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S2 Supplementary Material for Section 2: Context of Recent 114 

Extremes 115 

 116 

S2.1 Method 117 
 118 

S2.1.1 Contemporaneous Fire Weather 119 
 120 

In this edition of the report, we introduce routine summaries of the extreme (95th percentile) 121 
fire weather days during the March 2024–February 2025 global fire season based on the fire 122 
weather index (FWI), a common metric of fire danger developed by the Canadian Forest 123 
Service as part of the Canadian Forest Fire Danger Rating System (CFFDRS) (van Wagner, 124 
1987). The FWI comprises various components that consider the influence of weather on fire 125 
danger, with 2m temperature, 10m wind speed, precipitation, and 2m relative humidity as 126 
prerequisite variables. Higher FWI values are generally seen during droughts and heatwaves 127 
but they are more broadly indicative of meteorological conditions more conducive to wildfires 128 
in environments with sufficient fuel load (Di Giuseppe et al., 2016; Jones et al., 2022). 129 
 130 
We base our analysis of extreme (95th percentile) fire weather on the FWI dataset derived 131 
from the Copernicus Climate Change Service ERA5 reanalysis (Hersbach et al., 2023; Vitolo 132 
et al., 2020) and maintained by the Copernicus Emergency Management Service (CEMS, 133 
version4.1 2019). This dataset provides global fire weather data at a 0.25° spatial resolution 134 
and daily temporal resolution. To identify extreme fire weather conditions, we computed the 135 
95th percentile of daily FWI values at 0.25° resolution over the reference period March 1978–136 
February 2025 (i.e., covering 46 fire seasons). For each fire season, we then calculated the 137 
number of days on which the daily FWI exceeded this threshold, yielding our estimate of 138 
extreme fire weather days, referred to as FWI95d—defined as the annual number of days when 139 
fire weather conditions surpass the 95th percentile threshold.  140 
 141 
Anomalies in FWI95d for the March 2024–February 2025 fire season were subsequently 142 
calculated following the same methodology used for the observational fire variables, and are 143 
presented as (i) ranks, (ii) proportional anomalies, and (iii) standardised anomalies (see 144 
Section 2.1.2.1). The data produced using these methods are available from (Turco et al., 145 
2025).  146 
 147 
We adopt FWI95d as our metric for extreme fire weather for several reasons. First, FWI95d 148 
focuses on periods of high fire danger, when fire ignition and rapid spread are more likely  (e.g. 149 
Barbero et al., 2014). Second, it has been widely used in previous studies assessing fire–150 
climate relationships (Abatzoglou et al., 2019; Jones et al., 2022; Quilcaille et al., 2023) , 151 
supporting consistency with the broader literature. Third, and crucially for a global analysis, 152 
the use of a quantile-based threshold reduces the impact of regional biases in absolute FWI 153 
values, allowing for a more robust comparison of fire weather extremes across geographically 154 
diverse environments. 155 
 156 

S2.1.2 21st Century Trends in Burned Area 157 
 158 

To place recent extremes in the context of fire trends of the past two decades, we update our 159 
regional analyses of trends in annual BA from Jones et al. (2022). In contrast, we present 160 
trends that align more closely with global fire seasons, spanning the period March 2002-161 
February 2025 rather than trends over calendar years. We quantified trends using the Theil-162 
Sen slope estimator, which is useful when data may contain outliers or be non-normally 163 
distributed making it less sensitive to outliers than a standard least squares regression slope. 164 
Changes were calculated by multiplying trends (unit year-1) by the number of fire seasons in 165 
the period of coverage for each variable (Section 2.1.1.2). Relative changes were calculated 166 

https://paperpile.com/c/lpE3cM/jSCJ
https://paperpile.com/c/lpE3cM/jSCJ
https://paperpile.com/c/lpE3cM/4iCSe+BAGWP
https://paperpile.com/c/lpE3cM/ly1p+YiU4
https://paperpile.com/c/lpE3cM/ly1p+YiU4
https://paperpile.com/c/lpE3cM/X4fZ/?prefix=CEMS%2C%20version4.1&noauthor=1
https://paperpile.com/c/lpE3cM/X4fZ/?prefix=CEMS%2C%20version4.1&noauthor=1
https://paperpile.com/c/lpE3cM/xLYU
https://paperpile.com/c/lpE3cM/xLYU
https://paperpile.com/c/lpE3cM/go2K/?prefix=e.g.
https://paperpile.com/c/lpE3cM/go2K/?prefix=e.g.
https://paperpile.com/c/lpE3cM/TnZV+BAGWP+mmQ8
https://paperpile.com/c/lpE3cM/BAGWP/?noauthor=1
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as the absolute changes divided by the mean annual BA during the period following (Andela 167 
et al., 2017; Jones et al., 2022). The significance of trends was evaluated using the Mann-168 
Kendall test, with a confidence level set at 95%.  169 
 170 
In addition to reporting trends in total BA, we also present trends in forest BA as these regularly 171 
diverge from total BA trends, following Jones et al. (2024a) see Section 2.2.2). Forest BA is 172 
calculated as described in Section 2.1.1, but after isolating burned cells in areas with tree 173 
cover exceeding 30% in NASA’s annual MODIS MOD44B collection 6.0 Continuous 174 
Vegetation Field product (250m; Dimiceli et al., 2015). The 30% threshold is widely used 175 
amongst studies of forest cover change (Cunningham et al., 2020; e.g. Li et al., 2017; Sexton 176 
et al., 2016). 177 
 178 

S2.2 Results 179 
 180 

S2.2.1 Contemporaneous Fire Weather 181 
 182 

Section 4 of this report comprehensively explores the drivers of the extreme fire season for 4 183 
selected events during 2024-25, not only in terms of meteorological factors influencing the 184 
preconditioning of vegetation fuels for fire but also including factors such as fuel loading, land 185 
use and management, and ignition opportunities. However, because large-scale regional 186 
patterns of drought and heatwave are known to influence fire extent (Abatzoglou et al., 2018; 187 
Jolly et al., 2015; Jones et al., 2022), we briefly summarise here the meteorological 188 
circumstances underlying some of the regional extremes of the 2024-25 fire season identified 189 
above. Robust relationships are observed between fire weather and fire activity in regions with 190 
ample fuels across multiple decades, particularly in forests (Abatzoglou et al., 2018; Jones et 191 
al., 2022, 2024a; Turco et al., 2018).  192 
 193 
Figure S2 shows world regions experiencing high levels of extreme fire weather during the 194 
2024-25 fire season (data are available from Turco et al., 2025). Extreme fire weather was 195 
notably prevalent in the majority of regions in tropical South America, with the highest number 196 
of fire weather days on record in most states of Brazil, Bolivia and Peru and many other states 197 
of Colombia, Venezuela, and the Guianas experiencing a high-ranking–if not record-breaking–198 
number of days with extreme fire weather. For example, Amazonas State in Brazil experienced 199 
more than 50 additional days of extreme fire weather than its annual mean and many regions 200 
saw more than a month of additional fire weather days than is the average year (Figure S2). 201 
The spatial pattern of fire weather anomalies (Figure S2) clearly aligns with the elevated fire 202 
activity across the Amazon, broader moist tropical forests, Pantanal, and Chiquitano regions 203 
of South America during 2024-25 (Figure 2, Figure 3). Similarly, Mesoamerica experienced 204 
an unusually high number of extreme fire weather days during 2024-25 (Figure S2) and this 205 
is likely one factor contributing to higher than average fire activity in parts of Mexico during 206 
2024-25 (Figure 2, Figure 3). 207 
 208 
In Canada, some anomalies in extreme fire weather were observed in the northernmost 209 
provinces of western Canada (e.g. Northwest territories) and some eastern provinces during 210 
2024-25 (Figure S2). Although anomalies in BA and C emissions were indeed centred on the 211 
same regions of Canada, we note that the anomalies in extreme fire weather days were fairly 212 
small and overall less widespread than the anomalies in BA and C emissions. This evidence 213 
points towards other factors (beyond contemporaneous fire weather) as drivers of the elevated 214 
fire activity during 2024-25, potentially including the carryover effects of the prior-year 215 
heatwave and drought from 2023 and of overwintering ignitions from smouldering peat 216 
combustion (Scholten et al., 2021). 217 
 218 
In Africa, widespread high fire weather was observed across the Congo basin during the 2024-219 
25 fire season (Figure S2), aligning strongly with the anomalous BA and fire C emissions 220 

https://paperpile.com/c/lpE3cM/BAGWP+Ex3A
https://paperpile.com/c/lpE3cM/BAGWP+Ex3A
https://paperpile.com/c/lpE3cM/2s1t/?noauthor=1
https://paperpile.com/c/lpE3cM/xDbu/?prefix=250m%3B%20
https://paperpile.com/c/lpE3cM/xcIX+ooG9+LuhF/?prefix=e.g.%20,,
https://paperpile.com/c/lpE3cM/xcIX+ooG9+LuhF/?prefix=e.g.%20,,
https://paperpile.com/c/lpE3cM/D7L7+RxkK+BAGWP
https://paperpile.com/c/lpE3cM/D7L7+RxkK+BAGWP
https://paperpile.com/c/lpE3cM/56yG+RxkK+BAGWP+2s1t
https://paperpile.com/c/lpE3cM/56yG+RxkK+BAGWP+2s1t
https://paperpile.com/c/lpE3cM/xLYU/?prefix=data%20are%20available%20from
https://paperpile.com/c/lpE3cM/57wq
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observed in the region (Figure 2, Figure 3). In Southern Africa, extreme fire weather 221 
anomalies were widespread (Figure S2) but also characteristically decoupled from anomalies 222 
in BA (Figure 2) due to the inverted relationship between fire weather and fire activity in this 223 
fuel-limited region, where fire weather tends to correlate with poor vegetation productivity 224 
(Jones et al., 2022).  225 
 226 
In Eastern Europe, anomalies in extreme fire weather were centred on Ukraine and the Balkan 227 
states (Figure S2), corresponding with BA and C emissions anomalies in some parts of 228 
Ukraine, Serbia, and North Macedonia (Figure 2, Figure 3). However, spatial relationship 229 
between extreme fire weather and extreme fire activity was not direct in neighbouring regions, 230 
with western Turkey (for example) experiencing above-average BA and emissions (Figure 2, 231 
Figure 3) despite no clear anomaly in extreme fire weather (Figure S2). Similarly, anomalies 232 
in extreme fire weather spanned much of southern and southeast Asia (Figure S2), yet 233 
positive anomalies in BA and fire C emissions emerged in northern India, Nepal and 234 
Bangladesh but not in nearby parts of Thailand, Cambodia and Myanmar (Figure 2, Figure 235 
3). In Siberia, a record-breaking number of extreme fire weather days occurred during the 236 
2024-25 fire season (Figure S2) but did not translate into especially high BA or fire C 237 
emissions (Figure 2, Figure 3). This is a somewhat surprising finding for this region, given 238 
that the most extreme fire seasons of 2020 and 2021 were previously linked with extreme fire 239 
weather associated with heatwave and drought (Zheng et al., 2023). 240 
 241 
Overall, these findings highlight that there is noise in the relationship between fire weather and 242 
BA, with extreme fire weather preconditioning vegetation to burn but a variety of other factors 243 
such as ignition availability, fuel loading, and management factors driving dissociation in 244 
certain regions and years. For certain focal events,  Section 4 formally evaluates the role of 245 
fire weather’s sub-components (temperature, precipitation, humidity and wind speed) as 246 
drivers of fire alongside non-meteorological factors. 247 
 248 

S2.2.2 21st Century Trends in Burned Area 249 
 250 
The anomalies of 2024-25 occur against a backdrop of trends in BA this century that point 251 
towards shifts in fire regime. Figure S3 shows significant trends in BA and forest BA across 252 
the fire seasons in the period March 2002-February 2025 derived from MODIS BA data. While 253 
many world regions are experiencing declines in total BA, increases in forest BA are far more 254 
prevalent than declines at the scale of continental biomes, countries, and administrative 255 
regions.  256 
 257 
In South America, trends in total and forest BA are varied. The more than doubling of both 258 
total and forest BA in Amazonas (significant at p<0.05; Figure S3), among the most pristine 259 
parts of Amazonia, contrasts with the neighbouring state of Pará, where total BA has fallen by 260 
44% (p<0.05) as deforestation rates and deforestation-related fires have broadly declined 261 
since their peak during the early 2000s (Mataveli et al., 2025). The anomalous fire activity and 262 
C emissions in Amazonas state during the 2024-25 fire season is consistent with the emerging 263 
pattern of increased fire extent within in the state, whereas in Pará and other regions of South 264 
America’s tropical forests, the 2024-25 anomaly punctuates the either reducing or stable BA 265 
trends of recent decades. 266 
 267 
More broadly across the tropics, total BA has reduced across many savannah regions of 268 
Africa, South America, and northern Australia (Figure S3). The low fire seasons of 2024-25 269 
and 2023-24 in the African savannahs (Section 2.2.1.2) are highly consistent with the decline 270 
in BA seen in those regions this century. In tropical forests, BA has generally fallen in 271 
Southeast Asia, increased in the Congo basin, and shown no significant trend in South 272 
America. Hence, fires in the tropics do not show a consistent global trend (Figure S3). Notably, 273 
the BA anomalies seen in the Congo basin during the 2024-25 fire season appear to be an 274 

https://paperpile.com/c/lpE3cM/BAGWP
https://paperpile.com/c/lpE3cM/aD8z
https://paperpile.com/c/lpE3cM/tJR5
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extension of a trend towards increased BA across in the region over recent decades (Figure 275 
S3).  276 
 277 
Northern hemisphere extratropical regions in North America and Asia show a clear pattern of 278 
increased forest BA since 2002 (Figure S3), which is also visible on national scales in Canada 279 
and the US and on state/provincial scales in various states of western and eastern Canada, 280 
the western US, and northeast Russia. The consecutive large anomalies in BA in Canada 281 
during 2023-2024 and 2024-25 align with the doubling of forest BA seen in Canada across fire 282 
seasons since 2002 (significant trend, p < 0.05) and a 22% increase in total BA in Canada 283 
(marginally significant at p < 0.1). Three Canadian provinces showed significant increases in 284 
both total and forest BA this century: British Columbia (+39-49%); Northwest Territories (+52-285 
80%), and; Yukon (+75-141%). No Canadian provinces experienced a significant decline in 286 
forest BA or total BA. More widely, there was a 51% increase in forest BA in the North 287 
American boreal forest biome since 2002, and a 118% increase across the pan-boreal forest 288 
biome of North America and Eurasia. The succession of events affecting boreal forests in 289 
Canada in 2023 and 2024, Siberia in 2020, and both North America and Siberia during 2021 290 
are part of a continued trend towards rising fire extent in high latitude forests this century 291 
(Jones et al., 2024a).  292 

  293 

https://paperpile.com/c/lpE3cM/2s1t
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 294 
Figure S1: Comparison of the burned area (BA) estimates from (left column) the ESA 295 
Climate Change Initiative FireCCI product Sentinel-3 SYN Burned Area Grid product, version 296 
1.1 (Chuvieco et al., 2024; FireCCIS311; Lizundia-Loiola et al., 2022), (middle column) the 297 
VIIRS BA product produced by NASA (VNP64A1 v002) (Giglio, 2024; Zubkova et al., 2024) 298 
and (right) the MODIS BA product produced by NASA (MCD64A1 collection 6.1; Giglio et al., 299 
2018).  300 

https://paperpile.com/c/lpE3cM/f3Gd+IL9A/?prefix=FireCCIS311%3B%20,
https://paperpile.com/c/lpE3cM/S4vx+QMz6
https://paperpile.com/c/lpE3cM/DZyN/?prefix=MCD64A1%20collection%206.1%3B%20
https://paperpile.com/c/lpE3cM/DZyN/?prefix=MCD64A1%20collection%206.1%3B%20
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 301 
Figure S2: Extreme fire weather in the past fire season, including (top panel) the number of 302 
days with extreme (95th percentile) fire weather during the 2024-25 fire season, (middle panel) 303 
the anomaly versus the mean of all prior fire seasons 2002-2024, and (bottom panel) rank 304 
amongst all fire seasons since 2002.   305 
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 306 
Figure S3: Relative changes (%) in (left panels) total annual BA and (right panels) forest 307 
BA across March-February fire seasons during 2002-2025 for three regional layers: (top 308 
panels) continental biomes; (middle panels) countries, and; (bottom panels) level 1 309 
administrative regions (e.g. states or provinces). Forest BA considers only areas with tree 310 
cover over 30% at the native (500 m) resolution of the BA observations. Relative changes are 311 
calculated as the trend in BA across fire seasons March 2002-February 2003 through March 312 
2024-February 2025 multiplied by the number of years in the time series and divided by the 313 
mean annual BA during the period. Trends in BA are derived using the Theil-Sen slope 314 
estimator. Only significant trends in BA are shown (dark grey fill signifies no significant trend).   315 
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316 

 317 

 318 

 319 
Figure S4: (Top panel) first month, (middle panel) peak month, and (lower panel) final 320 
month of positive BA anomalies at Global Administrative Level 1 during March 2024-February 321 
2025. Peak anomalies are identified relative to the monthly climatology in 2001-2024. The first 322 
and final months of the BA anomaly incorporate the period when BA was continuously above 323 
the climatological mean. Graduated colours are separated seasonally. 324 
 325 
 326 
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 327 
Figure  S5: Monthly anomalies in absolute BA fraction (unit: additional % of cell area 328 

burned) at 0.25° for Northeast Amazonia throughout the 2024-25 fire season compared with 329 

the 2001-2024 climatological mean. 330 

 331 
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332 

333 

 334 
Figure  S6: Same as Figure S5 but for the Pantanal & Chiquitano. 335 

 336 
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 337 
Figure S7: Same as Figure S5 but for Southern California. 338 
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 339 
Figure S8: Same as Figure S5 but for the Congo Basin.  340 
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S3 Supplementary Material for Section 3 341 

 342 

 343 
Figure S9: (left panels) Population and (right panels) physical assets exposed to burned 344 
area (BA) during the 2024-25 global fire season. The figure shows (top panels) the number 345 
of people or the asset value (billion US$) exposed to fire and (bottom panels) the relative 346 
anomaly versus all years since 2002.  347 
  348 
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 349 
Figure S10: Exceptional 2024 fire activity in carbon projects can be explained by regional 350 
drought extremes and a long-term increase in drought and forest fire risk. (a) Number of 351 
projects with burned area (BA) in each year, (b) average annual percentage of project area 352 
burned, (c) 2024 drought anomaly for all projects (12-month SPEI; negative values indicate 353 
drier conditions). In (a) and (b), the red star indicates the 2024 ranking among other years. 354 
Data are shown for all projects (all), Latin America (LA), northern America (NA), Eurasia 355 
(EUAS), and Africa (AF). 356 
 357 

S4 Supplementary Material for Section 4 358 

 359 

S4.1 Methods 360 
 361 

S4.1.1 Probability of Fire  362 

To model the probability of active fire occurrence at high spatial and temporal resolution, 363 
Sparky is trained on daily, gridded observations of satellite-detected active fires from the 364 
MCD14ML fire location product, produced by the University of Maryland (Giglio et al., 2020). 365 
This dataset contains point-based fire detections from the MODIS instruments aboard the 366 
Terra and Aqua satellites. We first aggregated these fire detections onto the model’s regular 367 
latitude–longitude grid at approximately 9 km resolution, using a daily time step. For each grid 368 
cell and day, the target variable was assigned a binary value: 1 if at least one MODIS active 369 
fire detection was present in that cell on that day, and 0 otherwise. The model was then trained 370 
to predict the probability of observing at least one active fire in a given grid cell on a given day. 371 
After training, we applied the model globally to generate daily, grid-based probability maps. 372 
While the model outputs the likelihood of at least one fire occurring per grid cell per day, we 373 
interpret the sum of predicted probabilities across all grid cells within a domain as an estimate 374 
of the expected number of active fire-affected grid cells. This interpretation is consistent with 375 
the probabilistic nature of classification outputs in ensemble tree models and is particularly 376 
suitable for modelling sparse events such as fire occurrence (Gneiting and Katzfuss, 2014). 377 

 378 

https://paperpile.com/c/lpE3cM/R3pR
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S4.1.2 ConFLAME 379 

ConFLAME (Controlar Fogo Local Analise pela Máxima Entropia, or “Local Fire Control 380 
Analysis by Maximum Entropy' in English) is a probabilistic, control-based fire model designed 381 
to evaluate and attribute burned areas under diverse climate and socio-environmental 382 
scenarios. It directly builds upon the established ConFire and FLAME models (Barbosa et al., 383 
2025; Kelley et al., 2019, 2021), integrating ConFire’s control-structured approach with 384 
FLAME's Bayesian inference framework based on the Maximum Entropy principle. Full details 385 
can be found in Barbosa et al. (submitted). ConFLAME is specifically developed for attribution 386 
purposes, including compatibility with satellite-derived burned area data. This hybrid model 387 
allows for spatially explicit, event-scale attribution, making it applicable across different 388 
timeframes and regions. This means that, new to this year's report, our burned area (BA) driver 389 
and attribution assessments can now target both high burned area zones within subregions 390 
and the overall burned area across our entire focal region. 391 

ConFLAME simulates monthly fractional burned area at grid-cell level using a set of 392 
environmental and anthropogenic controls, each representing a key dimension of fire 393 
regulation. These controls capture the limitations imposed by factors such as: 394 

● Fuel availability and continuity 395 
 396 

● Fuel dryness 397 
 398 

● Fire weather (including temperature and relative humidity) 399 
 400 

● Wind speed 401 
 402 

● Ignition sources (both natural and human-caused) 403 
 404 

● Fragmentation and suppression (e.g., from land use, roads, or firefighting) 405 
 406 

● Stochastic influences (unmodelled or residual variation) 407 
 408 

Each control predicts the maximum possible burned area under ideal conditions for that 409 
specific factor. For instance, the “fuel dryness” control estimates the area that could burn if all 410 
other factors, such as fuel, ignition or suppression, impose no limitations. These controls are 411 
derived as linear combinations of their respective drivers (see Table S1 for assignment 412 
details), which are then transformed using the logistic function to produce a value between 0 413 
and 1. The individual control outputs are multiplied together to give a final burned area 414 
estimate, capturing the combined effects of all constraints (Kelley et al., 2021). This 415 
multiplicative structure allows interactions between drivers to influence fire outcomes and 416 
accommodates compound extremes where multiple drivers align to produce extreme BAs. As 417 
per Barbosa et al. (2025), this BA is corrected for sub-grid spatial/temporal autocorrelation 418 
that may alter overall fire spread and therefore BA. 419 

ConFLAME uses a Bayesian inference approach following a similar protocol to (Barbosa, 420 
2024). We use the PyMC (v5) Python package with the Metropolis-Hastings MCMC sampler 421 
(Hoffman and Gelman, 2011). Optimisation runs over 10 parallel chains with 1,000 tuning and 422 
1,000 sampling iterations per chain to determine the probability distribution of model 423 
parameters, such as those describing driver combination control strength and BA 424 
autocorrelation. The model employs a Maximum Entropy update function to avoid 425 
unnecessary assumptions beyond data constraints (Barbosa et al., 2025). Training utilising 426 
50% of the data or a minimum of 4000 grid cells. Instead of a single outcome. This approach 427 
produces a full distribution of possible burned area results for each grid cell and month, 428 

https://paperpile.com/c/lpE3cM/eDrC+059d+E6Lt
https://paperpile.com/c/lpE3cM/eDrC+059d+E6Lt
http://s4.1.as/
https://paperpile.com/c/lpE3cM/eDrC
http://bas.as/
https://paperpile.com/c/lpE3cM/E6Lt/?noauthor=1
https://paperpile.com/c/lpE3cM/E6Lt
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capturing uncertainty in parameters and fire variability. This allows rare but plausible 429 
outcomes, such as unusual BA levels, to emerge when multiple conditions favour fire. 430 

Once trained, ConFLAME is run in large ensembles to approximate the posterior BA 431 
probability distributions: 432 

● For attribution experiments (e.g., climate vs human vs combined forcing), we randomly 433 
sample 400 simulations from each chain (so 4000 samples), each using parameter 434 
samples drawn from the posterior distribution. For climate or human attribution, we pair 435 
each of these with an additional sample using counterfactual (either without 436 
anthropogenic forcing, without climate change or without people) inputs. 437 
 438 

● For future projections, a smaller ensemble of 1000 sampled (100 for each chain).. 439 
 440 

● As per (Barbosa, 2024), for evaluation we trained the first half of the period and test 441 
on the second half using 1000 samples. For the rest of the results, we trained on the 442 
full period. 443 

Each simulation in the ensemble represents one possible realisation of fire behaviour, 444 
conditioned on a plausible combination of parameters and driver inputs. The ensemble as a 445 
whole approximates the posterior distribution of burned area for each grid cell and time step. 446 

When analysing outputs across time (e.g., seasonal totals) or space (e.g., regional 447 
aggregates), probability metrics (mean, median, percentiles) are computed per ensemble 448 
member first, and then the distribution of these metrics is used to reconstruct a consistent 449 
posterior for the aggregated quantity. This preserves the dependencies within each realisation 450 
and avoids artificial narrowing of uncertainty that would result from averaging across 451 
distributions rather than ensembles. 452 

  453 
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Table S1: Overview of predictors used in the two fire attribution models (PoF and ConFLAME). 454 

Predictors are grouped into four control categories. ✓ indicates inclusion in the model, with (+) 455 

or (–) signs representing positive or negative influence over fire occurrence in ConFLAME. 456 
Resolution and temporal coverage refer to the dataset version used during model training. 457 
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Category Predictor PoF Con- 
FLAME 
(sectio
n 4) 

Con- 
FLAME 
(section 
5) 

Spatial 
Resolution 

Temporal 
Coverage 

Reference 

Weather 2m Temperature ✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

 2m Dewpoint 
Temperature 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

 Relative 
Humidity 

✗ ✗ ✓ (–) (0.25°) 2003–2025 (Muñoz-Sabater 
et al., 2021) 
 

 10m Wind 
Speed 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

 Precipitation ✓ ✓ (–) ✓ (–) ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

Fuel  Live Leaf Fuel 
Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Live Wood Fuel 
Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Dead Foliage 
Fuel Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Dead Wood Fuel 
Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 LAI – Low/High 
Vegetation 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (Boussetta et 
al., 2021) 

 Live Fuel 
Moisture 
Content 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Dead Foliage 
Moisture 
Content 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/DE25
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/AwiT
https://paperpile.com/c/lpE3cM/AwiT
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
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 Dead Wood 
Moisture 
Content 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

Ignition  Pasture Fraction ✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Cropland 
Fraction 

✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Urban 
Population 

✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Rural Population ✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Population 
Density 

✓  ✗ ✗ ~9 km 
(0.1°) 

2005, 
2010, 
2015, 2020 

(Center for 
International 
Earth Science 
Information 
Network 
(CIESIN), 2025) 
 

 Road Length ✓  ✗ ✗ ~9 km 
(0.1°) 

2015 (Meijer et al., 
2018) 

 Cloud-to-ground 
lightning 

✗ ✓ (+) ✓ (+) ~25 km 
(0.25°) 

2019-2025 (Qu et al., 2025) 

 Lightning ✓ ✗ ✗ ~9 km 
(0.1°) 

2019-2025 (Lopez, 2016) 

 Vegetation Type ✓ ✗ ✗ ~9 km 
(0.1°) 

2003-2021 (Boussetta et 
al., 2021) 

 Urban Fraction ✓ ✗ ✗ ~9 km 
(0.1°) 

2010 (McNorton et 
al., 2023) 

 Orography ✓ ✗ ✗ ~9 km 
(0.1°) 

Static (Boussetta et 
al., 2021) 

Missed 
Prediction 
Term 

 ✓ ✓ ✓ Model-
defined 

2007–2025 (Barbosa et al., 
2025) This 
study 

458 

https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/5Pbi
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/Oz2I
https://paperpile.com/c/lpE3cM/ODbE
https://paperpile.com/c/lpE3cM/ODbE
https://paperpile.com/c/lpE3cM/ODbE
https://paperpile.com/c/lpE3cM/ODbE
https://paperpile.com/c/lpE3cM/ODbE
https://paperpile.com/c/lpE3cM/ODbE
https://paperpile.com/c/lpE3cM/OKas
https://paperpile.com/c/lpE3cM/OKas
https://paperpile.com/c/lpE3cM/PMy9
https://paperpile.com/c/lpE3cM/JMvL
https://paperpile.com/c/lpE3cM/AwiT
https://paperpile.com/c/lpE3cM/AwiT
https://paperpile.com/c/lpE3cM/mKXs
https://paperpile.com/c/lpE3cM/mKXs
https://paperpile.com/c/lpE3cM/AwiT
https://paperpile.com/c/lpE3cM/AwiT
https://paperpile.com/c/lpE3cM/E6Lt
https://paperpile.com/c/lpE3cM/E6Lt
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S4.2 Results 459 

 460 
Figure S11: Pantanal and Chiquitano fire forecast (as for Figure 8 in the main text). Chicklet 461 
plots displaying seamless FWI and POF fire predictions over 10 days forecast. The x-axis 462 
corresponds to specific dates throughout the year, while the y-axis denotes either observations 463 
or the time leading up to the date when a forecast was generated. The vertical colour 464 
coherence allows for quick identification of the time windows of predictability associated to the 465 
observed fire activity both provided in terms of number of detected active in a day fires and 466 
total BA in a month (circles). The maps represents a snapshot in time at day 0 to allow the 467 
comparison of the spatial distribution of the forecasts and the recorded fire activity by MODIS. 468 
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 469 

Figure S12: Southern California fire forecast (as for Figure 8 in the main text). Chicklet plots 470 
displaying seamless FWI and POF fire predictions over 10 days forecast. The x-axis 471 
corresponds to specific dates throughout the year, while the y-axis denotes either observations 472 
or the time leading up to the date when a forecast was generated. The vertical colour 473 
coherence allows for quick identification of the time windows of predictability associated to the 474 
observed fire activity both provided in terms of number of detected active in a day fires and 475 
total BA in a month (circles). The maps represents a snapshot in time at day 0 to allow the 476 
comparison of the spatial distribution of the forecasts and the recorded fire activity by MODIS. 477 
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 478 

Figure S13: Congo basin fire forecast (as for Figure 8 in the main text). Chicklet plots 479 
displaying seamless FWI and POF fire predictions over 10 days forecast. The x-axis 480 
corresponds to specific dates throughout the year, while the y-axis denotes either observations 481 
or the time leading up to the date when a forecast was generated. The vertical colour 482 
coherence allows for quick identification of the time windows of predictability associated to the 483 
observed fire activity both provided in terms of number of detected active in a day fires and 484 
total BA in a month (circles). The maps represents a snapshot in time at day 0 to allow the 485 
comparison of the spatial distribution of the forecasts and the recorded fire activity by MODIS. 486 
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 487 
Figure S14. Forecast and observed burned‑area anomalies for four seasons: JFM, MJJ 488 

and JJA in 2024, and DJF in 2025. Rows correspond to these seasons and are linked 489 

respectively to the case‑study regions Amazonia, Congo, Pantanal and Los Angeles 490 

(highlighted in green). The columns display (i) the probability of a burned‑area anomaly 491 

occurring (left), (ii) whether the early‑warning system was triggered (centre), and (iii) the 492 

anomaly that was actually observed (right). Grey shading marks grid points where the 493 

climate‑fire model is not statistically significant (p‑value ≥ 0.01), while white indicates 494 

points where seasonal burned area was zero in less than half of the study period (i.e. 495 

BA = 0 in fewer than 11 of the 22 years, 2002–2023; see (i.e. BA = 0 in fewer than 11 of 496 

the 22 years, 2002–2023; see Torres-Vázquez et al., 2025). 497 

https://paperpile.com/c/lpE3cM/OzQ2/?prefix=i.e.%20BA%E2%80%AF%3D%E2%80%AF0%20in%20fewer%20than%2011%20of%20the%2022%20years%2C%202002%E2%80%932023%3B%20see
https://paperpile.com/c/lpE3cM/OzQ2/?prefix=i.e.%20BA%E2%80%AF%3D%E2%80%AF0%20in%20fewer%20than%2011%20of%20the%2022%20years%2C%202002%E2%80%932023%3B%20see
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 498 

Figure S15: Drivers explaining fire hotspots in Southern California (as for Figure 10 in the 499 
main text). 500 

 501 
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 502 

Figure S16: Drivers explaining fire hotspots in the Congo basin (as for Figure 10 in the main 503 
text). 504 

 505 
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Figure S17. Time series of burned area and key fire drivers for each focus region during 2024. 506 
Columns represent different regions; rows show different variables. Top row: Observed burned 507 
area (blue) and modelled burned area (red) for each region, with the model median (solid red 508 
line), interquartile range (shaded), and 5th–95th percentile range (lighter shading). Second to 509 
fourth rows: Modelled contributions from key fire drivers—fuel availability, fire weather, and 510 
human/ignition-related factors—with each showing median (solid line), interquartile range 511 
(shaded), and 5th–95th percentile range. Together, these panels illustrate the relative 512 
influence of climate and human factors on fire activity throughout the year.  513 
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 514 
Figure S18. Potential increases in burned area (y-axis) under different fire-controlling factors 515 
across varying levels of simulated burned area (x-axis), shown separately by region (columns) 516 
and control factor (rows). Results are drawn from the full 5000-member ConFLAME ensemble. 517 
Shading indicates the density of grid cells where a given potential increase occurs, with darker 518 
areas representing higher density. Each control factor represents a specific constraint on fire 519 
activity: 520 

● Fuel: the difference between BA simulated under plentiful fuel loads versus actual fuel 521 
loads. 522 

● Moisture: the effect of fuel moisture, comparing perfectly dry to actual moisture 523 
conditions. 524 

● Weather: the influence of atmospheric conditions, comparing the most extreme 525 
simulated fire weather to observed conditions. 526 

● Wind: the increase in BA expected under maximum wind conditions versus actual 527 
winds. 528 

● Ignitions: the difference between saturated ignitions (i.e., unlimited human or natural 529 
ignition sources) and observed ignition patterns. 530 

● Suppression: the difference between scenarios with no fire suppression and those 531 
reflecting actual suppression efforts. 532 

Together, these estimates illustrate the latent potential for fire spread under different limiting 533 
factors, helping to disentangle which constraints most strongly regulate fire activity in each 534 
region and at different severity levels. 535 
 536 
 537 
 538 
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 539 
Figure S19 Spatial distribution of burned area and fire driver anomalies for January-March 540 
2024 in Northeastern Amazonia. Top row: Observed burned area anomalies from MCD64A1 541 
(left); ensemble mean burned area anomalies simulated by ConFLAME (middle); and the 542 
number of fire-relevant controls (out of seven) showing a positive anomaly during the same 543 
period (right). Second row: Mean simulated control strength for each of the three grouped 544 
controls, expressed using the "standard limitation" formulation (Kelley et al., 2019), indicating 545 
the degree to which each factor constrained or enabled burning. Bottom row: Anomalies in 546 
control strength compared to the modelled climatology. Values represent ensemble means 547 
across all 4,000 members. Dots on the anomaly maps indicate grid cells with low agreement 548 
across ensemble members (<95% agreement in the direction of change), reflecting lower 549 
confidence in the sign of the anomaly at those locations. 550 
 551 
  552 

https://paperpile.com/c/lpE3cM/059d
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 553 
Figure S20 As Figure S19 but for Pantanal & Chiquitano, August and September 2024 554 
 555 
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 556 
Figure S21 As Figure S19 but for Southern California, January 2025. 557 
 558 
 559 

 560 
Figure S22 As Figure S4.9 but for Congo Basin, July and August 2024561 
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S5 Supplementary Material for Section 5 562 

S5.1 Methods 563 

Table S2: Guide to different attribution comparisons discussed. Coloured boxes indicate what is accounted for in counterfactual comparisons, 564 
which variable is targeted or where we look directly as the event or a longer historic record. 565 

Attribution 
type 

Model  Factual vs 
counterfactual data 
sources 

Removed in Counterfactual Target variable Target period 

GHG 
emissions 
on climate 

Aerosols 
on 
climate 

Land 
use on 
climate 

Climate & 
CO2 on 
fuel 

Natural 
climate 
trends 

Humans  
on fire 

Event 
FWI 

Event 
BA 

Background 
BA 

During 
the event 

Historic 

Anthropog
enic 
climate 
Forcing 

Canadian FWI  HaDGEM3-A All vs 
NAT 

           

CanESM5 FWI CanESM5 2014-2025 
vs 1850–1859 

           

WWA - sourced from already published 
material 

           

ConFLAME 
NRT 

ERA5 vs merged 
ERA5/HadGEM3-A 

           

Total 
climate 
forcing 
 

ConFLAME  
ISIMIP 

ISIMIP3a GSWP3 
reanalysis vs 
detrended 

           

FireMIP    

Socio- 
economic 
factors 

ConFLAME  
ISIMIP 

ISIMIP3a GSWP3 
detrended 2003-2019 
vs 1901-1917 

         

FireMIP    

All forcings ConFLAME  
ISIMIP 

ISIMIP3a GSWP3 
reanalysis 2003-2019 
vs detrended 1901-
1917 

         

FireMIP          

566 
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 567 

S5.1.1 Attributing Extremes in Fire Weather during 2024-25 - extended 568 

  569 
We applied a bias correction to the 2023 HadGEM3 large ensemble using a linear regression 570 
approach, based on comparisons between the model's historical simulations (1960–2013) and 571 
the ERA5 reanalysis of fire weather index (FWI). The FWI data were transformed prior to 572 
regression to stabilise values at the high end, ensuring extreme fire conditions were accurately 573 
captured without distorting the distribution. This correction was anchored to 2023 conditions 574 
by extrapolating trends from the historical period to account for recent warming. 575 
 576 
Each present-day ensemble member was corrected against all historical ensemble members, 577 
producing a large ensemble of bias-adjusted simulations (7875 members in total). This method 578 
avoids assumptions about pairwise matching of ensemble members due to the perturbation 579 
process used in generating the ensemble. 580 
 581 
We then calculated risk ratios (RRs) for extreme fire weather events by comparing the 582 
likelihood of exceeding the observed 2023 FWI threshold in the bias-corrected “ALL” (with 583 
climate change) and “NAT” (without climate change) simulations. The RR represents how 584 
much more likely the event was in today’s climate compared to a world without anthropogenic 585 
influence. Uncertainty was assessed using bootstrapping. 586 
 587 
Full technical details are provided in last years report supplement section S1.2.3 Jones et al.  588 
(2024b) and Burton et al. (2025). 589 
 590 

S5.1.2 Background changes in fire weather this decade 591 
 592 

To complement the HadGEM large-ensemble weather simulations, we also use a fully coupled 593 
Earth system model approach to assess the changing probability of extreme fire weather 594 
events.  This method uses the Canadian Earth System Model version 5 (CanESM5 Swart et 595 
al., 2019), developed for the sixth phase of Coupled Model Intercomparison Project (CMIP6; 596 
Eyring et al., 2016). CanESM5 provides a 50-member ensemble spanning both the historical 597 
period (1850–2014) and high-emission future projections (SSP585, through 2100). By drawing 598 
on a physically consistent climate model ensemble, this method offers an independent line of 599 
evidence for assessing the role of anthropogenic climate change. Unlike the weather-600 
perturbation ensemble, this method evaluates how often events of similar magnitude to those 601 
in 2024/25 would have occurred between 2016-2025. 602 
 603 
For each focal region and season, we extract the annual maximum of 7-day average FWI for 604 
each ensemble member and apply a statistical model (a time-dependent Generalized Extreme 605 
Value distribution), as often used in previous attribution studies (Eden et al., 2016, 2018; 606 
Krikken et al., 2021; Liu et al., 2022a, 2023, 2022b; Otto et al., 2018; e.g. Schaller et al., 2014; 607 
van der Wiel et al., 2017) to estimate how the probability of extreme fire-conducive conditions 608 
has changed over time. In this section, we compare the likelihood of these events under pre-609 
industrial conditions (1850–1859) to their likelihood in the recent past (2016–2025). These 610 
comparisons are expressed as a probability ratio (PR). For example, a PR of 10 indicates a 611 
tenfold increase in the chance of such an event occurring in the modern climate compared to 612 
pre-industrial conditions. In this study, we define 'high fire weather' conditions as the percentile 613 
rank of extreme Fire Weather Index (FWI) values during the event period, calculated relative 614 
to the full ERA5 historical record. For instance, if the event corresponds to the 95th percentile 615 
in the observed record, we assign the 95th percentile value from the model simulations as the 616 
representative magnitude of the event within the simulations. Confidence intervals for these 617 
PRs are estimated using bootstrapping. This approach, again following a similar approach 618 
outlined by (Liu et al., 2022c), allows us to account for uncertainties arising from internal 619 

https://paperpile.com/c/lpE3cM/2yYL/?noauthor=1
https://paperpile.com/c/lpE3cM/opnN/?noauthor=1
https://paperpile.com/c/lpE3cM/ekcW/?prefix=CanESM5
https://paperpile.com/c/lpE3cM/ekcW/?prefix=CanESM5
https://paperpile.com/c/lpE3cM/AwA5/?prefix=CMIP6%3B%20
https://paperpile.com/c/lpE3cM/AwA5/?prefix=CMIP6%3B%20
https://paperpile.com/c/lpE3cM/XjVn+YrO6+eCXj+WPbg+ur6K+D0qh+vdwi+ceeY+5r3m/?prefix=e.g.%20,,,,,,,,
https://paperpile.com/c/lpE3cM/XjVn+YrO6+eCXj+WPbg+ur6K+D0qh+vdwi+ceeY+5r3m/?prefix=e.g.%20,,,,,,,,
https://paperpile.com/c/lpE3cM/XjVn+YrO6+eCXj+WPbg+ur6K+D0qh+vdwi+ceeY+5r3m/?prefix=e.g.%20,,,,,,,,
https://paperpile.com/c/lpE3cM/12fj
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climate variability and limited sample sizes, while leveraging the strength of large ensemble 620 
simulations.  621 
 622 
While this approach relies on a more generalised representation of climate and fire-relevant 623 
processes — and applies a statistical fit to account for sample size limitations — it adds 624 
valuable robustness by providing attribution results from an independent model and that 625 
assesses FWI occurrence over a longer period. Together with the HanGEM3-A approach, this 626 
approach strengthens confidence in the conclusions drawn by offering a diverse and 627 
independent line of evidence for the role of climate change in recent fire weather extremes. 628 

S5.1.2.1 Model and Data 629 

We use the Canadian Fire Weather Index (FWI; van Wagner, 1987) calculated from daily 630 
ERA5 reanalysis data for 1951–2025, and from the CanESM5 large ensemble simulations for 631 
1850–2100 (Swart et al., 2019). The CanESM5 model was selected due to the availability of 632 
a 50-member ensemble under the historical (1850–2014) and SSP5-8.5 scenario (2015–633 
2100), providing sufficient sample size for extreme value analysis. 634 

S5.1.2.2 Statistical Framework 635 

We follow a time-dependent Generalized Extreme Value (GEV) approach (Eden et al., 2016; 636 
Liu et al., 2022a, b; Philip et al., 2020; van der Wiel et al., 2017). For each focal region and 637 
fire season, we calculate annual maxima of 7-day average FWI from each ensemble member 638 
and fit them to a GEV distribution. 639 

The location (μ) and scale (σ) parameters are modelled as linear functions of 4-year smoothed 640 
global mean surface temperature (GMST) from the ensemble mean, capturing the externally 641 
forced response. The shape parameter (ξ) and the σ/μ ratio are held constant. This yields a 642 
time-evolving distribution from which return periods (and hence probabilities) for a fixed event 643 
magnitude can be computed across different climate baselines. 644 

S5.1.2.3 Attribution 645 

For attribution, we evaluate the return period of a specific observed 2024 event magnitude 646 
(e.g., 7-day FWI max) in: 647 

● A pre-industrial baseline: 1850–1859 648 
 649 

● A recent baseline: 2015–2024 650 

We then use the Risk Ratio in S5.1.1. 651 

5.1.2.4 Uncertainty 652 

We estimate 90% confidence intervals using a non-parametric moving-block bootstrap with 653 
1,000 replicates (Efron and Tibshirani, 1998; van der Wiel et al., 2017). This preserves 654 
autocorrelation in annual maxima sequences and accounts for interannual variability across 655 
the ensemble. 656 

5.1.3 Attributing Region-wide Extreme BA during 2024-25 - extended 657 
 658 

The near real-time configurations test and training follows the same setup as described in 659 
Section 4, but excludes the fuel moisture variables, as we do not have counterfactuals 660 
available for these variables. We use the same training protocol as outlined in Section 4.2. 661 
The factual climate is based on ERA5 reanalysis, providing physically consistent and 662 

https://paperpile.com/c/lpE3cM/YrO6+eCXj+ceeY+5r3m+cslD
https://paperpile.com/c/lpE3cM/YrO6+eCXj+ceeY+5r3m+cslD
https://paperpile.com/c/lpE3cM/DXTK+eCXj
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observation-constrained meteorological conditions for the fire event. The counterfactual 663 
climate represents a world without human influence on the climate system. It is created by 664 
adjusting ERA5 temperature, maximum temperature, precipitation, dry days, consecutive dry 665 
days, humidity, and minimum humidity variables using variable-specific adjustment functions 666 
(“deltas”). These deltas are derived from differences between the HadGEM3-A ALL-forcings 667 
and natural-forcings simulations described in Section 5.1.2, with: 668 

 ω(CF) = ω(ERA5) + ω(NAT) - ω(ALL)          669 
Where CF is the counterfactual climate, ω is the transformation required to remove data 670 
bounds of the specific variable, and φ is the inverse of ω. The following transformations are 671 
applied to create counterfactual values for each climate variable: 672 

● Temperature (Mean and Max): ω(x) = x 673 
● Precipitation: ω(x) = log(ex-1) 674 
●  Windspeed, soil moisture: ω(x) = log(x) 675 
● Relative Humidity: ω(x)=log⁡(x/(1-x)) 676 

 677 
Since relative humidity (RH) is not available directly from ERA5, we will therefore calculate it 678 
from  2m temperature (𝑇𝑠) and 2m dew point temperature (𝑇𝑑): 679 

 𝑅𝐻 = 100 × 𝑒𝑑/𝑒𝑠 680 

where 𝑒𝑑  is the actual vapour pressure (calculated from the dewpoint temperature) and 𝑒𝑠  681 
is the saturation vapour pressure (calculated from the air temperature): 682 

 𝑒𝑖 = 6.112 × 𝑒𝑥𝑝 (
17.625 ×𝑇𝑖

𝑇 + 243.04
)   683 

 684 
We perform two types of counterfactual simulations to understand the influence of human-685 
caused climate change: one using all individual members of the HadGEM3-A ensemble, and 686 
one using the ensemble mean. The full ensemble captures a wide range of possible weather 687 
outcomes and includes natural year-to-year variability, making it a more cautious or 688 
conservative estimate of the effect of climate change. The ensemble mean, by contrast, 689 
smooths out this variability to isolate the long-term influence of climate forcing, providing a 690 
cleaner signal. Since our analysis targets a specific year, the actual role of weather variability 691 
should, in theory, matter less. However climate change can interact with this variability in 692 
complex, sometimes non-linear ways, thereby making certain extremes more or less likely 693 
depending on the background conditions, we don’t know exactly where within that range the 694 
real-world outcome lies. As a result, the true effect of climate change likely falls somewhere 695 
between these two estimates. We therefore report the full ensemble results as our main 696 
findings and refer to the ensemble mean where it offers useful additional context or diverges 697 
substantially. 698 

We also use an ISIMIP configuration of ConFLAME, as used in last year’s report. The 699 
available data differs from our near real-time setup, so for this configuration we group controls 700 
into four categories (Table S3): 701 

1. Fuel load, represented by total vegetation cover and tree cover. 702 
2. Fuel moisture, represented by mean consecutive dry days within each month, the 703 

fraction of dry days within the month, daily mean precipitation, mean and maximum 704 
monthly temperature, and mean and maximum vapour pressure deficit (VPD). 705 

3. Ignitions, represented by climatological lightning, pasture, crop, and population 706 
density.  707 

4. Suppression, represented by pasture, crop, and population density. 708 
5. Land use change, represented by 12 month running mean change in tree, crop, and 709 

pasture. 710 

We trained the ConFLAME ISIMIP configuration on observed monthly BA from the MODIS BA 711 
product (MCD64A1) during 2003-2019 at 0.5° resolution across the entire region. For model 712 
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training and for factual, we used Global Soil Wetness Project Phase 3 (GSWP3-W5E5) 713 
meteorological forcings, as provided at 0.5° spatial resolution by ISIMIP3a (see Table 5). Land 714 
surface information (tree cover and non-tree vegetated cover) was derived from dias corrected 715 
JULES-ES-ISIMIP model output (Mathison et al., 2023), which was also driven by GSWP3-716 
W5E5. This model includes dynamic vegetation, accounting for changing vegetation cover in 717 
response to climate, growth, competition, and mortality. To avoid double-counting the impact 718 
of fire, we disabled the model’s interactive vegetation-fire module. The bias in this land surface 719 
information is adjusted to the MODIS Vegetation Continuous Fields collection 6.1 remote 720 
sensed data (Dimiceli et al., 2015), using a linear scaling approach. This preserves trends 721 
between historical and future periods and ensures accurate means and distribution. See 722 
Supplementary Text S2 for details. 723 

S5.1.3.1 Deriving ConFLAME  vegetation fraction driving data  724 
 725 

In Sections 5.3.1, and 6.1.2.2,  we drive ConFLAME with tree and non-tree vegetated cover 726 
from the Joint UK Land Environment Simulator Earth System impacts model (JULES-ES) at 727 
version 5.5 (Clark et al., 2011; Mathison et al., 2023) driven with GSWP3-W5E5 forcings 728 
provided at a 0.5° spatial resolution by ISIMIP3a. These runs are freely available at 729 
https://www.isimip.org/impactmodels/details/292/. JULES-ES dynamically models vegetation 730 
cover in response to meteorology, hydrology, nitrogen availability, and land use change. 731 
JULES-ES has been extensively evaluated against snapshots and site-based measurements 732 
of vegetation cover and carbon (Burton et al., 2019, 2022; Clark et al., 2011; Mathison et al., 733 
2023; Sellar et al., 2020). JULES-ES-ISIMIP has previously been used as driving data for 734 
ConFLAME to perform future projections (UNEP et al., 2022), though using a previous round 735 
of ISIMIP climate forcing (ISIMIP2b). As per (UNEP et al., 2022), vegetation responses to 736 
JULES-ES’s internal fire model were turned off so as not to double-count the effects of burning.  737 
 738 
However, in (UNEP et al., 2022), residual JULES-ES simulated biases in vegetation cover 739 
were allowed to persist, increasing the uncertainty range of local vegetation cover and 740 
resultant burned area responses. We therefore correct the bias in JULES-ES’s vegetation 741 
cover using a linear scaling bias adjustment method, implemented using the ibicus software 742 
package (Spuler et al., 2024, ibicus).  743 
 744 
The method corrects the bias induced by the JULES-ES model rather than the bias of the 745 
climate model, assuming that this has been removed by the ISIMIP3BASD method(Lange, 746 
2019). For each surface cover type at each grid cell, the bias adjustment method identifies 747 
biases in the mean and variance of the JULES-ES model output relative to MODIS VCF 748 
collection 6.0 remotely sensed data (Dimiceli et al., 2015) at this grid cell. These biases in 749 
mean and variance are then removed from the surface information output from JULES-ES 750 
driven by climate models over the historical (1994-2014) and future (2015-2099) period, 751 
ensuring that the resulting model output is still bounded by [0, 1]. This bias adjustment method 752 
preserves the trend in mean and variance. While a trend-preserving empirical quantile 753 
mapping was used in the State of Wildfires 2023/24 publication, further analysis showed that, 754 
given the limited amount of observational data, this simpler method performs equally well while 755 
requiring fewer assumptions and parameters to fit, leading to an overall more robust bias 756 
adjustment. 757 
 758 
The results were evaluated in terms of the ability of the bias correction method to reduce the 759 

model bias over the historical period, as well as preserve the trend between the future and 760 

historical periods. It was found that the method corrects the bias well over the historical period 761 

for most regions, variables and grid cells in both the mean and 80th percentile at each grid 762 

cell. The mean trend between the future and historical period is preserved by definition, but 763 

also quantile trends in most regions and grid cells are well preserved. 764 

https://paperpile.com/c/lpE3cM/k2pr
https://paperpile.com/c/lpE3cM/xDbu
https://paperpile.com/c/lpE3cM/k2pr+FNf9
https://paperpile.com/c/lpE3cM/ec4V+fNmZ+FNf9+k2pr+Y7Gs
https://paperpile.com/c/lpE3cM/ec4V+fNmZ+FNf9+k2pr+Y7Gs
https://paperpile.com/c/lpE3cM/8GaL
https://paperpile.com/c/lpE3cM/8GaL
https://paperpile.com/c/lpE3cM/8GaL
https://paperpile.com/c/lpE3cM/k4rY+Aa6L
https://paperpile.com/c/lpE3cM/xDbu
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To demonstrate the evaluation conducted, Figure S27 shows the results for tree cover over 765 

the Amazon region. The plots for the remaining regions, including tree and no-tree cover, can 766 

be found in a notebook https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment. 767 

Investigating the time series of average tree cover over the region, we find that the correction 768 

method reduces the bias over the historical period and matches the future period to the 769 

historical period (Figure S27a). The cumulative distribution functions of average tree cover 770 

merged over all spatial locations in observations and the model matches better after bias 771 

adjustment (Figure S27b). They do not match perfectly, and we note that this is a non-772 

calibrated aspect that we do not expect to have zero bias, but that is important to evaluate. 773 

Furthermore, we find that the improvement in both mean and 80th percentile holds across the 774 

region (Figure S27c). The trend between future and historical periods is preserved for the 775 

majority of grid-cells, with the absolute change in trend being close to zero for most grid-cells. 776 

 777 

S5.1.4 FireMIP 778 
 779 
For the multi-model ensemble we use simulations from the ISIMIP3a fire sector, as published 780 
in (Burton & Lampe et al. 2024). The 7 models reporting BA for ISIMIP3a are shown in Table 781 
S3. The methodology follows the ISIMIP3a Impacts Attribution protocol, as outlined in (Mengel 782 
et al., 2021), where the factual historical simulations are driven with GSWP3-W5E5 reanalysis 783 
data, and the counterfactual simulations are the same historical data which has been 784 
detrended via quantile mapping (Mengel et al., 2021).  785 
 786 
As outlined in (Hantson et al., 2016), the spread in the absolute BA is large amongst the 787 
observations, models and regions and therefore a normalised relative anomaly (RA) rather 788 
than absolute BA is used for the analysis. To calculate the RA in present day BA, we subtract 789 
the counterfactual mean, and divide by the counterfactual mean. By comparing both factual 790 
and counterfactual experiments to the counterfactual mean, we are looking at the fractional 791 
increase in BA driven by climate change compared to a baseline without climate change. 792 
Based on model performance by AR6 region, a region-specific weighting is also applied 793 
following (Knutti et al., 2017). The weighting is based on the model's distance to the observed 794 
BA temporal RA using both FireCCI5.1 and GFED5, measured using NME as per Kelley et al. 795 
(2013). To measure the uncertainty, random noise is generated and scaled by the 796 
climatological RMSE of each model. This noise is then added to the modelled relative 797 
anomaly, this process is repeated 1000 times. Then, bootstrapping is applied to the monthly 798 
regional BA RA (now with noise added in) according to the weight for each model. Uncertainty 799 
is calculated by taking the 2.5-97.5th percentile of the resultant histogram. All results are 800 
reported as P50 [P2.5, P97.5]. The methods are explained in full in (Burton & Lampe et al. 801 
2024).802 

https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment
https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment
https://paperpile.com/c/lpE3cM/6VnO/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
https://paperpile.com/c/lpE3cM/f8Zm
https://paperpile.com/c/lpE3cM/dG7f
https://paperpile.com/c/lpE3cM/oWt4
https://paperpile.com/c/lpE3cM/wdZS/?noauthor=1
https://paperpile.com/c/lpE3cM/6VnO/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
https://paperpile.com/c/lpE3cM/6VnO/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
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Table S3: FireMIP Models used for attributing median burned area. Table reproduced from (Burton & Lampe et al. 2024)  803 

Model CLASSIC INFERNO LPJ-GUESS- 
SIMFIRE- 
BLAZE 

LPJ- 
GUESS- 

SPITFIRE 

ORCHIDEE- 
MICT- 

SPITFIRE 

SSiB4/ 
TRIFFID 

VISIT 

Fire Model 
CLASSIC INFERNO SIMFIRE SPITFIRE SPITFIRE Li After (Thonicke 

et al., 2008)) 

Land / Vegetation 
CLASSIC JULES LPJ-GUESS LPJ-GUESS ORCHIDEE SSiB VISIT 

Dynamic 
Veg 

Physiology 
Yes Yes, via 

TRIFFID 
Yes Yes Yes Yes, via 

TRIFFID 
Yes 

LAI 
Yes Yes, via 

TRIFFID 
Yes Yes Yes Yes Yes 

Bio- 
geography 

No Yes, via 
TRIFFID 

Yes Yes Yes Yes No 

Nitrogen Cycle 
Yes Yes Yes Yes No Yes Yes, but C-N 

coupling is 
limited 

No. PFTs 
9 13 17 17 19 7 33 (biome 

types) 

No. Soil Layers 
20 4 2 2 11 3 2 

Fuel 
Vegetation and 

litter 
Vegetation & top 

soil layer as 
proxy for litter 

Vegetation, litter Litter Vegetation and 
litter 

Vegetation and 
litter 

Litter 

Ignitions Natural 
Prescribed 
lightning 

Prescribed 
lightning 

SIMFIRE 
describes 

annual BA + 
fire-climatology -
> daily BA used 

as Fire-
Probability 

Prescribed 
lightning 

Prescribed 
lightning 

Prescribed 
lightning 

Probabilistic 
based on fuel 

wetness 

Anthropoge
nic 

Prescribed 
population 

density 

Prescribed 
Population 

density 

SIMFIRE 
includes 

suppression by 
humans 

Prescribed 
population 

density 

Prescribed 
population 

density 

Prescribed 
population 

density 

No 

https://paperpile.com/c/lpE3cM/Rf9l
https://paperpile.com/c/lpE3cM/Rf9l
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Suppression 
Prescribed 
population 

density 

Crops, 
population 

density 

Crops (100%), 
prescribed 
population 

density 
(Hyde3.1) 

Crops, 
population 

density 

Prescribed 
population 

density, crops 

Prescribed 
population 
density and 

GDP 

Low fuel load 

Spread 
Wind speed and 

soil moisture 
None Daily BA (no 

explicit spread) 
Rothermel 
equations 

including wind 
speed, tree 

fraction, grass 
fraction, fuel 

moisture, fuel 
load and 

characteristics 

wind speed, tree 
fraction, grass 
fraction, fuel 

moisture, fuel 
load 

Wind speed and 
soil moisture 

None 

Model inputs 
SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, 
population 

density, 
lightning 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
population 

density, 
lightning  

SW radiation,  
precipitation, air 

temperature 
(mean, min, 

max), relative 
humidity, wind 

speed 

SW radiation, 
precipitation, air 

temperature, 
specific 

humidity, wind 
speed, 

atmospheric 
pressure,  
population 

density, 
lightning 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, PFT 
map, population 

density 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, 
population 

density, and 
GDP, peat map, 

land cover 
change 

Air temperature, 
precipitation, air 
vapor pressure, 
cloudiness, wind 

Resolution 
1 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 

References  

(Melton et al., 

2019) 

(Burton et al., 

2019, 2020; 

Mangeon et al., 

2016) 

(Knorr et al., 

2014; Rabin et 

al., 2017; Smith 

et al., 2014) 

 

(Lehsten et al., 

2009; Rabin et 

al., 2017; Smith 

et al., 2014; 

Thonicke et al., 

2010) 

(Yue et al., 2014, 

2015) 

(Huang et al., 

2020, 2021; 

Hugelius et al., 

2013; Li et al., 

2012, 2013) 

(Ito, 2019) 

804 

https://paperpile.com/c/lpE3cM/Ia3h
https://paperpile.com/c/lpE3cM/Ia3h
https://paperpile.com/c/lpE3cM/ec4V+Dbqh+7ohV
https://paperpile.com/c/lpE3cM/ec4V+Dbqh+7ohV
https://paperpile.com/c/lpE3cM/ec4V+Dbqh+7ohV
https://paperpile.com/c/lpE3cM/ec4V+Dbqh+7ohV
https://paperpile.com/c/lpE3cM/Q1q7+MXn5+mydX
https://paperpile.com/c/lpE3cM/Q1q7+MXn5+mydX
https://paperpile.com/c/lpE3cM/Q1q7+MXn5+mydX
https://paperpile.com/c/lpE3cM/Q1q7+MXn5+mydX
https://paperpile.com/c/lpE3cM/PlsA+MXn5+mydX+kxdA
https://paperpile.com/c/lpE3cM/PlsA+MXn5+mydX+kxdA
https://paperpile.com/c/lpE3cM/PlsA+MXn5+mydX+kxdA
https://paperpile.com/c/lpE3cM/PlsA+MXn5+mydX+kxdA
https://paperpile.com/c/lpE3cM/PlsA+MXn5+mydX+kxdA
https://paperpile.com/c/lpE3cM/PlsA+MXn5+mydX+kxdA
https://paperpile.com/c/lpE3cM/tBLf+JFoY
https://paperpile.com/c/lpE3cM/tBLf+JFoY
https://paperpile.com/c/lpE3cM/rrqh+AqTX+swpI+JF9o+VPmg
https://paperpile.com/c/lpE3cM/rrqh+AqTX+swpI+JF9o+VPmg
https://paperpile.com/c/lpE3cM/rrqh+AqTX+swpI+JF9o+VPmg
https://paperpile.com/c/lpE3cM/rrqh+AqTX+swpI+JF9o+VPmg
https://paperpile.com/c/lpE3cM/rrqh+AqTX+swpI+JF9o+VPmg
https://paperpile.com/c/lpE3cM/PDmA
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 805 

S5.2 Results 806 
 807 

S5.2.1 Background changes in fire weather this decade 808 

 809 

S5.2.1.1 Northeast Amazonia 810 

 811 

Area/Time: All region/Jan–Mar 2024 812 
Variable: Fire Weather Index 813 
Attribution Type: Anthropogenic climate forcing 814 
Includes: Changes in climate since Pre-Industrial 815 
 816 
To understand longer-term trends, we estimate how global warming has changed the average 817 
likelihood of extreme fire weather over the past decade. Using a statistical fit to the CanESM5 818 
model ensemble, we find that fire weather conditions like those seen in 2024 have become 819 
1.9 times more likely on average since pre-industrial times, with a 95% confidence range of 820 
[1.5, 53.3]. 821 
 822 
While this method gives less event-specific resolution, it supports the conclusion that climate 823 
change has increased the background risk of extreme fire weather in the region over the last 824 
10 years reinforcing the HadGEM-based result. 825 
 826 

S5.2.1.4 Congo Basin 827 
 828 
Area/Time: All region/Jun-Aug 2014-2025 829 
Variable: Fire Weather Index 830 
Attribution Type: Anthropogenic climate forcing 831 
Includes: Changes in climate since Pre-Industrial 832 
 833 
Using the CanESM5 ensemble, we find that fire weather conditions similar to those observed 834 
in July–August 2024 were 1.3 times more likely due to climate change ([0.7, 1.8], 95% CI) over 835 
the last decade. While more uncertain than the HadGEM3-A analysis, the findings are not 836 
inconsistent: both show a positive central estimate. The difference likely reflects the broader 837 
decadable sampling of the CanESM5 method or as well as differences in the underlying model 838 
systems. However, both methods suggest that climate change has increased the likelihood of 839 
fire-conducive weather in the Congo Basin. 840 
 841 

S5.2.2 Region-wide extreme BA during 2024-25.  842 

 843 

S5.2.2.1 Northeast Amazonia 844 

Time: Jan-Mar 2003-2019 845 
Variable: Burned Area 846 
Attribution Type: Total climate change 847 
Includes: All anthropogenic and natural trends in climate 848 
 849 
We also assessed the influence of total climate forcing on the frequency of fire activity in the 850 
Northeast Amazonia for all January-March during 2002-2019. The likelihood of a climate-851 
driven increase in regional burned area (BA)  during these ~2 decades was just 56% (Figure 852 
14), indicating that any long-term trend remains highly uncertain. The central amplification 853 
factor was 1.17, with a 90% confidence range of 0.88 to 1.15 (Table 6), encompassing the 854 
possibility of no change. In contrast to the direct attribution of the 2024 fire season, this 855 
analysis shows no clear signal that total climate forcing increased overall BA during this earlier 856 
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period. A similar picture emerges for sub-regional extremes, with a likelihood of an increase 857 
due to climate forcing was 70%, just meeting the IPCC threshold for being considered likely. 858 
The amplification factor was modest-1.02, with a 90% range of 0.94 to 1.13-indicating that 859 
while climate may have played a role in enhancing the most intense burning, its influence was 860 
relatively small and uncertain during this timeframe. 861 
 862 
Together, these results suggest that while anthropogenic climate change had a strong and 863 
detectable impact on the 2024 fire season, similar effects were not consistently evident in the 864 
decades prior. The relatively low upper bounds on amplification, particularly for sub-regional 865 
extremes, imply that large increases in anomalous fire activity were not widespread prior to 866 
2020. This interpretation aligns with earlier research (Kelley et al., 2019) showing only a weak 867 
meteorological contribution to elevated burning in the southern parts of the region during the 868 
large fire anomalies in 2019. 869 
 870 
However, it is important to note that the analysis ends in 2019, excluding a series of major 871 
droughts and fire anomalies since 2020. These recent years have shown increasingly frequent 872 
and widespread extremes, suggesting that the climate signal may now be strengthening. This 873 
is consistent with last year’s report, which analysed a Western Amazonia region just southwest 874 
of this one. There, long-term trends similarly suggested only marginal increases in sub-875 
regional extremes from 2002–2019, while the risk ratios for specific fire weather events were 876 
extremely high. A longer observational window that includes the last five years would help 877 
better evaluate whether a persistent shift is emerging. 878 
 879 
Time: Jan-Mar 2003-2019 880 
Variable: Burned Area 881 
Attribution Type: Socioeconomic forcing 882 
Includes: Population density, land use and land cover change 883 
 884 
For sub-regional extremes, the likelihood that socioeconomic factors increased BA was only 885 
slightly higher at 62%. The central Amplification Factor was 1.01, with a narrow range of 0.96 886 
to 1.10, indicating only minimal influence. This suggests that in the most fire-affected locations, 887 
socioeconomic drivers alone did not strongly amplify the extent of burning during this 888 
timeframe. Together, these findings point to a limited or unclear role of socioeconomic change 889 
in driving extreme fire activity across the Northeast Amazonia between 2002 and 2019.  890 
 891 
Time: Jan-Mar 2003-2019 892 
Variable: Burned Area 893 
Attribution Type: All forcing  894 
Includes:  All anthropogenic and natural trends in climate, population density, land use and 895 
land cover change 896 
 897 
We also assessed the combined effect of total forcing, which includes all long-term changes 898 
in climate (anthropogenic and natural), land use, land cover, and population density,on burned 899 
area (BA). For regional totals, the likelihood that total forcing increased BA was just 47% 900 
(Figure 14), with a median amplification factor of 0.99 and a 90% confidence interval of 0.81 901 
to 1.47 (Table 6). This result indicates no clear signal that the combined effects of climate and 902 
socioeconomic change had a net impact on fire activity across the region during this two-903 
decade period. For sub-regional extremes,the grid cells with the highest BA in each season, 904 
the likelihood of an increase was slightly higher at 62% (Figure 14), with a central amplification 905 
of 1.01 and a wider confidence interval of 0.96 to 5.1 (Table 6). While this suggests that some 906 
influence of combined human and climatic drivers on extreme BA cannot be ruled out, the 907 
signal remains modest and uncertain overall. 908 
 909 
Together, these findings imply that, even when considering all major sources of long-term 910 
change in climate and land use together, there is insufficient evidence to attribute a consistent 911 

https://paperpile.com/c/lpE3cM/059d
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trend in BA or its extremes across the region for 2002–2019. The relatively wide range for the 912 
sub-regional extremes, compared to regional totals, highlights a possibility that landscape 913 
modification or localised climate feedbacks could have amplified fire activity in specific 914 
hotspots, but the model does not provide enough resolution to identify or confirm such 915 
patterns. 916 
 917 

S5.2.2.2 Pantanal and Chiquitano 918 

 919 
Time: Aug-Sep 2003-2019 920 
Variable: Burned Area 921 
Attribution Type: Total climate change 922 
Includes: All anthropogenic and natural trends in climate 923 
 924 
Over the longer-term 2003–2019 period, our analysis suggests that it was virtually certain that 925 
total (99%; Figure 14) that climate change very likely  increased the likelihood of fire events 926 
with comparable burned area to August–September 2024 in the Pantanal & Chiquitano region. 927 
The median likely amplification factor greater than 100 [90% confidence range of 4.92 >100] 928 
(Table 6). This suggests that a substantial portion - and possibly the vast majority, of the 929 
burned area associated with 2024-like events is attributable to long-term anthropogenic 930 
changes in the climate system. The sub-regional attribution signal is consistent with the 931 
regional-scale result, which also shows >99% likelihood of an increase (Figure 14), with an 932 
amplification factor >100 [2.72 to >100] (Table 6). While both estimates exhibit wide 933 
uncertainty ranges, their overlapping confidence intervals point to a consistent climate signal 934 
rather than a statistically clear difference in impact strength between regional and sub-regional 935 
scales. 936 
 937 
This analysis provides additional confidence in the role of anthropogenic climate change by 938 
situating the 2024-type fire conditions within the broader distribution of fire-weather years over 939 
the past two decades. By extending the analysis beyond the specific year of 2024, it helps to 940 
identify a persistent fingerprint of climate forcing in driving elevated fire risk. 941 
 942 
By drawing on multiple years of climate and fire conditions, this longer-term approach 943 
increases the sample size available for evaluating the likelihood of 2024-like fire events. This 944 
may help separate the structural influence of climate forcing more clearly than near-real-time 945 
(NRT) event-based attribution. Further analyses comparing NRT and multi-year setups could 946 
help explore whether recent variability has masked or amplified long-term trends in fire 947 
likelihood. 948 
 949 
Time: Aug-Sep 2002-2019 950 
Variable: Burned Area 951 
Attribution Type: All forcing  952 
Includes:  All anthropogenic and natural trends in climate, population density, land use and 953 
land cover change 954 
 955 
When assessing the combined influence of all anthropogenic and natural forcings, we find 956 
limited attribution power for 2024-like events in the Pantanal and Chiquitano region. At the 957 
regional scale, the likelihood that all forcings increased burned area is 61%, with an 958 
amplification factor (AF) of 1.05 [0.26–64.3]. This wide uncertainty range suggests that internal 959 
variability and counteracting drivers may obscure the net effect of all forcings. For sub-regional 960 
extremes, confidence is slightly higher: 84% likelihood, with an AF of 1.00 [0.68–12.16]. This 961 
points to a potential increase in burned area, though again with considerable uncertainty. 962 
 963 
While these results do not offer conclusive evidence of a net anthropogenic effect, they 964 
underscore the complexity of attributing fire outcomes to the combined influence of climate 965 
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and human activity. The limited confidence in these findings highlights the need to improve 966 
methodologies capable of capturing interactions and feedbacks between land use, climate, 967 
and fire, particularly in regions such as Pantanal and Chiquitano, where these relationships 968 
are highly complex. Future reports should move beyond treating climate and socioeconomic 969 
drivers in isolation. As interactive and compounding effects become more likely, attribution 970 
frameworks that separate human and climate influences risk overlooking critical synergies that 971 
are most relevant for effective policy and risk management. 972 
 973 

S5.2.2.3 Southern California 974 

 975 

Time: Jan 2003-2019 976 
Variable: Burned Area 977 
Attribution Type: Total climate change 978 
Includes: All anthropogenic and natural trends in climate 979 
 980 
There is limited evidence from this framework that total climate change increased the 981 
likelihood of January 2025-like regional burned area in Southern California during the 2003–982 
2019 period. The likelihood of an increase is estimated at 63% (Figure 14) with an 983 
amplification factor (AF) of 1.07 [0.68–2.83] (Table 6), suggesting that total climate change 984 
could have played a role, but the model does not provide a confident answer either way. This 985 
large range of uncertainty partially stems from the small geographic size of the region, which 986 
limits signal-to-noise ratios in long-term attribution frameworks. A similar issue was observed 987 
for Greece in last year’s report  (Jones et al., 2024b), where a confident climate signal was 988 
also absent in long-term regional attribution, despite strong evidence emerging from event-989 
specific analysis. Interestingly, while the long-term climate signal here is weak, the near-real-990 
time (NRT) attribution for the 2025 event itself shows a much stronger likelihood of 991 
anthropogenic influence, suggesting that climate signals may emerge more clearly during 992 
specific extremes than across broader multi-year variability. 993 
 994 
 995 
As the amount of burned area in January in Southern California is historically nominal given 996 
that this is the traditional wet season when flammability is low, some of the elevated 997 
uncertainty may stem from local calibration. Likewise, these were principally wind-driven fires 998 
due to synoptic-mesoscale features with Santa Ana downslope winds whose features are 999 
poorly resolved in the coarse reanalysis data used here. Climate projections show a weak 1000 
attenuation of the frequency of Santa Ana winds with anthropogenic climate change (Guzman-1001 
Morales and Gershunov, 2019; Hawkins et al., 2022), but also an extension of  critically dry 1002 
fuels into winter due to delayed onset of winter precipitation (Goss et al., 2020). The degree 1003 
to which these two factors alongside the direct thermal influence of climate change on fuel 1004 
desiccation altered the odds of such extremes requires additional analysis and may not be 1005 
realized through the approaches used here. 1006 
 1007 
Time: Jan 2002-2019 1008 
Variable: Burned Area 1009 
Attribution Type: All forcing  1010 
Includes:  All anthropogenic and natural trends in climate, population density, land use and 1011 
land cover change 1012 
 1013 
There is no clear signal for the impact of all forcing for January 2025-like burned area in 1014 
Southern California during 2002–2019. The likelihood of an increase is estimated at 55%, with 1015 
an amplification factor of 1.05 [0.26–64.26], nearly identical to the socioeconomic-only result. 1016 
This further highlights the challenge of drawing confident conclusions in small regions with 1017 
limited signal. 1018 
 1019 

https://paperpile.com/c/lpE3cM/2yYL
https://paperpile.com/c/lpE3cM/pSCQ+vpd0
https://paperpile.com/c/lpE3cM/pSCQ+vpd0
https://paperpile.com/c/lpE3cM/iSJM
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S2.2.2.4 Congo Basin 1020 

 1021 

Time: Jun-Aug 2024 1022 
Variable: Burned Area 1023 
Attribution Type: Total climate change 1024 
Includes: All anthropogenic and natural trends in climate 1025 
 1026 
Total climate change likely increased the amount of burned area in areas with the height levels 1027 
of burning, though with limited confidence in the size of this effect. The likelihood of an increase 1028 
was estimated at 75%, with an amplification factor (AF) of 1.29 [0.96–3.32]. This implies that 1029 
while a contribution from climate change is more likely than not, the possibility of little to no 1030 
effect cannot be ruled out. The risk ratio was 1.8, suggesting that events of this severity were 1031 
nearly twice as likely under current climate conditions than they would have been in a pre-1032 
industrial climate. 1033 
 1034 
Time: Jun-Aug 2024 1035 
Variable: Burned Area 1036 
Attribution Type: All forcing  1037 
Includes:  All anthropogenic and natural trends in climate, population density, land use and 1038 
land cover change 1039 
 1040 
For the region as a whole, the likelihood of all human and climate forcing increased burning 1041 
was 55%, with an amplification factor (AF) of 1.01 [0.86–1.42], indicating no clear signal. In 1042 
the areas most severely affected by fire, the likelihood rose slightly to 63%, with an AF of 1.06 1043 
[0.73–4.44]. While this suggests that the combined effect of all forcings could have contributed 1044 
to the sub-regional extremes, the wide range and low confidence highlight the challenge of 1045 
attributing fire outcomes in regions where both data and model constraints remain significant. 1046 
 1047 

S5.2.3 Sub-regional extreme burned area during 2024-25 1048 
 1049 

S5.2.3.1 Northeast Amazonia 1050 

 1051 
Area/Time: Sub-regional extremes/Jan-Mar 2024 1052 
Variable: Burned Area 1053 
Attribution Type: Anthropogenic climate forcing 1054 
Includes: Greenhouse gases, aerosols, and land-use change effects on climate 1055 
 1056 
Anthropogenic climate forcing also very likely caused increased burned area (BA) in the sub-1057 
regional extremes with a likelihood of 96% (Figure 14; Table 6). The amplification factor in 1058 
these areas was smaller than for the region as a whole: fires in these high-BA zones were on 1059 
average 1.17 times larger, with a 90% confidence range of 1.01 to 5.13. This means that 1060 
anthropogenic climate forcing likely contributed to increased burning in these areas, though 1061 
the amplification was more modest than across the broader region. The risk ratio was 2.2, 1062 
indicating that fire seasons with this spatial pattern of extreme burning are now more than 1063 
twice as likely due to climate change. 1064 
 1065 
This difference between regional and sub-regional extremes is consistent with earlier findings 1066 
in Section 4, which showed that climate-driven weather anomalies - more directly linked to 1067 
the influences considered in our attribution, increased the potential for burning across much 1068 
of the region, while fuel conditions (fuel load and moisture) shaped the location and timing of 1069 
the most severe burning. The moderate amplification factor in the highest-BA grid cells likely 1070 
reflects the local interplay between fire weather and fuel constraints, where factors such as 1071 
fuel limitations or ignition variability may have restricted how much additional burning occurred, 1072 
even under climate driven more fire conducive  weather conditions.   1073 
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 1074 

 1075 
Figure S23 Risk ratio and amplification factor for different levels of total (left) and sub-regional 1076 
extreme (right) burned area, simulated using ConFLAME-NRT for each region (rows). 1077 
Percentile ranges for the amplification factor are taken across ensemble members. The red 1078 
dashed vertical line indicates observed levels of burned area, for which the corresponding risk 1079 
ratio is reported in each panel. 1080 
 1081 

 1082 

S5.2.3.2 Pantanal and Chiquitano 1083 

 1084 
Area/Time: Sub-regional extremes/Aug-Sep 2024 1085 
Variable: Burned Area 1086 
Attribution Type: Anthropogenic climate forcing 1087 
Includes: Greenhouse gases, aerosols, and land-use change effects on climate 1088 
 1089 
Anthropogenic climate forcing was very likely to have increased BA for the sub-region with the 1090 
highest burned areas in August-September 2024, with a 90% likelihood of increased burned 1091 
area in the factual simulations compared to the counterfactual (Figure 14). The amplification 1092 
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factor (AF) was 1.91, albeit with a wide uncertainty range [0.98–>100] (Table 6), suggesting 1093 
that while the median influence was lower than for regional totals, very large increases in 1094 
burned area due to climate change cannot be ruled out. A similar likelihood of increase and 1095 
upper bound was found when using ensemble-mean meteorology for the counterfactual.  1096 

The risk ratio for these sub-regional extremes was 2.3 (Table 6), indicating more than twice 1097 
the likelihood of observing similar extreme burned area under current anthropogenic 1098 
conditions relative to a natural climate. 1099 

As with Northeast Amazonia, the anthropogenic influence appears less pronounced for the 1100 
most severely affected areas than for the region overall. This could reflect local fire–moisture–1101 
fuel feedbacks limiting amplification where BA was already high, or shifts in fire-prone zones 1102 
expanding regional totals without intensifying extremes. Further investigation into local factors 1103 
such as wetlands and fuel constraints will be key to understanding why the climate signal 1104 
appears weaker in the areas that burn most. One possible explanation is that wetlands and 1105 
other moisture-rich ecosystems may help buffer fire activity, even as climate conditions 1106 
change. Another contributing factor could be land use in these extreme fire areas. For 1107 
example, fire suppression in human-managed landscapes may interact with climate drivers in 1108 
ways that reduce the strength of attribution signals. 1109 

S2.2.2.2 Southern California 1110 

 1111 
Area/Time: Sub-regional extremes/Aug-Sep 2024 1112 
Variable: Burned Area 1113 
Attribution Type: Anthropogenic climate forcing 1114 
Includes: Greenhouse gases, aerosols, and land-use change effects on climate 1115 
 1116 
Due to the relatively small size of the Southern California study region, the identified sub-1117 
regional extremes correspond to a single model grid cell thus limiting the ability to capture 1118 
nuances of the distinct fire regimes and mesoscale factors associated with Santa Ana winds 1119 
(Kolden and Abatzoglou, 2018). As the attribution results are qualitatively similar to those for 1120 
the full region for all comparisons (Table 6), we do not discuss a separate analysis of sub-1121 
regional extremes here. 1122 

 1123 

S5.2.4 Background Changes in Burned Area this Century - all forcings 1124 
 1125 

S5.2.4.1 Northeast Amazonia 1126 
 1127 

Area/Period: All region/2003-2019 1128 
Variable: Background Burned Area 1129 
Attribution Type: All forcing  1130 
Includes: All anthropogenic and natural trends in climate, population density, land use and 1131 
land cover change 1132 
 1133 
When both climate and socioeconomic forcings are considered together, their effects largely 1134 
offset one another, leading to a small and uncertain net change in BA of +1% [-6%, +9%]. In 1135 
this region, we observe that the effects of climate change and socio-economic factors on BA 1136 
have approximately counteracted to produce no clear overall change in background levels of 1137 
BA this century. 1138 
 1139 
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 1140 
Figure S24: Change in median BA due to total climate forcing from FireMIP. Present day BA 1141 
(2003-2019) for factual (historical forcing, orange) and counterfactual (detrended climate, 1142 
blue). Probability is shown on a log scale. 1143 
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 1144 
 1145 
Figure S25: Change in median BA anomaly due to socioeconomic factors (population and 1146 
land-use change) from FireMIP. Present day BA (2003-2019) for counterfactual (detrended 1147 
climate, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 1148 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 1149 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North West 1150 
South America (NWS, RIGHT). Probability is shown on a log scale.  1151 
 1152 

S5.2.4.2 Pantanal and Chiquitano 1153 
 1154 
Area/Period: All region/2003-2019 1155 
Variable: Background Burned Area 1156 
Attribution Type: All forcing  1157 
Includes: All anthropogenic and natural trends in climate, population density, land use and 1158 
land cover change 1159 
 1160 
When considering the combined effects of climate change and socioeconomic drivers, we 1161 
estimate a net change in background BA at +3% [-2%, 9%]. This modest and uncertain 1162 
increase likely reflects offsetting influences, where climate-driven increases in fire activity have 1163 
been partially counteracted by human-driven factors such as land management, suppression 1164 
practices, or landscape fragmentation. While the net change is close to zero, the underlying 1165 
drivers may still be highly active in opposing directions, a dynamic that warrants further 1166 
investigation to support more effective fire policy and adaptation planning. 1167 
 1168 
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 1169 
Figure S26: Change in median BA anomaly due to all forcing (climate change and 1170 
socioeconomic factors) from FireMIP. Present day BA (2003-2019) for factual (historical 1171 
forcing, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 1172 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 1173 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North West 1174 
South America (NWS, RIGHT). Probability is shown on a log scale. 1175 
 1176 

S5.2.4.3 Congo Basin 1177 
 1178 
Area/Period: All region/Jun-Aug 2024 1179 
Variable: Background Burned Area 1180 
Attribution Type: All forcing  1181 
Includes: All anthropogenic and natural trends in climate, population density, land use and 1182 
land cover change 1183 
When accounting for all anthropogenic and natural trends (i.e. climate change, population 1184 
dynamics, and land use change) we estimate that total background burned area in the Congo 1185 
Basin increased by 25% [18%, 33%] over the 2003-2019 period compared to pre-industrial 1186 
conditions. This result reflects the net outcome of competing influences: while socioeconomic 1187 
factors appear to have reduced fire activity (as noted in the previous section), climate change 1188 
has likely increased the underlying fire risk, particularly through changes in temperature, 1189 
rainfall patterns, and vegetation dynamics. 1190 
 1191 
The net increase in background fire activity does not necessarily imply more fire during 1192 
extreme years, but it does suggest that the baseline fire environment is shifting. Over time, 1193 
this could reduce the threshold for extreme events to occur or make recovery between fire 1194 
seasons more difficult.  1195 
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S6 Supplementary Material for Section 6 1196 

 1197 

We evaluated the performance of bias-corrected ISIMIP3b climate model data against ERA5 1198 
reanalysis in estimating the likelihood of extreme burned area (BA) events across four focal 1199 
regions. 1200 

Northeast Amazonia: 1201 
For the baseline period 2010–2020, reanalysis-based estimates indicate a 0.073% annual 1202 
probability of experiencing a BA extent comparable to January–March 2024 (Table 7). GCM-1203 
based estimates yield a slightly higher likelihood of 0.12%. Although bias correction reduced 1204 
some discrepancies, differences between GCM and reanalysis data persist. 1205 

Pantanal–Chiquitano: 1206 
 GCM-based estimates suggest a higher present-day likelihood of August–September 2024-1207 
level BA (0.08–0.10% annually) than reanalysis data (0.19%). However, for the most impacted 1208 
areas (top 5% of grid cells), GCMs and reanalysis align more closely, both indicating a very 1209 
low annual probability of 0.01–0.03%. 1210 

Southern California: 1211 
 During 2010–2020, the annual likelihood of a 2025-scale regional fire event is estimated at 1212 
0.38% from reanalysis and 0.34% from bias-corrected GCMs. In the top 5% most affected grid 1213 
cells, these estimates are slightly lower (0.27% and 0.24%, respectively). This close 1214 
agreement highlights the effectiveness of bias correction in aligning model projections with 1215 
observations, supporting confidence in future risk assessments. 1216 

Congo Basin: 1217 
 Bias-corrected GCMs closely replicate reanalysis estimates for July 2024-scale fire events, 1218 
with annual likelihoods of 0.16–0.19% (GCMs) and 0.17% (reanalysis). For the most severely 1219 
affected areas, both data sources agree on an annual likelihood near 0.01%, indicating strong 1220 
model fidelity to observed fire risk patterns. 1221 

 1222 
 1223 

 1224 
Figure S27: Evaluation of the JULES vegetation model bias adjustment for tree cover over 1225 
the Amazon region. a) Time series of tree cover over the area (in percent) for different climate 1226 
models, both with historical and scenario runs, raw model in solid lines, bias corrected models 1227 
in dashed lines and MODIS VCF in black. b) Cumulative distribution function of tree cover 1228 
values across region and historical time period for different climate models for observations 1229 
(blue), raw models (orange), raw historical models (green) debiased models (red). c) Absolute 1230 
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model bias in mean and 80th percentile for the GFDL-ESM4 climate model before (left two 1231 
plots) and after bias adjustment (right two plots). 1232 
  1233 
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Northeastern Amazonia 1234 

 1235 
Pantanal and Chiquitano 1236 

 1237 
Southern California 1238 

 1239 
Congo Basin 1240 

 1241 
 1242 
 Figure S28:  Time series of tree cover over each focal region for different climate models, 1243 

both with historical and future scenario runs, raw model in solid lines, bias corrected models 1244 

in dashed lines and MODIS VCF in black. Note that for Southern California, bias and none-1245 

bias corrected time series overlap one another. 1246 

 1247 
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 1248 
Figure S29: As Figure 18, but for the regions with the highest burned area (at the 95 percentile 1249 
of burning). 1250 
 1251 
 1252 
 1253 
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 1254 

 1255 
Figure S30: Projected changes in January-March 2024 BA over Northeast Amazonia by 1256 
2030–2040 under three SSP scenarios, with BA simulated by ConFLAME. (Left) Average JFM 1257 
BA fraction (%) for 2010–2020. (Middle) Relative change in JFM BA extent projected for 1258 
2030–2040 period, expressed as a multiplier of 2010–2020 values. (Right) Increased (or 1259 
decreased) frequency in the 2030s period of a 1-in-100 year event defined for the period 1260 
2010–2020, expressed as a multiplier of 2010–2020 values. In the left column, the size of the 1261 
dot in each grid cell indicates the likelihood (larger = higher likelihood) of a BA fraction being 1262 
greater than the threshold indicated by the coloured dot (see legend at the base). Likewise, in 1263 
the middle column the size of the dot varies with likelihood that the BA fraction exceeds the 1264 
threshold indicated by the coloured dot (see legend at the base). For example, a large pale 1265 
orange dot in the left column indicates a high likelihood of the BA fraction exceeding 0.03%, 1266 
whereas a small dark red dot indicates a small (but non-zero) likelihood of the BA fraction 1267 
exceeding 0.03%+.  1268 
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 1269 

 1270 
Figure S31:  Same as Figure S30 for 2040s. 1271 
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1272 

 1273 
Figure S32: Same as Figure S30 for 2090s. 1274 
 1275 
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 1276 

 1277 
 1278 
Figure S33: Same as Figure S30 for August-September 2024, Pantanal and Chiquitano 1279 
 1280 
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 1281 

 1282 
Figure S34:  Same as Figure S30 for 2040s. 1283 
 1284 
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 1285 

 1286 
Figure S35:  Same as Figure S30 for 2090s. 1287 
 1288 
 1289 
 1290 
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 1291 

 1292 

 1293 
Figure S36: Same as Figure S30 for July 2025, Southern California 1294 
 1295 
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 1296 

 1297 
 1298 
Figure S37:   Same as Figure S36 for 2040s. 1299 
 1300 
 1301 



 

63 
 

 1302 

 1303 
Figure S38:   Same as Figure S36 for 2090s. 1304 
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1305 

 1306 
Figure S39: Same as Figure S30 for July, August 2025, Congo Basin 1307 
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1308 

 1309 
Figure S40:   Same as Figure S39 for 2040s. 1310 
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 1311 
 1312 

 1313 
Figure S41:   Same as Figure S39 for 2090s. 1314 
  1315 
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 1316 

 
 

A- Mean Tree cover differences

 

B- Minimum Precipitation Differences

 
C- Temperature Max Difference 

 

D- Max temperature Max differences  

 
 
 

Figure S42 Future projections of key bioclimate drivers of fire for Southern California, 1317 
expressed as difference 2090s vs 2020s. Panels show (A) mean tree cover differences, (B) 1318 
minimum precipitation differences, (C) mean maximum temperature differences, and (D) 1319 
maximum temperature extremes differences. 1320 
 1321 

  1322 
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S8 Supplementary Material for Appendix A  1323 

 1324 

 1325 
Figure S43: Summary of the 2024-2025 fire season in the Republic of the Congo. Time series 1326 
show annual fire count, BA, C emissions totals within the region, as well as the average fire’s 1327 
peak fire intensity (95th percentile value of fire radiative power within fire perimeters), the 95th 1328 
percentile fire size, fastest daily rate of growth, and 95th percentile fire daily rate of growth. 1329 
Black dots show annual values prior to the latest fire season, red dots the values during the 1330 
latest fire season, and blue dashed lines the average values across all fire seasons.  1331 
 1332 
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 1333 
Figure S44: Summary of the 2024-2025 fire season in Huíla, Angola, as in Figure A1.  1334 
 1335 
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 1336 
Figure S45: Summary of the 2024-2025 fire season in Nepal, as in Figure A1. 1337 
  1338 
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 1339 
Figure S46: Summary of the 2024-2025 fire season in Portugal, as in Figure A1.  1340 
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 1341 

Figure S47: Summary of the 2024-2025 fire season in Oregon, USA, as in Figure A1. 1342 
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S9 Supplementary Material: Extended Model evaluation 1343 

 1344 

HadGEM3-A vs ERA5 meteorology 1345 
 1346 
In this section we present a basic evaluation of the model’s performance against ERA5 1347 
reanalysis for the physical input variables to the FWI. As the FWI methodology requires a bias 1348 
correction of the FWI itself, rather than of the input variables, we focus here on assessing the 1349 
basic physical behaviour of and relationship between those variables.  Figures S48- S55 1350 
present time series for a number of recent years followed by details of the seasonal cycle over 1351 
2024. From these we are able to qualitatively assess the behaviour over these timescales to 1352 
that in reanalysis, compare any obvious anthropogenic responses to the response to only 1353 
natural climate forcings and note any clear biases.  1354 
 1355 
Temperature variables typically possess better model performance than those related to 1356 
precipitation, humidity and wind. For all regions we see that daily mean and maximum 1357 
temperature possess similar magnitude of variability, absolute values and presence of obvious 1358 
trends to ERA5. The Amazon and Congo regions see model daily means that are warm biased 1359 
while daily maximum temperatures are essentially unbiased in all regions, at the relevant part 1360 
of the seasonal cycle, which is useful for FWI as maximum temperature is the relevant input 1361 
variable. Temperature is the only variable with significant trends that are obvious over the 1362 
short period depicted (Congo) but we see that the model captures these, as well as the lack 1363 
of such in other regions. 1364 
 1365 
For each region the model captures the phasing of the seasonal cycle in precipitation, despite 1366 
clear biases in magnitude of extremes of the monthly mean. Daily mean surface wind also 1367 
possess seasonality with features that are captured by the model, generally with high biases. 1368 
RH anomalies appear to possess both significantly different magnitude of variability and 1369 
seasonality in more than one region. Together with temperature however these suggest that 1370 
the appropriate physical relationships between the input variables is present in the model and 1371 
that the basic meteorology relevant to fire weather events is acceptable.  1372 
 1373 
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 1374 
Figure S48: January 2010 to April 2025 time series of individual component variables of the 1375 
FWI from HadGEM (red: all forcing scenario, blue: natural forcing scenario) compared to ERA5 1376 
reanalysis (black) over northeast Amazonia region. We show monthly mean a) daily maximum 1377 
temperature, b) temperature, c) total precipitation, d) relative humidity, e) wind speed as well 1378 
as f) wind gusts. Shading represents the 5th-95th percentile confidence interval. 1379 
 1380 
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 1381 
Figure S49: Same as in figure S48, but for the Pantanal-Chiquitano. 1382 
 1383 
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 1384 
 1385 
Figure S50: Same as in figure S48, but for the Congo Basin. 1386 
 1387 
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 1388 
Figure S51: Same as in figure S48, but for the Souther California region. 1389 
 1390 
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 1391 
Figure S52: Seasonal cycle of individual component variables of the FWI from HadGEM (red: 1392 
all forcing scenario, blue: natural forcing scenario) compared to ERA5 reanalysis (black) 1393 
across 2024 over the northeast Amazonia region. We show daily a) maximum temperature, 1394 
b) mean temperature, c) total precipitation, d) relative humidity, e) wind gusts as well as f) 1395 
mean wind speed. Shading represents the 5th-95th percentile confidence interval.  1396 
 1397 

 1398 
Figure S53: Same as in figure S52, but for the Pantanal-Chiquitano.  1399 
 1400 



 

79 
 

 1401 
Figure S54: Same as in figure S52, but for the Congo Basin. 1402 
 1403 

 1404 
Figure S55: Same as in figure S52, but for the Southern California egion. 1405 
 1406 
 1407 
 1408 
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 1409 
Figure S56: Bias correction for Amazon forest northeast of the Amazon and Rio Negro rivers. 1410 
Historical ensemble of HadGEM3 (yellow) compared to ERA5 (grey) 95th percentile of FWI 1411 
for the historical period (1960-2013), shown as probability density before correction (a) and 1412 
after correction (b), and one member shown as a time series (c, where HadGEM3 is shown in 1413 
red, ERA5 in blue and corrected HadGEM3 in purple). HadGEM3 ensemble for 2024 shown 1414 
before bias-correction (d). ERA5 2024 event shown as black vertical line on all probability 1415 
density plots.  1416 
 1417 
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 1418 
Figure S57: As for Figure S56, but for Pantanal & Chiquitano 1419 
 1420 
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 1421 
Figure S58: As for Figure S56, but for Congo basin  1422 
 1423 
 1424 
 1425 
 1426 
 1427 
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