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Abstract. An appropriate representation of the NOx/NO2 ratio and NOx lifetime is essential for estimating NOx emissions 

from satellite NO2 observations. We introduce a satellite-based, data-driven approach that applies variable NOx/NO2 ratio 

and derives a nonlinear chemical lifetime using a piecewise fitting method based on the directional derivative approach 20 

(DDA). This method enables the estimation of both regional and point-source NOx emissions across China, representing the 

first application of a lightweight, satellite-driven method to directly capture nonlinear NOx lifetime for emission estimation 

over large, topographically complex region. The incorporation of a variable NOx/NO2 ratio enhances the accuracy of source 

divergence and emission estimates and the improved fitting scheme captures the nonlinear behavior of NOx chemistry. 

Anthropogenic contributions are isolated by subtracting natural sources from satellite-derived total emissions, with natural 25 

NOx identified using a seasonal criterion and further constrained by Nighttime Light (NTL) data. Estimated anthropogenic 

NOx emissions in China from 2019 to 2024 are 20.2 Tg, 18.5 Tg, 19.4 Tg, 18.9 Tg, 20.7 Tg and 18.8 Tg, respectively, with 

annual uncertainties of 27%–30%. These values show good agreement with both bottom-up inventories and top-down 

inversions, with national scale discrepancies ranging from −11.8% to 0.8%. The DDA captures key spatial and temporal 

emission patterns, including consistent decline in NOx emissions in megacities and provincial disparities linked to 30 

urbanization and economic development. The DDA estimates are consistent with previous studies on coal-fired power plant 

emissions, and emissions from 124 plants vary between 0.02–2.13 kg s−1 for 2019–2024, with uncertainties spanning 4%–

78%, averaging 16%. This satellite-based, lightweight method enables low-latency, timely long-term monitoring of NOx 
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emissions and offers a promising alternative to bottom-up inventories and resource-intensive top-down models. The data are 

publicly available at https://zenodo.org/records/16787342 (Chen et al., 2025). 35 

1 Introduction 

Nitrogen oxides (NOx = NO + NO2) are key reactive trace gases and major air pollutants in the troposphere, influencing 

ozone photochemistry, particulate matter and acid rain formation (Galloway et al., 2004). Accurate and near-real-time 

estimation of NOx emissions is crucial for air pollution control and provides a practical approach for estimating co-emitted 

CO2 (Reuter et al., 2014, 2019; Miyazaki and Bowman, 2023; Li and Zheng, 2024). 40 

NO2 tropospheric vertical column densities (TVCDs) retrieved from new generation satellite instruments at unprecedented 

high spatiotemporal resolution and accuracy (Verhoelst et al., 2021; van Geffen et al., 2022) have accelerated the 

development of lightweight, mass conservation-based inversion approaches for top-down NOx emission estimation. Methods 

such as the cross-sectional flux (CSF) (Reuter et al., 2019; Santaren et al., 2025) integrated mass enhancement (IME) 

(Santaren et al., 2025) and flux divergence approach (FDA) (Beirle et al., 2019, 2021, 2023) have advanced rapidly due to 45 

their low computational cost and minimal latency. These methods rely on NO2 data and approximate meteorological 

transport velocities to estimate emissions. The CSF and IME methods first identify sources and then integrate emissions 

within plume contours based on enhancements above background. They are highly sensitive to wind speed and best suited 

for strong, distinct point sources with synchronous wind observations (Frankenberg et al., 2016; Koene et al., 2024; Krings 

et al., 2011; Varon et al., 2018). In contrast, the FDA generates a regional emission map and identifies sources by calculating 50 

the divergence of the horizontal flux. It is especially effective for detecting point sources without additional a priori 

knowledge (Ayazpour et al., 2025; Beirle et al., 2019, 2021, 2023; Koene et al., 2024). 

Since its proposal by Beirle et al. (2019), the FDA has been widely applied and refined for NOx emissions estimation, 

primarily driven by TROPOspheric Monitoring Instrument (TROPOMI) NO2 data (Beirle et al., 2021, 2023; De Foy and 

Schauer, 2022; Koene et al., 2024). It has also been long-lived gases like CH4 (Veefkind et al., 2023) and CO2 (Santaren et 55 

al., 2025). The FDA theory recommends explicit background subtraction (Koene et al., 2024), even for short-lived species 

like NO2 (Cifuentes et al., 2025). However, a well-defined NO2 background field may not exist (Koene et al., 2024). In 

practice, the NO2 background is either empirically removed (Beirle et al., 2019; De Foy and Schauer, 2022; Rey-Pommier et 

al., 2022, 2023) or the entire column is treated as the enhanced field (Beirle et al., 2021, 2023). An alternative to the FDA is 

the directional derivative approach (DDA) as proposed by Sun (2022), which replaces the flux divergence term by a 60 

directional derivative, i.e., the inner product between horizontal wind and gradient of column amounts. Both the FDA and 

DDA establish the link between satellite-observed column amounts and emissions by vertically integrating the three-

dimensional continuity equation, incorporating reasonable assumptions and approximations (Ayazpour et al., 2025; Koene et 

al., 2024). The primary difference between the FDA and DDA is the upper limit of vertical column integration (Ayazpour et 

al., 2025; Lonsdale and Sun, 2023). Integration in DDA is performed from surface to an intermediate altitude that does not 65 
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need to be explicitly defined. As demonstrated in Ayazpour et al. (Ayazpour et al., 2025), the different upper limit used in 

the DDA ultimately leads to the directional derivative term and a topography term, which in combination replace the flux 

divergence term in the FDA. By spatially differentiating the column amounts, the DDA implicitly removes the background 

field that is invariant at the spatial scale of single grid cells. Another resultant benefit of the DDA is that the adopted 

horizontal wind does not have to approximate the full wind profile but only the lower levels, which leads to higher accuracy 70 

and error tolerance. 

Two key challenges remain for NOx emission estimation using the FDA and DDA, including the NOx/NO2 ratio and the 

nonlinear NOx lifetime. When emitted, NOx is dominated by NO, which is rapidly oxidized by ozone (O3) to form NO2. As 

the plume mixes with ambient air, the balance between NO and NO2 is determined by the availability of oxidants that 

oxidizes NO to NO2 and radiations that photolyze NO2 to NO. The dominant sink of NOx is the reaction between NO2 and 75 

OH, which is modulated by the complex interplay between NOx, O3, and VOCs (Laughner and Cohen, 2019). This nonlinear 

photochemical evolution causes significant variations in the NOx/NO2 ratio and NOx lifetime, both over time and distance 

from the emission source (Krol et al., 2024; Meier et al., 2024). Constrained by the availability of observational data and the 

rationale for maintaining algorithmic efficiency, both existing FDA and DDA applications have necessarily involved 

substantial simplifications. Previous studies have accounted for the variability of NOx/NO2 ratios across different pixels 80 

using auxiliary data (Beirle et al., 2021, 2023; Ayazpour et al., 2025; Cifuentes et al., 2025; Meier et al., 2024), rather than 

assuming a constant value (Beirle et al., 2019; De Foy and Schauer, 2022; Lonsdale and Sun, 2023; Sun, 2022). Efforts have 

also been made to consider factors such as NOx concentration, latitude, season (Beirle et al., 2023; Lange et al., 2022) and 

distance from the emission source (Krol et al., 2024; Meier et al., 2024) to account for the variability of NOx lifetime. 

However, capturing these nonlinear variations (Laughner and Cohen, 2019) remains difficult. Meanwhile, due to the 85 

challenges above, most existing studies focus on point sources rather than emissions from large regions. 

In this work, we augment the DDA by applying a variable NOx/NO2 ratio from a global high-resolution chemical transport 

model and deriving a more realistic nonlinear NOx lifetime using an improved satellite data-driven piecewise fitting 

approach. Based on the augmented DDA, we estimate NOx emissions in China from 2019 to 2024. We evaluate the 

estimated emissions by comparing regional and point-source emissions with bottom-up inventories and top-down datasets. 90 

The paper is structured as follows: Section 2 describes the input datasets. Section 3 outlines the methods with a focus on NOx 

lifetime fitting, the isolating anthropogenic NOx from total emissions, and uncertainties. Section 4 presents the validation, 

along with the distribution and variations of emissions. Section 5 discusses limitations, followed by the conclusions (Sect. 7). 

2 Data 

2.1 TROPOMI NO2 95 

The TROPOMI offline (OFFL) NO2 TVCDs from 2019 to 2024 (Van Geffen et al., 2024) are used in this study. TROPOMI 

is on board of ESA’s Sentinel-5 Precursor (S5P) early-afternoon LEO satellite with a high signal-to-noise ratio (Veefkind et 
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al., 2012). It provides global daily coverage with a spatial resolution of 7.0 km × 3.5 km before 6 August 2019 and updated to 

5.5 km × 3.5 km thereafter (https://daac.gsfc.nasa.gov/datasets/). The data are filtered according to the following criteria: qa > 

0.75 and cloud fraction (CF) <0.3 to remove very cloudy scenes; ice-snow cover scenes and erroneous retrievals (van Geffen 100 

et al., 2022; Verhoelst et al., 2021); solar zenith angle (SZA) SZA < 65° to further restrict snow and ice cover, and viewing 

zenith angles (VZA) < 56° to minimize unfavorable viewing conditions at the edges of the swath, following Beirle et al. 

(2023). 

2.2 Wind fields data 

Wind fields are provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data 105 

(https://cds.climate.copernicus.eu/datasets/). The 500 m wind fields are interpolated from hourly data on pressure levels, 

while the 10 m wind fields are directly obtained from hourly data on single levels. Both datasets have a spatial resolution of 

0.25° × 0.25°. Details on the selection of wind heights and data processing are provided in Sect. 3.1. 

2.3 Chemical data 

The chemical data for NO and NO2 are sourced from the Goddard Earth Observing System composition forecast (GEOS-CF) 110 

system (https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/) to derive the NOx/NO2 ratio. GEOS-CF integrates the 

offline GEOS-Chem chemistry module into the GEOS weather and aerosol modeling system, enabling global near real-time 

estimates (hindcasts) and 5-day forecasts of atmospheric constituents at a high spatial resolution of 25 km × 25 km (Keller et 

al., n.d.; Knowland et al., 2022). The NOx/NO2 ratios are highest near the source within the plume and decrease quickly with 

time after emission (Krol et al., 2024; Meier et al., 2024). The NOx/NO2 ratio from the near-surface model layer 115 

(chm_tavg_1hr_g1440x721_v1) with a 1-hour temporal resolution is used, as it characterizes instantaneous NO to NO2 

conversion and captures the directional derivative's sensitivity to strong near-source NOx gradients (Ayazpour et al., 2025; 

Beirle et al., 2021, 2023; Sun, 2022). 

2.4 Inventories 

Two inventories for natural and anthropogenic sources are used. Soil NOx emissions are obtained from the CAMS global 120 

emission inventory (https://ads.atmosphere.copernicus.eu/datasets/cams-global-emission-inventories/), which provides 

monthly estimates from fertilizer/manure application and atmospheric deposition at a 0.5° resolution (Hoesly et al., 2018; 

Simpson et al., 2014; Yienger and Levy II, 1995). Since the inventory is updated only until 2018 and soil NOx variability is 

relatively small compared to total emissions, the 2018 data serve as a proxy for 2019–2024. 

Biomass burning and vegetation fires NOx emissions are derived from the CAMS global biomass burning emissions based 125 

on fire radiative power (GFAS) (https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-gfas/). GFAS 

v1.2 provides near-real-time daily averaged fire NOx fluxes using satellite observations of fire radiative power (FRP) on a 

global 0.1° × 0.1° grid (Kaiser et al., 2012). The data covers 2019–2024. 
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Anthropogenic NOx emissions for validation are sourced from the Multi-resolution Emission Inventory model for Climate 

and air pollution research (MEIC, v1.4, 2019–2020, http://meicmodel.org.cn) and the Emissions Database for Global 130 

Atmospheric Research (EDGAR, v8.1, 2019–2022, https://edgar.jrc.ec.europa.eu). MEIC provides high-resolution, multi-

scale databases of anthropogenic emissions for China at a 0.25° × 0.25° resolution (Geng et al., 2024; Li et al., 2017). 

EDGAR delivers global coverage at 0.1° × 0.1° resolution, with emissions derived through statistical downscaling of 

national inventories using high-resolution spatial proxies (Crippa et al., 2024; Solazzo et al., 2021). 

2.5 Point source data 135 

The point source emissions derived from DDA are evaluated against the point source catalog provided by Beirle et al. (2023). 

For point source detection, their catalog uses coal, gas, and oil power plants with capacities ≥100 MW from the Global 

Power Plant Database (Byers et al., 2019), identifying over 1,100 NOx point sources worldwide. Their validation shows good 

agreement in Germany and the United States, demonstrating the catalog's reliability. 

2.6 Nighttime light data 140 

NASA’s Black Marble nighttime lights (NTL) product suite, derived from the Visible Infrared Imaging Radiometer Suite 

(VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Partnership (SNPP), serves as a constraint on 

anthropogenic emissions (Román et al., 2018; Wang et al., 2021). The Lunar BRDF-Adjusted Nighttime Lights Yearly L3 

Global 15-arcsecond Linear Lat/Lon Grid  product (VNP46A4) provides high spatial resolution at 500 m and is available 

from January 2012 onward (https://viirsland.gsfc.nasa.gov/Products/NASA/BlackMarble.html). This study uses data from 145 

2019 to 2023. Due to the current unavailability of VNP46A4 data for 2024, the 2023 dataset is applied as a substitute. 

2.7 National accounts data 

National accounts data of annual Gross Domestic Product (GDP) and provincial Gross Regional Product (GRP) are from 

National Bureau of Statistics of China (https://data.stats.gov.cn). 

3 Methods 150 

3.1 Framework of the directional derivative approach 

The mathematical framework of the DDA is detailed in Sun (2022) and further developed by Ayazpour et al. (2025) Based 

on satellite-observed NO2 TVCDs, NOx emissions E can be estimated as: 

𝐸𝐸 = 𝜕𝜕(𝑓𝑓𝑓𝑓)
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑢𝑢�⃗ ∙ (𝛻𝛻𝛻𝛻) + 𝛺𝛺𝑢𝑢�⃗ ∙ (𝛻𝛻𝛻𝛻) + 𝑋𝑋𝑋𝑋𝑋𝑋𝑢𝑢�⃗ 0 ∙ (𝛻𝛻𝑧𝑧0) + 𝑓𝑓𝑓𝑓
𝜏𝜏

,       (1) 
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Where 𝛺𝛺 is NO2 TVCD, f is the NOx/NO2 ratio, 𝑢𝑢�⃗  is the profile-weighted horizontal wind from surface to a conceptual 155 

altitude (𝑧𝑧1) which is not explicitly needed and defined, 𝑢𝑢�⃗ 0 is surface wind, and 𝑧𝑧0 is surface altitude. 𝑋𝑋 and 𝜏𝜏 are fitting 

parameters representing the inverse of scale height and NOx lifetime, respectively. The tendency term (∂(𝑓𝑓𝑓𝑓)/∂t) becomes 

negligible when averaging over a month or longer or under the steady-state approximation. It should be noted that this 

approximation may not hold for a single satellite overpass, potentially leading to significant errors (Koene et al., 2024). 

Assuming X and τ stay constant over the averaging period, the spatiotemporal averaged emissions ⟨𝐸𝐸⟩ for a given time period 160 

and horizontal resolution can be expressed as: 

⟨𝐸𝐸⟩ = ⟨𝑓𝑓𝑢𝑢�⃗ ∙ (𝛻𝛻𝛺𝛺)⟩ + ⟨𝛺𝛺𝑢𝑢�⃗ ∙ (𝛻𝛻𝛻𝛻)⟩ + 𝑋𝑋⟨𝑓𝑓𝛺𝛺𝑢𝑢�⃗ 0 ∙ (𝛻𝛻𝑧𝑧0)⟩ + ⟨𝑓𝑓𝛺𝛺⟩
𝜏𝜏

,       (2) 

The first and second terms of Eq. (2) are referred as the 𝐷𝐷𝐷𝐷𝐷𝐷 estimator (Ayazpour et al., 2025), reflecting the contributions 

of advection transport to local NOx emissions. The third component is the topography correction as emphasized by Ayazpour 

et al. (Ayazpour et al., 2025), it is directly derived from the continuity equation rather than serving merely as an empirical 165 

adjustment (Koene et al., 2024). The sum of the first three terms is referred to as 𝐷𝐷𝐷𝐷𝐷𝐷_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 estimator. The last term 

describes the NOx chemistry approximated by first-order loss. 

Integration in DDA is performed from 𝑧𝑧0 to an intermediate altitude 𝑧𝑧1. While the ideal approach would involve winds at all 

vertical levels, the full wind profile is typically unavailable. Instead, a single-layer wind, known as the effective wind field, 

is used to approximate the average state of the full profile. Ayazpour et al. (2025) utilized the effective wind field height 170 

using WRF-CMAQ simulations and found that the 500 m wind is most suitable, which aligns with Beirle et al. (2023). 

Consequently, the horizontal wind 𝑢𝑢�⃗  is interpolated to 500 m above the surface, while 𝑢𝑢�⃗ 0 directly obtained as the 10 m wind 

from ERA5. 

To apply Eq. (2), the physics-based oversampling approach (Sun et al., 2018) is used to resample the level 2 pixels into 

0.025° × 0.025° grid cells with appropriate weighting, then coarsened to 0.05° × 0.05°. Winds in ERA5, the NOx/NO2 ratio (f) 175 

in GEOS-CF data are resampled to match this spatial resolution and temporally aligned with satellite overpasses, allowing 

for the calculation of all bracketed terms in Eq. (2). Yearly NTL data from SNPP/VIIRS are also resampled at the same 

spatial resolution. The spatial differentiation in gradient calculation is conducted on 0.05° × 0.05° grid cells with second 

order central difference. All bracketed terms are averaged at a monthly scale before X and τ are fitted (see in Sec. 3.2 ) to 

derive emissions ⟨𝐸𝐸⟩ in mol m−2 s−1, and the conversion to mass assumes NOx as NO2.  180 

3.2 Nonlinear NOx lifetime fitting 

To avoid additional assumptions and external computations (Beirle et al., 2021, 2023), DDA performs a data-driven fitting 

approach based on monthly fluxes to determine X and τ across grids with negligible emissions (⟨𝐸𝐸⟩≈0)(Ayazpour et al., 2025; 

Lonsdale and Sun, 2023; Sun, 2022), where Eq. (2) can be rewritten as: 

⟨𝑓𝑓𝑢𝑢�⃗ ∙ (𝛻𝛻𝛺𝛺)⟩ + ⟨𝛺𝛺𝑢𝑢�⃗ ∙ (𝛻𝛻𝛻𝛻)⟩ = 𝛽𝛽0 + 𝛽𝛽1⟨𝑓𝑓𝛺𝛺𝑢𝑢�⃗ 0 ∙ (𝛻𝛻𝑧𝑧0)⟩ + 𝛽𝛽2⟨𝑓𝑓𝛺𝛺⟩ + 𝜀𝜀,      (3) 185 
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Here, －β1 is an estimate of X, －β2 is an estimate of the inverse of τ, β0 and ε represent the offset and random error in the 

predicted variable, which cannot be accounted for by any linear combinations of predictors. 

Both the FDA and DDA methods in prior studies have exhibited substantial negative emissions and/or underestimation of 

total emissions (Ayazpour et al., 2025; Beirle et al., 2019, 2021, 2023; De Foy and Schauer, 2022; Lonsdale and Sun, 2023; 

Sun, 2022). A single τ fitted in clean region tends to overestimate the chemistry lifetime, then the NOx flux is underestimated. 190 

Therefore, a more realistic representation of NOx lifetime is critical for accurate emission estimation (Beirle et al., 2023; 

Krol et al., 2024; Laughner and Cohen, 2019; Meier et al., 2024). The photochemical reactions of NOx-O3-VOCs depends on 

the concentrations of NOx, O3, and volatile organic compounds (VOCs), as well as on photolysis and meteorological 

conditions (Pusede et al., 2015; Sillman et al., 1990; Souri et al., 2023). Even under identical NOx concentrations57 and at the 

same latitude (Beirle et al., 2023; Lange et al., 2022), the lifetime still vary considerably due to the complex interplay of NOx 195 

and VOC chemistry (Laughner and Cohen, 2019). 

To derive more realistic lifetime, we fit β2 across stratified column amount intervals ⟨𝛺𝛺⟩ within subregions instead of fitting a 

single lifetime across the domain to account for the NOx reactivity nonlinearity. We partition the study domain into four 

subregions by employing NOx concentration as the primary criterion due to its dominant control over chemical lifetime 

(Pusede et al., 2015) with additional consideration of latitude and terrain effects. Figure 1a shows the four subregions. The 200 

east (E) and west (W) sections are divided by the Hu line (HL) that extends from Heihe (127.54 °E, 50.25 °N) to Tengchong 

(98.50 °E, 25.03 °N). The E and W sections are further subdivided into north (N) and south (S) subregions by latitudes 35°N 

for the west and 30°N for the east. The resultant four subregions are denoted as WN, WS, EN, ES thereafter. The HL is a 

well-known natural geographical boundary that divides China into two contrasting regions in terms of terrain, climate, 

population density, and economic activity. The eastern part, encompassing most of China's plains and rivers (Fig. 1b), is 205 

dominated by the East Asian monsoon, supports 96% of the population, contributes the majority of national productivity, and 

faces severe air pollution. In contrast, the western region is characterized by elevated terrain, a westerly climate, and sparse 

population (Hu, 1935; Zhang et al., 2022). So, the above factors implicitly account for variations in O3 and its precursors 

influenced by human activities (Jin et al., 2020; Martin et al., 2004; Souri et al., 2023), differences in natural VOCs 

emissions from vegetation under varying climatic and geographical conditions (Guenther et al., 1995; Sprengnether et al., 210 

2002; Palmer et al., 2006), and meteorological influences on transport and photochemistry (Duncan et al., 2010; Li et al., 

2020; Pusede et al., 2015). 

Given the small interannual variability and limited impact on reactive species emission estimation (Ayazpour et al., 2025), β₁ 

is fitted using the same climatological months, whereas β2 is fitted for each individual month and subsequently averaged over 

the same months for each subregion during 2019–2024. First, β₁ is fitted in grid cells with rough terrain (0.001 m s−1<⟨𝑢𝑢�⃗ 0 ∙215 

(𝛻𝛻𝑧𝑧0)⟩<0.1 m s−1), where emissions are negligible (𝐷𝐷𝐷𝐷𝐷𝐷<5×10−9 mol m−2 s−1). Then, β2 is fitted in flat terrains (where 

⟨𝑢𝑢�⃗ 0 ∙ (𝛻𝛻𝑧𝑧0)⟩<0.001 m s−1) without strong NOx emission sources (𝐷𝐷𝐷𝐷𝐷𝐷_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡<10−10 mol m−2 s−1). The fitting is performed 

across piecewise bins defined by NO2 TVCD percentiles. TVCD percentiles are binned at 10% intervals for each month in 

WN and EN, while in WS and ES, due to narrower lower percentile ranges, bin widths are expanded to 20% below the 80th 
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percentile and remain 10% above it to ensure robust fitting performance. For month-bins where fitting fails (p > 0.01 or β2 > 220 

0), appropriate adjustments are made by merging neighboring bins or revising percentile thresholds. For each subregion, 

average TVCD and β2 per month-bin are calculated from successfully fitted bins. TVCDs can be grouped into intervals (10% 

here), the mean TVCD of each interval is matched to the nearest month-bin and the corresponding β2 is used to calculate flux. 

 
Figure 1: Four subregions divided by the Hu line and (a) Average NO2 TVCDs of 2019 as an example; (b) altitude.  225 

3.3 Anthropogenic NOx emissions separation 

The DDA quantifies total NOx emissions, from which anthropogenic contributions to the total emission rates over a certain 

area need to be isolated by subtracting natural sources. Globally, anthropogenic emissions dominant, while natural sources, 

such as soil emissions, biomass burning, and lightning, account for approximately 30–40% (Jaeglé et al., 2005; Müller and 

Stavrakou, 2005). Regional variation of natural sources contributions is substantial, with natural contributions around 14% in 230 

East Asia (Zhao and Wang, 2009), and 8% in eastern China (Lin, 2012). Nevertheless, these estimates involve significant 

uncertainties (Ding et al., 2017; Rey-Pommier et al., 2022), including potential underestimation (Song et al., 2021). 

Previous studies typically designated regions dominated by anthropogenic emissions as mean NO2 TVCDs higher than 

1.0×1015 molecules cm−2 (Li and Zheng, 2024; Liu et al., 2016a). However, due to the presence of unexpectedly high or 

poorly understood natural NOx emissions over this threshold (Kong et al., 2023; Song et al., 2021), it is not applied to filter 235 

natural sources in this study. Since natural NOx is primarily emitted during the summer and remains low in winter (Liu et al., 

2016a; van der A et al., 2006), while anthropogenic NOx emissions typically peak in in winter (Lonsdale and Sun, 2023), we 

identify natural-source grid cells based on seasonal criterion and further constrain them using nighttime light (NTL) data. 

Grid cells with either the highest averaged NO2 TVCDs in summer or the lowest values in winter comparing to other seasons, 
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and with NTL < 0.01 nW cm−2 sr−1, are classified as natural NOx sources and excluded from the areal integration to get 240 

anthropogenic NOx emission rates. For the remaining grid cells, we subtract soil  and biomass burning emissions (from 

CAMS data) from the satellite-derived emissions to isolate anthropogenic contributions. 

3.4 Uncertainty analysis 

To quantify uncertainties, 𝐷𝐷𝐷𝐷𝐷𝐷  is calculated as the mean directional derivative along the zonal/meridional ( 𝑥⃗𝑥 𝑦⃗𝑦⁄ ) and 

diagonal directions (𝑟𝑟 𝑠𝑠⁄ ) (Li et al., 2025) on a 0.05° × 0.05° grid: 245 

𝐷𝐷𝐷𝐷𝐷𝐷𝑥⃗𝑥 𝑦𝑦�⃗⁄ = 𝑓𝑓𝑢𝑢�⃗ ∙ (𝛻𝛻𝛺𝛺)𝑥⃗𝑥 𝑦𝑦�⃗⁄ + 𝛺𝛺𝑢𝑢�⃗ ∙ (𝛻𝛻𝛻𝛻)𝑥⃗𝑥 𝑦𝑦�⃗⁄ = 𝑓𝑓𝑢𝑢𝑥𝑥 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑢𝑢𝑦𝑦 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛺𝛺𝑢𝑢𝑥𝑥 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛺𝛺𝑢𝑢𝑦𝑦 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,    (4) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟 𝑠𝑠⁄ = 𝑓𝑓𝑢𝑢�⃗ ∙ (𝛻𝛻𝛺𝛺)𝑟𝑟 𝑠𝑠⁄ + 𝛺𝛺𝑢𝑢�⃗ ∙ (𝛻𝛻𝛻𝛻)𝑟𝑟 𝑠𝑠⁄ = 𝑓𝑓𝑢𝑢𝑟𝑟 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑢𝑢𝑠𝑠 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛺𝛺𝑢𝑢𝑟𝑟 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛺𝛺𝑢𝑢𝑠𝑠 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,    (5) 

Standard deviation of the difference between 𝐷𝐷𝐷𝐷𝐷𝐷𝑥⃗𝑥 𝑦𝑦�⃗⁄  and 𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟 𝑠𝑠⁄  is used to estimate random error σ of 𝐷𝐷𝐷𝐷𝐷𝐷: 

𝜎𝜎 = 0.5 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷𝐷𝐷𝐷𝐷𝑥⃗𝑥 𝑦𝑦�⃗⁄ − 𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟 𝑠𝑠⁄ ),           (6) 

The random errors at daily, monthly, and annual scales for 2019–2023 consistently decrease as the mean satellite data 250 

coverage (N) increases (Fig. 2). This observed scaling follows the theoretical relationship σ = σ0/√𝑁𝑁 (black line in Fig. 2), in 

agreement with the central limit theorem for independent random errors. Here, σ0 reflects the precision of a single satellite 

overpass, calculated at the monthly scale as: 

𝜎𝜎0 = exp (〈log 𝜎𝜎𝑖𝑖〉 + 0.5 ∙ 〈log𝑁𝑁𝑖𝑖〉),           (7) 

Where σi and Ni denote the random error and mean satellite coverage for month i, respectively. The results further 255 

demonstrate that temporal averaging effectively reduces random errors in emission quantification. 

 
Figure 2: The relationship between the random errors (σ) and mean satellite data coverage (N) at different time scales. 

https://doi.org/10.5194/essd-2025-480
Preprint. Discussion started: 3 November 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

Since the topography correction and chemical loss terms in Eq. (2) are determined through fitting, only the overall Root 

Mean Square Error (RMSE) can be evaluated, rather than grid-level precision. Therefore, the random error of 𝐷𝐷𝐷𝐷𝐷𝐷 is 260 

employed to characterize the uncertainties in DDA emission estimation. 

4 Results 

4.1 Effects of NOx/NO2 ratio correction and lifetime fitting 

Figure 3 compares three DDA-based results before and after applying the NOx/NO2 ratio correction and improved fitting 

scheme: (1) a constant NOx/NO2 ratio of 1.32 and monthly single-lifetime fitting (fixed_f and single_τ), representing the 265 

original DDA framework by Sun (2022); (2) the NOx/NO2 ratio from GEOS-CF and monthly single-lifetime fitting 

(variable_f and single_τ), as modified by Ayazpour et al. (2025), while this study marks the first application of GEOS-CF 

chemical data in satellite-based emission estimation; and (3) the variable NOx/NO2 ratio and piecewise fitting with nonlinear 

NOx lifetimes (variable_f and nonlinear_τ). Using a variable NOx/NO2 ratio better captures strong NOx gradients near point 

sources, improving the accuracy of point source emission estimates. However, this approach still leads to notable 270 

underestimation of regional emissions. In contrast, the nonlinear lifetime fitting more effectively accounts for the balance 

among local emissions, horizontal transport, and chemical loss, reducing the negative emission grids and increasing regional 

emission estimates, particularly in relatively clean areas. Furthermore, the improvement fitting scheme minimizes artifacts in 

mountainous and remote regions compared to earlier results (Ayazpour et al., 2025; Beirle et al., 2023; Lonsdale and Sun, 

2023; Sun, 2022). 275 

 
Figure 3: Comparison of three DDA-based results, including (a) anthropogenic NOx emissions estimates in China for 2019 and (b) 
spatial distribution in Shanxi province for 2019, shown as an example of complex topography. 

4.2 NOx lifetime 

The lifetime of NOx is known as a complicated function of NOx chemistry regimes (Laughner and Cohen, 2019). At very low 280 

NOx concentration, NOx lifetime increases with NOx concentration. As NOx concentration rises, the lifetime decreases 
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because increased NO enhances the chain reactions involving organic compounds (RH) and HOx (HOx = OH + HO2 + RO2), 

accelerating RH oxidation to produce O3 (“NOx-limited” regime) and further oxidizing NO. At high NOx concentration, as 

NOx reaches saturation, the reaction between OH and NO2 becomes much faster than the reaction between OH and RH, 

dominating the fate of HOx and slowing O3 production (“NOx-suppressed” regime), resulting in the opposite trend in NOx 285 

lifetime (Laughner and Cohen, 2019; Pusede et al., 2015). 

Figure 4 shows the monthly climatology of NOx lifetimes from the improved fitting scheme described in Sect. 3.2. For each 

subregion and each climatological month, the fitted lifetime is shown as bubbles corresponding to bins of NO2 TVCD. The 

size of bubbles scales with the mean NO2 TVCD for the bin. The results clearly demonstrate the nonlinear variability of NOx 

lifetime as a function of TVCDs and show significant discrepancies between subregions. The results closely match the 290 

theoretical calculated NOx lifetime versus NOx concentrations under different VOC reactivities by Laughner and Cohen 

(2019) capturing the turning points marked by an increase in lifetime at low NOx concentrations (region I), the subsequent 

decrease with rising NOx (region II), and the eventual increase under NOx-saturated conditions (region III). The range of 

lifetimes vary from 0.71–26.47 h, and the average values across the subregions range from 3.17–7.85 h. Due to fitting 

failures in July–August, the number of bins in WN is substantially reduced, requiring broad bin merging and resulting in 295 

lifetimes that are likely overestimated and unrepresentative. The results are consistent with the 2–8 h range reported by 

Lange et al. (2022) as well as the 2 h (low NO2) to over 7 h (high NO2) given by Laughner and Cohen (2019). 

The consistent lifetime patterns highlight the dominant role of NOx concentration in determining τ. However, even at 

comparable NOx levels and over the same periods, τ exhibits subregional variations driven by distinct ambient conditions 

(e.g., O3 and VOCs concentrations, meteorological parameters) and differences in NOx emission sources. WN is located in 300 

the northern China, sees increased NOx emissions during the colder half of the year due to heating demand. WS is situated on 

the sparsely populated Tibetan Plateau, has primarily natural NOx sources, including unexpectedly high NO emissions from 

lakes (Kong et al., 2023). EN exhibits distinct anthropogenic emissions, with higher NOx and longer τ in winter due to 

heating, and lower NOx in summer, where intense photochemical reactions result in a shorter τ. ES is located in southern 

China with smaller annual temperature variations, shows less pronounced seasonal discrepancies in τ. Additionally, high 305 

natural VOCs emissions during the growing season of vegetables (Cao et al., 2022) in ES contribute to a longer τ (Laughner 

and Cohen, 2019). 

We provide detailed comparisons of the lifetime fitting parameters for the three DDA-based approaches in Table S1. The 

variable NOx/NO2 ratio correction improves the accuracy of source divergence and emission estimates, while the piecewise 

fitting approach captures nonlinear NOx chemistry and yields a shorter overall lifetime with lower fitting RMSE. Across the 310 

four subregions, NOx lifetimes without ratio correction and fitting scheme improvement are approximately 2 to 3 times those 

derived in this study, specifically 1.7 times in ES, 2.8–2.9 times in EN and WN, and 3.3 times in WS (figure omitted), 

although the values primarily represent the mean state associated with the nonlinear characterization of lifetime. These 

results highlight the great importance of accounting for the variable NOx/NO2 ratio and nonlinear NOx lifetime, particularly 

in clean and heavily polluted regions, while the influence is comparatively less pronounced in moderately polluted areas. 315 
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Figure 4: Monthly NOx lifetimes for (a) WN, (b) WS, (c) EN, and (d) ES. The bubble size indicates monthly mean NO2 TVCDs 
(μmol·m−2) per bin. The τ (h), R² (coefficient of determination), and RMSE (root mean square error, nmol·m−2 s−1) for each 
subregion represent the month-bin averages. N denotes the count of fitting grids across all months.  

4.3 Regional NOx emissions 320 

4.3.1 Comparison with inventories 

The spatial distribution of national anthropogenic NOx emissions based on DDA in China for 2019 is shown in Fig. 5a, with 

the corresponding total emissions provided in Fig. S1. The identified hotspots align closely with areas of intensive human 

activity, covering both urban and rural regions as well as transportation routes. Traces of faint anthropogenic emissions 

remain clearly visible even in the remote, sparsely populated Northwest China (Fig. S2). 325 

The derived anthropogenic emissions of China from 2019 to 2024 are compared with: (1) two bottom-up emission 

inventories (MEIC and EDGAR), and (2) two top-down datasets, the Inversed Emission Inventory for Chinese Air Quality 

(CAQIEI) (Kong et al., 2024) and results from Li and Zheng (2024). CAQIEI assimilates surface observations using an 

ensemble Kalman filter (EnKF) and the Nested Air Quality Prediction Modeling System, while the results provided by Li 

and Zheng (2024) are based on TROPOMI NO2 combined with GEOS-Chem. Note that these datasets are only available in 330 

limited years, while DDA covers all years. National scale comparisons show that DDA agrees well with other inventories 

and produces slightly lower estimates (Fig. 5b). Based on DDA calculations, the anthropogenic NOx emissions of China are 

estimated to be 20.2 Tg, 18.5 Tg, 19.4 Tg, 18.9 Tg, 20.7 Tg and 18.8 Tg from 2019 to 2024, with uncertainties of 27%–30%. 

The corresponding total emissions are 29.8 Tg, 28.8 Tg, 28.7 Tg, 28.2 Tg, 28.7 Tg and 27.4 Tg, respectively, with 

uncertainties of 29%–32%. These results indicate fluctuating trends in anthropogenic NOx emissions: a sharp decline in 2020 335 
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due to the COVID-19 lockdowns (Lonsdale and Sun, 2023; Miyazaki et al., 2021; Cooper et al., 2022), a modest rebound in 

2021–2022, a peak in 2023 (surpassing 2019 levels despite total NOx remaining lower), and a subsequent drop in 2024 to 7.1% 

below 2019 levels. The differences between DDA and EDGAR, MEIC, CAQIEI and Li and Zheng are −8.7% to 0.8%, −6.3% 

to −3.4%, −7.2% to −4.5%, and −11.8% to −3.8%, respectively. Notably, the DDA approach provides long-term emission 

estimates with low latency, demonstrating a key advantage of this satellite-based lightweight estimation method over 340 

conventional bottom-up inventories and computationally intensive top-down data assimilation systems. The data are publicly 

available at https://zenodo.org/records/16787342 (Chen et al., 2025). 

The primary cause of the lower estimates is the systematic low bias in TROPOMI NO2 column amounts (Beirle et al., 2023; 

Liu et al., 2024), most likely due to a priori assumptions and a tropospheric negative bias of approximately 30% from 

ground-based validation (van Geffen et al., 2022). Meanwhile, we attribute a larger proportion of total emissions to natural 345 

sources compared to the latter two top-down methods, varying between 28.1%–35.6%, with an average of 32.1% (Fig. S3). 

CAQIEI assigned soil and wildfire NOx from CAMS and GFAS as natural sources (approximately 2.0 Tg) and subtracts 

them from the total NOx estimates (23.8 Tg in 2019 and 21.4 Tg in 2020, relative to 29.8 Tg and 28.8 Tg in DDA). While Li 

and Zheng (2024) designated regions dominated by natural emissions as grids with mean NO2 TVCDs less than 1.0×1015 

molecules cm−2, this threshold is not applied in this study, as described in Sect. 3.3. Based on satellite observations, Kong et 350 

al. (2023) found unexpectedly high NO emissions from remote lakes on the Tibetan Plateau, with per-unit-area emissions 

exceeding those from crop fields in summer. Lin et al. (2024) highlighted a severe underestimation of soil NOx in the current 

CAMS inventory, while Opacka et al. (2025) also identified underestimated soil and lightning NOx. Using natural nitrogen 

isotopes in precipitation to trace atmospheric NOx sources, Song et al. (2021) showed that the relative contributions of 

natural NOx average 57 ± 13% in East Asia, a value that had long been underestimated. In this work, we identify natural 355 

sources based on seasonal emission patterns and constrain them with NTL data, with anthropogenic areas consistently 

covering over 92% of grid cells where NTL ≥ 0.01 nW cm−2 sr−1 each year. A threshold of 0.01 nW cm−2 sr−1 (approximately 

the 15th to 20th percentile) is applied instead of zero to minimize the resampling effect from 500 m to 0.05° in dark regions. 

From 2019 to 2023, the number of grid cells indicative of human activity increased by 48.6% (Fig. S4). As a result, 

anthropogenic NOx emissions in 2023 are 0.5 Tg higher than in 2019, despite total NOx in 2023 being 1.1 Tg lower. While it 360 

is difficult to separate anthropogenic and natural sources in dimly lit grids, it is clear that natural emissions in China are 

indeed underestimated, as noted by Song et al. (2021). Isolating natural contributions from total emissions continues to be a 

challenge. 

For subnational scale (Fig. 6a and Fig. 6b), DDA shows excellent agreement with inventories in the Central, North, and 

Southwest regions; slightly higher values in the Northeast and Northwest; somewhat lower values in the South; and 365 

significantly lower values in East China during 2019–2020. The results also demonstrate a stronger consistency between 

DDA and MEIC (The Pearson correlation coefficient (r) ranges from 0.86–0.87) compared to EDGAR (r 0.76–0.79). MEIC 

uses high-resolution localized data, while EDGAR relies on coarser global datasets, resulting in discrepancies in spatial 
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allocation accuracy for China (Crippa et al., 2024; Liu et al., 2016b). Given the good agreement of DDA with inventories in 

2019–2021 (Fig. 5b), the discrepancy with EDGAR in 2022 does not undermine the reliability of the estimates in this work, 370 

 

 
Figure 5: National anthropogenic NOx emissions of China for (a) spatial distribution at 0.05° × 0.05°, with 2019 as an example, and 
(b) comparisons with previous inventories from 2019–2023. 

despite the current lack of inventories for comparison. 375 

At the provincial scale (Fig. 6c), NOx emissions derived from DDA align well with bottom-up inventories, with over 90% of 

provinces falling within ±60% of MEIC, and 85% of provinces within ±60% of EDGAR. DDA shows consistently lower 

emissions in economically developed provinces (mostly in East and South China) and higher in less developed western 
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provinces. The significant difference in Xizang’s emissions arises from DDA identifying substantially more human activity 

than reported in inventories. 380 

 
Figure 6: Comparisons of anthropogenic NOx emissions between DDA, MEIC and EDGAR for (a) national and subnational scales 
in 2019, and (b) same as (b) but in 2020, (c) provincial scale in 2019. 

4.3.2 Differentiated patterns in provincial NOx emissions changes 385 

The anthropogenic NOx emissions map reveals a significant decline in urban areas, particularly in heavily pollutant regions, 

from 2019 to 2024 (Fig. 7a). However, certain localized areas or point sources, particularly those in the Northeast, Northwest, 

and South, exhibit noticeable increases. At provincial scale (Fig. 7b), NOx emissions increase by less than 10% in Gansu, 

Hunan, and Inner Mongolia; by 10%–30% in Chongqing, Guangxi, Qinghai, Yunnan, and Xinjiang; and by more than 50% 

in Xizang. At the subnational scale (Fig. 7c), which aggregates total emissions from provincial groups, NOx emissions 390 

decline by more than 10% in the North and East, and by less than 10% in the Northeast, Central, and South, while slight 

increases under 10% are observed in the Southwest and Northwest. Year-on-year changes in anthropogenic emissions from 
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2020 to 2024 are shown in Fig. S5. In other words, NOx emissions at the provincial scale display a differentiated temporal 

pattern, with declines in the central and eastern regions but increases in the west. 

 395 

 
Figure 7: Changes in anthropogenic NOx emissions from 2019 to 2024, (a) grid scale at 0.05° × 0.05°, (b) provincial scale, and (c) 
subnational scale. 

Air pollutant emissions evolve in response to urbanization and macroeconomic development, which influence policy 

regulations and industrial restructuring, forming a feedback loop that further shapes economic growth at both national and 400 

city scales (Miyazaki and Bowman, 2023; Wang et al., 2019). Anthropogenic NOx emissions constrained by nighttime lights 

reflect the extent of human activity, and their share of total NOx emissions can serve as a useful indicator of regional 
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urbanization (Wang et al., 2021). Figure 8 presents the relationships among provincial NOx emission changes, their 

contributions to total NOx, and gross regional product (GRP). Provincial positive changes in anthropogenic NOx emissions 

often coincide with increases in their share of total NOx (Fig. 8a), particularly in economically less developed regions with 405 

relatively low GRP, where anthropogenic sources constitute a small to moderate portion of total NOx (Fig. 8b) and NO2 

TVCDs are generally low (Fig. S6). In the early stages of economic development, a resource-intensive model driven by fuel 

consumption dominates, with GRP growth accompanied by rising NOx emissions at the expense of environmental quality. 

As the economy progresses, shifts in industry sectors and air quality mitigation measures contribute to a decline in NOx 

emissions, with regional economic levels potentially playing a key role in driving these changes (Miyazaki and Bowman, 410 

2023; Wang et al., 2019). The disparities in industrial structure and economic development levels across regions may 

account for the current differentiated patterns in provincial NOx emissions. 

 
Figure 8: (a) Provincial changes in anthropogenic NOx emissions from 2019 to 2024 (ΔNOx) and their contributions to total NOx in 
2024 (A/T), with bubble color indicating changes in the A/T proportion (ΔA/T), provinces with positive ΔNOx are labeled; (b) 415 
Same as (a), but showing the relationship between A/T and gross regional product (GRP) in 2024, with bubble color indicating 
ΔNOx. 

4.3.3 Consistent downward trend in NOx emissions across megacities 

Six megacities of China with GDP rankings in the top ten and populations exceeding ten million are selected to present the 

time series of monthly NOx emissions and changes (Fig. 9). Values in the bottom right corner represent the percentage of 420 

months with negative relative changes. The results are in good agreement with the decreased NOx during the strict COVID-

19 lockdowns (e.g., Feb–May 2020 in Wuhan, Feb–May 2022 in Shanghai) (Miyazaki et al., 2021; Cooper et al., 2022), and 

the increase during major holidays (e.g., Spring Festival in Jan–Feb, summer holiday in July–August, National Day holiday 

in October). Seasonal variability of NOx emissions in megacities is influenced by meteorological conditions. Heating 

demand leads to markedly higher emissions in autumn and winter than in spring and summer (Miyazaki et al., 2021), with 425 

more pronounced variability in northern cities such as Beijing. In contrast, emission fluctuations associated with rising 

electricity demand during hot seasons (Lange et al., 2022) are more pronounced in the five southern cities. Meanwhile, as 
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China’s clean air actions progress, megacities exhibit a consistent downward trend in NOx emissions, with the proportion of 

negative changes higher than positive. Shanghai, and Beijing have relatively high emissions, but they show a greater share of 

months with declines from 2020–2024 compared to 2019, reflecting stronger efforts in emission reduction. 430 

 
Figure 9: Monthly NOx emissions for 2020–2024 and relative changes from 2019 in China’s megacities, with Beijing, Shanghai, 
Wuhan, Hangzhou, Shenzhen and Chengdu as examples. 

4.4 Point source emissions 

Point source emissions in DDA (from power plants in this study) are quantified by integrating over a 15 km radius, 435 

following the approach and locations of 124 coal-fired power plants reported by Beirle et al. (2023). Figure 10a presents the 

estimated NOx emissions from these plants in China for 2019. From 2019 to 2024, emissions from the 124 plants range from 

0.02–2.13 kg s−1, with uncertainties between 4%–78%, averaging 16%. Overall, the plants show an average emission decline 

of 23% over this period. 

 440 
Figure 10: Comparisons of NOx point source emissions between the DDA and Beirle et al. (2023) data. 
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The resulting estimates are validated against Beirle et al. (2023) for 2019–2021, as shown in Fig. 10b. The two datasets show 

good agreement, with an R2 of 0.81, both indicating a decline in NOx emissions from 2019 to 2021. Generally, NOx 

emissions from the DDA are slightly lower than those from Beirle et al. (2023), with a slope of 0.83. For comparison, results 

from DDA test without ratio correction and fitting scheme improvement (fixed_f and single_τ) are also shown in Fig. S7, 445 

further illustrating the improvement in point source quantification achieved in this study. It should be noted that point source 

emissions include all fossil fuel emission sources within the defined radius, leading to a positive bias (Beirle et al., 2023). 

5 Discussion 

We estimate NOx emissions using the DDA by applying a variable NOx/NO2 ratio and deriving a more realistic nonlinear 

NOx lifetime through a piecewise fitting approach in each subregion. 450 

Region partitioning mainly depends on NOx concentration, latitude, and terrain. By using HL as the east-west dividing line, 

the results implicitly consider variations in O3 and its precursors driven by human activities, differences in natural VOCs 

emissions from vegetation across different climates and geographies, and meteorological effects on transport and 

photochemistry. It is worth noting that HL is used as a boundary for partitioning because it provides a suitable division, 

where regional divisions improve fitting performance but have a limited impact compared to grading NOx concentration 455 

levels. 

The random error of wind-gradient terms in Eq. (2) described in Sect. 3.4 is used to characterize the uncertainties in DDA 

emission estimation. Annual anthropogenic emissions uncertainties range from 27%–30% at the national scale and 15%–40% 

at the subnational scale. At provincial scale, uncertainties vary more widely, from 8%–59%. The average uncertainty for 

point sources is 16%. Note that the error does not include the fitting uncertainties related to the topographic correction and 460 

chemical loss terms in Eq. (2), indicating that the reported uncertainty is likely underestimated. 

Additionally, the anthropogenic NOx emissions are derived by subtracting natural sources from total emissions, a step that 

may introduce unknown uncertainties. For point sources, spatial integration that includes all fossil fuel sources within the 

defined radius may lead to a positive bias.  

The DDA adopts a data-driven fitting approach to derive parameters independently, eliminating the need for additional 465 

assumptions or external calculations. However, this method requires regions with sufficient terrain diversity (including both 

rough and flat areas) and an adequate number of observations that satisfy the fitting criteria. Future studies could explore the 

development of appropriate thresholds to enable automated global partitioning.  

Since satellite-based inversion quantifies total NOx emissions, isolating natural sources is crucial for accurately estimating 

anthropogenic emissions. However, the current understanding of natural sources remains limited, with substantial 470 

discrepancies and uncertainties across previous studies (Jaeglé et al., 2005; Kong et al., 2023; Li and Zheng, 2024; Lin, 2012; 

Lin et al., 2024; Müller and Stavrakou, 2005; Song et al., 2021; Zhao and Wang, 2009). We attribute 28.1%–35.6% of 
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China’s total NOx emissions to natural sources, indicating that natural emissions in China have been underestimated, as 

noted by Song et al. (2021). 

This work primarily aims to propose a practical and insightful perspective for addressing nonlinear NOx chemistry in 475 

satellite-based emissions estimation, rather than focusing on improvements in data quality itself (e.g., air mass factor 

corrections in satellite NO2 retrievals). 

6 Code and data availability 

Code relevant to this paper can be found in Sun (2022) at https://doi.org/10.5281/zenodo.7987812. The data can be found at 

https://zenodo.org/records/16787342 (Chen et al., 2025). 480 

7 Conclusions 

We present an improved satellite-based framework for estimating NOx emissions across China, leveraging the directional 

derivative approach (DDA) alongside TROPOMI NO2 observations, ERA5 wind fields, and variable NOx/NO2 ratios derived 

from GEOS-CF. The DDA addresses several challenges in satellite-based emission quantification. It corrects divergence 

artifacts induced by terrain-driven flows, reduces biases from using single-level wind fields, and suppresses background 485 

signal contamination implicitly. 

In this work, by incorporating a spatially variable NOx/NO2 ratio and implementing a data-driven, piecewise fitting strategy, 

we account for nonlinear NOx chemistry and improve the estimation of NOx lifetimes across diverse emission regimes. The 

NOx/NO2 ratio correction improves the accuracy of source divergence and emission estimates, with the major advancement 

being the piecewise fitting approach, which captures the nonlinear NOx chemistry. The fitting scheme clusters NO2 490 

concentration levels within localized regions, reduces fitting errors, mitigates artifacts in mountainous and remote areas, and 

improves the overall reliability of the estimates. It enables the estimation of both point-source and regional NOx emissions 

across China, representing the first application of a lightweight, satellite-driven NOx emissions estimator in such a large and 

topographically complex region. 

NOx lifetimes vary from 1.85–14.70 h with NOx concentrations, and average values across the four subregions range from 495 

4.57–6.63 h, reflecting the nonlinear variability of lifetime as a function of NO2 TVCDs. Significant discrepancies in 

regional ambient conditions, such as O3 and VOC concentrations, meteorological parameters, and differences in NOx 

emission sources, also contribute to this variability. Without ratio correction and fitting improvements, lifetimes across the 

four subregions are about 2 to 3 times those found in this study, reaching 3.1 times in EN, highlighting the critical need to 

consider variable NOx/NO₂ ratios and nonlinear lifetimes, particularly in polluted regions. 500 

Anthropogenic contributions are isolated by subtracting natural sources from satellite-derived total emissions, with natural 

NOx identified using a seasonal criterion and further constrained by NTL data. Estimated anthropogenic NOx emissions in 
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China are 20.2 Tg, 18.5 Tg, 19.4 Tg, 18.9 Tg, 20.7 Tg and 18.8 Tg from 2019 to 2024, with annual uncertainties of 27%–

30%. The corresponding total emissions are 29.8 Tg, 28.8 Tg, 28.7 Tg, 28.2 Tg, 28.7 Tg and 27.4 Tg, respectively, and 

natural sources account for 28.1%–35.6% of the totals in this study. 505 

Spatial and temporal trends show consistent NOx reductions in megacities, while provincial-level patterns reflect regional 

differences in urbanization and economic development. 

From 2019 to 2024, emissions from the 124 plants range from 0.02–2.13 kg s−1, with uncertainties between 4%–78%, 

averaging 16%. Overall, the plants show an average emission decline of 23% over this period. 

Validation against established inventories, including MEIC, EDGAR, and other top-down inversions, demonstrates strong 510 

agreement with national level discrepancies ranging from −11.8% to 0.8%. At the provincial scale, the DDA shows 

consistently lower emissions in economically advanced regions and higher in less developed Northeast and western areas. 

For point sources, our estimates closely match those from previous study, with an R2 of 0.81 and a slope of 0.83. 

Looking forward, this framework holds promise for global-scale application and for separating natural and anthropogenic 

NOx sources. Its low-latency, data-driven nature offers critical value for air quality management, CO2 co-emission estimation, 515 

and international efforts such as the Global Stocktake.  

Supplement. The supplement related to this article is available online at:  
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