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Abstract. An appropriate representation of the NO,/NO; ratio and NO, lifetime is essential for estimating NO, emissions
from satellite NO, observations. We introduce a satellite-based, data-driven approach that applies variable NO,/NO, ratio
and derives a nonlinear chemical lifetime using a piecewise fitting method based on the directional derivative approach
(DDA). This method enables the estimation of both regional and point-source NO, emissions across China, representing the
first application of a lightweight, satellite-driven method to directly capture nonlinear NO, lifetime for emission estimation
over large, topographically complex region. The incorporation of a variable NO,/NO, ratio enhances the accuracy of source
divergence and emission estimates and the improved fitting scheme captures the nonlinear behavior of NO, chemistry.
Anthropogenic contributions are isolated by subtracting natural sources from satellite-derived total emissions, with natural
NO, identified using a seasonal criterion and further constrained by Nighttime Light (NTL) data. Estimated anthropogenic
NO, emissions in China from 2019 to 2024 are 20.2 Tg, 18.5 Tg, 19.4 Tg, 18.9 Tg, 20.7 Tg and 18.8 Tg, respectively, with
annual uncertainties of 27%-30%. These values show good agreement with both bottom-up inventories and top-down
inversions, with national scale discrepancies ranging from —11.8% to 0.8%. The DDA captures key spatial and temporal
emission patterns, including consistent decline in NO, emissions in megacities and provincial disparities linked to
urbanization and economic development. The DDA estimates are consistent with previous studies on coal-fired power plant
emissions, and emissions from 124 plants vary between 0.02-2.13 kg s™! for 2019-2024, with uncertainties spanning 4%-—

78%, averaging 16%. This satellite-based, lightweight method enables low-latency, timely long-term monitoring of NO,
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emissions and offers a promising alternative to bottom-up inventories and resource-intensive top-down models. The data are

publicly available at https://zenodo.org/records/16787342 (Chen et al., 2025).

1 Introduction

Nitrogen oxides (NO, = NO + NO>) are key reactive trace gases and major air pollutants in the troposphere, influencing
ozone photochemistry, particulate matter and acid rain formation (Galloway et al., 2004). Accurate and near-real-time
estimation of NO, emissions is crucial for air pollution control and provides a practical approach for estimating co-emitted
CO:z (Reuter et al., 2014, 2019; Miyazaki and Bowman, 2023; Li and Zheng, 2024).

NO; tropospheric vertical column densities (TVCDs) retrieved from new generation satellite instruments at unprecedented
high spatiotemporal resolution and accuracy (Verhoelst et al., 2021; van Geffen et al., 2022) have accelerated the
development of lightweight, mass conservation-based inversion approaches for top-down NO, emission estimation. Methods
such as the cross-sectional flux (CSF) (Reuter et al., 2019; Santaren et al., 2025) integrated mass enhancement (IME)
(Santaren et al., 2025) and flux divergence approach (FDA) (Beirle et al., 2019, 2021, 2023) have advanced rapidly due to
their low computational cost and minimal latency. These methods rely on NO, data and approximate meteorological
transport velocities to estimate emissions. The CSF and IME methods first identify sources and then integrate emissions
within plume contours based on enhancements above background. They are highly sensitive to wind speed and best suited
for strong, distinct point sources with synchronous wind observations (Frankenberg et al., 2016; Koene et al., 2024; Krings
etal., 2011; Varon et al., 2018). In contrast, the FDA generates a regional emission map and identifies sources by calculating
the divergence of the horizontal flux. It is especially effective for detecting point sources without additional a priori
knowledge (Ayazpour et al., 2025; Beirle et al., 2019, 2021, 2023; Koene et al., 2024).

Since its proposal by Beirle et al. (2019), the FDA has been widely applied and refined for NO, emissions estimation,
primarily driven by TROPOspheric Monitoring Instrument (TROPOMI) NO, data (Beirle et al., 2021, 2023; De Foy and
Schauer, 2022; Koene et al., 2024). It has also been long-lived gases like CH4 (Veefkind et al., 2023) and CO; (Santaren et
al., 2025). The FDA theory recommends explicit background subtraction (Koene et al., 2024), even for short-lived species
like NO, (Cifuentes et al., 2025). However, a well-defined NO, background field may not exist (Koene et al., 2024). In
practice, the NO, background is either empirically removed (Beirle et al., 2019; De Foy and Schauer, 2022; Rey-Pommier et
al., 2022, 2023) or the entire column is treated as the enhanced field (Beirle et al., 2021, 2023). An alternative to the FDA is
the directional derivative approach (DDA) as proposed by Sun (2022), which replaces the flux divergence term by a
directional derivative, i.e., the inner product between horizontal wind and gradient of column amounts. Both the FDA and
DDA establish the link between satellite-observed column amounts and emissions by vertically integrating the three-
dimensional continuity equation, incorporating reasonable assumptions and approximations (Ayazpour et al., 2025; Koene et
al., 2024). The primary difference between the FDA and DDA is the upper limit of vertical column integration (Ayazpour et

al., 2025; Lonsdale and Sun, 2023). Integration in DDA is performed from surface to an intermediate altitude that does not
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need to be explicitly defined. As demonstrated in Ayazpour et al. (Ayazpour et al., 2025), the different upper limit used in
the DDA ultimately leads to the directional derivative term and a topography term, which in combination replace the flux
divergence term in the FDA. By spatially differentiating the column amounts, the DDA implicitly removes the background
field that is invariant at the spatial scale of single grid cells. Another resultant benefit of the DDA is that the adopted
horizontal wind does not have to approximate the full wind profile but only the lower levels, which leads to higher accuracy
and error tolerance.

Two key challenges remain for NO, emission estimation using the FDA and DDA, including the NO,/NO; ratio and the
nonlinear NO, lifetime. When emitted, NO, is dominated by NO, which is rapidly oxidized by ozone (O3) to form NO,. As
the plume mixes with ambient air, the balance between NO and NO, is determined by the availability of oxidants that
oxidizes NO to NO; and radiations that photolyze NO; to NO. The dominant sink of NOx is the reaction between NO, and
OH, which is modulated by the complex interplay between NO,, O3, and VOCs (Laughner and Cohen, 2019). This nonlinear
photochemical evolution causes significant variations in the NO,/NO, ratio and NO, lifetime, both over time and distance
from the emission source (Krol et al., 2024; Meier et al., 2024). Constrained by the availability of observational data and the
rationale for maintaining algorithmic efficiency, both existing FDA and DDA applications have necessarily involved
substantial simplifications. Previous studies have accounted for the variability of NO,/NO; ratios across different pixels
using auxiliary data (Beirle et al., 2021, 2023; Ayazpour et al., 2025; Cifuentes et al., 2025; Meier et al., 2024), rather than
assuming a constant value (Beirle et al., 2019; De Foy and Schauer, 2022; Lonsdale and Sun, 2023; Sun, 2022). Efforts have
also been made to consider factors such as NO, concentration, latitude, season (Beirle et al., 2023; Lange et al., 2022) and
distance from the emission source (Krol et al., 2024; Meier et al., 2024) to account for the variability of NO, lifetime.
However, capturing these nonlinear variations (Laughner and Cohen, 2019) remains difficult. Meanwhile, due to the
challenges above, most existing studies focus on point sources rather than emissions from large regions.

In this work, we augment the DDA by applying a variable NO,/NO; ratio from a global high-resolution chemical transport
model and deriving a more realistic nonlinear NO, lifetime using an improved satellite data-driven piecewise fitting
approach. Based on the augmented DDA, we estimate NO, emissions in China from 2019 to 2024. We evaluate the
estimated emissions by comparing regional and point-source emissions with bottom-up inventories and top-down datasets.
The paper is structured as follows: Section 2 describes the input datasets. Section 3 outlines the methods with a focus on NO.
lifetime fitting, the isolating anthropogenic NO, from total emissions, and uncertainties. Section 4 presents the validation,

along with the distribution and variations of emissions. Section 5 discusses limitations, followed by the conclusions (Sect. 7).

2 Data
2.1 TROPOMI NO:

The TROPOMI offline (OFFL) NO, TVCDs from 2019 to 2024 (Van Geffen et al., 2024) are used in this study. TROPOMI
is on board of ESA’s Sentinel-5 Precursor (S5P) early-afternoon LEO satellite with a high signal-to-noise ratio (Veefkind et

3
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al., 2012). It provides global daily coverage with a spatial resolution of 7.0 km x 3.5 km before 6 August 2019 and updated to
5.5 km x 3.5 km thereafter (https://daac.gsfc.nasa.gov/datasets/). The data are filtered according to the following criteria: qa >
0.75 and cloud fraction (CF) <0.3 to remove very cloudy scenes; ice-snow cover scenes and erroneous retrievals (van Geffen
et al., 2022; Verhoelst et al., 2021); solar zenith angle (SZA) SZA < 65° to further restrict snow and ice cover, and viewing
zenith angles (VZA) < 56° to minimize unfavorable viewing conditions at the edges of the swath, following Beirle et al.

(2023).

2.2 Wind fields data

Wind fields are provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERAS reanalysis data
(https://cds.climate.copernicus.eu/datasets/). The 500 m wind fields are interpolated from hourly data on pressure levels,
while the 10 m wind fields are directly obtained from hourly data on single levels. Both datasets have a spatial resolution of

0.25° x 0.25°. Details on the selection of wind heights and data processing are provided in Sect. 3.1.

2.3 Chemical data

The chemical data for NO and NO; are sourced from the Goddard Earth Observing System composition forecast (GEOS-CF)
system (https://gmao.gsfc.nasa.gov/weather prediction/GEOS-CF/) to derive the NO,/NO; ratio. GEOS-CF integrates the
offline GEOS-Chem chemistry module into the GEOS weather and aerosol modeling system, enabling global near real-time
estimates (hindcasts) and 5-day forecasts of atmospheric constituents at a high spatial resolution of 25 km x 25 km (Keller et
al., n.d.; Knowland et al., 2022). The NO,/NO ratios are highest near the source within the plume and decrease quickly with
time after emission (Krol et al., 2024; Meier et al., 2024). The NO,/NO, ratio from the near-surface model layer
(chm_tavg lhr g1440x721 v1) with a 1-hour temporal resolution is used, as it characterizes instantaneous NO to NO,
conversion and captures the directional derivative's sensitivity to strong near-source NO, gradients (Ayazpour et al., 2025;

Beirle et al., 2021, 2023; Sun, 2022).

2.4 Inventories

Two inventories for natural and anthropogenic sources are used. Soil NO, emissions are obtained from the CAMS global
emission inventory (https://ads.atmosphere.copernicus.eu/datasets/cams-global-emission-inventories/), which provides
monthly estimates from fertilizer/manure application and atmospheric deposition at a 0.5° resolution (Hoesly et al., 2018;
Simpson et al., 2014; Yienger and Levy II, 1995). Since the inventory is updated only until 2018 and soil NO, variability is
relatively small compared to total emissions, the 2018 data serve as a proxy for 2019-2024.

Biomass burning and vegetation fires NO, emissions are derived from the CAMS global biomass burning emissions based
on fire radiative power (GFAS) (https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-gfas/). GFAS
v1.2 provides near-real-time daily averaged fire NO, fluxes using satellite observations of fire radiative power (FRP) on a

global 0.1° x 0.1° grid (Kaiser et al., 2012). The data covers 2019-2024.
4
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Anthropogenic NO, emissions for validation are sourced from the Multi-resolution Emission Inventory model for Climate
and air pollution research (MEIC, v1.4, 2019-2020, http://meicmodel.org.cn) and the Emissions Database for Global
Atmospheric Research (EDGAR, v8.1, 2019-2022, https://edgar.jrc.ec.europa.eu). MEIC provides high-resolution, multi-
scale databases of anthropogenic emissions for China at a 0.25° x 0.25° resolution (Geng et al., 2024; Li et al., 2017).
EDGAR delivers global coverage at 0.1° x (.1° resolution, with emissions derived through statistical downscaling of

national inventories using high-resolution spatial proxies (Crippa et al., 2024; Solazzo et al., 2021).

2.5 Point source data

The point source emissions derived from DDA are evaluated against the point source catalog provided by Beirle et al. (2023).
For point source detection, their catalog uses coal, gas, and oil power plants with capacities 2100 MW from the Global
Power Plant Database (Byers et al., 2019), identifying over 1,100 NO, point sources worldwide. Their validation shows good

agreement in Germany and the United States, demonstrating the catalog's reliability.

2.6 Nighttime light data

NASA’s Black Marble nighttime lights (NTL) product suite, derived from the Visible Infrared Imaging Radiometer Suite
(VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Partnership (SNPP), serves as a constraint on
anthropogenic emissions (Roman et al., 2018; Wang et al., 2021). The Lunar BRDF-Adjusted Nighttime Lights Yearly L3
Global 15-arcsecond Linear Lat/Lon Grid product (VNP46A4) provides high spatial resolution at 500 m and is available
from January 2012 onward (https://viirsland.gsfc.nasa.gov/Products/NASA/BlackMarble.html). This study uses data from
2019 to 2023. Due to the current unavailability of VNP46A4 data for 2024, the 2023 dataset is applied as a substitute.

2.7 National accounts data

National accounts data of annual Gross Domestic Product (GDP) and provincial Gross Regional Product (GRP) are from

National Bureau of Statistics of China (https://data.stats.gov.cn).

3 Methods
3.1 Framework of the directional derivative approach

The mathematical framework of the DDA is detailed in Sun (2022) and further developed by Ayazpour et al. (2025) Based

on satellite-observed NO, TVCDs, NO, emissions E can be estimated as:

E =204 £ (v0) + 0ii - (Vf) + Xf0ily - (Vz) + 2, (1)
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Where 2 is NO, TVCD, f is the NO,/NO, ratio, U is the profile-weighted horizontal wind from surface to a conceptual
altitude (z;) which is not explicitly needed and defined, i, is surface wind, and z, is surface altitude. X and 7 are fitting
parameters representing the inverse of scale height and NO lifetime, respectively. The tendency term (J(f2)/0t) becomes
negligible when averaging over a month or longer or under the steady-state approximation. It should be noted that this
approximation may not hold for a single satellite overpass, potentially leading to significant errors (Koene et al., 2024).
Assuming X and 7 stay constant over the averaging period, the spatiotemporal averaged emissions (E') for a given time period

and horizontal resolution can be expressed as:

(E) = (fﬁ (V) + (i - HY + X(fﬂﬁo - (Vzp)) + (f0) ®

p

The first and second terms of Eq. (2) are referred as the DDf estimator (Ayazpour et al., 2025), reflecting the contributions
of advection transport to local NO, emissions. The third component is the topography correction as emphasized by Ayazpour
et al. (Ayazpour et al., 2025), it is directly derived from the continuity equation rather than serving merely as an empirical
adjustment (Koene et al., 2024). The sum of the first three terms is referred to as DDf_topo estimator. The last term
describes the NO, chemistry approximated by first-order loss.

Integration in DDA is performed from z, to an intermediate altitude z,. While the ideal approach would involve winds at all
vertical levels, the full wind profile is typically unavailable. Instead, a single-layer wind, known as the effective wind field,
is used to approximate the average state of the full profile. Ayazpour et al. (2025) utilized the effective wind field height
using WRF-CMAQ simulations and found that the 500 m wind is most suitable, which aligns with Beirle et al. (2023).
Consequently, the horizontal wind % is interpolated to 500 m above the surface, while 1, directly obtained as the 10 m wind
from ERAS.

To apply Eq. (2), the physics-based oversampling approach (Sun et al., 2018) is used to resample the level 2 pixels into
0.025° x 0.025° grid cells with appropriate weighting, then coarsened to 0.05° x 0.05°. Winds in ERAS, the NO,/NO ratio (f)
in GEOS-CF data are resampled to match this spatial resolution and temporally aligned with satellite overpasses, allowing
for the calculation of all bracketed terms in Eq. (2). Yearly NTL data from SNPP/VIIRS are also resampled at the same
spatial resolution. The spatial differentiation in gradient calculation is conducted on 0.05° x 0.05° grid cells with second
order central difference. All bracketed terms are averaged at a monthly scale before X and 7 are fitted (see in Sec. 3.2 ) to

derive emissions (E') in mol m™2 s™!, and the conversion to mass assumes NO, as NO.

3.2 Nonlinear NOy lifetime fitting

To avoid additional assumptions and external computations (Beirle et al., 2021, 2023), DDA performs a data-driven fitting
approach based on monthly fluxes to determine X and 7 across grids with negligible emissions ({(E)=0)(Ayazpour et al., 2025;
Lonsdale and Sun, 2023; Sun, 2022), where Eq. (2) can be rewritten as:

(- (VD)) + (08 (V) = Bo + Bulf 0Ty - (V20)) + BolfQ) + €, 3)
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Here, —f is an estimate of X, —/f» is an estimate of the inverse of 7, fyand ¢ represent the offset and random error in the
predicted variable, which cannot be accounted for by any linear combinations of predictors.

Both the FDA and DDA methods in prior studies have exhibited substantial negative emissions and/or underestimation of
total emissions (Ayazpour et al., 2025; Beirle et al., 2019, 2021, 2023; De Foy and Schauer, 2022; Lonsdale and Sun, 2023;
Sun, 2022). A single 7 fitted in clean region tends to overestimate the chemistry lifetime, then the NO, flux is underestimated.
Therefore, a more realistic representation of NO, lifetime is critical for accurate emission estimation (Beirle et al., 2023;
Krol et al., 2024; Laughner and Cohen, 2019; Meier et al., 2024). The photochemical reactions of NO,-O3-VOCs depends on
the concentrations of NO,, Os, and volatile organic compounds (VOCs), as well as on photolysis and meteorological
conditions (Pusede et al., 2015; Sillman et al., 1990; Souri et al., 2023). Even under identical NO, concentrations®’ and at the
same latitude (Beirle et al., 2023; Lange et al., 2022), the lifetime still vary considerably due to the complex interplay of NO,
and VOC chemistry (Laughner and Cohen, 2019).

To derive more realistic lifetime, we fit £, across stratified column amount intervals (2) within subregions instead of fitting a
single lifetime across the domain to account for the NO, reactivity nonlinearity. We partition the study domain into four
subregions by employing NO, concentration as the primary criterion due to its dominant control over chemical lifetime
(Pusede et al., 2015) with additional consideration of latitude and terrain effects. Figure 1a shows the four subregions. The
east (E) and west (W) sections are divided by the Hu line (HL) that extends from Heihe (127.54 °E, 50.25 °N) to Tengchong
(98.50 °E, 25.03 °N). The E and W sections are further subdivided into north (N) and south (S) subregions by latitudes 35°N
for the west and 30°N for the east. The resultant four subregions are denoted as WN, WS, EN, ES thereafter. The HL is a
well-known natural geographical boundary that divides China into two contrasting regions in terms of terrain, climate,
population density, and economic activity. The eastern part, encompassing most of China's plains and rivers (Fig. 1b), is
dominated by the East Asian monsoon, supports 96% of the population, contributes the majority of national productivity, and
faces severe air pollution. In contrast, the western region is characterized by elevated terrain, a westerly climate, and sparse
population (Hu, 1935; Zhang et al., 2022). So, the above factors implicitly account for variations in O3 and its precursors
influenced by human activities (Jin et al., 2020; Martin et al., 2004; Souri et al., 2023), differences in natural VOCs
emissions from vegetation under varying climatic and geographical conditions (Guenther et al., 1995; Sprengnether et al.,
2002; Palmer et al., 2006), and meteorological influences on transport and photochemistry (Duncan et al., 2010; Li et al.,
2020; Pusede et al., 2015).

Given the small interannual variability and limited impact on reactive species emission estimation (Ayazpour et al., 2025), 5
is fitted using the same climatological months, whereas f; is fitted for each individual month and subsequently averaged over
the same months for each subregion during 2019-2024. First, f; is fitted in grid cells with rough terrain (0.001 m s™'<(u, -
(Vz24))<0.1 m s '), where emissions are negligible (DDf<5x10"° mol m2 s™!). Then, 8, is fitted in flat terrains (where
(g - (V24))<0.001 m s!) without strong NO, emission sources (DDf_topo<1071" mol m? s™!). The fitting is performed
across piecewise bins defined by NO, TVCD percentiles. TVCD percentiles are binned at 10% intervals for each month in

WN and EN, while in WS and ES, due to narrower lower percentile ranges, bin widths are expanded to 20% below the 80t
7



220

225

230

235

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-480
Preprint. Discussion started: 3 November 2025
(© Author(s) 2025. CC BY 4.0 License.

Open Access
suoIssnasIqg

percentile and remain 10% above it to ensure robust fitting performance. For month-bins where fitting fails (p > 0.01 or 5, >
0), appropriate adjustments are made by merging neighboring bins or revising percentile thresholds. For each subregion,
average TVCD and S, per month-bin are calculated from successfully fitted bins. TVCDs can be grouped into intervals (10%

here), the mean TVCD of each interval is matched to the nearest month-bin and the corresponding /3, is used to calculate flux.

250

— N
[l o
o o
NO, TVCD (umol m~2)

-
o
o
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o

o

Figure 1: Four subregions divided by the Hu line and (a) Average NO2 TVCDs of 2019 as an example; (b) altitude.
3.3 Anthropogenic NOx emissions separation

The DDA quantifies total NO, emissions, from which anthropogenic contributions to the total emission rates over a certain
area need to be isolated by subtracting natural sources. Globally, anthropogenic emissions dominant, while natural sources,
such as soil emissions, biomass burning, and lightning, account for approximately 30-40% (Jaeglé et al., 2005; Miiller and
Stavrakou, 2005). Regional variation of natural sources contributions is substantial, with natural contributions around 14% in
East Asia (Zhao and Wang, 2009), and 8% in eastern China (Lin, 2012). Nevertheless, these estimates involve significant
uncertainties (Ding et al., 2017; Rey-Pommier et al., 2022), including potential underestimation (Song et al., 2021).

Previous studies typically designated regions dominated by anthropogenic emissions as mean NO, TVCDs higher than
1.0x10'5 molecules cm2 (Li and Zheng, 2024; Liu et al., 2016a). However, due to the presence of unexpectedly high or
poorly understood natural NO, emissions over this threshold (Kong et al., 2023; Song et al., 2021), it is not applied to filter
natural sources in this study. Since natural NO, is primarily emitted during the summer and remains low in winter (Liu et al.,
2016a; van der A et al., 2006), while anthropogenic NO, emissions typically peak in in winter (Lonsdale and Sun, 2023), we
identify natural-source grid cells based on seasonal criterion and further constrain them using nighttime light (NTL) data.

Grid cells with either the highest averaged NO, TVCDs in summer or the lowest values in winter comparing to other seasons,
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and with NTL < 0.01 nW cm 2 sr'!, are classified as natural NO, sources and excluded from the areal integration to get
anthropogenic NO, emission rates. For the remaining grid cells, we subtract soil and biomass burning emissions (from

CAMS data) from the satellite-derived emissions to isolate anthropogenic contributions.

3.4 Uncertainty analysis

To quantify uncertainties, DDf is calculated as the mean directional derivative along the zonal/meridional (X/y) and

diagonal directions (7/5) (Li et al., 2025) on a 0.05° x 0.05° grid:

- - a0 [0} of af

Dfo/)‘; =fu(l7.(2),;/37+.(2u(|7f),;/37 =fuxa+fuya—y+!2uxa+!2uy5, (4)
- - a0 a0 af af

DDfyss = fu- (V)zss + 21~ (Vf)iss = fur o=+ fus o=+ Qup - ==+ Dug - —, (5)

Standard deviation of the difference between DDfz/5 and DDf /3 is used to estimate random error o of DD
o= 0.5'Std(DDf§/J7—Dfo/§), 6)

The random errors at daily, monthly, and annual scales for 2019-2023 consistently decrease as the mean satellite data
coverage (N) increases (Fig. 2). This observed scaling follows the theoretical relationship ¢ = 6oA/N (black line in Fig. 2), in
agreement with the central limit theorem for independent random errors. Here, oy reflects the precision of a single satellite
overpass, calculated at the monthly scale as:

o, = exp ({loga;) + 0.5 - (logN;)), 7

Where o; and N; denote the random error and mean satellite coverage for month 7, respectively. The results further

demonstrate that temporal averaging effectively reduces random errors in emission quantification.
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Figure 2: The relationship between the random errors () and mean satellite data coverage (/V) at different time scales.
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Since the topography correction and chemical loss terms in Eq. (2) are determined through fitting, only the overall Root
Mean Square Error (RMSE) can be evaluated, rather than grid-level precision. Therefore, the random error of DDf is

employed to characterize the uncertainties in DDA emission estimation.

4 Results
4.1 Effects of NO+/NO: ratio correction and lifetime fitting

Figure 3 compares three DDA-based results before and after applying the NO,/NO, ratio correction and improved fitting
scheme: (1) a constant NO,/NO; ratio of 1.32 and monthly single-lifetime fitting (fixed f and single ), representing the
original DDA framework by Sun (2022); (2) the NO,/NO; ratio from GEOS-CF and monthly single-lifetime fitting
(variable f and single 7), as modified by Ayazpour et al. (2025), while this study marks the first application of GEOS-CF
chemical data in satellite-based emission estimation; and (3) the variable NO,/NO, ratio and piecewise fitting with nonlinear
NOx lifetimes (variable f and nonlinear 7). Using a variable NO./NO, ratio better captures strong NO, gradients near point
sources, improving the accuracy of point source emission estimates. However, this approach still leads to notable
underestimation of regional emissions. In contrast, the nonlinear lifetime fitting more effectively accounts for the balance
among local emissions, horizontal transport, and chemical loss, reducing the negative emission grids and increasing regional
emission estimates, particularly in relatively clean areas. Furthermore, the improvement fitting scheme minimizes artifacts in
mountainous and remote regions compared to earlier results (Ayazpour et al., 2025; Beirle et al., 2023; Lonsdale and Sun,
2023; Sun, 2022).
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Figure 3: Comparison of three DDA-based results, including (a) anthropogenic NOx emissions estimates in China for 2019 and (b)
spatial distribution in Shanxi province for 2019, shown as an example of complex topography.

4.2 NOx lifetime

The lifetime of NOy is known as a complicated function of NO, chemistry regimes (Laughner and Cohen, 2019). At very low

NO, concentration, NO, lifetime increases with NO, concentration. As NO, concentration rises, the lifetime decreases
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because increased NO enhances the chain reactions involving organic compounds (RH) and HO, (HOx = OH + HO; + RO»),
accelerating RH oxidation to produce O3 (“NO,-limited” regime) and further oxidizing NO. At high NO, concentration, as
NO. reaches saturation, the reaction between OH and NO, becomes much faster than the reaction between OH and RH,
dominating the fate of HO, and slowing O3 production (“NO,-suppressed” regime), resulting in the opposite trend in NO,
lifetime (Laughner and Cohen, 2019; Pusede et al., 2015).

Figure 4 shows the monthly climatology of NO, lifetimes from the improved fitting scheme described in Sect. 3.2. For each
subregion and each climatological month, the fitted lifetime is shown as bubbles corresponding to bins of NO> TVCD. The
size of bubbles scales with the mean NO, TVCD for the bin. The results clearly demonstrate the nonlinear variability of NO,
lifetime as a function of TVCDs and show significant discrepancies between subregions. The results closely match the
theoretical calculated NO. lifetime versus NO; concentrations under different VOC reactivities by Laughner and Cohen
(2019) capturing the turning points marked by an increase in lifetime at low NO, concentrations (region I), the subsequent
decrease with rising NO, (region II), and the eventual increase under NO,-saturated conditions (region III). The range of
lifetimes vary from 0.71-26.47 h, and the average values across the subregions range from 3.17-7.85 h. Due to fitting
failures in July—August, the number of bins in WN is substantially reduced, requiring broad bin merging and resulting in
lifetimes that are likely overestimated and unrepresentative. The results are consistent with the 2-8 h range reported by
Lange et al. (2022) as well as the 2 h (low NO,) to over 7 h (high NO,) given by Laughner and Cohen (2019).

The consistent lifetime patterns highlight the dominant role of NO; concentration in determining z. However, even at
comparable NOx levels and over the same periods, 7 exhibits subregional variations driven by distinct ambient conditions
(e.g., O3 and VOCs concentrations, meteorological parameters) and differences in NO, emission sources. WN is located in
the northern China, sees increased NO, emissions during the colder half of the year due to heating demand. WS is situated on
the sparsely populated Tibetan Plateau, has primarily natural NO, sources, including unexpectedly high NO emissions from
lakes (Kong et al., 2023). EN exhibits distinct anthropogenic emissions, with higher NO, and longer 7 in winter due to
heating, and lower NOy in summer, where intense photochemical reactions result in a shorter 7. ES is located in southern
China with smaller annual temperature variations, shows less pronounced seasonal discrepancies in 7. Additionally, high
natural VOCs emissions during the growing season of vegetables (Cao et al., 2022) in ES contribute to a longer 7 (Laughner
and Cohen, 2019).

We provide detailed comparisons of the lifetime fitting parameters for the three DDA-based approaches in Table S1. The
variable NO,/NO, ratio correction improves the accuracy of source divergence and emission estimates, while the piecewise
fitting approach captures nonlinear NO, chemistry and yields a shorter overall lifetime with lower fitting RMSE. Across the
four subregions, NO; lifetimes without ratio correction and fitting scheme improvement are approximately 2 to 3 times those
derived in this study, specifically 1.7 times in ES, 2.8-2.9 times in EN and WN, and 3.3 times in WS (figure omitted),
although the values primarily represent the mean state associated with the nonlinear characterization of lifetime. These
results highlight the great importance of accounting for the variable NO,/NO; ratio and nonlinear NO, lifetime, particularly

in clean and heavily polluted regions, while the influence is comparatively less pronounced in moderately polluted areas.
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Figure 4: Monthly NOx lifetimes for (a) WN, (b) WS, (c) EN, and (d) ES. The bubble size indicates monthly mean NO: TVCDs
(umol-m~2) per bin. The t (h), R? (coefficient of determination), and RMSE (root mean square error, nmol-m2 s™!) for each
subregion represent the month-bin averages. N denotes the count of fitting grids across all months.

4.3 Regional NOx emissions
4.3.1 Comparison with inventories

The spatial distribution of national anthropogenic NO; emissions based on DDA in China for 2019 is shown in Fig. 5a, with
the corresponding total emissions provided in Fig. S1. The identified hotspots align closely with areas of intensive human
activity, covering both urban and rural regions as well as transportation routes. Traces of faint anthropogenic emissions
remain clearly visible even in the remote, sparsely populated Northwest China (Fig. S2).

The derived anthropogenic emissions of China from 2019 to 2024 are compared with: (1) two bottom-up emission
inventories (MEIC and EDGAR), and (2) two top-down datasets, the Inversed Emission Inventory for Chinese Air Quality
(CAQIEI) (Kong et al., 2024) and results from Li and Zheng (2024). CAQIEI assimilates surface observations using an
ensemble Kalman filter (EnKF) and the Nested Air Quality Prediction Modeling System, while the results provided by Li
and Zheng (2024) are based on TROPOMI NO; combined with GEOS-Chem. Note that these datasets are only available in
limited years, while DDA covers all years. National scale comparisons show that DDA agrees well with other inventories
and produces slightly lower estimates (Fig. 5b). Based on DDA calculations, the anthropogenic NO, emissions of China are
estimated to be 20.2 Tg, 18.5 Tg, 19.4 Tg, 18.9 Tg, 20.7 Tg and 18.8 Tg from 2019 to 2024, with uncertainties of 27%—-30%.
The corresponding total emissions are 29.8 Tg, 28.8 Tg, 28.7 Tg, 28.2 Tg, 28.7 Tg and 27.4 Tg, respectively, with

uncertainties of 29%—-32%. These results indicate fluctuating trends in anthropogenic NO, emissions: a sharp decline in 2020
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due to the COVID-19 lockdowns (Lonsdale and Sun, 2023; Miyazaki et al., 2021; Cooper et al., 2022), a modest rebound in
2021-2022, a peak in 2023 (surpassing 2019 levels despite total NO, remaining lower), and a subsequent drop in 2024 to 7.1%
below 2019 levels. The differences between DDA and EDGAR, MEIC, CAQIEI and Li and Zheng are —8.7% to 0.8%, —6.3%
to —3.4%, —7.2% to —4.5%, and —11.8% to —3.8%, respectively. Notably, the DDA approach provides long-term emission
340 estimates with low latency, demonstrating a key advantage of this satellite-based lightweight estimation method over
conventional bottom-up inventories and computationally intensive top-down data assimilation systems. The data are publicly
available at https://zenodo.org/records/16787342 (Chen et al., 2025).
The primary cause of the lower estimates is the systematic low bias in TROPOMI NO; column amounts (Beirle et al., 2023;
Liu et al., 2024), most likely due to a priori assumptions and a tropospheric negative bias of approximately 30% from
345 ground-based validation (van Geffen et al., 2022). Meanwhile, we attribute a larger proportion of total emissions to natural
sources compared to the latter two top-down methods, varying between 28.1%-35.6%, with an average of 32.1% (Fig. S3).
CAQIETI assigned soil and wildfire NO, from CAMS and GFAS as natural sources (approximately 2.0 Tg) and subtracts
them from the total NO, estimates (23.8 Tg in 2019 and 21.4 Tg in 2020, relative to 29.8 Tg and 28.8 Tg in DDA). While Li
and Zheng (2024) designated regions dominated by natural emissions as grids with mean NO, TVCDs less than 1.0x10%
350 molecules cm2, this threshold is not applied in this study, as described in Sect. 3.3. Based on satellite observations, Kong et
al. (2023) found unexpectedly high NO emissions from remote lakes on the Tibetan Plateau, with per-unit-area emissions
exceeding those from crop fields in summer. Lin et al. (2024) highlighted a severe underestimation of soil NO, in the current
CAMS inventory, while Opacka et al. (2025) also identified underestimated soil and lightning NO,. Using natural nitrogen
isotopes in precipitation to trace atmospheric NO, sources, Song et al. (2021) showed that the relative contributions of
355 natural NO, average 57 £ 13% in East Asia, a value that had long been underestimated. In this work, we identify natural
sources based on seasonal emission patterns and constrain them with NTL data, with anthropogenic areas consistently
covering over 92% of grid cells where NTL > 0.01 nW c¢cm 2 sr! each year. A threshold of 0.01 nW ¢cm 2 sr™! (approximately
the 15th to 20th percentile) is applied instead of zero to minimize the resampling effect from 500 m to 0.05° in dark regions.
From 2019 to 2023, the number of grid cells indicative of human activity increased by 48.6% (Fig. S4). As a result,
360 anthropogenic NO, emissions in 2023 are 0.5 Tg higher than in 2019, despite total NO, in 2023 being 1.1 Tg lower. While it
is difficult to separate anthropogenic and natural sources in dimly lit grids, it is clear that natural emissions in China are
indeed underestimated, as noted by Song et al. (2021). Isolating natural contributions from total emissions continues to be a
challenge.
For subnational scale (Fig. 6a and Fig. 6b), DDA shows excellent agreement with inventories in the Central, North, and
365 Southwest regions; slightly higher values in the Northeast and Northwest; somewhat lower values in the South; and
significantly lower values in East China during 2019-2020. The results also demonstrate a stronger consistency between
DDA and MEIC (The Pearson correlation coefficient (r) ranges from 0.86—0.87) compared to EDGAR (r 0.76—0.79). MEIC

uses high-resolution localized data, while EDGAR relies on coarser global datasets, resulting in discrepancies in spatial
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allocation accuracy for China (Crippa et al., 2024; Liu et al., 2016b). Given the good agreement of DDA with inventories in

370 2019-2021 (Fig. 5b), the discrepancy with EDGAR in 2022 does not undermine the reliability of the estimates in this work,
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Figure 5: National anthropogenic NOx emissions of China for (a) spatial distribution at 0.05° x 0.05°, with 2019 as an example, and

(b) comparisons with previous inventories from 2019-2023.

despite the current lack of inventories for comparison.

At the provincial scale (Fig. 6¢), NO, emissions derived from DDA align well with bottom-up inventories, with over 90% of

provinces falling within +60% of MEIC, and 85% of provinces within £60% of EDGAR. DDA shows consistently lower

emissions in economically developed provinces (mostly in East and South China) and higher in less developed western
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provinces. The significant difference in Xizang’s emissions arises from DDA identifying substantially more human activity

380 than reported in inventories.
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Figure 6: Comparisons of anthropogenic NOx emissions between DDA, MEIC and EDGAR for (a) national and subnational scales
in 2019, and (b) same as (b) but in 2020, (c) provincial scale in 2019.

385 4.3.2 Differentiated patterns in provincial NOx emissions changes

The anthropogenic NO, emissions map reveals a significant decline in urban areas, particularly in heavily pollutant regions,
from 2019 to 2024 (Fig. 7a). However, certain localized areas or point sources, particularly those in the Northeast, Northwest,
and South, exhibit noticeable increases. At provincial scale (Fig. 7b), NO, emissions increase by less than 10% in Gansu,
Hunan, and Inner Mongolia; by 10%-30% in Chongqing, Guangxi, Qinghai, Yunnan, and Xinjiang; and by more than 50%
390 in Xizang. At the subnational scale (Fig. 7c¢), which aggregates total emissions from provincial groups, NO, emissions
decline by more than 10% in the North and East, and by less than 10% in the Northeast, Central, and South, while slight

increases under 10% are observed in the Southwest and Northwest. Year-on-year changes in anthropogenic emissions from
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2020 to 2024 are shown in Fig. S5. In other words, NO, emissions at the provincial scale display a differentiated temporal

pattern, with declines in the central and eastern regions but increases in the west.
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Figure 7: Changes in anthropogenic NOx emissions from 2019 to 2024, (a) grid scale at 0.05° x 0.05°, (b) provincial scale, and (c)
subnational scale.

Air pollutant emissions evolve in response to urbanization and macroeconomic development, which influence policy
regulations and industrial restructuring, forming a feedback loop that further shapes economic growth at both national and
city scales (Miyazaki and Bowman, 2023; Wang et al., 2019). Anthropogenic NO, emissions constrained by nighttime lights

reflect the extent of human activity, and their share of total NO, emissions can serve as a useful indicator of regional

16



405

410

415

420

425

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-480
Preprint. Discussion started: 3 November 2025
(© Author(s) 2025. CC BY 4.0 License.

Open Access
suoIssnasIqg

urbanization (Wang et al., 2021). Figure 8 presents the relationships among provincial NO, emission changes, their
contributions to total NOy, and gross regional product (GRP). Provincial positive changes in anthropogenic NO, emissions
often coincide with increases in their share of total NO, (Fig. 8a), particularly in economically less developed regions with
relatively low GRP, where anthropogenic sources constitute a small to moderate portion of total NO, (Fig. 8b) and NO»
TVCDs are generally low (Fig. S6). In the early stages of economic development, a resource-intensive model driven by fuel
consumption dominates, with GRP growth accompanied by rising NO, emissions at the expense of environmental quality.
As the economy progresses, shifts in industry sectors and air quality mitigation measures contribute to a decline in NOy
emissions, with regional economic levels potentially playing a key role in driving these changes (Miyazaki and Bowman,
2023; Wang et al., 2019). The disparities in industrial structure and economic development levels across regions may
account for the current differentiated patterns in provincial NOy emissions.

(a) (b)

0.3 1.0
* F
XIZEngXinj‘iang 80
90 Ch%gqirgl\un
an
\ \ Chongging 60 G&ngxi 60
\ Inner Mongoliarunnan'\" -/ N 40
0 Qinghai Gahey @ Guagg})%;] ____ 30 Yuhnan .
3 s = 20 8
é; e 0 S c\:\o/ 05 Gapsu 00 E
~ |
% 5 E Inn\er\MongoI a %
-0.3} Xinjiang 20
g}ang
-10 -40
Q}\ghai
-0.6 0 ‘
0 0.5 1.0 0 5 10 15
AT (%) GRP (10%2 yuan)

Figure 8: (a) Provincial changes in anthropogenic NO. emissions from 2019 to 2024 (ANOx) and their contributions to total NOx in
2024 (A/T), with bubble color indicating changes in the A/T proportion (AA/T), provinces with positive ANOx are labeled; (b)
Same as (a), but showing the relationship between A/T and gross regional product (GRP) in 2024, with bubble color indicating
ANOx.

4.3.3 Consistent downward trend in NOx emissions across megacities

Six megacities of China with GDP rankings in the top ten and populations exceeding ten million are selected to present the
time series of monthly NO, emissions and changes (Fig. 9). Values in the bottom right corner represent the percentage of
months with negative relative changes. The results are in good agreement with the decreased NO, during the strict COVID-
19 lockdowns (e.g., Feb-May 2020 in Wuhan, Feb-May 2022 in Shanghai) (Miyazaki et al., 2021; Cooper et al., 2022), and
the increase during major holidays (e.g., Spring Festival in Jan—Feb, summer holiday in July—August, National Day holiday
in October). Seasonal variability of NO, emissions in megacities is influenced by meteorological conditions. Heating
demand leads to markedly higher emissions in autumn and winter than in spring and summer (Miyazaki et al., 2021), with
more pronounced variability in northern cities such as Beijing. In contrast, emission fluctuations associated with rising

electricity demand during hot seasons (Lange et al., 2022) are more pronounced in the five southern cities. Meanwhile, as
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China’s clean air actions progress, megacities exhibit a consistent downward trend in NO, emissions, with the proportion of

negative changes higher than positive. Shanghai, and Beijing have relatively high emissions, but they show a greater share of

months with declines from 2020-2024 compared to 2019, reflecting stronger efforts in emission reduction.
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Figure 9: Monthly NOx emissions for 2020-2024 and relative changes from 2019 in China’s megacities, with Beijing, Shanghai,
‘Wuhan, Hangzhou, Shenzhen and Chengdu as examples.

4.4 Point source emissions

Point source emissions in DDA (from power plants in this study) are quantified by integrating over a 15 km radius,
following the approach and locations of 124 coal-fired power plants reported by Beirle et al. (2023). Figure 10a presents the
estimated NO, emissions from these plants in China for 2019. From 2019 to 2024, emissions from the 124 plants range from
0.02-2.13 kg s™!, with uncertainties between 4%—78%, averaging 16%. Overall, the plants show an average emission decline

of 23% over this period.
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Figure 10: Comparisons of NOx point source emissions between the DDA and Beirle et al. (2023) data.
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The resulting estimates are validated against Beirle et al. (2023) for 2019-2021, as shown in Fig. 10b. The two datasets show
good agreement, with an R? of 0.81, both indicating a decline in NO, emissions from 2019 to 2021. Generally, NO;
emissions from the DDA are slightly lower than those from Beirle et al. (2023), with a slope of 0.83. For comparison, results
445 from DDA test without ratio correction and fitting scheme improvement (fixed f and single 7) are also shown in Fig. S7,
further illustrating the improvement in point source quantification achieved in this study. It should be noted that point source

emissions include all fossil fuel emission sources within the defined radius, leading to a positive bias (Beirle et al., 2023).

5 Discussion

We estimate NO, emissions using the DDA by applying a variable NO,/NO, ratio and deriving a more realistic nonlinear

450 NOx lifetime through a piecewise fitting approach in each subregion.

Region partitioning mainly depends on NOy concentration, latitude, and terrain. By using HL as the east-west dividing line,
the results implicitly consider variations in Oz and its precursors driven by human activities, differences in natural VOCs
emissions from vegetation across different climates and geographies, and meteorological effects on transport and
photochemistry. It is worth noting that HL is used as a boundary for partitioning because it provides a suitable division,

455 where regional divisions improve fitting performance but have a limited impact compared to grading NO, concentration
levels.

The random error of wind-gradient terms in Eq. (2) described in Sect. 3.4 is used to characterize the uncertainties in DDA
emission estimation. Annual anthropogenic emissions uncertainties range from 27%-30% at the national scale and 15%—40%
at the subnational scale. At provincial scale, uncertainties vary more widely, from 8%—-59%. The average uncertainty for

460 point sources is 16%. Note that the error does not include the fitting uncertainties related to the topographic correction and
chemical loss terms in Eq. (2), indicating that the reported uncertainty is likely underestimated.

Additionally, the anthropogenic NO, emissions are derived by subtracting natural sources from total emissions, a step that
may introduce unknown uncertainties. For point sources, spatial integration that includes all fossil fuel sources within the
defined radius may lead to a positive bias.

465 The DDA adopts a data-driven fitting approach to derive parameters independently, eliminating the need for additional
assumptions or external calculations. However, this method requires regions with sufficient terrain diversity (including both
rough and flat areas) and an adequate number of observations that satisfy the fitting criteria. Future studies could explore the
development of appropriate thresholds to enable automated global partitioning.

Since satellite-based inversion quantifies total NO, emissions, isolating natural sources is crucial for accurately estimating

470 anthropogenic emissions. However, the current understanding of natural sources remains limited, with substantial
discrepancies and uncertainties across previous studies (Jaeglé et al., 2005; Kong et al., 2023; Li and Zheng, 2024; Lin, 2012;
Lin et al., 2024; Miiller and Stavrakou, 2005; Song et al., 2021; Zhao and Wang, 2009). We attribute 28.1%—-35.6% of
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China’s total NO, emissions to natural sources, indicating that natural emissions in China have been underestimated, as
noted by Song et al. (2021).

This work primarily aims to propose a practical and insightful perspective for addressing nonlinear NO, chemistry in
satellite-based emissions estimation, rather than focusing on improvements in data quality itself (e.g., air mass factor

corrections in satellite NO; retrievals).

6 Code and data availability

Code relevant to this paper can be found in Sun (2022) at https://doi.org/10.5281/zenodo.7987812. The data can be found at
https://zenodo.org/records/16787342 (Chen et al., 2025).

7 Conclusions

We present an improved satellite-based framework for estimating NO, emissions across China, leveraging the directional
derivative approach (DDA) alongside TROPOMI NO; observations, ERAS wind fields, and variable NO,/NO; ratios derived
from GEOS-CF. The DDA addresses several challenges in satellite-based emission quantification. It corrects divergence
artifacts induced by terrain-driven flows, reduces biases from using single-level wind fields, and suppresses background
signal contamination implicitly.

In this work, by incorporating a spatially variable NO,/NO; ratio and implementing a data-driven, piecewise fitting strategy,
we account for nonlinear NO, chemistry and improve the estimation of NO; lifetimes across diverse emission regimes. The
NO,/NO; ratio correction improves the accuracy of source divergence and emission estimates, with the major advancement
being the piecewise fitting approach, which captures the nonlinear NO, chemistry. The fitting scheme clusters NO,
concentration levels within localized regions, reduces fitting errors, mitigates artifacts in mountainous and remote areas, and
improves the overall reliability of the estimates. It enables the estimation of both point-source and regional NO, emissions
across China, representing the first application of a lightweight, satellite-driven NO, emissions estimator in such a large and
topographically complex region.

NO; lifetimes vary from 1.85-14.70 h with NO, concentrations, and average values across the four subregions range from
4.57-6.63 h, reflecting the nonlinear variability of lifetime as a function of NO, TVCDs. Significant discrepancies in
regional ambient conditions, such as O; and VOC concentrations, meteorological parameters, and differences in NO,
emission sources, also contribute to this variability. Without ratio correction and fitting improvements, lifetimes across the
four subregions are about 2 to 3 times those found in this study, reaching 3.1 times in EN, highlighting the critical need to
consider variable NO,/NO: ratios and nonlinear lifetimes, particularly in polluted regions.

Anthropogenic contributions are isolated by subtracting natural sources from satellite-derived total emissions, with natural

NOx identified using a seasonal criterion and further constrained by NTL data. Estimated anthropogenic NO, emissions in
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China are 20.2 Tg, 18.5 Tg, 19.4 Tg, 18.9 Tg, 20.7 Tg and 18.8 Tg from 2019 to 2024, with annual uncertainties of 27%—
30%. The corresponding total emissions are 29.8 Tg, 28.8 Tg, 28.7 Tg, 28.2 Tg, 28.7 Tg and 27.4 Tg, respectively, and
natural sources account for 28.1%—35.6% of the totals in this study.

Spatial and temporal trends show consistent NO, reductions in megacities, while provincial-level patterns reflect regional
differences in urbanization and economic development.

From 2019 to 2024, emissions from the 124 plants range from 0.02-2.13 kg s™!, with uncertainties between 4%—78%,
averaging 16%. Overall, the plants show an average emission decline of 23% over this period.

Validation against established inventories, including MEIC, EDGAR, and other top-down inversions, demonstrates strong
agreement with national level discrepancies ranging from —11.8% to 0.8%. At the provincial scale, the DDA shows
consistently lower emissions in economically advanced regions and higher in less developed Northeast and western areas.
For point sources, our estimates closely match those from previous study, with an R? of 0.81 and a slope of 0.83.

Looking forward, this framework holds promise for global-scale application and for separating natural and anthropogenic
NO; sources. Its low-latency, data-driven nature offers critical value for air quality management, CO, co-emission estimation,

and international efforts such as the Global Stocktake.

Supplement. The supplement related to this article is available online at:
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