  fires  were  closely  linked  to  long-term 
 drought  conditions  that  dried  out  fuels  months  before  the  fire  season  peaked. 
 Fire  activity  rose  only  after  this  slow  build-up,  meaning  accurate  forecasts 
 required  capturing  both  drought  and  fuel  dynamics.  While  the  general 
 heightening  of  fire  danger  was  picked  up  by  the  FWI,  the 
 machine-learning-based  PoF  model,  which  includes  fuel  conditions,  better 
 predicted when and where fires would actually occur. 

 ○  In  Southern  California  ,  fire  prediction  remains  difficult  without  accounting  for 
 the  ‘whiplash  effect’  that  arises  from  extreme  fire  weather  following  on  from 
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 wet  periods  with  high  vegetation  productivity.  A  wet  period  led  to  vegetation 
 growth,  followed  by  rapid  drying  and  strong  winds  that  enabled  the  January 
 fires.  As  in  the  Pantanal-Chiquitano,  including  fuel  information  helped  the  PoF 
 model identify higher-risk areas more accurately than the FWI. 

 ○  In  the  Congo  Basin  ,  both  FWI  and  PoF  tended  to  overpredict  fire  danger. 
 While  drought  increased  flammability,  ignition  remained  limited,  possibly  due 
 to  cultural  practices,  suppression  efforts,  or  fewer  ignition  sources  (though 
 reporting  on  such  activities  in  this  region  is  extremely  limited).  Here,  human 
 activity  and  fuel  moisture,  more  than  fire  weather,  shaped  outcomes.  The  FWI 
 system,  which  unlike  PoF  does  not  include  these  factors,  was  less  effective  in 
 predicting fire activity in the Congo Basin. 

 7.5.  Attribution to Global Change 

 ●  Climate  change  has  increased  the  likelihood  of  extreme  fire  events  across  all 
 focal  regions  studied.  The  high  fire  weather  and  extreme  levels  of  burning  seen  in 
 2024-25 were significantly more likely in a world with human-induced climate change. 

 ●  In  Northeast  Amazonia,  we  find  that  the  extreme  fire  weather  during  January-March 
 2024  was  30-70  times  more  likely  due  to  anthropogenic  climate  forcing,  while  the  risk 
 of  regional  BA  totals  being  as  observed  in  the  period  was  2.1  times  greater  due  to 
 anthropogenic climate forcing and the area burned by fires was four times greater. 

 ○  Our  attribution  analysis  shows  high  confidence  that  climate  change  played  a 
 major  role  in  Northeast  Amazonia’s  record  fire  season.  We  are  virtually 
 certain  (>99%)  that  anthropogenic  climate  forcing  increased  the  risk  of 
 extreme  fire  weather,  very  likely  (96%)  that  it  amplified  the  area  affected,  and 
 likely  (89%)  that  it  increased  the  chance  of  the  extreme  burned  area 
 observed. 

 ○  While  climate  change  has  clearly  enhanced  the  probability  of  extreme  events 
 in  the  region,  such  as  that  seen  in  2024,  there  was  conversely  no  robust 
 evidence  that  climate  change  increased  average  annual  BA  totals  in 
 Northeast Amazonia during 2003-2019. 

 ○  An  increase  in  annual  average  BA  during  2003–2019  of  up  to  17%  was 
 attributed  to  socioeconomic  changes  since  1900-1917,  indicating  that 
 long-term human activities have elevated typical fire levels in the region. 

 ○  Overall,  our  attribution  analyses  suggest  that  climate  change  has  enhanced 
 the  likelihood  of  extreme  fire  events  in  the  region,  against  a  backdrop  of 
 increased  annual  BA  levels  driven  by  socioeconomic  change  such  as  land 
 use/land cover change and human ignitions. 

 ●  In  the  Pantanal  and  Chiquitano  ,  we  find  that  the  extreme  fire  weather 
 August-September  2024  was  4-5  times  more  likely  due  to  anthropogenic  climate 
 forcing,  while  the  risk  of  regional  BA  totals  being  as  observed  in  the  period  was  3.3 
 times  greater  due  to  anthropogenic  climate  forcing  and  the  area  burned  by  fires  was 
 around  34 times greater. 

 ○  Our  attribution  of  extreme  fire  weather  to  climate  change  was  made  virtually 
 certain  (>99%,  IPCC  definition),  while  the  amplification  of  both  extreme 
 burned  area  and  region-wide  burned  area  extent  was  attributed  with  likely 
 confidence  (87%).  Taken  together,  these  findings  provide  strong  evidence  that 
 anthropogenic  climate  change  raised  the  odds  of  the  largest  fire  season  on 
 record in the Pantanal-Chiquitano region. 

 ○  In  addition  to  the  enhanced  odds  of  extreme  BA  events,  a  10%  increase  in 
 annual average BA during 2003-2019 was attributed to climate change. 

 ○  At  least  a  two-fold  increase  in  BA  during  years  with  2024-like  fire  conditions 
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 was  attributed  to  socioeconomic  change,  indicating  that  human  activities  have 
 substantially  increased  the  risk  of  widespread  fire  under  extreme  conditions. 
 However,  other  analyses  focusing  on  long-term  annual  average  burned  area 
 suggest  that  some  human-driven  changes  may  have  reduced  typical  annual 
 fire  activity.  While  these  findings  are  not  strictly  contradictory  since  they 
 examine  different  aspects  of  the  fire  regime,  the  contrast  between  them 
 reduces  confidence  in  attributing  overall  fire  trends  to  socioeconomic  drivers 
 alone and points to the need for further investigation. 

 ○  Overall,  extreme  BA  events  in  the  Pantanal-Chiquitano,  such  as  those  seen  in 
 August-September  2024,  are  made  more  likely  by  climate  change  and  are 
 superimposed  on  broader  background  increases  in  fire  extent  related  to 
 climate change and possibly socioeconomic changes in the region. 

 ●  In  Southern  California  ,  we  find  that  the  risk  of  regional  BA  totals  being  as  observed 
 during  January  2025  was  2.3  times  greater  due  to  anthropogenic  climate  change  and 
 the area burned by fires was 25 times greater. 

 ○  Our  attributions  of  amplified  BA  extent  during  the  event  to  climate  change 
 were  all  made  with  at  least  89%  confidence.  It  is  therefore  likely  (per  IPCC 
 definitions)  that  anthropogenic  climate  change  raised  the  odds  of  the  costly 
 wildfires in Southern California during January 2025. 

 ○  The  meteorological  conditions  during  the  event  were  previously  studied  by  the 
 World  Weather  Attribution  (WWA)  group,  who  reported  that  extreme  fire 
 weather  conditions  were  also  made  more  likely,  by  around  40%,  with  other 
 indicators  such  as  prolonged  drought  and  delayed  seasonal  drying  also 
 showing  climate  influence  (Barnes  et  al.,  2025).  We  did  not  perform  an 
 independent  attribution  of  fire  weather  here  due  to  a  lack  of  data  required  for 
 construction of a counterfactual scenario in our attribution protocol. 

 ○  In  addition  to  the  enhanced  odds  of  extreme  BA  events,  a  7%  increase  in 
 annual average BA during 2003-2019 was attributed to climate change. 

 ○  Our  BA  attribution  approaches  did  not  provide  robust  evidence  that 
 socioeconomic  change  affected  average  annual  BA,  though  this  is  possibly 
 due  to  the  difference  between  the  coarse  model  resolution  and  the  fine  scale 
 over  which  effects  would  be  expected  at  the  wildland-urban  interface  in  this 
 region. 

 ○  Overall,  extreme  BA  events  in  Southern  California,  such  as  those  seen  in 
 January  2025,  are  made  more  likely  by  climate  change  and  are  superimposed 
 on broader background increases in fire extent related to climate change. 

 ●  In  the  Congo  Basin  ,  we  find  that  the  extreme  fire  weather  July-August  2024  was  3-8 
 times  more  likely  due  to  anthropogenic  climate  change,  while  the  risk  of  regional  BA 
 totals  being  as  observed  in  the  period  was  60%  greater  due  to  anthropogenic  climate 
 change and the area burned by fires was three times greater. 

 ○  It  is  virtually  certain  that  anthropogenic  climate  change  contributed  to  the 
 extreme  fire  weather  observed  during  the  2024  season  in  the  Congo  Basin. 
 The  widespread  extent  of  burned  area  was  very  likely  influenced  by  climate 
 change  (92%  likelihood),  while  the  most  extreme  sub-regional  burned  area 
 events  were  likely  influenced  (78%  likelihood).  Together,  these  findings 
 indicate  that  climate  change  increased  the  odds  of  the  largest  fire  season  on 
 record in the region. 

 ○  In  addition  to  the  enhanced  odds  of  extreme  BA  events,  a  more  than  45% 
 increase  in  annual  average  BA  during  2003-2019  was  attributed  to  climate 
 change. 

 ○  Our  BA  attribution  approaches  did  not  provide  robust  evidence  that 
 socioeconomic  change  affected  average  annual  BA  during  2003-2019  versus 
 a pre-industrial counterfactual. 
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 ○  Overall,  extreme  burned  area  events  in  the  Congo  Basin,  such  as  those  seen 
 in  July–August  2024,  are  made  more  likely  by  climate  change  and  are 
 superimposed  on  broader  background  increases  in  fire  extent  attributable  to 
 climate  change,  with  no  robust  evidence  that  socioeconomic  changes 
 significantly altered recent fire activity. 

 7.6.  Seasonal and Multi-Decadal Outlook 

 ●  Fire  weather  and  BA  forecasts  for  boreal  summer  2025  highlight  several  areas 
 with  elevated  probability  of  anomalous  fire  danger.  Probabilities  for  anomalous 
 fire  prone  seasons  are  high  across  Canada,  northeast  Europe  (including  the  UK), 
 and  parts  of  Siberia.  These  conditions  following  the  second-warmest  May  on  record 
 globally  (1.4 °C  above  pre-industrial  levels),  with  exceptional  dryness  and  the  lowest 
 northwestern European rainfall since 1871. 

 ○  In  equatorial  regions,  forecasts  show  a  more  than  60%  chance  of  anomalous 
 fire  weather  conditions  in  Northeast  Amazonia,  the  Congo  Basin,  and  the 
 Himalayan foothills. 

 ○  In  the  US,  severe  drought  conditions  in  Arizona  and  Texas  are  already 
 leading to elevated fire activity in line with predicted anomalies in fire weather. 

 ○  Seasonal  outlooks  of  burned  area  anomalies  coincide  with  fire  weather 
 anomalies  in  western  South  America,  southern  California,  central  North 
 America, and eastern Central Asia. 

 ○  Chile  and  northern  Australia  stand  out  with  >50%  confidence  for  anomalous 
 fire activity during the boreal summer of 2025. 

 ○  Despite  high  FWI  in  central  Europe,  we  could  not  confidently  predict  a  BA 
 anomaly due to insufficient historical fire-climate data for reliable modelling. 

 ●  In  Northeast  Amazonia,  our  climate  model  projections  consistently  indicate  a 
 rise  in  extreme  wildfire  risk  by  the  end  of  the  century.  Under  a  middle-of-the-road 
 emissions  pathway  (SSP370),  the  frequency  of  regional  BA  totals  on  the  scale  of 
 2024 are projected to increase by up to 57% by 2100. 

 ○  Also  under  SSP370,  the  greatest  rate  of  increase  (factor  of  2-3  rise)  is 
 projected  in  the  sub-regions  that  burned  most  extensively  in  the  extreme 
 event of 2024 (5% of model cells with greatest BA). 

 ○  Under  a  no  mitigation  scenario  (SSP585),  an  even  sharper  rise  is  projected, 
 with  a  near-doubling  of  the  frequency  of  extreme  (2024-like)  events  at  the 
 regional  scale.  Greater  rates  of  increase  (up  to  a  four-fold  rise)  are  projected 
 in the sub-regions that burned most extensively in 2024. 

 ○  In  contrast,  limiting  warming  under  a  strong  mitigation  scenario  (SSP126) 
 effectively  contains  future  fire  risk.  By  2100,  the  increased  frequency  of  an 
 extreme  (2024-like)  event  is  limited  to  9%,  with  the  sub-regions  that  burned 
 most  extensively  in  2024  showing  no  significant  change.  This  demonstrates 
 the  strong  potential  of  climate  action  to  mitigate  the  risk  of  future  extreme  fires 
 in Northeast Amazonia. 

 ○  Projections  of  future  increased  risks  are  not  spatially  uniform  in  any  scenario. 
 In  some  areas,  such  as  Amapá  and  northern  Pará  in  Brazil,  and  southern 
 Suriname,  increased  extreme  fire  activity  is  projected  as  early  as  the  2030s 
 under  higher-emissions  scenarios  (SSP370  and  SSP585).  Even  under 
 SSP126, rises in extreme BA are projected for parts of the moist forest zone. 

 ○  The  frequency  of  extreme  (2024-like)  events  is  projected  to  rise  only  modestly 
 in  all  scenarios  through  2050,  however  by  2100  the  increased  risk  under 
 higher  emissions  scenarios  (SSP370  and  SSP585)  clearly  emerges  from  that 
 of SSP126. 
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 ●  In  the  Pantanal  and  Chiquitano,  our  climate  model  projections  indicate  further 
 increases  in  extreme  wildfire  risk  by  the  end  of  the  century.  Under  a 
 middle-of-the-road  emissions  pathway  (SSP370),  the  frequency  of  regional  BA  totals 
 on the scale of 2024 are projected to increase by up to 34% by 2100. 

 ○  Also  under  SSP370,  the  greatest  rate  of  increase  (21-45%  rise)  is  projected  in 
 the  sub-regions  that  burned  most  extensively  in  the  extreme  event  of  2024 
 (5% of model cells with greatest BA). 

 ○  Under  a  no  mitigation  scenario  (SSP585),  an  even  sharper  rise  is  projected, 
 with  a  44%  rise  in  the  frequency  of  extreme  (2024-like)  events  at  the  regional 
 scale.  Greater  rates  of  increase  (up  to  a  75%  rise)  are  projected  in  the 
 sub-regions that burned most extensively in 2024. 

 ○  In  contrast,  limiting  warming  under  a  strong  mitigation  scenario  (SSP126) 
 effectively  contains  future  fire  risk.  By  2100,  the  increased  frequency  of  an 
 extreme  (2024-like)  event  is  limited  to  13%  and  is  not  significant,  while  the 
 sub-regions  that  burned  most  extensively  in  2024  experience  minimal 
 increases  in  frequency  (up  to  24%  rise).  This  demonstrates  the  strong 
 potential  of  climate  action  to  mitigate  the  risk  of  future  extreme  fires  in  the 
 Panatanal-Chiquitano. 

 ○  At  the  regional  scale,  only  modest  increases  in  the  frequency  of  extreme 
 (2024-like)  fire  seasons  are  projected  by  mid-century  across  all  scenarios. 
 However,  by  2100,  the  increased  risk  becomes  more  pronounced  under 
 higher emissions pathways, with clear divergence between scenarios. 

 ○  At  the  sub-regional  level  in  the  areas  that  burned  most  extensively,  earlier 
 increases in extreme fire risk could begin as soon as 2030. 

 ○  Projections  of  future  increased  risks  are  not  spatially  uniform  in  any  scenario. 
 Geographically,  widespread  increases  in  BA  are  projected  across  most  of  the 
 Panatanal-Chiquitano  by  2100,  though  the  response  is  considerably  more 
 uncertain  in  the  Pantanal  than  in  the  Chiquitano.  Some  areas  of  increased 
 extreme  (2024-like)  fire  frequency  may  still  emerge  in  the  Pantanal  even 
 under SSP126. 

 ○  It  is  important  to  note  that  these  projections  do  not  fully  incorporate  local  in 
 situ  drivers,  such  as  wetland  degradation,  which  have  already  contributed  to 
 more  frequent  fires  in  recent  years.  Increases  in  fire  activity  might  be 
 expected  to  occur  earlier  than  the  models  indicate,  especially  along  the 
 wetlands and adjacent drainage areas. 

 ●  In  Southern  California,  our  climate  model  projections  of  future  change  in 
 extreme (2024-like) fire events are highly uncertain. 

 ○  While  high-emissions  simulations  under  SSP585  and  SSP370  suggest  that 
 extreme  fire  events  could  become  less  frequent  over  time,  this  strongly 
 depends on how vegetation responds to rising CO₂ and a changing climate. 

 ○  In  particular,  simulations  suggest  that  increased  tree  cover  driven  by  CO₂ 
 fertilisation  under  higher-emissions  scenarios  (SSP585  and  SSP370)  may 
 raise  fuel  loads  while  simultaneously  increasing  fuel  moisture,  with  the  overall 
 effect being to reduce the likelihood of extreme fire events in our models. 

 ○  However,  when  removing  changes  in  tree  cover,  the  projected  future 
 frequencies  of  extreme  (2024-like)  events  become  highly  uncertain  with  no 
 consistent direction of change under future scenarios. 

 ○  There  is  a  critical  need  for  improved  observation  and  modelling  of  how 
 vegetation  structure,  fuel  moisture,  and  local  ecological  processes  shape  fire 
 behaviour  in  Southern  California.  Nonetheless,  Southern  California  remains 
 highly  exposed  to  fire  risk.  Even  under  scenarios  that  suggest  a  decline  in  fire 
 extremes,  most  residents  alive  today  are  still  likely  to  experience  multiple 
 extreme  fire  seasons  like  2025  in  their  lifetime.  Stronger  local  adaptation  and 
 more  regionally  tailored  research  on  climate-vegetation-fire  interactions  will 
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 be essential to manage risk in the coming decades. 

 ●  In  the  Congo  Basin  ,  our  climate  model  projections  indicate  that  further 
 increases  in  extreme  wildfire  risk  are  likely  by  the  end  of  the  century.  Under  a 
 middle-of-the-road  emissions  pathway  (SSP370),  the  frequency  of  regional  BA  totals 
 on the scale of 2024 are projected to increase by up to 50% by 2100. 

 ○  Also  under  SSP370,  far  greater  rates  of  increase  (up  to  a  5-fold  rise)  are 
 projected  in  the  sub-regions  that  burned  most  extensively  in  the  extreme 
 event of 2024 (5% of model cells with greatest BA). 

 ○  Projections  under  SSP370  and  SSP585  show  similar  levels  of  elevated  risk, 
 indicating  that  mitigation  efforts  stronger  than  those  implied  by  SSP370  are 
 likely needed to meaningfully reduce future fire risk. 

 ○  In  contrast,  limiting  warming  under  a  strong  mitigation  scenario  (SSP126) 
 effectively  contains  future  fire  risk.  By  2100,  the  increased  frequency  of  an 
 extreme  (2024-like)  event  is  limited  to  at  most  11%,  while  the  sub-regions  that 
 burned  most  extensively  in  2024  experience  a  far  smaller  increase  in 
 frequency  (up  to  42%  rise)  than  under  higher  emissions  scenarios.  This 
 demonstrates  the  strong  potential  of  climate  action  to  mitigate  the  risk  of 
 future extreme fires in the Congo Basin. 

 ○  Projections  of  future  increased  risks  are  not  spatially  uniform  in  any  scenario. 
 Some  of  the  largest  projected  increases,  seen  in  Gabon,  Equatorial  Guinea, 
 and  central  DRC,  may  begin  as  early  as  the  2030s,  with  the  frequency  of 
 extreme  (2024-like)  events  is  projected  to  increase  2  to  4-fold  by  2100.  This 
 increase  is  driven  largely  by  declining  fuel  moisture  as  climate  change 
 reduces rainfall and increases dry spells across much of the region. 

 ●  Anthropogenic  climate  change  has  the  potential  to  significantly  increase  future 
 fire  risk  for  living  generations,  turning  previously  exceptional  events  into 
 events that are experienced several times in a generation. 

 ○  Northeast  Amazonia:  Our  projections  show  that  a  person  born  in  this  region 
 today  has  a  41-55%  likelihood  of  experiencing  at  least  one  extreme  fire 
 episode  on  the  scale  of  January-March  2024  in  their  lifetime  under  strong 
 mitigation  scenario  (SSP126).  This  likelihood  rises  to  52-69%  under  a 
 middle-of-the-road  scenario  (SSP370),  and  55-76%  under  a  no  mitigation 
 scenario  (SSP585).  The  odds  of  experiencing  two  or  more  such  events  are 
 considerably  higher  under  no  mitigation  (19-42%)  than  under  strong 
 mitigation  (10-19%). 

 ○  Pantanal-Chiquitano:  Our  projections  indicate  that  a  person  born  in  this 
 region  during  the  1940s  already  had  a  ~78-85%  likelihood  of  experiencing  at 
 least  one  fire  season  like  2024.  For  someone  born  today,  this  likelihood  rises 
 to  86-91%  even  under  SSP126.  Under  SSP370,  the  likelihood  of  experiencing 
 at  least  two  2024-scale  fire  seasons  rises  to  62-74%,  compared  to  45-57%  for 
 someone  born  in  the  1940s,  but  even  under  low  emissions,  the  chance  of  two 
 such  events  exceeds  58%.  These  findings  highlight  that  while  climate  change 
 mitigation  can  reduce  future  fire  risk,  it  is  not  sufficient  on  its  own.  Early 
 adaptation,  ecosystem  management,  and  stronger  fire  governance  will  be 
 essential to reduce future impacts. 

 ○  Congo  Basin:  Our  projections  show  that  a  person  born  in  this  region  today 
 has  a  49-63%  likelihood  of  experiencing  at  least  one  fire  season  like  July 
 2024  under  SSP126.  This  likelihood  rises  to  61-87%  under  SSP370  and 
 67-91%  under  SSP585.  The  likelihood  of  experiencing  multiple  events  differs 
 starkly  across  SSPs,  with  up  to  a  likelihood  of  43%  for  three  events  under 
 SSP585, compared to just 3-8% under SSP126. 
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 7.7.  Progress in the State of Wildfires Report 

 This  report  incorporates  a  number  of  major  advances  in  our  annual  reporting  on  the  State  of 
 Wildfires  in  the  prior  fire  season.  In  Section  2  ,  we  added  a  new  analysis  of  fire  intensity  to 
 our  extreme  event  identification  variables,  and  we  evaluated  the  dependence  of  our  extreme 
 event  identification  on  the  source  of  BA  observation  by  incorporating  data  for  2019-2025 
 from  two  additional  BA  datasets  (FireCCIS311  and  VIRS  VNP64A1),  supplementing  our 
 consistent  multi-decade  analysis  based  on  the  MODIS  BA  dataset  (MCD64A1).  The 
 contribution  of  regional  expert  knowledge  was  also  formally  recognised  through  the 
 establishment  of  regional  expert  panels  for  each  continent,  with  these  panels  consulted  for 
 their  interpretation  of  results  across  all  aspects  of  the  report.  We  added  Section  3  ,  which 
 presents  an  entirely  new  set  of  impact  assessments  relating  to  population  exposure,  asset 
 exposure,  carbon  project  exposure  and  air  quality  degradation.  In  Section  4  ,  we  expanded 
 the  analysis  of  the  predictability  of  the  focal  event  to  include  seasonal  predictions  of  burned 
 area,  complementing  the  fire  danger  seasonal  forecasts  already  provided.  In  Section  5  ,  our 
 main  advancement  was  a  new  approach  to  attributing  both  extreme  regional  BA  totals  and 
 sub-regional  BA  extremes  directly  to  the  2024-25  focal  events,  made  possible  by  developing 
 near  real-time  counterfactuals  and  employing  methodologies  for  aggregating  probabilities 
 across  space.  This  represents  a  step-change  versus  our  first  report,  which  focussed  on 
 attributing  sub-regional  BA  extremes  only  and  substituted  near  real-time  counterfactuals  with 
 less  targeted  counterfactuals  for  the  2003-2019  period.  By  creating  more  robust 
 counterfactuals  with  observed  events,  and  accounting  for  the  stochastic  nature  of  fire 
 anomalies  locations,  we  were  able  to  more  directly  and  confidently  assess  whether  human 
 influence  made  these  specific  fires  more  likely  on  regional  scales.  In  Section  6  ,  we  extended 
 our  forward-looking  capabilities  by  providing  seasonal  forecasts  of  BA,  complementing  the 
 fire  danger  forecasts  already  presented  in  previous  reports.  We  also  added  future 
 projections  of  FWI  at  future  global  warming  levels  of  1.5-4.0°C,  providing  a  clearer  picture  of 
 how extreme wildfire risk may evolve in the coming decades. 

 This  new  report  documents  the  progress  made  in  the  observation,  diagnosis,  modelling  and 
 attribution  of  extreme  wildfire  events  and  their  impacts.  As  a  community,  our  work  is  both 
 driving  innovation  in  the  methods  under  use  and  prompting  the  development  of  new 
 capabilities  for  the  routine  analysis  of  extreme  wildfire  events  and  their  impacts.  This  new 
 report  builds  on  our  inaugural  report  (Jones  et  al.,  2024b)  and  documents  the  progress  being 
 made by the fire science community. 

 By  combining  cutting  edge  techniques  in  fire  forecasting,  prediction  and  modelling  across  the 
 sections  of  our  report,  we  compile  multiple  lines  of  evidence  for  a  clear  climate  signal  in 
 recent  fire  extremes.  Our  complementary  analyses  consistently  point  to  a  strong  role  for 
 climate  change  in  driving  extreme  fire  conditions,  showing  that  human  influence,  both 
 through  climate  change  through  socioeconomic  change  factors,  are  increasing  fire  risk  and 
 producing  extreme  wildfires.  While  individual  methods  sometimes  diverge,  particularly  in 
 regions  like  the  Pantanal,  where  local  socioeconomic  factors  emerge  more  clearly  as  drivers 
 in  some  analyses,  the  overall  convergence  across  independent  lines  of  evidence  builds 
 confidence  in  the  conclusion  that  climate  changes  exerts  significant  upwards  pressure  on  the 
 likelihood of extreme fire events. 

 These  multiple  lines  of  evidence  show  that  human  influence,  often  through  climate  change 
 though  sometimes  through  socioeconomic  factors,  are  increasing  fire  risk  and  driving  higher 
 burned  areas.  Across  every  region  analysed,  we  find  clear  signals  that  recent  extreme 
 wildfires  are  not  purely  natural  events,  but  increasingly  shaped  by  human-driven  changes  to 
 climate and ecosystems. 

 A  key  strength  of  this  report  lies  in  its  systematic  evaluation  of  model  performance  across 
 diverse  regions  of  the  globe.  In  this  edition,  for  instance,  we  identify  limitations  in  the 
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 capacity  of  coarse-resolution  air  quality  models  to  assess  smoke  exposure  in  small  regions 
 (  Section  3  ),  and  show  how  projections  of  future  fire  activity  can  be  strongly  influenced  by 
 how  models  represent  sensitive  vegetation  responses  to  uncertain  climate  changes  (  Section 
 6  ).  In  regions  such  as  California,  long-term  projections  are  particularly  sensitive  to  changes 
 in  tree  cover,  which  can  be  affected  by  uncertainties  in  both  climate  inputs  and  modelled 
 vegetation responses. 

 A  rich  body  of  observations,  such  as  land  surface  and  meteorological  data  are  available  to 
 observe  and  model  the  effects  of  climatic  change  and  variability  on  extreme  fire  likelihood,  in 
 particular  following  important  advances  in  the  modelling  of  fuel  load  and  moisture  dynamics 
 during  recent  decades.  However,  a  major  outstanding  barrier  that  consistently  limits  the 
 effectiveness  of  our  analyses,  and  those  of  the  broader  fire  science  community,  is  a  severe 
 lack  of  information  regarding  in  situ  human  activities.  Funding  of  projects  that  overcome  this 
 barrier  is  paramount  and  carries  the  greatest  potential  to  drive  a  step-change  in  performance 
 of  fire  models  and  predictive  systems.  Often,  prediction  and  modelling  analyses  rely  on  basic 
 indicators  of  human  effects  such  as  population  density,  which  cannot  sufficiently  represent 
 the  diversity  of  relationships  between  people,  their  land  uses,  and  the  outcomes  for  fire 
 ignitions  and  spread  dynamics.  Our  work,  and  that  of  many  others,  highlights  the  need  to 
 develop  global  datasets  that  effectively  represent  the  range  of  human-fire  interactions  that 
 occur  on  Earth  but  with  sufficient  scalability  to  support  regional  and  global  analyses. 
 Inevitably,  there  will  be  a  trade-off  between  the  geographical  scalability  and  nuance  of  these 
 datasets as they are developed. 

 Overall,  our  international  collaboration  routine  catalogues  fire  extremes  and  annually 
 evaluates  the  most  extreme  fire  events  of  international  relevance  using  state-of-the-art  fire 
 science  tools.  We  provide  a  consistent  stream  of  actional  information  to  policymakers, 
 disaster  management  services,  firefighting  agencies,  and  land  managers,  informing  action 
 on  enhancing  society’s  resilience  to  wildfires  through  investment  in  preparedness,  mitigation, 
 and adaptation. 
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 Appendix A: Year in Review by Continent 

 This  appendix  includes  the  review  completed  by  regional  expert  panels  to  supplement  our 
 quantitative  analyses  of  extremes  in  the  2024-25  fire  season  (  Section  2  ).  Details  of  the 
 assembled panel are provided in  Table A1  , below. 

 Table  A1:  Experts  contributing  to  the  identification  of  extreme  events  and  characterisation  of 
 the global fire season during March 2024-February 2025. 

 Region  Co-authoring 
 Experts 

 Country of 
 Organisation / 
 Nationality 

 Professional 
 Background(s) 

 Supporting Expert 
 Panellists  Others Consulted 

 Africa 
 Kebonye Dintwe  Botswana 

 Lucy Amissah (Ghana), 
 Sally Archibald (South 
 Africa), Natasha Ribeiro 
 (Mozambique), Tercia 
 Strydom (South Africa)  Aya Brigitte 

 N’Dri  Ivory Coast 

 Asia 

 Cong Gao  China  Bambang Saharjo 
 (Indonesia), Sundar 
 Sharma (Nepal), Raman 
 Sukumar (India), 
 Veerachai Tanpipat 
 (Thailand), Bo Zheng 
 (China) 

 Elena 
 Kukavskaya  Russia  Research 

 Europe 

 Paulo 
 Fernandes  Portugal  Research  Davide Ascoli (Italy), 

 Stefan Doerr (UK), 
 Julien Ruffault (France), 
 Gavriil Xanthopoulos 
 (Greece) 

 Cristina Santín  Spain  Research 

 Johan Sjöström  Sweden  Research 

 North 
 America 

 Crystal Kolden  USA  Research, 
 Firefighting  Jacqueline Shuman 

 (USA), Matt Jolly (USA), 
 Piyush Jain (Canada), 
 Chelene Hanes 
 (Canada) 

 Mathieu 
 Boubonnais  Canada 

 Victoria 
 Donovan  USA 

 Oceania 

 Hamish Clarke  Australia 
 Research, 
 Environmental 
 Management 

 Simeon Telfer, South 
 Australian Country Fire 
 Service; Rui Feix, 
 Western Australian 
 Department of Fire and 
 Emergency Services; 
 Chris Collins, Tasmania 
 Fire Service; Grant 
 Pearce, Fire and 
 Emergency New 
 Zealand; David Field, 
 New South Wales Rural 
 Fire Service; Russell 
 Stephens Peacock, 
 QueenslandFire and 
 Emergency Services; 
 Maggie Towers, Northern 
 Territory Police, Fire and 
 Emergency Services 

 Sarah Harris  Australia 
 Research, 
 Emergency 
 Management 

 South 
 America 

 Liana Anderson  Brazil  Research 
 Dolors Armenteras 
 (Colombia), Francisco 
 de la Barrera (Chile), 
 Mauro Gonzalez (Chile), 
 Celso H.L. Silva-Junior 
 (Brasil) 

 Carlos M. Di 
 Bella  Argentina  Agronomist/Res 

 earch 
 Bibiana Bilbao  Colombia 

 Galia Selaya  Bolivia 
 Tropical 
 Ecology/Resear 
 ch and action 
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 A1. Africa 

 National  and  regional  fire  monitoring  statistics  are  rarely  recorded  or  made  publicly  available 
 by  fire  agencies  in  Africa,  meaning  that  our  assessment  of  the  latest  global  fire  season 
 largely  focuses  on  the  insights  provided  by  global  data  analyses.  According  to  these  data, 
 the  total  BA  in  Africa  was  approximately  2.4  million  km  2  during  the  2024-2025  fire  season, 
 11.6%  below  the  mean  annual  BA  since  2002  (2.7  million  km  2  ).  Most  of  the  BA  occurred  in 
 non-forest  (2  million  km  2  ),  with  the  remaining  portion  in  the  forest.  Non-forest  and  forest  BAs 
 were  12%  and  7%  lower  than  the  mean  annual  BA,  respectively.  The  BA  anomaly  was 
 notably  larger  in  NHA  (-14.6%)  than  in  SHA  (-9.1%).  The  relatively  low  BA  in  many  parts  of 
 the  continent  could  be  a  result  of  a  combination  of  factors,  though  it  aligns  with  a  trend  that 
 has  been  attributed  to  the  continued  suppression  of  fire  from  expanding  croplands  (Andela  et 
 al., 2017) and to changing rainfall patterns across the continent (Zubkova et al., 2019). 

 Africa’s  most  pronounced  positive  anomalies  in  BA  and  fire  C  emissions  of  the  2024-25  fire 
 season  were  seen  in  the  Congo  basin  and  northern  parts  of  Angola  (  Figure  1,  Figure  2; 
 Table  2,  Table  3  ).  BA  in  the  Republic  of  Congo  was  25%  above  average,  the  highest  on 
 record,  and  similarly  fire  C  emissions  were  25%  above  average  (  Table  2,  Table  3,  Figure 
 S43  ).  In  the  Democratic  Republic  of  the  Congo,  the  Mai-Ndombe  and  Sankuru  provinces 
 each  experienced  record  levels  of  BA  or  fire  C  emissions  with  anomalies  in  the  range  of 
 36-58%  (  Table  2,  Table  3  ).  These  anomalies  were  centred  on  several  western  ecoregions  of 
 the  Congo  Basin,  including  the  Atlantic  Equatorial  coastal  forests  where  BA  was  more  than 
 triple  the  annual  mean,  Western  Congolian  swamp  forests  where  BA  was  twice  the  annual 
 average  and  the  Central  Congolian  lowland  forests  where  BA  was  77%  above  average,  and 
 the  Northwestern  Congolian  lowland  forests  where  BA  was  55%  above  average.  These 
 results  align  with  the  recent  report  of  the  Global  Forest  Watch  (World  Resources  Institute, 
 2025)  which  found  that  the  Democratic  Republic  of  the  Congo  (DRC)  and  the  Republic  of  the 
 Congo  experienced  their  highest  rates  of  primary  forest  loss  since  2015.  While  loss  to 
 wildfire  is  a  minor  component  of  overall  forest  loss  in  the  region  (below  15%),  for  instance 
 compared  to  the  expansion  of  shifting  cultivation,  wildfires  were  the  major  explanation  for  the 
 more than doubling (+150%) increase in forest loss in 2024 versus 2023. 

 The  uptick  in  fires  in  the  Congo  basin  can  be  linked  in  part  to  the  enabling  effect  of 
 record-breaking  fire  weather  caused  by  drought  in  the  region  (  Section  2.2.2.1  ),  however  a 
 range  of  socioeconomic  changes  have  also  been  underway  and  likely  influenced  the  events 
 of  last  year.  Use  and  degradation  of  the  forests  for  resources,  often  linked  to  an  increase  in 
 related  wildfire  ignitions,  is  growing  due  to  the  extraction  of  timber  to  produce  charcoal, 
 clearing  of  land  for  the  expansion  of  cash  crops,  and  shortening  or  cessation  of  fallow 
 periods  in  smallholder  shifting  cultivation  systems  (World  Resources  Institute,  2025).  The 
 potential  effects  of  fires  in  this  region  on  forest  carbon  stocks  are  globally  significant  (though 
 they  are  yet  to  be  quantified),  with  the  region’s  swamp  forests  harbouring  30 billion  metric 
 tonnes  of  C  in  peat  (Garcin  et  al.,  2023).  The  2024  IQAir  World  Air  Quality  Report  highlighted 
 that  the  Democratic  Republic  of  the  Congo  had  an  annual  average  PM  2.5  concentration  of 
 58.2  µg/m³,  over  11  times  higher  than  the  World  Health  Organization's  annual  standard 
 (IQAir,  2025).  This  indicates  hazardous  air  quality  levels,  in  part  to  the  effects  of  elevated 
 wildfire  smoke  emissions  (IQAir,  2025).  Despite  the  potentially  large  impacts  on  society  and 
 the  environment,  there  was  very  limited  news  coverage  on  the  impacts  of  these  fires  by 
 national  news  outlets  across  the  region.  This  underscores  the  importance  of  projects  such  as 
 ours  and  the  Global  Forest  Watch  (World  Resources  Institute,  2025)  using  Earth 
 Observations  to  routinely  trace  environmental  extremes  and  highlighting  events  that  would 
 otherwise have gone under-reported. 

 The  high  BA  in  the  Congo  Basin  during  2024-25  has  implications  for  various  initiatives 
 supported  by  non-governmental  organisations  in  the  region,  which  aim  to  promote  protection 
 and  sustainable  management  of  tropical  forests.  For  example,  UNEP’s  Congo  Basin 
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 Sustainable  Landscapes  Programme  (Green  Policy  Platform,  2025)  supports  action  in 
 Cameroon,  Central  African  Republic  (CAR),  the  Democratic  Republic  of  the  Congo  (DRC), 
 Equatorial  Guinea,  Gabon,  and  Republic  of  the  Congo.  In  programmes  such  as  this,  wildfire 
 can  sometimes  be  considered  a  secondary  disturbance  factor  compared  to  other  factors 
 such  as  clear-cut  deforestation,  but  years  such  as  2024  demonstrate  that  large-scale 
 intermittent fires in the region can have lasting consequences for forest loss. 

 In  Angola,  BA  and  fire  C  emissions  were  15-49%  above  average  in  the  provinces  of  Moxico, 
 Huíla,  and  Bié  and  were  either  record-setting  or  high-ranking  (  Figure  S44  ;  Figure  2  ,  Figure 
 3  ;  Table  2  ).  As  discussed  in  Section  2.2.2  and  investigated  formally  for  the  Congo  Basin  in 
 Section  4  ,  a  particularly  hot  and  dry  fire  season  elevated  the  risk  of  fire  in  these  regions  and 
 coincided  with  broader  social  and  economic  factors  promoting  fire  ignitions.  The  poor 
 economic  situation  in  Angola  over  the  past  three  years  has  prompted  deregulation  of  the 
 charcoal  industry  and  the  harvesting  of  trees  for  charcoal  production  has  risen,  driving  up  fire 
 activity  (Valor  Económico,  2024;  VisiteHuila,  2024).  In  addition,  the  government  has  been 
 promoting  agriculture  through  financial  programs,  leading  to  the  clearing  of  land  through 
 shifting  agriculture  in  Miombo  woodlands  (Fundo  de  Garantia  de  Crédito,  2024;  World  Bank, 
 2024b).  In  certain  provinces,  particularly  Moxico  in  Angola,  burning  for  hunting  purposes  is 
 also  widespread  and  declining  populations  of  prey  have  been  linked  to  increased  burning  of 
 areas  that  were  previously  hunted  less  regularly  (Papelo,  2024).  These  are  just  some  of  the 
 socioeconomic  factors  that  may  have  contributed  to  the  elevated  availability  of  ignition 
 sources during 2024-25 fire season, when fire weather was particularly conducive to fire. 

 In  Algeria,  fires  have  killed  and  injured  dozens  and  caused  significant  loss  of  life  and 
 damage  in  recent  years.  At  least  34  people  were  killed  and  several  hundred  were  injured  in 
 Bejaia  province  during  the  2023-24  fire  season  (Jones  et  al.,  2024b).  However,  in  2024-25,  a 
 low  number  of  fires  were  recorded  and  there  were  no  casualties  in  Algeria,  which  could  be 
 attributed  to  various  factors  such  as  the  availability  of  better  firefighting  equipment,  new  fire 
 management  policies,  and  a  new  law  that  was  passed  that  imposes  life  imprisonment  for 
 those  caught  deliberately  starting  forest  fires  (Serrah,  2024;  The  Arab  Weekly,  2024). 
 Algerian  authorities  launched  a  wildfire  prevention  system  that  included  13  water-bombing 
 aircraft  and  100  drones  for  monitoring  and  tracking  firefighting  operations.  For  instance,  26 
 fires  were  extinguished  within  24  hours  in  the  central  and  eastern  regions  of  Algeria,  with  no 
 injuries or casualties reported (Gabriel, 2024). 

 In  South  Africa,  the  total  BA  was  over  46,000km  2  ,  which  was  17%  higher  than  the  mean 
 annual  BA.  According  to  a  report  by  the  organisation  Working  on  Fire  (2024),  the  increased 
 intensity  and  frequency  of  these  fires  continue  to  challenge  firefighting  resources.  The 
 2024-25  fire  season  broke  records,  with  2,750  firefighting  teams  dispatched,  with  a  record 
 number  of  34  people  losing  their  lives,  including  firefighters.  In  KwaZulu-Natal  Province,  the 
 wildfires  claimed  the  lives  of  14  people,  of  whom  6  were  firefighters  who  were  trapped  in  a 
 blaze.  In  addition  to  the  lost  lives,  thousands  of  people  were  displaced,  over  2,050  livestock 
 destroyed,  and  critical  infrastructure  damaged.  The  high  intensity  fires  in  South  Africa  could 
 be  due  to  a  string  of  particularly  high  rainfall  years  that  resulted  in  large  accumulated  grassy 
 fuel loads. 

 In  Côte  d’Ivoire,  the  overall  BA  in  2024-2025  was  lower  than  the  historical  average,  contrary 
 to  what  some  national  experts  had  expected  following  the  long  dry  season  which  began 
 earlier  than  usual  in  the  savanna  areas  of  the  country  where  fire  is  most  widespread  (N’Dri  et 
 al.,  2018,  2024;  Soro  et  al.,  2021).  Nonetheless,  the  fire  season  was  marked  by  an 
 above-average  fire  size  distribution  and  there  were  several  deadly  events  in  the  country’s 
 main  fire  hotspots,  with  fires  burning  over  150,000  ha  of  forest,  2,800  ha  of  plantations,  109 
 ha  of  reforestation  projects,  and  107  properties  in  2025  (CNDFB,  2025).  In  the  department  of 
 Séguéla  (Worodougou  region),  wildfires  in  February  2024  destroyed  50,000  ha  of  natural 
 vegetation,  261  ha  of  cropland,  236  ha  of  cashew  plantations,  19  homes,  and  claimed  the 
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 lives  of  23  individuals  across  the  villages  of  Sélakoro,  Djénigbé,  Touna,  Djoman  and 
 Kondogo.  In  Bouna  (Bounkani  region),  fires  affected  around  12,387  ha,  of  which  7,528  ha 
 were  forested,  leading  to  additional  humanitarian  impacts.  Three  further  fatalities  were 
 recorded  between  February  and  March  2024  in  Bongouanou  (Moronou  region)  and  Taabo 
 (Agnéby-Tiassa  region).  These  impacts  occurred  despite  the  continued  efforts  of  the  Comité 
 National  de  Défense  de  la  Forêt  et  de  lutte  contre  les  feux  de  Brousse  (CNDFB),  such  as  the 
 construction  of  firebreaks  during  the  dry  season  and  awareness  campaigns.  This  reflects  the 
 challenges  posed  by  expanding  agricultural  land  and  ignition  sources,  fire  suppression 
 policies  that  focus  on  fire  exclusion  to  protect  valuable  crops  (e.g.  cashew  nuts)  but  promote 
 fuel  build-up,  and  a  lack  of  prescribed  burning  in  Côte  d’Ivoire’s  savanna  ecosystems  (Ruf  et 
 al.,  2010;  Soro  et  al.,  2020;  Kouassi  et  al.,  2022).  Generally,  fire  activity  and  BA  have  been 
 declining  across  all  ecoregions  of  Côte  d’Ivoire,  which  has  been  attributed  to  conversion  of 
 savannas  to  agricultural  lands  and  also  bush  encroachment  in  savanna  areas  (N’Dri  et  al., 
 2022; Douffi et al., 2021; Kouassi et al., 2022). 

 A2. Asia 

 The  2024-25  fire  season  in  Asia  was  generally  not  an  extreme  one,  with  much  of  Asia 
 experiencing  typical  or  low  BA.  Nonetheless,  there  were  regional  extreme  fire  events  in  the 
 fire season. 

 Iran  emerged  as  a  notable  case,  experiencing  its  most  severe  wildfire  season  since  2002, 
 marked  by  record-breaking  BA,  number  of  fires,  and  carbon  emissions  at  the  national  level 
 (  Figure  2,  Figure  3  ).  Ecologically  sensitive  regions  were  disproportionately  affected, 
 including  Karkheh  National  Park  in  Khuzestan  Province  and  the  forests  and  rangelands  of 
 Ab  Kenar  and  Khan  Ahmad  Basht  in  Kohgiluyeh  and  Boyer-Ahmad  Province  (Global  Fire 
 Monitoring  Center,  2024).  As  one  of  the  driest  countries  in  the  world,  Iran  experiences 
 approximately  1,500  wildfire  outbreaks  annually,  resulting  in  the  burning  of  15,000  ha  of 
 forest  (Kheshti,  2020;  Tavakoli  Hafshejani  et  al.,  2022).  Human  activities  are  the  primary 
 driver  of  wildfires  nationwide,  with  deforestation,  illegal  logging,  and  accidental  ignition 
 contributing  to  the  high  incidence  of  fires  (Masoudian  et  al.,  2025).  These  anthropogenic 
 pressures  are  compounded  by  systemic  shortcomings  against  wildfires,  including  inadequate 
 resource  allocation  and  insufficient  prevention  measures,  which  challenge  the  protection  of 
 natural ecosystems (Iran International, 2024). 

 Nepal  also  endured  its  second-worst  fire  season  since  2002  (  Figure  S45  ),  with  over  5,000 
 fires  according  to  some  sources  (Bolakhe,  2024;  and  >1,000  individual  fires  in  our  analysis, 
 Figure  S45  )  causing  more  than  100  fatalities  (Bolakhe,  2024).  In  Lumbini  province,  located 
 in  western  Nepal,  wildfires  devastated  11,448  ha  of  forests  and  destroyed  more  than  230 
 houses  and  livestock  shelters  (Sanju  Paudel,  The  Kathmandu  Post,  2024).  These 
 catastrophic  events  were  driven  by  extreme  drought,  prolonged  heatwaves,  and  frequent 
 lightning  strikes  (Karuna  shechen,  2024).  Concurrently,  anthropogenic  factors  including 
 agricultural  residue  burning,  poachers’  use  of  fires,  and  unintentional  human  negligence, 
 have  exacerbated  wildfire  occurrence  (Shradha  Khadka,  Governance  Monitoring  Centre 
 Nepal,  2024).  Notably,  Nepal’s  forest  cover  has  doubled  over  the  last  three  decades, 
 increasing  from  26%  to  45%  between  1992  and  2016  (Karan  Deep  Singh,  The  New  York 
 Times,  2022).  While  Nepal’s  afforestation  initiatives  represent  a  significant  environmental 
 achievement,  addressing  the  escalating  human-nature  conflict  and  strengthening  resilience 
 to  climate-induced  disasters  remain  critical  challenges  for  ensuring  the  sustainability  of  this 
 fragile progress. 

 Northern  India,  bordering  Nepal,  also  experienced  extreme  heatwave  and  drought  in  2024, 
 triggering  unprecedented  wildfire  activity  across  several  states  (Reuters,  2024).  Uttar 
 Pradesh,  for  example,  experienced  its  most  severe  wildfire  season,  marked  by 
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 record-breaking  BA,  carbon  emissions,  rate  of  growth,  and  fire  size  (  Figure  A1  ).  Human 
 activities,  mainly  land  clearing  and  negligence,  serve  as  the  primary  ignition  source  in 
 Northern  India,  leading  to  uncontrolled  wildfires.  These  fires  are  further  exacerbated  by  the 
 accumulation  of  dry  pine  needles  in  forests,  which  act  as  a  ready  fuel,  and  the  steep 
 Himalayan  slopes,  which  accelerate  the  rate  of  fire  growth  (Vivek  Saini,  Climate  Fact 
 Checks,  2024).  Agricultural  practices  in  Northern  India,  a  critical  crop-producing  region,  have 
 also  contributed  to  the  extreme  wildfire  season.  Despite  regulatory  bans,  post-harvest 
 burning  of  crop  residue  has  continued  unabated  in  recent  years  (Arshad  R.  Zargar,  CBS 
 News,  2024).  At  the  same  time,  temperature  inversions  coupled  with  Himalayan 
 topographical  blockages  have  trapped  pollutants  over  Northern  India.  This  phenomenon 
 culminated  in  severe  air  haze  episodes  in  New  Delhi  in  November  2024,  with  PM  2.5 
 concentrations exceeding 200 µg/m³ across large parts of Northern India (CAMS, 2024). 

 Figure  A1:  Summary  of  the  2024-2025  fire  season  in  the  Indian  State  of  Uttar  Pradesh.Time 
 series  show  annual  fire  count,  BA,  C  emissions  totals  within  the  region,  as  well  as  the 
 average  fire’s  peak  fire  intensity  (95th  percentile  value  of  fire  radiative  power  within  fire 
 perimeters),  the  95th  percentile  fire  size,  fastest  daily  rate  of  growth,  and  95th  percentile  fire 
 daily  rate  of  growth.  Black  dots  show  annual  values  prior  to  the  latest  fire  season,  red  dots 
 the  values  during  the  latest  fire  season,  and  blue  dashed  lines  the  average  values  across  all 
 fire seasons. 
 Although  Russia  generally  experienced  a  typical  fire  season,  several  regions  in  Siberia 
 recorded  extreme  fire  activity.  Two  regions  (Republic  of  Sakha  and  Zabaikalsky  krai) 
 accounted  for  65%  of  the  total  forest  area  burned  in  Russia  (Avialesookhrana,  2024)  with 
 97%  of  the  fires  recorded  in  hard-to-reach  areas  according  to  official  data  from  the  Federal 
 Forestry  Agency  (Rosleshoz,  2024).  The  high  fire  activity  was  associated  with  intense  heat, 
 decreasing  precipitation  and  dry  thunderstorms  (Rosleshoz,  2024),  which  have  become 
 more  frequent  phenomena  in  Siberia  in  recent  decades  (Huang  et  al.,  2024).  Firefighting 
 was  complicated  by  strong  winds  and  mountainous  terrain  (Rosleshoz,  2024).  To  attract 
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 additional  fire-fighting  forces,  federal  emergency  regimes  were  introduced  from  May  31  to 
 November  8  in  the  Zabaikalsky  krai  and  from  June  28  to  September  13  in  the  more  northern 
 Republic  of  Sakha,  including  in  the  Arctic  Circle.  In  total,  139  redeployments  involving  3,500 
 firefighters  were  carried  out  in  2024.  The  main  causes  of  forest  fires  were  lightning  (48%), 
 local  population  (39%)  and  fire  transitions  from  other  land  categories  (10%)  (Rosleshoz, 
 2024).  While  the  area  burned  in  2024  in  the  Republic  of  Sakha  was  not  the  highest 
 compared  to  fire  activity  in  the  previous  years,  there  is  an  increasing  trend  of  fire  activity  and 
 severity  in  the  region  over  the  last  decade  (ISDM,  2024),  associated  with  weather  anomalies 
 (Tomshin  and  Solovyev,  2022)  resulting  in  an  increase  in  the  duration  of  the  fire  season  and 
 the  average  area  burned  (Kirillina  et  al.,  2020;  Narita  et  al.,  2021).  The  estimated  total 
 emissions  for  June  2024  were  the  third  highest  in  the  past  two  decades,  following  those  of 
 2019  and  2020  (AMAP,  2024).  In  the  Zabaikalsky  krai,  the  total  area  burned  in  2024  was 
 about  7%  of  the  area  of  the  region,  which  is  the  highest  value  since  2010  (ISDM,  2025). 
 Overall,  both  regions  are  considered  hotspot  areas  of  fire-induced  change,  where 
 anthropogenic  patterns  and  climate  change  are  increasing  ecosystem  damage  from  wildfires 
 and inhibiting recovery of natural ecosystems (Kukavskaya et al., 2016; Burrell et al., 2022). 

 Persistent  dry  and  warm  spring  conditions  in  southwest  China,  particularly  in  Sichuan  and 
 Guizhou  provinces,  resulted  in  high-ranking  BA  anomalies  (  Figure  2  ).  Strong  winds 
 exacerbated  fire  risks  by  increasing  regional  fire  size  and  rate  of  spread,  leading  to  large  and 
 fast-moving  wildfires  (Global  Times,  2024).  One  of  the  most  severe  wildfires  in  Sichuan 
 lasted  14  days,  displacing  more  than  3,000  civilians  across  11  villages  and  one  community 
 (Dou  et  al.,  2024).  Northeast  China,  including  Heilongjiang  and  Jilin  provinces,  also 
 experienced  widespread  wildfire  anomalies  during  the  spring  season  (  Figure  2;  Table  2  ). 
 Contrary  to  the  climate-driven  wildfires  in  southwest  China,  these  wildfires  were 
 predominantly  anthropogenic  originating  from  crop  residue  burning.  The  Chinese 
 government  implemented  policies  in  2013  and  2018  to  control  straw  burning,  a  major 
 contributor  to  air  pollution,  which  initially  achieved  measurable  success  (Huang  et  al.,  2021; 
 Song  et  al.,  2024).  However,  due  to  financial  strain  on  rural  communities  and  administrative 
 pressures  on  local  officials,  recent  policy  adjustments  have  shifted  from  a  zero-tolerance 
 approach  to  a  more  flexible  framework.  This  revised  strategy  permits  controlled  crop  residue 
 burning in designated areas during periods of low air pollution risk (Ding, Sixth Tone, 2025). 

 Earth  observations  data  showed  high-ranking  BA  anomalies,  frequent  fires,  fires  with  large 
 sizes,  and  rates  of  growth  during  2024-25  in  several  regions  of  Lebanon,  Palestine,  Jordan, 
 Iraq,  Syria,  United  Arab  Emirates,  Philippines,  and  Laos  (  Figure  2,  Figure  4  ),  consistent 
 with reports of persistent heatwave in these regions (Zachariah et al., 2024). 

 A  drought  that  persisted  from  the  2024-25  fire  season  to  the  2025-26  fire  season  has 
 resulted  in  several  highly  impactful  events  in  Asia  (Faranda  et  al.,  2025).  Thus,  from  March 
 21st  2025,  South  Korea  experienced  its  deadliest  wildfires  on  record  with  very  strong  wind, 
 burning  across  11  regions  and  resulting  in  31  deaths,  44  injuries,  more  than  3.3  thousand 
 displaced  people,  and  at  least  4  thousand  homes  damaged  (Yonhap,  2025).The  wildfire  in 
 Iwate  Prefecture,  Japan,  which  started  on  February  26th  2025,  was  the  country’s  largest 
 wildfire  in  over  50  years,  killing  one  person,  destroying  221  buildings  and  forcing  evacuation 
 of  over  4,5  thousand  people  (NHK,  2025).  These  events  are  not  reviewed  at  length  here, 
 however they will be featured in future editions of the State of Wildfires report. 

 A3. Europe 

 In  2024,  wildfire  activity  in  the  European  Union  was  close  to  the  long-term  average  in  terms 
 of  total  BA,  but  characterized  by  strong  regional  contrasts;  approximately  420,000  ha  were 
 burned,  slightly  above  the  18-year  average  (San-Miguel-Ayanz  et  al.,  2025),  with  some 
 countries  experiencing  record-breaking  seasons  and  others  seeing  minimal  fire  activity. 
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 Across  the  continent,  including  in  Turkey  and  Ukraine,  a  total  of  1.82  million  ha  burned  from 
 March  2024  to  February  2025  as  recorded  by  the  European  Forest  Fire  Information  System 
 (2025),  of  which  48%  pertain  to  large  (>500  ha)  fires.  The  EU  Civil  Protection  Mechanism 
 (EUCPM)  was  activated  16  times  in  response  to  wildfires,  providing  international  assistance 
 to  Greece,  Portugal,  Cyprus,  Bulgaria,  Albania  and  North  Macedonia  (European 
 Commission Emergency Response Coordination Centre, 2024). 

 The  2024  wildfire  season  in  the  Nordic  and  Baltic  countries  was  the  calmest  in  recent 
 decades.  While  spring  was  drier  and  warmer  than  average  in  some  areas,  abundant  summer 
 precipitation  limited  fire  spread.  No  major  wildfire  events  were  reported,  and  most  incidents 
 were  confined  to  small  wildfires  caused  by  land-management  activities  (Swedish 
 Firefighters,  2024).  Likewise,  wildfire  activity  in  Western  Europe  during  2024  and  early  2025 
 was  subdued,  as  precipitation  during  spring  and  summer  limited  fire  occurrence  and  spread 
 across  the  region.  France  experienced  one  of  its  quietest  seasons  in  recent  decades,  and 
 similar  conditions  were  observed  in  Belgium,  the  Netherlands,  Ireland,  and  the  UK  (Global 
 Wildfire  Information  System,  2025).  The  fire  season  was  insignificant  in  Central  Europe, 
 because  of  wetter-than-average  conditions  during  spring,  especially  in  the  Czech  Republic 
 and  in  Slovakia.  However,  Austria  saw  the  highest  number  of  fires  and  the  largest  BA  since 
 2012  (Global  Wildfire  Information  System,  2025)  and  Germany  experienced  a  slightly 
 above-average  fire  season,  consistent  with  the  trend  of  the  previous  five  years.  The  most 
 notable  incident  was  a  wildfire  in  Harz  National  Park  in  July,  which  led  to  the  evacuation  of 
 approximately 500 people and involved 150 firefighters (Deutsche Welle, 2024). 

 In  Southern  Europe  fire  activity  varied  widely  depending  on  seasonal  precipitation  and  fire 
 weather,  with  notable  peaks  in  July-August  (Balkans)  and  September  (Portugal).  In  Portugal 
 (  Figure  S46  ),  2024  was  the  most  impactful  year  since  2017:  137,111  ha  burned  on  the 
 mainland,  around  20%  above  the  past  decade's  average,  with  25  fires  exceeding  1,000  ha, 
 eight  of  which  surpassed  5,000  ha  (Instituto  de  Conservação  da  Natureza  e  Florestas, 
 2024).  Most  of  these  fires  occurred  as  a  sudden  burst  in  mid-September  in  the  northwest 
 and  under  exceptional  fire  weather  conditions  (Instituto  Português  do  Mar  e  Atmosfera, 
 2024).  The  Sever  do  Vouga  complex  and  other  major  fires  affected  wildland-urban  interface 
 areas,  resulting  in  16  fatalities  (Agência  para  a  Gestão  Integrada  de  Fogos  Rurais,  2025), 
 and  €180  million  in  estimated  losses  across  housing,  infrastructure,  forestry,  and  agriculture 
 (Centro  de  Coordenação  Regional  Centro,  2024;  Centro  Pinus,  2024).  Additionally,  48,272 
 ha  of  protected  areas  and  Natura  2000  habitats  burned  (Gonçalves  and  Marcos,  2024).  In 
 Madeira  island,  a  fire  burned  over  5,000  ha,  entering  the  non  fire-adapted  laurel  forest,  a 
 UNESCO World Heritage Site (Público, 2024). 

 BA  in  Spain,  Italy  and  Greece  was  respectively  41,  51  and  73%  of  the  2012-2023  average 
 (Global  Wildfire  Information  System,  2025).  In  Greece,  the  drought  lasted  until  mid 
 November,  lengthening  the  fire  season  and  enabling  unusual  high-elevation  fires  in  the 
 north.  Nonetheless,  strengthened  preparedness  and  fire  suppression  hindered  the  spread  of 
 many  potentially  large  fires.  The  most  destructive  fire  occurred  near  Varnavas  in  August, 
 entering the NE suburbs of Athens and killing one person (Giannaros et al., 2024). 

 The  2024  fire  season  in  the  Balkans  and  Southeastern  Europe  was  among  the  most  severe 
 in  recent  decades  for  several  countries.  Wildfire  activity  was  substantial  in  North  Macedonia, 
 Serbia,  Albania,  Kosovo  and  Bulgaria,  including  multiple  large-scale  events  requiring 
 international  firefighting  assistance.  In  Albania,  the  largest  wildfire  surpassed  4,000  ha  in  the 
 Dropull  i  Poshtëm  region  and  the  EU  Civil  Protection  Mechanism  was  activated  in  response, 
 with  aerial  support  from  Greece  and  Italy  (Directorate-General  for  European  Civil  Protection 
 and  Humanitarian  Aid  Operations,  2024).  Evacuations  were  carried  out  near  the  coastal 
 town  of  Shengjin.  Bulgaria  experienced  its  worst  fire  season  since  2007,  with  two  wildfires  in 
 July  destroying  houses,  the  Sakar  Mountain  fire  (Radio  Bulgaria,  2024)  and  the  Gorska 
 Polyana  fire  (Novinite,  2024).  North  Macedonia  (  Figure  A2  )  and  Serbia  faced  their  worst  fire 
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 seasons  in  over  two  decades,  and  a  state  of  emergency  was  declared  in  the  former 
 (Euronews,  2024),  where  four  fires  larger  than  10,000  ha  were  recorded  (European  Forest 
 Fire  Information  System,  2025).  On  16  August,  Serbian  authorities  reported  135  active 
 wildfires  within  24  hours  (N1info,  2024).  Other  countries  in  the  region,  such  as  Croatia  and 
 Montenegro,  had  seasons  closer  to  the  norm.  In  the  Romanian  Danube  delta,  and  during  an 
 unusually  dry  winter,  45,000  ha  of  wetlands  burned  in  February  2025,  a  recurring 
 phenomenon with increasing extent (Volodymyr and Andiy, 2025). 

 BA  in  Turkey  reached  270,000  ha,  about  65%  of  the  previous  12-years  average  (Global 
 Wildfire  Information  System,  2025)  but  with  noticeable  societal  consequences.  Most  large 
 fires  (up  to  7000  ha)  occurred  in  the  province  of  Mardin  (European  Forest  Fire  Information 
 System,  2025),  including  a  rapidly  spreading  fire  that  burned  farmland  and  impacted  villages 
 on  20  June,  killing  15  and  additionally  injuring  at  least  70  people  (The  Nation,  2024).  A  fire 
 that  started  near  the  coastal  city  of  İzmir  on  15  August  brought  havoc  to  the  wildland-urban 
 interface and ended up burning houses and injuring 78 people (Ozerkan, 2024). 

 Long  periods  of  high  fire  danger  combined  with  intensified  aggression  and  scarcity  of 
 firefighting  resources  set  the  scene  in  Ukraine.  The  fire  season  was  severe  in  extent  and 
 nearly  1  million  ha  burned  between  March  2024  and  February  2025  (European  Forest  Fire 
 Information  System,  2025).  This  is  larger  than  the  combined  BA  in  all  of  Europe,  Middle  East 
 and  North  Africa  (San-Miguel-Ayanz  et  al.,  2025).  As  the  majority  of  these  fires  are  located 
 near  the  front  line  in  the  eastern  part  of  the  country,  warfare  was  presumably  a  major  driver 
 of  their  ignition,  with  forests  seemingly  accounting  for  a  larger  share  of  BA  than  in  the  recent 
 past  (The  Guardian,  2025).  Nonetheless,  higher  BA  had  been  recorded  in  the  past,  namely 
 >2 million ha in both 2014 and 2015 (Global Wildfire Information System, 2025). 

 Figure A2:  Summary of the 2024-2025 fire season in  North Macedonia, as in  Figure A1  . 
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 A4. North America 

 Wildfires  across  North  America  were  characterized  by  above  average  activity  in  Canada  and 
 the  United  States  and  a  record-breaking  season  in  Mexico  in  2024-2025.  This  included 
 multiple  wildfires  that  resulted  in  substantial  impacts  to  human  communities,  including  the 
 Eaton  and  Palisades  wildfires,  which  are  among  the  most  destructive  in  California,  USA 
 history.  Following  a  record  breaking  2023  wildfire  year,  during  which  almost  150,000  km  2 

 burned,  Canada  once  again  experienced  an  above  average  wildfire  season  in  2024.  A  total 
 of  5,686  wildfires  burned  approximately  46,000  km  2  ,  marking  the  six-highest  area  burned 
 since  1972  based  on  national  records  (Skakun  et  al.  2024).  In  the  United  States,  over  64,000 
 wildfires  burned  over  36,000  km  2  in  2024,  exceeding  both  the  previous  5  and  10-year 
 averages  (NICC,  2024).  The  USA  also  recorded  the  second-highest  number  of  Level  4  and  5 
 National  Fire  Preparedness  days  since  1990,  reflecting  elevated  national  fire  suppression 
 resource  commitment  associated  with  high  potential  for  continued  emerging  wildfires  (NICC, 
 2024).  National  fire  records  for  Mexico  suggest  that  the  country  experienced  more  that  8,000 
 wildfires  in  2024,  setting  a  record  for  area  burned  -  over  16,500  km  2  -  since  record  keeping 
 began  in  1998  (Comisión  Nacional  Forestal,  2025),  though  this  record  is  not  reflected  in  the 
 global datasets compiled as part of this report. 

 Much  of  Canada  experienced  earlier-than-normal  snowmelt  in  2024,  resulting  in  an  early 
 onset  of  the  wildfire  season.  For  example,  parts  of  Alberta  experienced  snowmelt  up  to  30 
 days  earlier  than  average.  Drought  conditions,  which  were  prevalent  across  the  country  in 
 2023,  persisted  into  2024  in  much  of  western  Canada.  Holdover  fires  from  2023,  which 
 smouldered  through  the  winter  in  northern  British  Columbia,  Alberta  (  Figure  A3  ),  and  parts 
 of  the  Northwest  Territories,  reignited  in  early  spring  due  to  warm  and  dry  conditions  (Kolden 
 et  al.  2025).  This  contributed  to  above  average  area  burned  and  wildfire  emissions  in  May 
 (Copernicus  Atmosphere  Monitoring  Service,  2024).  Wildfires  in  May  led  to  evacuations  of 
 Fort  Nelson,  British  Columbia  and  Fort  McMurray,  Alberta  -  an  area  previously  affected  by 
 Canada’s costliest wildfire in 2016 (Canadian Forest Service, 2025). 
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 Figure A3:  Summary of the 2024-2025 fire season in  Alberta, Canada, as in  Figure A1  . 

 Most  of  the  USA  was  characterized  by  normal  to  high  precipitation  at  the  start  of  2024,  with 
 minimal  wildfire  activity  (NICC,  2024).  A  heat  wave  at  the  end  of  February  2024  in  the 
 southern  plains  combined  with  strong  winds  and  high  fine  fuel  loads  led  to  multiple  large 
 wildfires,  including  the  record-breaking  Smokehouse  Creek  Wildfire  in  the  Texas  Panhandle 
 and  western  Oklahoma  that  burned  over  4000  km  2  and  resulted  in  two  fatalities  before 
 reaching  100%  containment  in  March  (Texas  House  of  Representatives  Investigative 
 Committee  on  the  Panhandle  Wildfires,  2024).  Wildfire  risk  in  the  southern  plains  remained 
 elevated  for  several  weeks.  Warm  and  dry  conditions  in  March  led  to  an  increase  in  activity 
 in  the  central  Appalachians  region  of  the  eastern  US,  with  the  Virginia  Department  of 
 Forestry  reporting  over  100  wildfires  in  48  hours.  By  early  April,  fire  activity  peaked  for  the 
 spring  fire  season  in  the  southern  and  eastern  US.  Dry  and  windy  conditions  prompted 
 significant  growth  of  large  wildfires  burning  in  New  Mexico;  however,  fire  activity  remained 
 below average in the USA in May (NICC, 2024). 

 Wildfires  in  Mexico  started  increasing  in  March  during  Mexico’s  typical  wildfire  season. 
 Warm  and  dry  conditions  helped  to  fuel  hundreds  of  wildfires  (Comisión  Nacional  Forestal, 
 2025;  NASA  Earth  Observatory,  2024b)  contributing  to  Mexico’s  record  breaking  wildfire 
 season  with  anomalously  high  carbon  emissions.  Wildfire  numbers  peaked  by  mid-March 
 through early May (Comisión Nacional Forestal, 2025). 

 Wildfire  activity  remained  high  across  Canada  during  the  summer  of  2024,  with  many 
 regions  experiencing  above-average  area  burned.  Areas  including  New  Brunswick  in  the 
 east,  and  the  Northwest  Territories,  recorded  area  burned  totals  among  the  top  five  highest 
 since  1972  (Skakun  et  al.,  2024).  Hot  and  dry  conditions  in  July  resulted  in  wildfires  forcing 
 the  evacuation  of  Labrador  City  in  Newfoundland  and  Labrador  and  John  D’Or  Prairie  and 
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 Fox  Lake  in  Alberta  (Canadian  Forest  Service,  2025).  In  late  July  during  a  period  of  extreme 
 99  th  percentile  fire  weather,  a  fast-moving  wildfire  resulted  in  the  evacuation  of  the  town  of 
 Jasper,  Alberta  and  destroyed  358  structures  resulting  in  an  estimated  $1.23  billion  in 
 damages  -  the  second  costliest  wildfire  in  Canadian  history  (Kolden  et  al.  2025;  Insurance 
 Bureau  of  Canada,  2025).  There  were  two  fatalities  in  July  related  to  fire  suppression 
 operations in Alberta and the Yukon. 

 Large  fires  continued  to  burn  in  northern  regions  of  British  Columbia,  Alberta,  and 
 throughout  the  Northwest  Territories  throughout  August  and  into  the  fall,  resulting  in  the 
 fourth,  sixth,  fifth  highest  area  burned  for  these  areas,  respectively,  since  1972  (Skakun  et 
 al.,  2024).  Significant  fire  activity  also  developed  in  Saskatchewan,  Manitoba,  and  Ontario  in 
 August,  and  New  Brunswick  experienced  the  second  highest  area  burned  since  1972 
 (Skakun  et  al.  2024).  In  total,  91  wildfire-related  evacuations  took  place  across  Canada 
 during  the  2024  season,  affecting  56,000  people  (Canadian  Forest  Service,  2025). 
 According  to  estimates  from  the  Copernicus  Atmosphere  Monitoring  System,  the  2024 
 wildfire  season  in  Canada  produced  the  second-highest  total  emissions  recorded  since  2003 
 - surpassed only by the record-breaking 2023 season (Parrington & Di Tomaso, 2024). 

 Wildfire  activity  began  to  pick  up  in  the  USA  during  the  later  part  of  June,  with  multiple  fires 
 in  New  Mexico  resulting  in  several  hundred  structures  burned  (NICC,  2024),  two  fatalities, 
 and  over  $1  billion  in  damages  (NCEI,  2025).  By  July,  an  extreme  and  long-lasting  heatwave 
 across  the  western  US  spurred  numerous  large  wildfires,  including  the  Park  Fire  in  Northern 
 California  that  drove  thousands  to  evacuate  and  destroyed  over  700  structures  (CALFIRE, 
 2025).  Record  breaking  dry  conditions  in  Oregon  and  Washington  led  to  over  100 
 human-caused  wildfires  by  early  July  (US  Forest  Service,  2024),  contributing  to  a  record 
 setting  year  in  BA  and  anomalously  high  carbon  emissions  in  Oregon  (  Figure  S47  ).  Through 
 July  and  August,  hot  and  dry  weather  drove  numerous  large  wildfires  in  the  northwestern 
 front  range,  including  the  Stone  Canyon  wildfire  in  Colorado  that  resulted  in  one  fatality  and 
 multiple  burned  homes  and  the  Remington  wildfire  in  Wyoming  that  killed  hundreds  of  cattle. 
 During  September,  numerous  dry  lightning  strike  wildfires  occurred  in  the  northwestern  US 
 along  with  multiple  wildfires  in  southern  California  associated  with  extreme  heat,  including 
 the Airport Fire that resulted in 22 injuries and 194 damaged structures (CALFIRE, 2025). 

 Fall  was  anomalously  warm  and  dry  across  much  of  the  continental  US,  with  87%  classified 
 as  abnormally  dry  or  in  drought  by  early  November  (NICC,  2024).The  northeast  US 
 experienced  hundreds  of  wildfires  that  interacted  with  densely  populated  regions  in  October 
 and  November  coincident  with  record-dry  conditions  and  warm  temperatures  across  multiple 
 states.  For  instance,  New  York  City  experienced  its  highest  number  of  recorded  wildfires 
 during  a  two-week  period,  with  every  borough  experiencing  multiple  wildfires.  The  conditions 
 were  unseasonable,  with  Connecticut,  Massachusetts,  and  Rhode  Island  setting  record  red 
 flag  days,  despite  typical  peaks  for  red  flag  days  occurring  in  spring  (NOAA,  2024). 
 Massachusetts  experienced  its  most  active  fall  fire  season  in  over  40  years  (NICC,  2024). 
 Two  fatalities  and  hundreds  of  structures  were  destroyed  before  rainfall  associated  with  an 
 extratropical cyclone halted the fall fire season in the northeast in late November. 

 Wildfire  activity  remained  low  at  the  end  of  2024  and  beginning  of  2025,  except  in  southern 
 California.  Southern  California  is  climatically  prone  to  experiencing  a  downslope  (katabatic) 
 wind  during  the  late  autumn  and  winter  months  known  locally  as  Santa  Ana  winds. 
 Historically,  the  most  devastating  wildfires  in  California  have  occurred  when  a  delayed  onset 
 of  autumn  precipitation  coincides  with  a  Santa  Ana  wind  event  (Kolden  and  Abatzoglou, 
 2018),  but  such  concurrences  are  increasing  in  frequency  with  climate  change  (Goss  et  al., 
 2020).  In  November  and  December,  Santa  Ana  wind  events  produced  wildfires  that  burned 
 nearly  10,000  ha  and  destroyed  over  250  structures,  however,  this  was  just  a  precursor.  In 
 January  2025,  the  most  disastrous  wildfire  event  in  modern  US  history  occurred  in  Los 
 Angeles  County,  California.  Prolonged  drought  conditions,  unseasonably  warm  winter 
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 temperatures,  and  exceptionally  powerful  Santa  Ana  winds  exceeding  140  km/h  created 
 extreme  fire  weather  conditions  (Barnes  et  al.,  2025;  CNN,  2025).  Fire  potential  was  also 
 exacerbated  by  anomalously  wet  winters  for  two  years  prior,  which  increased  the  fine  fuel 
 load  in  the  region.  The  potential  for  extreme  wildfires  to  develop  under  dry  downslope  winds 
 was  predicted  several  days  in  advance,  including  by  the  National  Interagency  Fire  Center 
 (NIFC),  the  National  Weather  Service  (NWS),  and  the  Storm  Prediction  Center  (SPC;  see 
 summary by Wikipedia, 2025) as well as by specialist commentators (e.g. Swain, 2025). 

 The  two  most  destructive  fires-Palisades  and  Eaton-that  burned  during  the  event  occurred  in 
 the  same  general  locations  as  destructive  fires  in  1961  and  1993  during  other  Santa  Ana 
 wind  events.  These  two  fires  resulted  in  numerous  outcomes  with  widespread  and  severe 
 consequences.  Among  the  most  devastating  were  the  high  fatalities  and  extensive  structure 
 loss.  Over  11,500  homes  were  destroyed  across  Los  Angeles  County,  and  at  least  30  lives 
 were  lost,  according  to  the  Los  Angeles  County  Coroner  (2025).  Specifically,  the  Palisades 
 Fire  damaged  or  destroyed  nearly  8,000  structures,  while  the  Eaton  Fire  impacted  over 
 10,000  (CALFIRE,  2025;  Wikipedia,  2025).  The  fires  also  triggered  mass  evacuations.  At  the 
 peak  of  the  crisis,  at  least  153,000  people  were  forced  to  evacuate,  with  up  to  200,000  under 
 evacuation warnings or orders (USGS, 2025b; NPR, 2025; Wikipedia, 2025). 

 In  addition  to  human  displacement  and  infrastructure  damage,  the  fires  severely  affected 
 both  air  and  water  quality.  Air  pollution  reached  hazardous  levels,  contributing  to  negative 
 health  outcomes  for  thousands.  During  the  fires,  peak  PM  2.5  levels  reached  483  µg/m³,  an 
 order  of  magnitude  greater  than  the  35  µg/m³  daily  standard  set  by  the  US  Environmental 
 Protection  Agency,  resulting  in  a  prolonged  period  of  hazardous  air  quality  (California  Air 
 Resources  Board,  2025).  Municipal  water  supplies  were  similarly  impacted,  with  water 
 considered  unsafe  for  tens  of  thousands  of  residents  in  the  burned  areas  for  several  weeks 
 following  the  fires  (City  of  Pasadena,  2025).  Beyond  Los  Angeles,  the  political  fallout  from 
 the  crisis  led  to  federal  orders  to  release  over  8.3  million  cubic  meters  of  water  from  federal 
 reservoirs  further  north  in  California.  However,  this  water  did  not  flow  to  southern  California 
 and  was  instead  vital  for  irrigating  crops  in  the  state’s  heavily  agricultural  Central  Valley 
 (Levin et al., 2025). 

 The  economic  consequences  were  equally  severe.  Total  economic  losses  were  estimated  at 
 US$140  billion,  factoring  in  property  destruction,  health  costs,  business  disruption,  and 
 infrastructure  damage,  making  this  one  of  the  most  costly  wildfire  events  in  US  history 
 (LAEDC,  2025;  UCLA  Anderson  School  of  Management,  2025).  Wider  economic  disruption 
 is  also  projected,  with  estimated  losses  of  US$4.6-8.9  billion  in  economic  output  over  five 
 years,  25,000-50,000  job-years  lost,  and  reductions  in  labour  income  of  US$1.9-3.7  billion 
 (LAEDC,  2025).  The  Palisades  and  Eaton  fires  directly  affected  nearly  2,000  businesses 
 (LAEDC,  2025).  Moreover,  as  Los  Angeles  hosts  the  largest  port  on  the  US  Pacific  coast, 
 these fires disrupted broader supply chains connected to the Port of LA (ASU, 2025). 

 Insured  losses  added  another  layer  of  financial  strain,  with  industry  estimates  ranging  from 
 $20  billion  to  $75  billion  (PreventionWeb,  2025;  Morningstar  DBRS,  2025;  Insurance  Insider, 
 2025;  UCLA  Anderson,  2025).  This  placed  substantial  pressure  on  the  already  volatile  home 
 insurance market in California, as well as on most global re-insurers. 

 The  fires  also  deepened  Southern  California’s  ongoing  housing  and  affordability  crisis. 
 Thousands  of  affordable  housing  units  were  lost,  worsening  the  existing  housing  shortage, 
 displacing  large  numbers  of  low-income  residents,  and  exacerbating  the  region’s 
 homelessness  problem  (Urban  Land  Institute,  2025;  UCLA  Anderson,  2025;  Vox,  2025).  This 
 led  to  ripple  effects,  with  mass  displacement  into  surrounding  communities  and  beyond  in 
 the months that followed (NYT, 2025). 
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 Finally,  the  aftermath  of  the  fires  brought  additional  physical  hazards  in  the  form  of  debris 
 flows.  Given  southern  California’s  geology,  the  region  is  highly  susceptible  to  erosion  and 
 debris  flows  following  wildfires.  Several  such  events  occurred  after  high-intensity  rainfall  in 
 the  weeks  following  the  fires,  causing  further  damage  and  prompting  hundreds  of  additional 
 evacuations in and near the recently burned areas (USGSa, 2025). 

 A5. Oceania 

 Oceania  experienced  relatively  moderate  levels  of  fire  during  the  2024-25  fire  season, 
 although  there  were  still  a  series  of  high  profile  and  high  impact  events  across  the  region. 
 Overall,  however,  the  season  did  not  reach  the  magnitude  of  the  previous  year,  which  ranked 
 among  the  top  5  years  for  BA  in  Australia  since  2002.  Where  fires  occurred  and  had 
 impacts,  lightning  and  sustained  dryness  were  prominent  drivers  (Bureau  of  Meteorology, 
 2024; Dowdy and Brown, 2025). 

 The  2024-25  fire  season  in  Western  Australia  was  characterised  by  record-high 
 temperatures,  variable  rainfall,  and  significant  soil  moisture  deficits  in  coastal  areas  of  the 
 South,  Southwest,  and  West.  Over  1,000  large  fires  burned  about  470,000  ha,  many  in 
 coastal  shrubland  and  woodland  over  the  ~800  km  stretch  from  Gingin,  north  of  Perth,  to 
 Carnarvon.  The  largest  fire  by  area  burned  occurred  near  Cervantes  in  November,  where  fire 
 ignited  by  a  car  crash  went  on  to  burn  more  than  80,000  ha  and  severely  impact  local  honey 
 production.  In  the  inland  Goldfields  region  at  Skeleton  Rocks,  more  than  44,000  ha  of 
 Mallee-heath  vegetation  of  the  Great  Western  Woodlands  were  burned  (according  to  the 
 Department  of  Fire  Emergency  Services  (DFES),  Rui  Feix,  pers.  comm.).  This  fire  reached 
 extreme  intensity,  impacting  fire-sensitive  species  and  post-fire  regeneration  cycles  in  an 
 ecosystem  that  requires  long  intervals  to  recover.  A  lithium  mine  in  the  area  was  also  directly 
 impacted  by  the  fire.  Four  other  large  incidents  were  recorded  in  the  shrublands  of  the  Great 
 Western  Woodlands,  further  affecting  these  vulnerable  ecosystems.  Between  December  and 
 March,  numerous  fires  occurred  in  the  grasslands  of  the  Wheatbelt  and  Esperance,  as  well 
 as  in  the  forests  of  the  Perth  Hills.  These  included  fires  that  collectively  destroyed  seven 
 residential  properties  in  areas  east  of  Mundaring,  Arthur  River,  Wooroloo,  and  Waroona.  In 
 February  and  March,  lightning  ignited  several  large  bushfires  in  native  forests  and  coastal 
 shrubland  around  Manjimup.  Some  of  these  fires  burned  for  up  to  five  weeks  and  affected 
 more  than  42,000  ha,  including  areas  of  Shannon  and  D’Entrecasteaux  National  Parks 
 (DFES,  Rui  Feix,  pers.  comm.).  These  incidents  required  significant  aerial  support  and 
 personnel deployments, including interstate assistance. 

 Above  average  rainfall  was  recorded  in  Central  Australia,  leading  to  expectations  of  strong 
 grass  fuel  growth  and  another  period  of  increased  fire  activity,  after  last  year’s  above 
 average  season  (Verhoeven  et  al.  2020;  Ruscalleda-Alvarez  et  al.  2023).  By  the  end  of 
 October  2024,  over  5.7  million  ha  had  burned,  much  of  it  stemming  from  an  intense  band  of 
 dry  lightning  stretching  from  the  Northern  Territory  into  Queensland  in  October  (according  to 
 Northern  Territory  Fire  and  Emergency  Services,  Maggie  Towers,  pers.  comm.).  Many  of 
 these  fires  combined  with  a  particularly  large  fire  complex  near  Devil’s  Marbles  Conservation 
 Reserve  (450,000  ha)  (NTFES,  Maggie  Towers,  pers.  comm.).  The  fire  threatened  hotels 
 and  other  infrastructure  and  caused  temporary  closure  of  a  major  highway.  In  late  January 
 2025,  a  bushfire  swept  through  the  West  MacDonnell  Ranges,  affecting  approximately 
 80,000  ha  across  the  Tjoritja/West  MacDonnell  National  Park,  Standley  Chasm,  the 
 Tyurretye  and  Iwupataka  Aboriginal  Land  Trusts,  as  well  as  nearby  pastoral  properties 
 (NTFES,  Maggie  Towers,  pers.  comm.).  Standley  Chasm  and  sections  of  the  Larapinta  Trail 
 were closed for several days while a 10-day multi-agency effort worked to contain the fire. 

 Queensland’s  north  west  saw  heightened  fire  activity  during  Spring,  with  fire  fighters 
 responding  to  40  incidents  in  Mount  Isa  alone.  One  of  these  fires  burned  for  nearly  two 
 months,  reaching  over  100,000  ha  according  to  Queensland  Fire  Department,  (Russell 
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 Stephens-Peacock,  pers.  comm.).  The  fires  caused  an  increase  in  hospital  admissions  due 
 to  respiratory  illnesses  and  impacted  mining  operations,  pastoral  property  and  Lawn  Hill 
 National  Park.  The  fires  affected  the  habitat  and  food  sources  of  endangered  species  such 
 as the Carpentarian Grass wren, found only in north-western Queensland. 

 In  2024-25,  eastern  Australia,  comprising  southern  Queensland,  New  South  Wales  (NSW), 
 and  the  Australian  Capital  Territory  (ACT),  experienced  a  notably  warm  period,  with 
 significant  rainfall  variation  across  regions  and  seasons.  Although  temperatures  were  above 
 average  in  the  austral  spring,  many  areas  received  above  average  rainfall,  thereby  reducing 
 fire  occurrence  and  impacts.  Repeated  dry  lightning  started  a  number  of  complexes  of  fires 
 in  remote  and  difficult  to  access  terrain  across  NSW,  including  areas  like  Lithgow,  the 
 Hawkesbury,  Bulga  and  around  Tamworth.  Despite  the  number  of  fires,  NSW  saw  more 
 moderate  fire  weather  than  other  parts  of  the  country  and  Emergency  Warnings  were  only 
 issued  for  three  fires  (according  to  New  South  Wales  Rural  Fire  Service,  David  Field,  pers. 
 comm.). 

 The  south  to  south  east  of  Australia  (including  the  states  of  South  Australia,  Victoria  and 
 Tasmania)  experienced  record  dryness  in  the  leadup  to  the  fire  season.  Fires  in  Chappelvale 
 and  Casterton-Edenhope  in  late  spring  signaled  an  early  start  to  the  fire  season  in  Victoria. 
 In  December  a  band  of  dry  lightning  ignited  a  number  of  fires  including  several  in  the 
 Grampians  National  Park.  About  75,000  ha  burned  in  the  Grampians,  affecting  culturally  and 
 ecologically  sensitive  areas.  The  coincidence  of  the  fire  with  Christmas  and  the  peak  holiday 
 season  led  to  major  tourism  losses  and  extensive  community  evacuations.  This  fire  was 
 contained  by  January  6  but  later  in  January  another  band  of  dry  lightning  passed  through  the 
 west  of  the  state,  this  time  affecting  the  western  side  of  the  Grampians  burning  another 
 almost  60,000  ha  (according  to  Country  Fire  Authority,  Sarah  Harris,  pers.  comm.).  By 
 season’s  end  over  two  thirds  of  this  important  National  Park  was  impacted  by  fire.  Another 
 significant  fire  occurred  on  December  26,  a  public  holiday,  in  Little  Desert  National  Park  in 
 the  state’s  west.  This  fire  was  an  extremely  fast-moving  fire  with  approximately  65,000  ha 
 burning  in  less  than  eight  hours  and  a  final  area  burned  of  90,000  ha  (according  to  Country 
 Fire  Authority,  Sarah  Harris,  pers.  comm.).  These  fires  required  interstate  deployments  to 
 assist  in  the  fire  fight.  The  fire  season  concluded  with  challenging  fires  that  burned  through 
 rugged  terrain  in  the  Gippsland  area,  impacting  the  World  Heritage-listed  Budjim  National 
 Park  with  its  significant  cultural  heritage.  Several  planned  burns  escaped  during  the  season, 
 highlighting the significant dryness of the area. 

 In  South  Australia  dry  lightning  storms  in  early  February  combined  with  severe  drought 
 conditions  to  cause  the  Wilmington  fire,  which  burned  approximately  half  of  Mount 
 Remarkable  National  Park.  Firefighting  efforts  reduced  the  impact  to  human,  ecological  and 
 cultural  assets.  Lightning  storms  in  February  and  March  also  caused  an  above  average 
 number  of  fires  in  eastern  parts  of  South  Australia.  While  impacts  were  limited,  firefighting 
 resources were strained. (South Australia, Country Fire Service, Simeon Telfer pers. comm.) 

 Tasmania  faced  a  significant  bushfire  season,  with  up  to  100,000  ha  burned  in  the  state's 
 northwest,  including  sensitive  ecosystems  such  as  the  Tarkine  rainforest  and  the  alpine 
 vegetation  around  Cradle  Mountain  (according  to  Tasmania  Fire  Service,  Chris  Collins,  pers. 
 comm.).  Sparked  by  intense  lightning  storms  in  remote  and  rugged  terrain,  the  fires  required 
 interstate  support  to  assist  with  firefighting  efforts.  The  blazes  led  to  evacuations,  threatened 
 heritage sites and caused major disruptions to local businesses and the tourism industry. 

 In  New  Zealand  the  2024-2025  fire  season  was  moderate,  with  a  couple  of  minor  fires  at  the 
 end  of  the  2023/24  fire  season  (Mar-Jun  2024)  and  a  few  more  significant  fires  during  the 
 2024/25  fire  season  (Jul  2024-Feb  2025).  A  key  feature  was  the  occurrence  of  a  couple  of 
 significant  wetland  fires  that  burned  large  areas  of  peatland  (2,271  ha)  and  damaged  flora 
 and  fauna  habitat.  These  fires  occurred  at  Whangamarino  Wetland,  Waikato  (central  North 
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 Island)  in  October  2024  and  Tiwai  Peninsula,  Southland  (southern  South  Island)  in  late 
 January  2025,  with  both  fires  just  over  1,000  ha.  The  fires  followed  two  major  peatland  fires 
 in  2022  at  Kaimaumau  in  the  far  north  (2,434  ha),  and  Awarua  in  the  south  (890  ha  and 
 close  to  this  season’s  Tiwai  fire)  (according  to  Fire  and  Emergency  New  Zealand,  Grant 
 Pearce,  pers.  comm.).  Carbon  emissions  are  likely  to  be  high,  given  the  2022  fires  were 
 estimated  to  release  more  than  620,000  t  CO  2  (Pronger  et  al.,  2024).  There  were  a  number 
 of  other  noted  fires  in  a  mixture  of  vegetation  types  including  in  Canterbury,  Northland  and 
 North  Otago.  However,  unlike  recent  years,  there  were  no  major  house  loss  incidents,  with 
 just a few homes and outbuildings lost across the multiple fires. 

 A6. South America 

 The  2024-25  fire  season  was  a  remarkable  year  for  fire  in  South  America,  with  seven  of  its 
 13  countries  reaching  new  records  in  BA  since  2002  and  widespread  records  in  the  fire  size, 
 growth  rate  and  intensity  distributions  (  Figure  3  ;  Figure  4  ).  Anomalies  in  BA  commenced 
 early  in  2024  and  persisted  through  November  in  some  regions  (  Figure  S4  ).  As  discussed  in 
 Section  2.2.2  and  Sections  4-6,  intense  drought  and  fire  weather  affected  much  of  South 
 America  during  the  2024-25  fire  season  and  this  drought  occurred  at  a  time  when 
 socioeconomic  factors  are  increasingly  cited  as  drivers  of  shifting  fire  regimes  and  timing. 
 The  event  is  part  of  a  trend  towards  an  earlier  onset  of  the  fire  season  since  2020,  with  new 
 record  fire  counts  set  for  the  months  of  March  to  May  in  2020  and  for  January  in  2022, 
 based  on  monitoring  by  Brazil’s  National  Institute  for  Space  Research  (INPE)  since  1998 
 (INPE,  2025).  During  2024,  January,  February  and  June  presented  the  second  highest  value 
 on  record  (previous  record  during  2003  for  January  and  2007  for  the  other  months, 
 respectively).  Fires  have  expanded  into  new  territories,  driven  by  a  combination  of  climate 
 variability,  shifting  land-use  practices,  and  governance  challenges,  as  discussed  in  the  study 
 cases, below. 

 Across  South  America,  the  number  of  fire  hotspots  recorded  by  the  Queimadas/INPE  system 
 (511  thousand  hotspots  in  2024)  rivalled  the  previous  record  set  in  2010  (523  thousand 
 hotspots)  (INPE,  2025).  Compounding  climate  and  human  drivers  likely  led  to  a  widespread 
 extreme  fire  year  across  the  continent  in  2024-2025.  The  land  use  fire  dependent  practices, 
 associated  with  new  deforestation  frontiers  during  an  extreme  drought  year  amplified  the  fire 
 crisis.  Amidst  rising  socioeconomic  and  environmental  impacts  of  fires  in  the  region, 
 researchers  have  been  calling  on  governments  across  the  globe  to  rethink  strategies  for 
 combating  the  root  causes  of  extreme  wildfires,  from  climate  change  to  fire-free  agricultural 
 practices  (UNEP,  2022).  Increases  in  extreme  droughts  with  already  vulnerable  forest  due  to 
 extreme  climatological  events  are  expected  and  therefore  controlling  ignition  sources  are  the 
 only  immediate  measure  for  preventing  2024-like  scenarios.  In  this  context,  major  fire  events 
 in  terms  of  largest  fire  size  emerged  in  many  parts  of  Brazil,  in  Peru,  Ecuador  and  Bolivia 
 during  the  2024-25  fire  season,  with  unprecedented  levels  of  BA  and  exceptional  fire 
 weather (  Figure S2  ). 

 In  Brazil,  one  of  the  most  intense  droughts  in  decades,  combined  with  the  expansion  of  the 
 agricultural  frontier  in  Amazonas  and  Pará  states  (Santos  et  al.,  2023),  caused  fires  to 
 persist  nearly  year-round  (  Figure  S2.4  ).  In  northern  Brazil,  including  much  of  the  Amazon 
 biome,  several  states  such  as  Amazonas  and  Pará  experienced  their  largest  BA  on  record. 
 Other  states,  including  Mato  Grosso,  São  Paulo,  and  Paraná,  recorded  their  highest  fire 
 extent  in  a  single  year.  In  the  Pantanal  biome,  Mato  Grosso  do  Sul  experienced  the 
 second-largest  BA  extent  on  record,  the  fourth  in  rank  in  fire  size  and  fifth  regarding  the 
 fastest  growth.  This  resulted  in  estimated  losses  to  agribusiness  caused  by  the  fires 
 amounting  to  R$  1.2  billion  (~  $222  million)  (Câmara,  2024).  In  addition,  Pantanal  recorded 
 particulate  matter  concentrations  of  903.2 µg/m³  in  September  2024  (Viana  et  al.,  2024), 
 which  is  60  times  higher  than  the  World  Health  Organization  (WHO)  standards.  Efforts  to 
 contain  the  flames  lasted  78  days  and  involved  the  National  Force,  local  communities, 
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 environmental  organizations,  and  state  fire  brigades  (Nunes,  2025).  The  response  faced 
 significant  challenges,  particularly  in  remote  border  areas  with  difficult  access  and  complex 
 logistics.  Providing  support  to  isolated  populations  was  especially  difficult,  with  reported 
 cases  of  respiratory  illnesses  worsened  by  smoke  exposure,  as  well  as  emotional  distress, 
 including stress and anxiety (Nunes, 2025). 

 São  Paulo  and  Mato  Grosso  state,  both  centres  of  large-scale  crop  production,  experienced 
 the  fourth-larged  BA  extent  on  record.  Regarding  fire  intensity,  2024  was  the  record  for  São 
 Paulo,  Paraná,  Mato  Grosso  do  Sul,  Rio  de  Janeiro  and  Roraima,  and  the  second  in  the 
 rank  for  Amazonas  and  Goias.  All  together,  from  the  southeast  to  the  north  of  the  country, 
 records  in  one  or  more  fire  metrics  were  observed  during  this  period,  placing  Brazil  in  a  state 
 of fire emergency. 

 In  general,  early  fire  season  onset  and  long  duration  occurred  across  most  Brazilian  regions, 
 with  the  first  month  of  anomalous  fire  ranging  from  March  in  most  of  the  Amazonian  states 
 and  extending  through  to  December.  In  fact,  more  fire  hotspots  were  detected  in  February 
 and  March  2024  than  in  any  year  since  1998  (INPE,  2025).  Record  fire  counts  were 
 observed  across  states  covering  more  than  half  of  Brazil’s  territory,  and  represented  a  threat 
 almost  during  the  entire  year,  posing  challenges  for  managing  the  wildfires  response  and 
 combat.  By  August  2024,  the  National  Centre  for  Early  Warning  of  Natural  Disasters 
 (CEMADEN,  2024)  pointed  out  that  the  drought,  covering  Amazonia  to  the  southeast, 
 initiated  in  the  second  half  of  2023,  was  already  one  of  the  strongest  in  decades.  Data  from 
 the  National  Secretariat  for  Civil  Protection  and  Defence  (S2ID,  2024),  in  December  2024 
 pointed  out  that  there  were  21  of  the  27  states  with  a  recognized  decree  either  in  state  of 
 emergency  or  calamity  due  to  the  drought,  affecting  more  than  520  municipalities  in  the 
 country.  These  conditions  brought  widespread  devastation  across  Brazil  in  2024,  impacting 
 urban  and  rural  communities  and  affecting  an  estimated  18.9  million  people  nationwide 
 (CNM,  2024).  Fire  disaster  forced  10,700  people  from  their  homes,  resulting  in  housing 
 instability  and  severe  disruptions  to  livelihoods.  Thousands  more  were  affected  by  the 
 breakdown  of  essential  services,  such  as  school  closures  (CNM,  2024).  Although  Brazil 
 does  not  have  an  official  database  on  wildfire-related  fatalities,  existing  records  point  to  a 
 rising  death  toll  (Carvalho  et  al.,  2025).  Estimates  have  identified  186  deaths  between  2020 
 and  2024,  with  38  in  2024  alone.  However,  the  actual  number  is  likely  higher  due  to 
 underreporting. 

 Notably,  the  state  of  São  Paulo  in  Brazil  recorded  8,712  hotspot  fires,  the  highest  number 
 since  1998  (INPE,  2025).  August  and  September  together  accounted  for  approximately  70  % 
 of  these  detections  (6,134),  roughly  four  times  the  1998-2023  August  average  (914  hotspot 
 fires)  and  three  times  the  corresponding  September  average  (848  hotspot  fires).  According 
 to  a  study  by  the  Amazon  Environmental  Research  Institute  (IPAM,  2024),  of  the  2,600 
 hotspots  fires  recorded  in  the  state  of  São  Paulo  between  August  22  and  24,  81%  were  in 
 areas  of  agricultural  use  -  drawing  attention  to  the  fact  that  the  state  recorded,  on  the  23rd 
 August  alone,  more  hotspots  than  the  entire  Amazon  biome.  In  an  even  more  alarming 
 interval,  analysed  images  from  the  geostationary  satellite  indicate  that  the  smoke  columns  in 
 western  São  Paulo  appeared  in  just  90  minutes,  between  10:30  AM  and  12:00  PM  on  the 
 23rd  August,  and,  on  that  same  day,  the  number  of  fires  jumped  from  25  to  1,886  hotspot 
 fires,  reinforcing  the  hypothesis  of  orchestrated  action  and  the  unprecedented  intensity  of 
 these fires. 

 Amazonas  state,  the  largest  of  Brazil’s  Amazonian  states,  can  be  pointed  out  as  an 
 epicentre  of  wildfires  and  its  impacts.  During  2024,  it  was  ranked  as  first  in  number  of  fires 
 (  Figure  4  )  and  presented  a  historical  record  of  fire  occurrence  in  June,  July  and  August, 
 consecutively,  since  the  monitoring  began  in  1998  (INPE,  2025).  Moreover,  it  was  the  3rd 
 year  with  the  fastest  fire  growth  rates,  with  a  fire  season  lasting  for  8  months.  It  has  been 
 estimated  that  fires  affected  over  790,000  ha  of  forests,  approximately  39%  of  the  affected 
 area,  especially  in  the  southern  region  of  the  state  (Alencar  et  al.,  2022).  The  Amazonas 
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 state  has  been  facing  an  increase  in  the  deforestation  rate  since  2021,  mainly  in  the 
 southern  region,  following  the  pressure  and  political  speech  of  Brazil’s  BR-319  Highway 
 paving.  The  lack  of  governance,  associated  with  illegal  logging,  land  grabbing  and  public 
 lands  invasion,  are  some  of  the  drivers  of  the  fire  peaks  observed  in  the  region  (Fearnside, 
 2022).  Moreover,  it  has  been  estimated  that  the  population  from  this  region  has  been 
 exposed  to  aerosols  emitted  from  the  wildfires  causing  a  pollution  of  up  to  113  µg/m³,  653% 
 above  the  15  µg/m³  standard  set  by  the  WHO,  according  to  the  data  from  the  Atmosphere 
 Monitoring Service (CAMS) and Copernicus Climate Change Service (C3S). 

 A  recent  report  from  the  Global  Forest  Watch  (World  Resources  Institute,  2025)  also  showed 
 widespread  high  levels  of  forest  loss  (stand-replacing  fire  extent)  to  wildfire  in  2024  in  the 
 Amazon  biome  (including  both  Brazil  and  neighbouring  Amazonian  countries).  The  highest 
 rates  of  forest  loss  since  2016  was  observed,  with  total  forest  loss  more  than  doubling  in 
 2024  versus  2023  and  60%  of  those  losses  were  attributed  to  wildfires.  Note  that  Global 
 Forest  Watch  data  define  "forest  loss"  as  the  complete  removal  of  tree  canopy,  including 
 areas  affected  by  stand-replacing  fires,  but  do  not  capture  more  subtle  or  partial  fire-related 
 degradation.  As  a  result,  the  data  may  overestimate  deforestation  while  underestimating 
 degradation,  limiting  understanding  of  the  broader  ecological  impacts  of  wildfires  on  forests. 
 Moreover,  Indigenous  communities  were  disproportionately  affected  by  wildfires  in  2024,  a 
 year  that  recorded  the  highest  number  of  fires  in  territories  inhabited  by  isolated  Indigenous 
 peoples  (COIAB,  2024).  In  2024,  fires  in  Indigenous  lands  in  Brazil  increased  by  81% 
 compared  to  2023,  accounting  for  the  largest  share  of  Amazonia  fires  at  24%  (Alencar  et  al., 
 2024).  In  Roraima,  uncontrolled  fires  in  indigenous  lands  have  degraded  air  quality,  ravaged 
 crops,  homes,  and  native  vegetation  leading  to  food  and  water  insecurity  (ISA,  2024).  The 
 fires  have  further  worsened  the  ongoing  humanitarian  crisis  in  the  Yanomami  Territory, 
 Brazil’s  largest  Indigenous  land.  Local  organizations  estimate  that  at  least  70,000  people 
 across  urban  and  rural  communities  were  affected  by  the  lack  of  access  to  clean  water,  a 
 result of the compounded impacts of drought and fire (WWF-Brasil, 2024). 

 The  implications  of  extreme  fire  activity  in  Amazonia  extend  beyond  immediate  ecological 
 damage.  As  a  globally  significant  carbon  sink  and  a  key  part  of  the  terrestrial  hydrological 
 cycle,  the  Amazon  stores  an  estimated  100-120  Pg  of  carbon  (Malhi  et  al.,  2006).  Intensified 
 fire  regimes  risk  accelerating  forest  degradation,  potentially  triggering  a  biome-scale  shift 
 from  net  carbon  sink  to  a  significant  carbon  source,  releasing  several  petagrams  of  carbon 
 and  exacerbating  global  warming  through  positive  feedbacks  (Gatti  et  al.,  2021).  Fire-driven 
 environmental  degradation  also  poses  public  health  risks  and  economic  instability.  Biomass 
 burning  increases  respiratory  illness,  especially  among  populations  exposed  to  prolonged 
 smoke  (Campanharo  et  al.,  2019,  2021).  Economically,  fire  reduces  agricultural  productivity, 
 damages  infrastructure,  and  undermines  regional  development,  compounding  poverty  and 
 inequality.  Costs  extend  to  firefighting  programmes  and  personnel  (Morello  et  al.,  2020),  as 
 well  as  hospitalisations  from  respiratory  or  other  fire-related  conditions  (Machado-Silva  et  al., 
 2020).  Rising  fire  activity  may  also  weaken  the  effectiveness  of  forest  conservation  and 
 restoration  policies,  including  those  tied  to  international  climate  agreements,  threatening 
 long-term mitigation and adaptation efforts. 
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 Figure  A4:  Summary  of  the  2024-2025  fire  season  in  Brazil’s  Amazonas  State,  as  in  Figure 
 A1  . 

 Bolivia  endured  one  of  its  worst  fire  seasons  on  record  by  many  measures,  intensified  by  the 
 El  Niño  phenomenon,  record  temperatures,  and  accelerating  deforestation  and  contributing 
 significant  carbon  emissions  to  the  atmosphere  (  Figure  A5  ).  These  conditions  intensified  fire 
 outbreaks,  especially  in  ecologically  vulnerable  regions  such  as  the  Chiquitania  and 
 Amazonian  lowlands  (Ruiz,  2025).  The  cumulative  number  of  fire  hotspots  in  2024  was 
 923,464,  with  77%  occurring  in  Santa  Cruz  (Chiquitano  dry  forest),  19%  in  Beni  (Amazonian 
 lowlands),  1.6%  in  La  Paz,  and  the  rest  in  other  departments  including  Pando  (north 
 Amazonia)  (CEJIS,  2024).  A  recent  report  from  Global  Forest  Watch  (World  Resources 
 Institute,  2025),  found  that  forest  loss  in  Bolivia  tripled  in  2024  versus  2023  and  was  many 
 times  over  the  annual  mean  since  2002,  with  60%  of  those  losses  related  to  wildfires.  The 
 forest  fires  have  been  attributed  to  a  combination  of  one  of  the  most  severe  droughts  on 
 record  as  well  as  a  number  of  socioeconomic  factors  and  government  policies  that 
 encourage  agricultural  expansion,  such  as  the  lifting  of  soy  and  beef  export  quotas,  removal 
 of import taxes on agrochemicals and machinery (World Resources Institute, 2025). 

 The  number  of  ha  burned  was  a  contentious  issue  in  the  country.  According  to  the  NGO 
 Fundación  Tierra  (2024),  in  September  2024  about  10  million  ha  were  burned.  The  wildfires 
 extended  up  to  November.  In  early  January  2025  an  independent  group  of  experts  of  the 
 national  journal  (El  Deber,  2025)  reported  that  14  million  ha  burned  based  on  the  MODIS 
 Terra  sensor.  In  April  2025,  the  ministry  of  environment  officially  reported  12.6  million  ha 
 burned  in  2024,  12%  of  the  country’s  territory,  with  57%  corresponding  to  primary  forest  and 
 43%  pastures  and  agricultural  lands  (Ministerio  de  Medio  Ambiente  y  Agua,  2025).  Although 
 wildfires  have  been  occurring  regularly  in  Bolivia  over  the  past  decade,  the  events  of  2024 
 have  been  the  most  catastrophic  to  date.  The  event  is  considered  the  second  megafire  after 
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 the  one  that  occurred  in  2019.  Indigenous  lands,  protected  areas,  and  fiscal  lands  were 
 among  the  most  impacted  categories.  The  Global  Forest  Watch  cited  a  lack  of  early  warning 
 systems  and  adequate  firefighting  resources  as  a  factor  contributing  to  high  rural  exposure 
 to  fire  and  urban  exposure  to  wildfire  smoke  (World  Resources  Institute,  2025).  An 
 investigation  by  Fundación  Tierra  (2025)  reports  that  wildfires  in  Bolivia  are  mostly 
 intentional,  with  66%  being  maliciously  set  and  34%  resulting  from  out-of-control 
 slash-and-burn agricultural practices. 

 The  Bolivian  Air  Contamination  Index  reached  537  in  the  city  of  Cobija,  northern  Bolivia 
 (Silva  Trigo,  2024),  corresponding  to  a  PM  2.5  concentration  of  over  500  µg/m³  (24-hour 
 average),  a  level  considered  extremely  harmful  and  impactful  to  the  health  of  millions  of 
 people  in  the  region  and  beyond.  As  a  result,  the  government  declared  a  sanitary 
 emergency.  In  addition  to  the  extensive  environmental  destruction  and  incomparable 
 biodiversity  loss,  these  fires  have  significantly  increased  atmospheric  carbon  emissions, 
 exacerbating  regional  and  global  climate  challenges.  It  is  important  to  note  that  laws  and 
 regulations  in  Bolivia  encourage  agricultural  and  livestock  expansion  and  are  lenient  towards 
 the  use  of  fire  (Yifan  He  et  al.  2025).  Encroachment  and  illegal  land  occupation  are  also 
 pointed  to  as  causes  of  provoked  wildfires  in  Bolivia.  Efforts  in  the  legislative  branch  to 
 prohibit  or  amend  these  regulations  have  not  been  successful  thus  far.  Therefore,  there  is  a 
 looming risk that similar events may occur again in the near future. 

 Figure A5:  Summary of the 2024-2025 fire season in  Bolivia, as in  Figure A1  . 

 In  early  2024,  Venezuela  experienced  its  most  intense  wildfire  season  on  record,  with  over 
 30,000  active  fires  between  January  and  March  (NASA  FIRMS,  2025).  Unlike  Brazil, 
 Venezuela’s  peak  fire  season  runs  from  December  to  April,  driven  by  the  northward  shift  of 
 the  Intertropical  Convergence  Zone  (ITCZ;  Katz  &  Giannini,  2010;  Ramírez  &  Gómez,  2021), 
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 which  were  intensified  by  the  2023-2024  El  Niño  ,  one  of  the  strongest  in  decades,  creating 
 an  extreme  fire  weather  window  (NOAA  CPC,  2024).  Fires  have  historically  been 
 concentrated  in  the  Orinoco  Llanos,  a  savanna-dominated  region  covering  approximately 
 one-third  of  Venezuela,  where  fire  is  used  for  agricultural  purposes  and  grazing  (Bilbao  et  al., 
 2020).  More  recently,  deforestation  in  tropical  forests  south  of  the  Orinoco  has  fueled  large 
 fires,  like  those  seen  in  2019  (Lizundia-Loiola  et  al.,  2020).  In  2024,  wildfires  impacted  nearly 
 all  ecosystems,  from  Amazonian  humid  forests  in  Bolívar  and  Amazonas  (5,600+  fires, 
 including  Canaima  National  Park),  to  flooded  savannas  in  Apure,  cloud  forests  in  Henri 
 Pittier,  and  an  estimated  36,000  ha  of  Caribbean  pine  lost  in  Uverito,  Latin  America’s  largest 
 plantation  (Ciudad  CCS,  2024;  Lozada,  2024).  Since  2019,  Venezuela’s  National  Parks 
 Institute  (INPARQUES)  has  promoted  an  intercultural  Integrated  Fire  Management  (IFM) 
 strategy,  coordinated  by  an  intersectoral  team  involving  government  agencies,  local 
 communities,  and  researchers  (Bilbao  et  al.,  2022).  With  support  from  FAO  and  RAMIF 
 (under  ACTO),  this  national  IFM  system  aims  to  strengthen  fire  management  efforts  in 
 response  to  Venezuela’s  vast  ecological  and  territorial  complexity,  as  well  as  to  the 
 increasing  extreme  fire  weather  conditions  projected  for  the  region  ,  including  higher 
 temperatures, prolonged dryness, and lower humidity (Feron et al., 2024). 

 A  fundamental  challenge  in  the  wildfire  crisis  affecting  Bolivia  and  Venezuela  is  the 
 complexity  of  managing  fires  in  border  regions.  Many  of  the  most  affected  areas  are  located 
 along  international  boundaries,  where  coordination  between  neighboring  countries  is  often 
 inadequate  or  inefficient.  The  lack  of  standardized  protocols,  difficulties  in  sharing  real-time 
 information,  and  disparities  in  firefighting  capacities  create  significant  logistical  and 
 operational  challenges.  Fires  in  these  areas  are  particularly  difficult  to  control  due  to 
 overlapping  jurisdictions  and  administrative  barriers  that  delay  response  efforts.  This  is  also 
 the  case  in  other  regions  in  south  america,  such  as  the  trinational  frontier  with  Acre,  Peru 
 and  Bolívia  (Pismel  et  al.,  2023)  and  at  the  Pantanal  region.  Without  improved  cross-border 
 collaboration,  enhanced  communication  channels,  and  harmonized  fire  management 
 strategies,  these  transboundary  wildfire  zones  will  remain  highly  vulnerable,  exacerbating 
 the broader crisis in South America. 

 Ecuador  presented  the  peak  in  BA  during  2024,  with  an  anomaly  of  166%,  the  highest  on 
 record.  Official  governmental  reports  from  the  National  secretariat  of  risk  management,  there 
 were  almost  6,000  wildfires,  83  thousand  ha  of  burned  vegetation,  1,663  affected  people,  47 
 people  hurt,  6  deaths,  45,000  animals  killed  and  over  5,000  animals  affected,  according  to 
 the  National  Secretariat  for  Risk  Management  (SitRep.,  2024).  These  events  were  attributed 
 to the extreme drought and land use and land cover conversion fire dependent practices. 

 In  2024,  there  were  13,400  hotspots  in  Peru,  which  was  1,000  more  than  in  2023  (Caceres 
 et  al.  2024).  Of  the  total,  49%  were  in  natural  areas  such  as  forests  or  other  natural  covers, 
 35%  in  non-forest  vegetation  types,  and  12%  in  anthropogenic  areas.  The  maximum  number 
 of  hotspots  occurred  in  September.  According  to  Caceres  et  al.  (2024),  in  August  and 
 September,  the  regions  most  impacted  by  fire  were  Ucayali,  Madre  de  Dios,  Huánuco,  San 
 Martín,  and  Loreto,  all  belonging  to  the  Amazonia  region.  In  November  2024,  the  number  of 
 wildfires  totaled  1,798,  with  over  80,000  ha  burned,  35  people  and  a  countless  number  of 
 animals  died  in  the  events  (Castillo,  2024,  Informe  Defensorial  n.°  225).  The  severity  of  the 
 wildfires  was  reflected  by  Castillo  (2024)  using  information  from  INDECI  (Institute  of  Civil 
 Defense). 

 In  the  extreme  south  of  South  America,  fires  in  Patagonia  started  in  early  2025,  continuing  a 
 recent  trend  that  aligns  with  an  80%  increase  in  BA  since  2002.  In  Argentina,  the  2024-25 
 fire  season  was  the  most  destructive  in  decades  for  northern  Patagonia.  By  late  February 
 2025,  more  than  30,000  ha  had  burned  across  Río  Negro  and  Neuquén  provinces,  primarily 
 affecting  Lanín  and  Nahuel  Huapi  National  Parks  (Greenpeace,  2025).  Extreme  fire  behavior 
 was  driven  by  prolonged  drought,  anomalously  high  temperatures,  and  intense  westerly 
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 winds.  Nearly  all  ignition  sources  were  anthropogenic,  amid  conditions  of  critical  fuel  dryness 
 (Greenpeace,  2025).  The  Patagonia  2024-25  fire  campaign  represents  the  most  extensive 
 and  intense  in  decades,  underscoring  the  combined  influence  of  climate  extremes  and 
 human pressures. 

 In  Chile,  fire  occurrence  and  BA  were  lower  during  the  2024-25  fire  season  than  in  recent 
 years.  The  2024  season  reached  a  BA  of    73,834  ha  compared  to  the  429,103  ha  burned  in 
 2023.  However,  in  February  2024,  the  Valparaíso  Region  experienced  a  record-setting 
 catastrophic  fire  associated  with  extreme  weather  conditions  (high  temperatures  and  strong 
 winds),  affecting  wildland-urban  interface  areas  with  significant  material  losses  and  more 
 than  30  deaths  (González  et  al.  2024).  Central  and  south-central  Chile  have  experienced  an 
 intense  and  uninterrupted  megadrought  since  2010,  which  has  increased  the  size  and 
 severity  of  wildfires  (Garreaud  et  al  2017;  González  et  al.  2018;  Bowman  et  al.  2019). 
 Priority  steps  to  advance  solving  this  problem  are  restoring  and  managing  forest  vegetation 
 and  removing  highly  flammable  forest  plantations  to  move  towards  less  fire-prone 
 landscapes. 
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 https://doi.org/10.5281/zenodo.15641876  ,  last  access:  6  August  2025).  FireMIP  /  ISIMIP 
 driving  and  output  data  is  available  from  the  Inter-Sectoral  Impact  Model  Intercomparison 
 Project  (ISIMIP;  https://data.ISIMIP.org/  ,  last  access:  6  August  2025).  Section  6  (and 
 subsequent  sections):  ConFLAME  future  burned  area  projections  are  available  from 
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 (Kelley  et  al.,  2025b;  https://doi.org/10.5281/zenodo.15807587  ,  last  access:  10  August 
 2025).  Data  and  scripts  used  to  produce  Fire  Weather  Index  (FWI)  projections  at  different 
 global  warming  levels  are  available  from  Liu  &  Eden  (2025; 
 https://doi.org/10.5281/zenodo.15790287  , last access:  6 August 2025). 

 12.  Code Availability 
 Section  3:  Code  for  regional  summaries  of  population  and  physical  asset  exposure  have 
 been  made  available  by  Steinmann  et  al.  (2025b;  https://doi.org/10.5281/zenodo.15831766  , 
 last  access:  6  August  2025).  Section  4  (and  subsequent  sections):  ConFLAME  attribution 
 and  future  projections  framework  (Kelley  et  al.,  2021;  Barbosa  et  al.,  2025b)  is  available  from 
 Barbosa  et  al.  (2025a;  https://doi.org/10.5281/zenodo.16790787  ,  last  access:  6  August 
 2025).  The  PoF  model  used  in  Section  4  is  from  ECMWF  implementation.  A  simplified 
 version  with  the  main  scripts  for  data  processing,  model  training,  and  analysis  are  archived 
 in  a  publicly  accessible  repository  https://doi.org/10.24433/CO.8570224.v1  with 
 documentation  to  facilitate  replication  of  the  results.  Section  5  (and  subsequent  sections): 
 The  code  used  to  produce  the  FWI  attribution  results  is  available  from  Kelley  et  al.,  2024 
 (  https://doi.org/10.5281/zenodo.11460379  ,  last  access:  6  August  2025).  The  FWI  code  used 
 to  generate  the  figures  in  section  4  can  be  accessed  via  the  ECMWF  GitHub 
 (  https://github.com/ecmwf-projects/geff  ;  last  access:  6  August  2025).  Code  used  for  the 
 FireMIP  attribution  results,  along  with  processed  ISIMIP  data,  can  be  found  at 
 https://doi.org/10.5281/zenodo.16779167  (Lampe  &  Burton  2025),  with  methods 
 documented  in  Burton,  Lampe  et  al.  (2024).  The  current  version  of  ibicus,  used  for 
 JULES-ES  bias  correction,  is  available  from  PyPI  (  https://pypi.org/project/ibicus/  ,  last 
 access:  6  August  2025)  and  is  described  in  detail  in  https://ibicus.readthedocs.io/en/latest/ 
 (last  access:  6  August  2025).  Model  code  and  evaluation  for  bias-correction  of  JULES-ES 
 model  output  can  be  found  at  Spuler  and  Wessel  (2025, 
 https://doi.org/10.5281/zenodo.15792440  , last access:  6 August 2025). 
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