

1 Two decades of pH_T measurements along the GO-SHIP A25 section 2 in the North Atlantic

3 Fiz F. Pérez¹, Marta López-Mozos^{1,2*}, Marcos Fontela¹, Maribel I. García-Ibáñez³, Noelia Fajar⁴, Xosé
4 Antonio Padín¹, Mónica Castaño-Carrera¹, Mercedes de la Paz¹, Lidia I. Carracedo⁵, Marta Álvarez⁶,
5 Herlé Mercier⁵, Pascale Lherminier⁵, Antón Velo^{1*}

6 ¹Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, 36208, Spain

7 ²Facultad de Ciencias del Mar, Universidade de Vigo, Spain

8 ³Centro Oceanográfico de Illes Balears (COB-IEO), CSIC, Palma, Spain

9 ⁴Centro Oceanográfico de Vigo (COV-IEO), CSIC, Vigo, Spain

10 ⁵University of Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané,
11 29280, France

12 ⁶Centro Oceanográfico de A Coruña (COAC-IEO), CSIC, A Coruña, Spain

13 *Correspondence to: Marta López-Mozos (mlopezm@iim.csic.es) and Antón Velo (avelo@iim.csic.es)

14 Abstract

15 The North Atlantic (NA) GO-SHIP ([Global Ship-based Hydrographic Investigation Program](#)) A25 OVIDE-
16 BOCATS ([Observatoire de la variabilité interannuelle à décennale en Atlantique Nord - Biennial Observation of](#)
17 [Carbon, Acidification, Transport and Sedimentation in the North Atlantic](#)) section is a long-term repeat
18 hydrographic transect extending from Portugal to Greenland. Since 2002, physical and biogeochemical
19 measurements have been carried out biennially along the OVIDE-BOCATS section, contributing to a better
20 understanding of water mass properties, mixing, circulation, carbon storage, and climate change impacts such as
21 ocean acidification (OA) in the NA. In particular, the high-precision pH measurements on the total hydrogen ion
22 scale (pH_T) from the OVIDE-BOCATS program represent a key milestone in monitoring OA in this particularly
23 climate sensitive region. The method used for pH_T determination relies on adding meta-cresol purple (mCP) dye to
24 the seawater sample and spectrophotometrically measuring its absorbances at specific wavelengths. The OVIDE-
25 BOCATS program has used unpurified mCP dye, which impurities have been proven to bias pH_T values. Here we
26 quantified the bias induced by these impurities in pH_T measurements. We found that measurements carried out
27 using the unpurified mCP dye tend to be, on average, **0.011 ± 0.002** pH_T units higher than those obtained using the
28 purified mCP dye, with this difference slightly decreasing at higher pH_T values. Moreover, we tested independent
29 methods to correct the effect of impurities in both the historical and recent OVIDE-BOCATS pH_T data,
30 demonstrating that the correction is consistent across methods. The long-term pH_T dataset has been updated to
31 include newly acquired data and absorbance measurements, and to standardize corrections for mCP dye impurities.
32 This effort results in a twenty-year dataset of pH_T corrected for mCP dye impurities, that demonstrates the
33 possibility of a global effort to improve the reliability and coherency of spectrophotometric pH_T measurements
34 made with unpurified mCP dye. The corrections applied to our pH_T dataset have negligible implications for the OA
35 rates previously reported, but they do affect the depth of the aragonite saturation horizon, implying a shoaling of
36 approximately 150 m.

37

38 1 Introduction

39 The oceanic absorption of anthropogenic CO_2 (C_{ant}) is causing major changes in the marine carbonate system
40 chemistry (Friedlingstein et al., 2023; Le Quéré et al., 2015). The ocean is slightly basic generally; however, C_{ant}
41 uptake increases the concentration of total hydrogen ions ($[\text{H}^+]_{\text{T}}$), decreasing pH and the concentration of carbonate
42 ions. These changes are collectively referred to as ocean acidification (OA) (Caldeira and Wickett, 2003; Orr et al.,
43 2005), and they are especially detrimental for calcifying marine organisms and their ecosystems (IPCC, 2019). OA
44 is a major concern for decision-makers at both local and global scales due to its potential impacts on marine
45 ecosystem health and food security (Gattuso et al., 2015). The future impact of OA will depend on variations in the
46 long-term mean and the short-term temporal variability of the marine carbonate system (Kwiatkowski & Orr, 2018).

47 Due to their physicochemical characteristics, surface waters in polar and subpolar regions are expected to
48 experience the greatest OA impact (IPCC, 2019; Orr et al., 2005). However, the impact of OA is not limited to
49 surface waters. Recent observations have shown that intermediate layers of the North Atlantic (NA) are
50 experiencing higher OA rates than surface waters (Pérez et al., 2021; Resplandy et al., 2013) due to its distinctive
51 circulation dynamics. The upper limb of the Atlantic Meridional Overturning Circulation (AMOC) transports C_{ant}
52 from the subtropics to the Subpolar North Atlantic (SPNA), where it is transferred to intermediate and deep layers—
53 with lower buffering capacity than surface layers—through deep winter convection and water mass formation
54 (Asselot et al., 2024). This process would ultimately contribute to the deterioration of NA deep-water coral
55 ecosystems (Fontela et al., 2020a; García-Ibáñez et al., 2021; Gehlen et al., 2014; Perez et al., 2018).

56 The demand for open-access OA data is increasing, driven by United Nations Sustainable Development Goal
57 (SDG) 14 and by its role as a climate indicator recognized by the World Meteorological Organization (WMO).
58 Although great progress in autonomous marine data collection has been achieved in recent years (Bushinsky et al.,
59 2025), high-quality, ship-based pH measurements remain essential for ensuring the reliability of OA data collected
60 by sensors on autonomous platforms, such as Argo floats and moorings, by enabling rigorous calibration protocols
61 that correct for potential biases over time due to sensor drift, biofouling, and pressure effects (Ishii et al., 2025;
62 Maurer et al., 2021; Pérez et al., 2023; Takeshita et al., 2018).

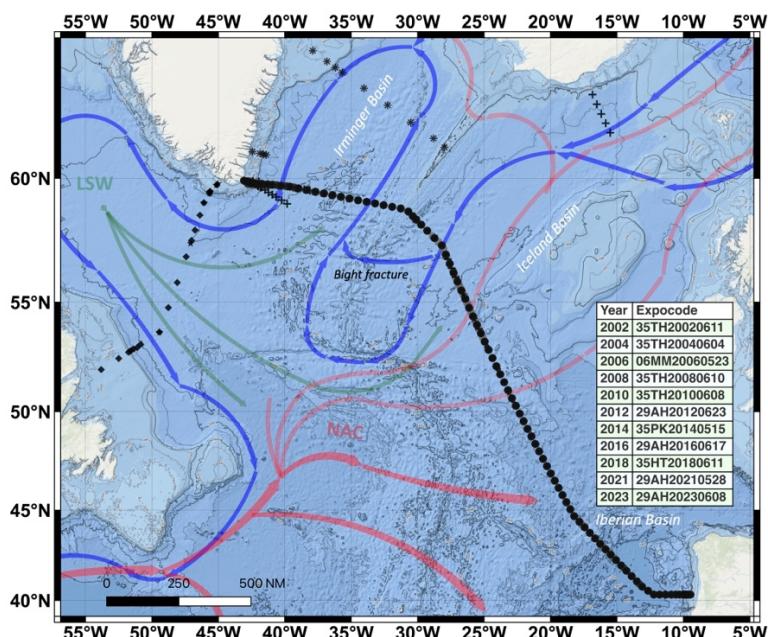
63 Despite the critical role of pH data in understanding OA, significant limitations exist within key ocean databases
64 such as the Global Ocean Data Analysis Project (GLODAPv2) (Olsen et al., 2016; Key et al., 2015). In
65 GLODAPv2, pH data that is reported on the total hydrogen ion scale (pH_{T})—which accounts for both the aqueous
66 hydrogen ions (H_3O^+) and the associated form with sulfate ions (HSO_4^-)—and have historically been collected less
67 frequently than other carbonate system variables, such as total alkalinity (A_{T}) and total dissolved inorganic carbon
68 (C_{T}) (Key et al., 2015; Lauvset et al., 2024; Olsen et al., 2019). A_{T} and C_{T} measurements are generally considered
69 more reliable due to the availability of standardized reference materials, consensually accepted methods, and
70 quality control procedures. In contrast, although pH_{T} measurements are technically precise, easy to perform, and
71 cost-effective, their intercomparability is more challenging, arising from methodological inconsistencies across
72 various research initiatives (Dickson et al., 2015; Ma et al., 2019; Álvarez et al., 2020; Capitaine et al., 2023). The
73 lack of traceability~~These factors contribute to a common reference, preferentially the International System of units~~
74 ~~for spectrophotometric pH relative scarcity of pH_{T} measurements (Dickson et al., 2015), in GLODAPv2, and lead~~
75 ~~to the unavailability of pH reference materials within the seawater pH range (Capitaine et al., 2023), together future~~
76 ~~GLODAPv3 providing pH_{T} data as originally reported with the documented issues affecting pH_{T} no additional~~
77 ~~internal consistency corrections, a limitation that may potentially affect the reliability of OA analysis from directly~~
78 ~~measured pH_{T} data instead of those calculated from A_{T} and C_{T} (including pH_{T} -dependent offsets and larger~~
79 ~~propagated uncertainties; Álvarez et al., 2020; Carter et al., 2024b), mean that neither unadjusted direct~~

83 observations nor calculated values currently provide a fully trusted global reference. Both limitations may therefore
84 affect the reliability of pH data for climate-quality OA assessments.).

85
86 Briefly, the spectrophotometric pH method is a straightforward technique that involves adding an acid-base
87 indicator dye, usually meta-cresol purple (mCP), to the seawater sample. The method was initially defined in the
88 1980s (Robert-Baldo et al., 1985; Byrne and Breland 1989), and the use of meta-cresol purple (mCP) as the
89 indicator dye began in the 1990s (Clayton & Byrne, 1993). The technique ~~has~~ has been updated since then, but
90 it ~~and~~ still lacks metrological traceability and reference materials (Ma et al., 2019; Carter et al., 2024a). The method
91 is based on the distinct absorbance wavelengths of the indicator dye's acid and basic forms, which are used to
92 calculate an absorbance ratio. Subsequently, pH_T is calculated using the indicator dye's dissociation constant and
93 its extinction coefficients through a parameterization in function of temperature and salinity, relating the
94 absorbance ratio with pH_T . This method offers a high degree of precision (error even lower than ± 0.001 pH units),
95 with an approximate total uncertainty of ± 0.01 pH_T units (Dickson, 2010; Carter et al., 2024a). A primary source
96 of error in these pH_T measurements arises from the impurities present in the mCP dye itself (Liu et al., 2011). Over
97 the last decade, different studies proved that mCP impurities cause the measured pH_T to exhibit a bias that is
98 dependent on the sample's pH_T and the brand and batch of the mCP dye used (Liu et al., 2011; Yao et al., 2007).
99 Consequently, mCP was proposed to be purified (Liu et al., 2011; Rivaro et al., 2021) to remove these impurities
100 and parameterizations re-evaluated for those purified mCP dyes (Liu et al., 2011; Loucaides et al., 2017; Müller et
101 al., 2018). Although some laboratories, mostly in the US, currently use purified mCP dye (Carter et al., 2018),
102 purified mCP dyes are not commercially available, being scarce and expensive, and therefore not affordable for all
103 laboratories. Alternatively, it is possible to evaluate the effect of these impurities on the absorbance values and
104 correct them accordingly (Douglas & Byrne, 2017; hereafter DB'17; Takeshita et al., 2020, 2021; Woosley, 2021).
105

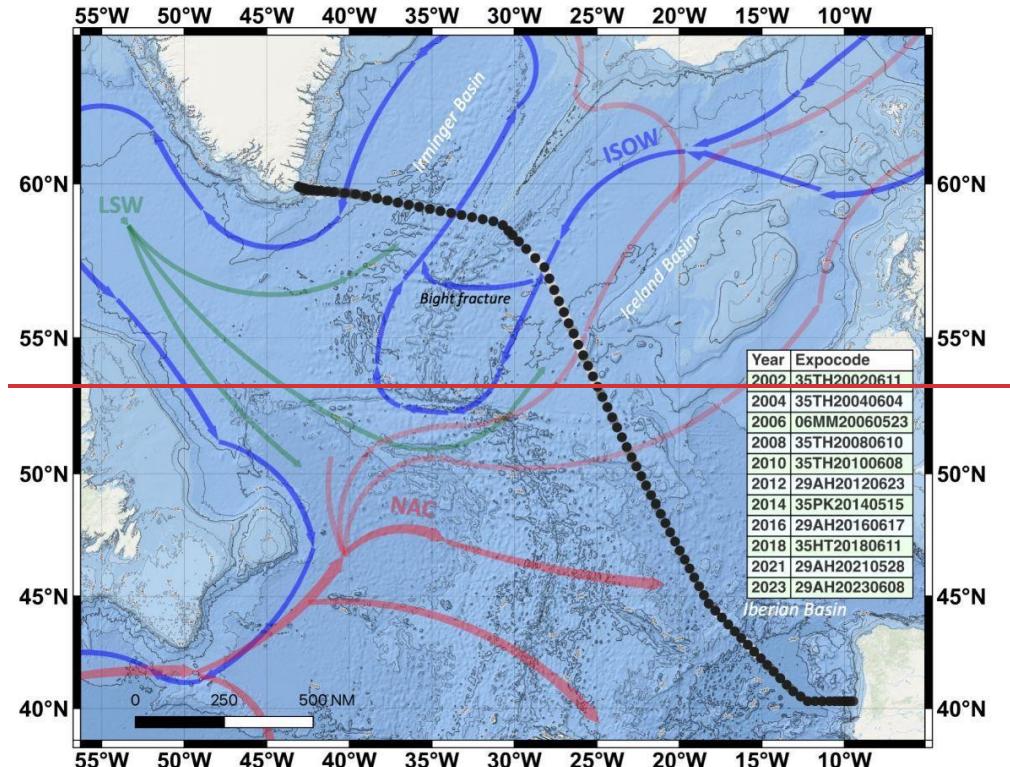
106 Over the past two decades, the GO-SHIP A25 OVIDE-BOCATS ship-based hydrographic section (OVIDE-
107 BOCATS hereafter; see Sect. 2.1)—the only transoceanic cruise with a biennial frequency in the CLIVAR (Climate
108 and Ocean: Variability, Predictability, and Change) and GO-SHIP programs—has built an extensive pH_T time
109 series in the NA of more than 23,500 pH_T samples measured using unpurified mCP dye. During the 11 OVIDE-
110 BOCATS cruises, pH_T was measured spectrophotometrically following a consistent methodology and using the
111 same commercial mCP dye brand, Sigma-Aldrich, which—like other commercial brands—contains impurities (Liu
112 et al., 2011; Yao et al., 2007). As awareness of pH_T biases introduced by mCP impurities has grown, so has the
113 need to assess and correct their impact to ensure the internal consistency and long-term comparability of the
114 OVIDE-BOCATS pH_T dataset. In this context, we evaluated the bias induced by these impurities by carrying out
115 measurements with purified and unpurified mCP dyes, and assessed independent methods to account for and correct
116 the effect of these impurities in both the historical and contemporary OVIDE-BOCATS pH_T data. Here we present
117 (1) the new data from the last two BOCATS cruises of 2021 and 2023, (2) the absorbance measurements along
118 with the evaluation of the impurities effect on them, and (3) the entire OVIDE-BOCATS pH_T database product
119 since 2002, consistently adjusted for impurity-related bias. This effort allowed us to evaluate—in a consistent
120 way—the OA rates in the NA and to improve the reliability of the pH_T data collected to date, which is fundamental
121 for understanding the ocean's response to climate change.
122

123


2. Methods

124

2.1 OVIDE-BOCATS transoceanic section


125 The OVIDE-BOCATS section is a high-quality hydrographic transect in the NA, extending from Portugal to
126 Greenland and largely following the GO-SHIP A25 track (Fig. 1), with the objective of studying the SPNA region.
127 Initially focused on physical oceanography (Mercier et al., 2024), its scope rapidly expanded to include critical
128 aspects of the carbon cycle, such as OA and the uptake and storage of C_{ant} in the SPNA—one of the ocean's largest
129 C_{ant} reservoirs (Sabine et al., 2004). Since 2002, in situ physical and on-board biogeochemical measurements have
130 been performed biennially along the OVIDE-BOCATS section. This repeated section is one of the longest-standing
131 and most frequently revisited transects within the GO-SHIP and CLIVAR programs. Accordingly, data
132 management follows strict policies, and all datasets are publicly available
133 (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/RepeatSections/clivar_ovide.html).
134

135
136 Thanks to its high frequency of repeated occupations, the OVIDE-BOCATS dataset offers a unique opportunity to
137 study the biennial evolution of NA processes. The program focuses on water mass properties, mixing, and
138 circulation; the impact of climate events on NA dynamics; volume and heat transports; and AMOC variability.
139 Particular attention is given to investigate key water masses such as Subpolar Mode Water (SPMW) and Labrador
140 Sea Water (LSW)—both formed through deep winter mixing in the SPNA—as well as Denmark Strait Overflow
141 Water (DSOW) and Iceland-Scotland Overflow Water (ISOW)—both resulting from the entrainment of SPMW
142 and LSW into the overflows at the sills between Greenland, Iceland, and Scotland, respectively (García-Ibáñez et
143 al., 2015; Lherminier et al., 2010).
144

145
146 Research within the OVIDE-BOCATS framework has also focused on carbon inventories and the deep
147 biogeochemical imprint, such as the role of the Deep Western Boundary Current (DWBC) in transporting oxygen,
148 nutrients, and dissolved organic carbon (Álvarez-Salgado et al., 2013; Fontela et al., 2019; 2020b). In addition,

49
50
51
52
53
54
OVIDE-BOCATS has evaluated OA rates in the NA (Fontela et al., 2020a; García Ibáñez et al., 2016; Vázquez Rodríguez et al., 2012) and analyzed its impact on marine biodiversity (Pérez et al., 2018; García Ibáñez et al., 2021) as well as the ocean's capacity to absorb, store, and transport CO₂ (Pérez et al., 2013; Zunino et al., 2015). In summary, the sustained observations from the OVIDE-BOCATS program demonstrated to be essential for detecting OA trends, improving climate models, and understanding the SPNA's response to climate change (Rodgers et al., 2023).

155
156 Figure 1. Bathymetric map showing the main water masses and circulation patterns within the SPNA region
157 covered by the OVIDE-BOCATS program (station locations indicated by black dots). Stations outside the main
158 OVIDE-BOCATS (A25) section are opportunistic stations, dependent on the ship's route, whose data are also
159 included in the final database product: "plus" symbols near Iceland and Greenland are stations sampled in 2006;
160 "pentagon" and "rhombus" located in the Labrador Sea are stations sampled during 2012 and 2014 cruises; and
161 "asterisk" symbols are stations sampled in 2023, near Greenland and in the Irminger Sea. (station locations
162 indicated by black dots). The inset table lists each biannual cruise along with its corresponding expocode as
163 identified in GLODAP. Major currents and water masses are illustrated in different colors according to their
164 temperature and depth (from red—warmer and shallower—to blue—colder and deeper). The main schematized
165 currents and water masses include the North Atlantic Current (NAC), Labrador Sea Water (LSW), and Iceland-
166 Scotland Overflow Water (ISOW). The principal basins traversed along the OVIDE-BOCATS section, from west
167 to east, are the *Irminger*, *Iceland*, and *Iberian basins*.

168 Research within the OVIDE-BOCATS framework has also focused on carbon inventories and the deep
169 biogeochemical imprint, such as the role of the Deep Western Boundary Current (DWBC) in transporting oxygen,
170 nutrients, and dissolved organic carbon (Álvarez-Salgado et al., 2013; Fontela et al., 2019; 2020b). In addition,

71 OVIDE-BOCATS has evaluated OA rates in the NA (Fontela et al., 2020a; García-Ibáñez et al., 2016; Vázquez-
72 Rodríguez et al., 2012) and analyzed its impact on marine biodiversity (Pérez et al., 2018; García-Ibáñez et al.,
73 2021) as well as the ocean's capacity to absorb, store, and transport CO₂ (Bajon et al., 2025, manuscript in review;
74 Pérez et al., 2013; Zunino et al., 2015). In summary, the sustained observations from the OVIDE-BOCATS program
75 demonstrated to be essential for detecting OA trends, improving climate models, and understanding the SPNA's
76 response to climate change (DeVries et al., 2023; Rodgers et al., 2023).

177 2.2 pH_T determination

178 2.2.1 Spectrophotometric pH_T method fundamentals

179 In all OVIDE-BOCATS cruises, pH_T was measured manually following the spectrophotometric method proposed
180 by Clayton and Byrne (1993)—hereafter CB'93. This method involves adding a mCP dye solution to the seawater
181 sample and calculating the sample's pH_T using the following equation:

$$183 \quad \text{pH}_T = \text{pK}_2 + \log_{10} ([\text{I}^2^-] / [\text{HI}^-]) \quad (1),$$

184 where $[\text{HI}^-]$ and $[\text{I}_2^-]$ represent the concentrations of mono-dissociated and bi-dissociated species of the indicator
185 dye, respectively. The concentration ratio ($[\text{I}^2^-] / [\text{HI}^-]$) can be determined spectrophotometrically by measuring
186 absorbance at the corresponding maximum absorbance wavelengths (A), i.e., 434 nm and 578 nm, respectively,
187 corrected for baseline absorbance at 730 nm—hereafter referred to as $_{434}\text{A}$, $_{578}\text{A}$, and $_{730}\text{A}$, respectively. pH_T is then
188 calculated using CB'93~~CB'13~~ parameterization of Eq. (1):

$$190 \quad \text{pH}_T = 1245.69/T + 3.8275 + (2.11 \cdot 10^{-3}) \cdot (35 - S) + \log ((R - 0.0069) / (2.222 - 0.133 \cdot R)) \quad (2),$$

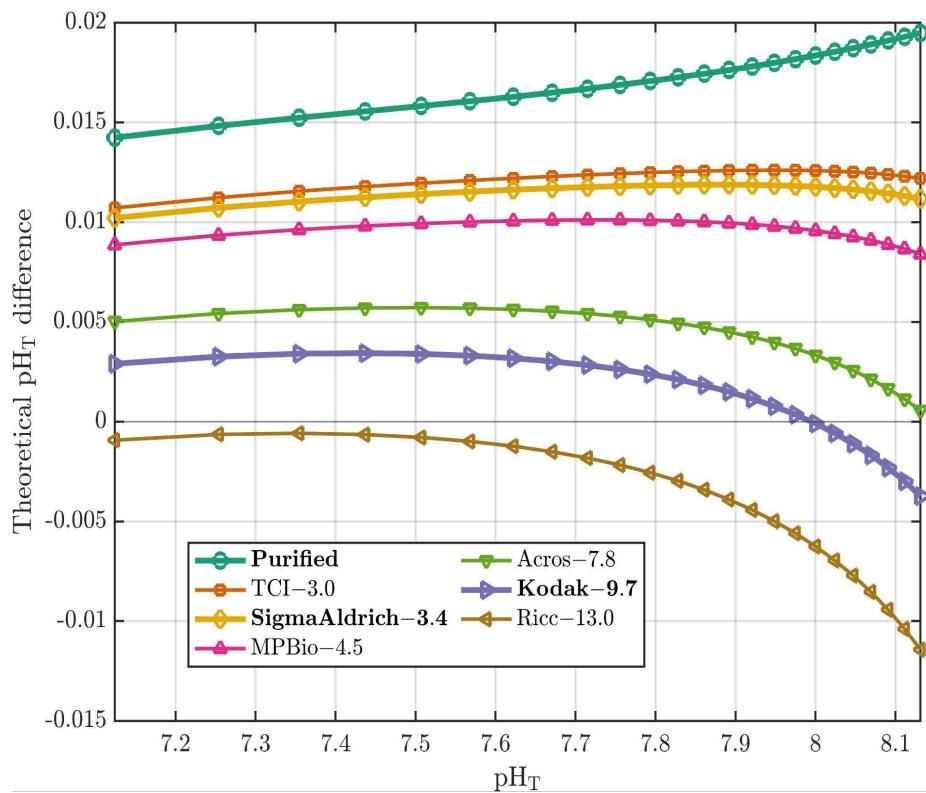
191 where T is temperature in Kelvin, S is salinity, and R is the ratio of the absorbances of the mono-dissociated and
192 bi-dissociated forms of the indicator dye corrected for baseline absorbance:

$$194 \quad R = (_{578}\text{A} - _{730}\text{A}) / (_{434}\text{A} - _{730}\text{A}) \quad (3).$$

196 The first three terms of Eq. (2) represent the second dissociation constant of mCP dye (pK_2 , or $-\text{pK}_1$ in CB'93).
197 The $-\text{pK}_1$ pK_2 obtained by CB'93 is based on the TRIS buffer characterization of Dickson (1993), which used
198 electromotive force data from Ramette et al. (1977; Lee et al., 2000). DelValls and Dickson (1998)—hereafter
199 DVD'98—later determined that the pH_T values assigned to TRIS buffers needed to be increased by 0.0047, for all
200 temperatures and salinities. These corrected TRIS pH_T values have recently been confirmed by Müller et al. (2018).
201 Consequently, spectrophotometric pH_T values obtained using the CB'93 parameterization should be adjusted by
202 +0.0047 pH_T units (DVD'98; Lee et al., 2000).

204 The CB'93 parameterization was developed using Kodak mCP dye, prepared in deionized water, which contained
205 impurities contributingpresenting significant absorbance at 434 nm (referred to as $_{434}\text{A}_{\text{imp}}$). However, it was not
206 until the 2000s that the impact of impurities on pH_T measurements was evidenced. Specifically, Yao et al. (2007)
207 compared pH_T determinations using Sigma-Aldrich and Kodak mCP dyes with TRIS buffers, finding that pH_T
208 values obtained with Sigma-Aldrich mCP dye were between 0.001 to 0.006 pH_T units higher than those with Kodak
209 mCP dye (for pH_T ranging from 7.4 to 8.2), attributed to lower $_{434}\text{A}_{\text{imp}}$ values in the Sigma-Aldrich mCP dye. Later,
210 Liu et al. (2011; hereafter L'11) purified mCP dye and developed a new parameterization to determine pH_T from
211 R, demonstrating that applying their new parameterization to R data measured with impure mCP dye results in pH_T
212 values up to 0.018015 pH_T units lower. Subsequently, Loucaides et al. (2017) and Müller et al. (2018) produced

213 very similar parameterizations, extending the valid salinity and temperature ranges and confirming the same pH_T
 214 versus R relationship at 25°C and oceanic salinities (see Fig. S1 in Alvarez et al., [2025 submitted](#)). Thus, ideally,
 215 pH_T measurements should be performed using purified, well-characterized mCP dyes and following a consensus
 216 method that ensures traceability to the International System of Units (SI; Capitaine et al., 2023). However, the
 217 purification procedure is not accessible to many laboratories routinely measuring seawater pH_T. To overcome this
 218 limitation and facilitate high-quality spectrophotometric pH_T measurements, DB'17 proposed a method to
 219 determine $_{434}\text{A}_{\text{imp}}$ and an associated correction procedure. This approach allows R to ~~be computed~~ the R -corrected
 220 for the ~~impurities~~ contribution of impurities at $_{434}\text{A}$ (i.e., $_{434}\text{A}_{\text{imp}}$), and consequently enables pH_T calculations using
 221 parameterizations derived for purified mCP dye, such as the L'11 parameterization.
 222


223 What is the bias introduced in pH_T measurements as a result of mCP dye impurities? Most of the spectrophotometric
 224 pH_T values in GLODAPv2 (Lauvset et al., 2024) are calculated using the CB'93 parameterization, based on
 225 measurements made with mCP dyes that contain impurities. Figure 2 shows a family of curves representing the
 226 theoretical differences between pH_T values calculated using the CB'93 parameterization with R values that would
 227 have been obtained with unpurified mCP dyes (i.e., with varying $_{434}\text{A}_{\text{imp}}$), and those obtained using the L'11
 228 parameterization applied to R values corresponding to a fully purified mCP dye (i.e., $_{434}\text{A}_{\text{imp}} = 0$). We computed
 229 the corresponding $_{434}\text{A}$ values ($_{434}\text{A}_{\text{pur}}$, i.e., $_{434}\text{A}_{\text{imp}} = 0$) using the relationship described in Sect. 2.2.4 for a set of
 230 theoretical purified R (R_{pur}) values ranging from 0.3 to 2.6. Both the purified R values and their associated $_{434}\text{A}$
 231 values were then used in Eq. (11) of DB'17 to compute the adjusted R values (R_{unpur} ; referred to as R_{obs} in DB'17)
 232 that reflect the contribution of mCP dye impurities ($_{434}\text{A}_{\text{imp}} \neq 0$) as follows:
 233

$$234 \quad \text{R}_{\text{unpur}} = \text{R}_{\text{pur}} / (1 + (_{434}\text{A}_{\text{imp}} / _{434}\text{A}_{\text{pur}})) \quad (4)$$

237 **Figure 2.** Theoretical differences in pH_T (y axis) between values using the CB'93 parametrization with the DVD'98
 238 correction (applied to R values derived from mCP dyes with varying impurities) and those calculated using the
 239 L'11 parametrization (applied to R values derived from a purified mCP dye). The differences are plotted against
 240 pH_T computed using the L'11 parameterization (x axis), at $S = 35$ and $T = 25^\circ\text{C}$. Each mCP dye is represented by
 241 a different color, with its corresponding $_{434}\Delta_{\text{imp}}$ value (in units of 10^{-3} absorbance) listed after the indicator dye
 242 name. **Bold** indicates mCP dye brands discussed in this work. All $_{434}\Delta_{\text{imp}}$ values are taken from DB'17, except for
 243 Sigma Aldrich, whose value was determined in this study.

244 The mCP dye brands and their corresponding absorbance values due to their impurities, as shown in Fig. 2, are
 245 primarily taken from Table 2 of DB'17, that are based on an mCP dye concentration of $3.3 \mu\text{M}$ in the sample cell.
 246 When the CB'93 parameterization is applied to $R_{\text{pur}} (_{434}\Delta_{\text{imp}} = 0) R_{\text{unpur}}$ at $S = 35$ and 25°C , the largest theoretical
 247 pH_T differences ($> 0.015 \text{ pH}_T$ units) are observed relative to pH_T values obtained by applying the L'11
 248 parameterization to the corresponding R_{pur} under the same conditions (see turquoise line in Fig. 2). In contrast, when
 249 CB'93 parameterization is applied to R_{unpur} values obtained with Kodak mCP dye, the resulting pH_T values differ by
 250 only $\pm 0.003 \text{ pH}_T$ units from those obtained with the L'11 parameterization with a purified mCP dye, with minimal
 251 differences observed in the pH_T range of 7.65 to 8.15 (purple line in Fig. 2). This agreement arises because the
 252 CB'93 parameterization—developed using Kodak mCP dye and calibrated against TRIS buffers using unpurified
 253 mCP dye—yields lower R values than that obtained with purified mCP dye. As a result, both parameterizations
 254 converge around the TRIS buffer pH_T value (8.093 at 25°C ; DVD'98). Indeed, Fig. 2 shows that larger biases in the
 255 final pH_T arise when using the CB'93 parameterization with mCP dyes with lower impurity content, while the
 256 magnitude and pH_T -dependence of these biases increases with higher impurity levels.

259 **Figure 2.** Theoretical differences in pH_T (y-axis) between values using the CB'93 parametrization with the DVD'98
260 correction (applied to R values derived from mCP dyes with varying impurities) and those calculated using the
261 L'11 parametrization (applied to R values derived from a purified mCP dye). The differences are plotted against
262 pH_T computed using the L'11 parameterization (x-axis), at $S = 35$ and $T = 25^\circ\text{C}$. Each mCP dye is represented by
263 a different color, with its corresponding $_{434}\text{A}_{\text{imp}}$ value (in units of 10^{-3} absorbance) specific to the lot used in DB'17,
264 listed after the indicator dye name. **Bold** indicates mCP dye brands discussed in this work. All $_{434}\text{A}_{\text{imp}}$ values are
265 taken from DB'17 and are specific to the lot used, except for Sigma-Aldrich, whose value was determined in this
266 study.

267 2.2.2 pH_T sampling and manual spectrophotometric procedure during the OVIDE-BOCATS cruises

268 On all OVIDE-BOCATS cruises, seawater samples for pH_T were collected after oxygen samples, using 100 mm
269 pathlength cylindrical optical glass cells with two stoppers (Dickson et al., 2007). Each sample was taken by rinsing
270 the optical cell twice and flushing it with seawater two or three times its volume, ensuring no air bubbles remained.
271 To achieve this, the cell was held with the outlet above the inlet, the outlet was plugged first, the sampling tube
272 was removed, and the second plug was inserted—taking care to avoid air bubbles. After rinsing and externally
273 drying the cells, they were placed in a thermostatic incubator set at 25°C for at least 30–45 minutes to ensure
274 temperature stabilization at 25°C prior to their measurement.

275 For each sample, a blank measurement was performed after drying and cleaning both faces of the optical cell and
276 placing it in the spectrophotometer's cell holder. Following blanking at the three target wavelengths (434 nm, 578
277 nm, and 730 nm) with sampled seawater, 75 μL of 2 mM mCP dye solution were added to each 28 mL sample cell
278 using an adjustable repeater pipette (SOCOREX), resulting in a final mCP dye concentration of 5.36 μM in the
279 cell. Dispenser syringes were wrapped in aluminum foil to prevent photodegradation of the mCP dye (Fontela et
280 al., 2023). After the mCP dye addition, the cell was thoroughly shaken and placed back in the holder in maintaining
281 the same orientation as for the blanking. and triplicate. Triplicate absorbance readingsmeasurements were carried
282 out at the samethree target wavelengths as for the blank.(434 nm, 578 nm, and 730 nm). All absorbance readings
283 were carried out in the spectrophotometer's thermostatted cell compartment, maintained at $25.0 \pm 0.2^\circ\text{C}$.

284 Byrne & Breland (1989) demonstrated that R measurements pH_T determinations are largely insensitive to small
285 temperature variations, for cresol red dye. The same general behaviour applies to mCP dye, in which, specifically,
286 R values between 0.57 and 2.8 exhibit a pH_T error of less than 0.001 pH_T units per 1°C change when using
287 the L'11CB'93 parameterization. This insensitivity arises because, for mCP, the temperature dependence of pK_2
288 of the indicator dye's pK_2 mCP dye closely parallelsmatches the temperature dependence of seawater pH. The
289 CB'93 parametrization shows a slightly greater temperature sensitivity, such that temperature deviations must be
290 kept within approximately $\pm 0.5^\circ\text{C}$ to limit the pH_T error to ≤ 0.0012 effect on pH_T units. Therefore. Nevertheless, it
291 is recommended to ensure that temperature deviations remain within $\pm 0.5^\circ\text{C}$ of the reference temperature (25°C).
292 In our procedure, sample temperature was monitored every five measurements to verifyconfirm that it remained
293 within this tolerance range.

294 2.2.3 Effect of the indicator dye addition and spectrophotometer performance on the pH_T measurements

295 Throughout the OVIDE-BOCATS program, the mCP dye used was from Sigma-Aldrich (Cat. No. 11,436-7 in the
296 basic form; $\text{C}_{21}\text{H}_{17}\text{NaO}_5\text{S}$; molecular weight 404.41 g), with only a few different batches from this brand used over
297 the 11 cruises. Prior to 2018, mCP dye solutions were prepared by dissolving 0.080 g of the mCP sodium salt in
298 100 mL of natural seawater. Following DB'17 recommendations, the preparation method was modified in 2018,

303 with the mCP dye being dissolved in 0.7 M NaCl instead of seawater. The absorbances of the mCP dye solutions
304 at 434 nm, 578 nm, and 730 nm were measured spectrophotometrically using a 0.1 mm optical cell to ensure that
305 the R values remained close to 1, corresponding to a pH_T of approximately 7.67 (Li et al., 2020; at S = 35 and T =
306 25°C). mCP dye solutions were stored in Pyrex bottles, refrigerated, and protected from light using aluminum
307 foil.

309 The addition of the indicator dye slightly perturbs the sample's pH_T, with the magnitude of this effect increasing
310 for shorter optical pathlengths and when the pH_T difference between the sample and the indicator dye is large
311 (Chierici et al., 1999). For instance, when using a 100 mm optical pathlength, the indicator dye induced pH_T
312 perturbation is typically less than 0.006 pH_T units within the pH_T range of 7.6 to 8.0 (Chierici et al., 1999; Li et al.,
313 2020; Table 1), which is relatively minor but not negligible. A common approach to account for this effect, as
314 proposed by CB'93, involves performing a double addition of the indicator dye solution to the samples and
315 calculating the difference in the resulting R values (ΔR) between the first (single) and second (double) addition.
316 This ΔR correction is then applied to the measured R values. Alternatively, the correction can be expressed in terms
317 of ΔpH_T , which may be directly applied to the computed pH_T values (Takeshita et al., 2020, 2022). Both ΔR and
318 ΔpH_T correction approaches were evaluated. During each cruise, between two and four double indicator dye
319 addition experiments were performed. In each experiment, seawater samples were modified to obtain four pH_T
320 values ranging from 7.4 to 8.2, with four samples per pH_T level ($N = 16$ samples per experiment). Following
321 blanking, an initial addition of 50 μ L of mCP dye solution was made to each sample, and absorbance was measured
322 as described in Section 2.2.2. A second addition of 50 μ L of mCP dye solution was then made (resulting in a total
323 of 100 μ L of mCP dye solution added), and absorbance measurements were repeated. These double-addition
324 experiments enabled the determination of linear regressions of the change in pH_T ($\Delta pH_T = pH_{T,2} - pH_{T,1}$; where
325 subscripts 2 and 1 refer to 100 μ L and 50 μ L of mCP dye solution added, respectively) or R ($\Delta R = R_2 - R_1$) as a
326 function of the initial pH_{T,1} or R₁, respectively (Supporting Information Fig. 1). This two-step 50 μ L addition
327 bracketed the typical 75 μ L reference volume added to the sample, allowing us to evaluate the dye effect on the
328 ΔR or ΔpH_T both below and above this reference. The corresponding relationship was expressed as:

$$\Delta pH_T = a \cdot (pH_T - pH_T^{y=0}) \quad (5),$$

331 where a is the slope of the linear regression and $pH_T^{y=0}$ represents the pH_T at which the indicator dye addition has
332 no effect. An analogous expression was used for ΔR [$\Delta R = a' \cdot (R - R^{y=0})$, being a' the particular slope for the ΔR -
333 R linear regression]. Since the standard volume of mCP dye solution used in OVIDE-BOCATS cruises was 75 μ L,
334 while the double addition experiments used 50 μ L additions, a correction factor of 75/50 was applied to adjust both
335 ΔpH_T and ΔR . The corrected pH_T ($pH_{T,corrected}$) was thus calculated as:

$$pH_{T,corrected} = pH_m - 75/50 \cdot a \cdot (pH_m - pH_T^{y=0}) \quad (6),$$

337 where pH_m is the uncorrected measured pH_T (i.e., prior to its ΔpH_T correction) [analogously: $R_{corrected} = R - 75/50 \cdot$
338 $a' \cdot (R_m - R^{y=0})$]. At $pH_T^{y=0}$, the R (pH_T) of the original sample and the R (pH_T) of the indicator dye are the same,
339 so no change is observed. If $pH_m > pH_T^{y=0}$, then $pH_{T,2}$ (or R_2) < $pH_{T,1}$ (or R_1), as the mCP dye addition lowers pH_m ;
340 hence, $pH_{T,corrected}$ will be higher than pH_m . Conversely, if $pH_m < pH_T^{y=0}$, the mCP dye addition increases the pH_m ,
341 and $pH_{T,corrected}$ will be lower than pH_m .

342 The linear regressions of ΔR versus R_1 (ΔR -vs- R_1) and ΔpH_T versus $pH_{T,1}$ (ΔpH_T -vs- $pH_{T,1}$) obtained for each
343 OVIDE-BOCATS cruise are summarized in Table 1. The slopes for ΔR -vs- R_1 range from 0.0048 (BOCATS2-
344 2023 cruise) to 0.0230 (OVIDE-2006 cruise), with the perturbation vanishing ($\Delta R = 0$) when $R \approx 1.0 \pm 0.2$, i.e.,
345 when the sample pH_T closely matches that of the mCP dye solution. Carter et al. (2013) proposed a

349 methodological refinement by normalizing ΔR with the change in absorbances at the isosbestic point (Δ_{488A} ; see
 350 Section 2.2.4), improving the robustness of the correction. Accordingly, using the Carter et al. (2013) approach
 351 [$\Delta(R/_{488A})$ versus R_1 ; $\Delta(R/_{488A})$ -vs- R_1] increased the overall explained variability (R^2) of the linear fits. Similarly,
 352 for ΔpH_T -vs- $pH_{T,1}$ regressions, the smallest slope was recorded for BOCATS2-2021 cruise and the largest again in
 353 the OVIDE-2006 cruise (Table 1). When using $\Delta(pH_T/_{488A})$ -vs- $pH_{T,1}$, the distribution of regression slopes was
 354 similar but less variable (average regression: $-0.0431 \pm 0.019 \cdot (pH_T - 7.73 \pm 0.09)$; Table 1), consistent with the
 355 mCP dye perturbation trends reported by Takeshita et al. (2022) [$\Delta pH_T/\Delta_{488A} = -0.042 \pm 0.003 \cdot (pH_T - 7.76)$; $N = 356$ 91]. The OVIDE-BOCATS pH_T data were corrected using the cruise-specific $\Delta pH_T/\Delta_{488A}$ relationships. Overall,
 357 the evaluation of the mCP dye's perturbation on the sample's pH_T was consistent across all cruises, regardless of
 358 whether ΔR - or ΔpH_T -based methods were used.
 359

Table 1. Summary of each OVIDE-BOCATS cruise alias, the spectrophotometer used, and the mean and standard deviation of Δ_{488A} values (from 2002 to 2018 estimated using Eq. (7), from 2018 to 2023 directly measured). The table also includes the linear regression equations and their explained variance (R^2) for the ΔR vs R_1 , $\Delta(R/_{488A})$ vs R_1 , ΔpH_T vs $pH_{T,1}$, and $\Delta(pH_T/_{488A})$ vs $pH_{T,1}$ relationships. Additionally, it reports the corresponding ΔpH_T at $pH_T = 7.7$ and $pH_T = 8.0$, calculated using the $\Delta(pH_T/_{488A})$ vs $pH_{T,1}$ relationship for each cruise. Note that ΔR vs R_1 and ΔpH_T vs $pH_{T,1}$ regressions are based on an addition of 50 μL mCP dye solution; therefore, a correction factor (e.g., 75/50) must be applied when using ΔR vs R_1 and ΔpH_T vs $pH_{T,1}$ relationships to samples measured with a different addition volumes (e.g., 75 μL).

CRUISE	Spectrophotometer	Δ_{488A}	ΔR -vs- R_1 R^2	$\Delta(R/_{488A})$ -vs- R_1 R^2	ΔpH_T -vs- $pH_{T,1}$ R^2	$\Delta(pH_T/_{488A})$ -vs- $pH_{T,1}$ R^2	ΔpH_T at~7.7	ΔpH_T at~8.0
Ovide-2002	CECIL-3041	0.331 \pm 0.020	-0.0068-(R-0.82) 0.32	-0.059-(R-1.07) 0.41	-0.0078-(pH _T -7.71) 0.51	-0.056-(pH _T -7.71) 0.59	0.000	0.005
Ovide-2004	Shimadzu UV-2401PC	0.232 \pm 0.020	-0.0092-(R-0.96) 0.78	-0.038-(R-0.97) 0.81	-0.0078-(pH _T -7.70) 0.70	-0.033-(pH _T -7.70) 0.73	0.000	0.002
Ovide-2006	Shimadzu UV-2401PC	0.250 \pm 0.023	-0.035-(R-1.10) 0.92	-0.134-(R-1.00) 0.94	-0.023-(pH _T -7.70) 0.88	-0.103-(pH _T -7.68) 0.96	0.001	0.008
Ovide-2008	Shimadzu UV-2401PC	0.230 \pm 0.015	-0.0060-(R-1.2) 0.60	-0.029-(R-1.04) 0.84	-0.0084-(pH _T -7.83) 0.89	-0.037-(pH _T -7.84) 0.89	-0.001	0.001
Ovide-2010	Shimadzu UV-2401PC	0.233 \pm 0.015	-0.022-(R-1.06) 0.78	-0.096-(R-1.06) 0.81	-0.0106-(pH _T -7.68) 0.70	-0.069-(pH _T -7.68) 0.73	0.000	0.005
CATARINA-2012	Perkin Elmer Lambda 800 UV-VIS	0.211 \pm 0.016	-0.014-(R-0.80) 0.93	-0.100-(R-0.81) 0.94	-0.0090-(pH _T -7.55) 0.89	-0.065-(pH _T -7.58) 0.93	0.002	0.006
Geovide-2014	Shimadzu UV-2401PC	0.218 \pm 0.007	-0.0066-(R-1.12) 0.76	-0.046-(R-1.16) 0.75	-0.0082-(pH _T -7.77) 0.76	-0.065-(pH _T -7.77) 0.71	-0.001	0.003
BOCATS-2016	Perkin Elmer Lambda 800 UV-VIS	0.369 \pm 0.022	-0.0070-(R-1.19) 0.81	-0.028-(R-1.19) 0.81	-0.0080-(pH _T -7.85) 0.91	-0.033-(pH _T -7.85) 0.91	-0.002	0.002
Ovide-2018	Shimadzu UV-2401PC	0.358 \pm 0.027	-0.0137-(R-1.15) 0.8	-0.045-(R-1.04) 0.69	-0.0089-(pH _T -7.76) 0.72	-0.030-(pH _T -7.76) 0.70	-0.001	0.003
BOCATS2-2021	Perkin Elmer Lambda 800 UV-VIS	0.359 \pm 0.027	-0.0070-(R-1.16) 0.96	-0.027-(R-1.16) 0.96	-0.0050-(pH _T -7.76) 0.89	-0.021-(pH _T -7.76) 0.90	0.000	0.002
BOCATS2-2023	Perkin Elmer Lambda 800 UV-VIS	0.389 \pm 0.032	-0.0048-(R-1.12) 0.92	-0.020-(R-1.12) 0.92	-0.0063-(pH _T -7.80) 0.95	-0.023-(pH _T -7.76) 0.96	-0.001	0.002

368 In addition to the impact of the mCP dye addition, both the ΔR and ΔpH_T corrections can be influenced by the
 369 performance characteristics of the spectrophotometer used (Carter et al., 2013; Álvarez et al., 2020; Takeshita et
 370 al., 2021; Fong et al., 2024). If the spectrophotometer follows the Beer-Lambert law (i.e., no optical non-linearity),
 371 the effect of the mCP dye addition results in a linear relationship for both ΔR -vs- R_1 and ΔpH_T -vs- $pH_{T,1}$ regressions
 372 (Li et al., 2020), meaning that the relationships are only affected by chemistry. This only-chemical effect was
 373 evaluated by Li et al. (2020) over a wide range of salinities and A_{TS} , including those present during OVIDE-
 374 BOCATS cruises, allowing us to replicate their chemical model (blue diamonds in Fig. 3). The ΔR -vs- R_1 regression
 375 exhibits better linearity than ΔpH_T -vs- $pH_{T,1}$ regression, though both reflect the mCP dye's interference in the
 376 physico-chemical ionic equilibrium of the marine carbonate system. However, when introducing a 0.04% deviation
 377 from linearity in the spectrophotometer (i.e., loss of the Beer-Lambert behavior, thus including an additional impact
 378 to the chemical effect) the regression slopes for both ΔpH_T -vs- $pH_{T,1}$ and ΔR -vs- R_1 roughly double, revealing that
 379

380 this instrumental non-linearity amplifies the chemistry effect of the mCP dye. Notably, while ΔpH_T remains linear
 381 during this distortion, ΔR becomes non-linear (orange **squares**-**diamonds** in Fig. 3). When $R = 1$ (i.e., $434\text{A} = 578\text{A}$
 382 and sample $\text{pH}_T = \text{mCP dye pH}_T$), non-linearity impacts both absorbances equally, resulting in no change in R and
 383 therefore in pH_T . In contrast, deviations from $R = 1$ (or $\text{pH}_T = 7.65$; **at S= 35 and T = 25°C**) enhance this artifact
 384 due to increasingly unequal absorbances at 434A and 578A , leading to spurious R values and biased pH_T .

385 **Table 1.** Summary of each OVIDE-BOCATS cruise alias, the spectrophotometer used, and the mean and standard
 386 deviation of 488A values (from 2002 to 2018 estimated using Eq. (7), from 2018 to 2023 directly measured). The
 387 table also includes the linear regression equations and their explained variance (R^2) for the ΔR -vs- R_1 , $\Delta(R/488\text{A})$ -
 388 vs- R_1 , ΔpH_T -vs- $\text{pH}_{T,1}$, and $\Delta(\text{pH}_T/488\text{A})$ -vs- $\text{pH}_{T,1}$ relationships. Additionally, it reports the corresponding ΔpH_T at
 389 $\text{pH}_T = 7.7$ and $\text{pH}_T = 8.0$, calculated using the $\Delta(\text{pH}_T/488\text{A})$ -vs- $\text{pH}_{T,1}$ relationship for each cruise. Note that ΔR -vs-
 390 R_1 and ΔpH_T -vs- $\text{pH}_{T,1}$ regressions are based on an addition of 50 μL mCP dye solution; therefore, a correction
 391 factor (e.g., 75/50) must be applied when using ΔR -vs- R_1 and ΔpH_T -vs- $\text{pH}_{T,1}$ relationships to samples measured
 392 with a different addition volumes (e.g., 75 μL).

CRUISE	Spectrophotometer	488A	ΔR -vs- R_1 R^2	$\Delta(R/488\text{A})$ -vs- R_1 R^2	ΔpH_T -vs- $\text{pH}_{T,1}$ R^2	$\Delta(\text{pH}_T/488\text{A})$ -vs- $\text{pH}_{T,1}$ R^2	ΔpH_T at~7.7	ΔpH_T at~8.0
Ovide-2002	CECIL-3041	0.331±0.020	-0.0068 (R-0.82) 0.32	-0.059 (R-1.07) 0.41	-0.0078 (pH _T -7.71) 0.51	-0.056 (pH _T -7.71) 0.59	0.000	0.005
Ovide-2004	Shimadzu UV-2401PC	0.232±0.020	-0.0092 (R-0.96) 0.78	-0.038 (R-0.97) 0.81	-0.0078 (pH _T -7.70) 0.70	-0.033 (pH _T -7.70) 0.73	0.000	0.002
Ovide-2006	Shimadzu UV-2401PC	0.250±0.023	-0.035 (R-1.10) 0.92	-0.134 (R-1.00) 0.94	-0.023 (pH _T -7.70) 0.88	-0.103 (pH _T -7.68) 0.96	0.001	0.008
Ovide-2008	Shimadzu UV-2401PC	0.230±0.015	-0.0060 (R-1.2) 0.60	-0.029 (R-1.04) 0.84	-0.0084 (pH _T -7.83) 0.89	-0.037 (pH _T -7.84) 0.89	-0.001	0.001
Ovide-2010	Shimadzu UV-2401PC	0.233±0.015	-0.022 (R-1.06) 0.78	-0.096 (R-1.06) 0.81	-0.0106 (pH _T -7.68) 0.70	-0.069 (pH _T -7.68) 0.73	0.000	0.005
CATARINA-2012	Perkin Elmer Lambda 800 UV-VIS	0.211±0.016	-0.014 (R-0.80) 0.93	-0.100 (R-0.81) 0.94	-0.0090 (pH _T -7.55) 0.89	-0.065 (pH _T -7.58) 0.93	0.002	0.006
Geovide-2014	Shimadzu UV-2401PC	0.218±0.007	-0.0066 (R-1.12) 0.76	-0.046 (R-1.16) 0.75	-0.0082 (pH _T -7.77) 0.76	-0.065 (pH _T -7.77) 0.71	-0.001	0.003
BOCATS-2016	Perkin Elmer Lambda 800 UV-VIS	0.369±0.022	-0.0070 (R-1.19) 0.81	-0.028 (R-1.19) 0.81	-0.0080 (pH _T -7.85) 0.91	-0.033 (pH _T -7.85) 0.91	-0.002	0.002
Ovide-2018	Shimadzu UV-2401PC	0.358±0.027	-0.0108 (R-1.09) 0.72	-0.046 (R-1.04) 0.77	-0.0083 (pH _T -7.73) 0.69	-0.030 (pH _T -7.76) 0.70	-0.001	0.003
BOCATS2-2021	Perkin Elmer Lambda 800 UV-VIS	0.359±0.027	-0.0070 (R-1.16) 0.96	-0.027 (R-1.16) 0.96	-0.0050 (pH _T -7.76) 0.89	-0.021 (pH _T -7.76) 0.90	0.000	0.002
BOCATS2-2023	Perkin Elmer Lambda 800 UV-VIS	0.389±0.032	-0.0048 (R-1.12) 0.92	-0.020 (R-1.12) 0.92	-0.0063 (pH _T -7.80) 0.95	-0.023 (pH _T -7.76) 0.96	-0.001	0.002

395 These results suggest that the ΔpH_T -vs- $\text{pH}_{T,1}$ relationship provides a more accurate assessment of the mCP dye's
 396 effect on the sample's pH_T when the spectrophotometer exhibits even slight deviations from the Beer-Lambert law.
 397 Indeed, the small differences between the slopes of the ΔR -vs- R_1 and ΔpH_T -vs- $\text{pH}_{T,1}$ regressions reported in Table
 398 1 can be attributed to the distinct ways in which pH_T and R respond to such nonlinearity. The theoretical slopes of
 399 ΔpH_T -vs- $\text{pH}_{T,1}$ shown in Fig. 3 are consistent with those derived experimentally (Table 1). The steepest
 400 experimental slopes observed during the cruises may reflect greater deviations from the Beer-Lambert law, which
 401 can depend on both the spectrophotometer used and the pH_T range of the seawater batches used in these
 402 assessments. Conversely, cruises with ΔpH_T -vs- $\text{pH}_{T,1}$ slopes closer to the chemical model prediction—such as in
 403 the 2021 and 2023 cruises—indicate better spectrophotometer performance. Nevertheless, the differences in
 404 $\text{pH}_{T,\text{corrected}}$ when applying either ΔR -vs- R_1 or ΔpH_T -vs- $\text{pH}_{T,1}$ corrections remain small (< 0.001 pH_T units; see
 405 Supporting Information Fig. 2), implying that the choice of correction method has minimal impact on the final
 406 estimation of the mCP dye perturbation. For consistency, OVIDE-BOCATS pH_T data were corrected using the
 407 $\Delta\text{pH}_T/\Delta 488\text{A}$ approach specific to each cruise.
 408

Figure 3. Theoretical evaluation of the difference of the impact of mCP dye perturbation on the sample's pH_T ($S = 35$; $T = 25^\circ\text{C}$; $A_T = 2300 \mu\text{mol kg}^{-1}$), depending on whether the spectrophotometer behaves linearly—i.e., follows the Beer-Lambert law—or not. The left and right panels depict the ΔR -vs- R_1 and ΔpH_T -vs- $pH_{T,1}$ relationships, respectively. Blue diamonds represent an ideal, linear spectrophotometer response, derived from the chemical model of Li et al. (2020) based on single and double additions of 50 μL of mCP dye solution ([2 mM]) to a 28 mL sample cell with a 10 cm pathlength ($_{488\text{A}} = 0.242$), assuming a pH_T of the mCP dye solution of 7.65). Orange squares incorporate an attenuation factor of 0.04% to simulate a deviation from linearity, thus representing the combined effect of spectrophotometer non-linearity and perturbation in the physico-chemical ionic equilibrium

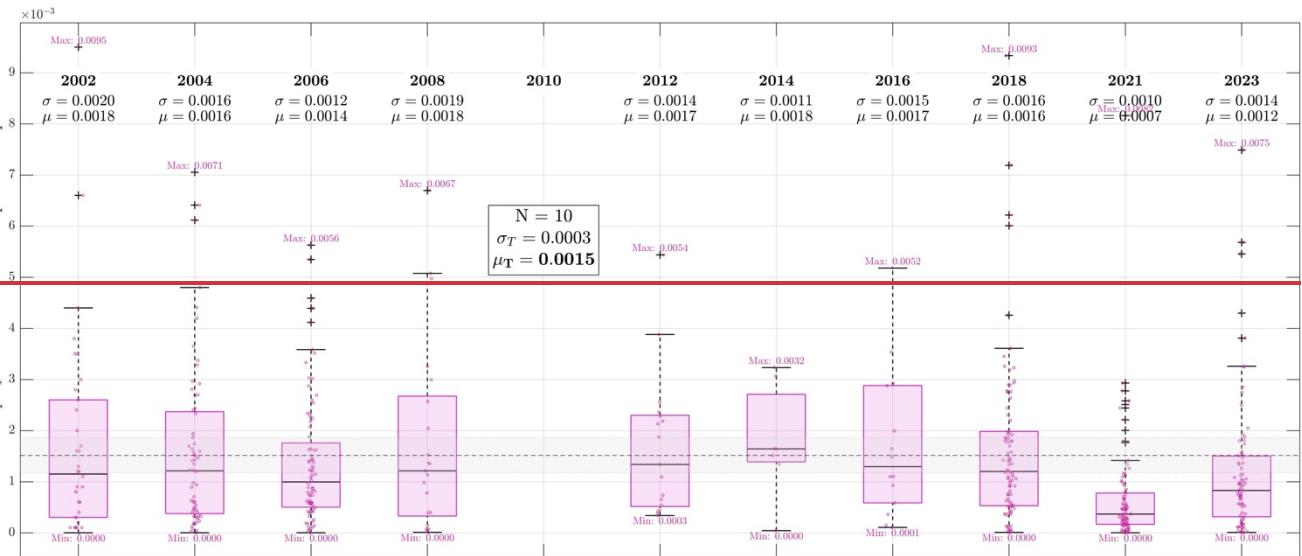
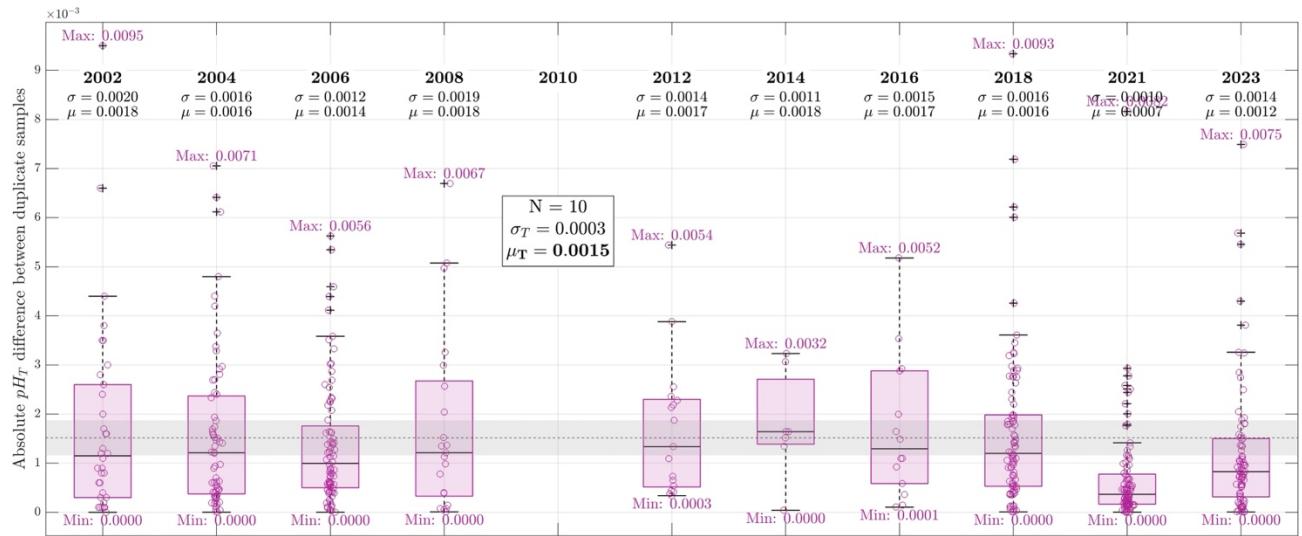
2.2.4 Absorbance at the isosbestic point

During the OVIDE-BOCATS cruises, mCP dye was manually added to samples using an adjustable repeater pipette (see Section 2.2.2). For each cruise, volume deviations associated with manual addition were assessed by comparing each sample to the cruise-specific mean $_{488\text{A}}$, computed from all field-layer samples (~2000 per cruise). Manual addition resulted in volume deviations exceeding 20% in approximately 3% of the samples (~ 706 cases), potentially affecting ΔR and ΔpH_T determinations. To address variability in the volume of mCP dye solution added, Carter et al. (2013) recommended measuring absorbance at the isosbestic point ($_{488\text{A}}$), which provides a reliable proxy for actual mCP dye concentration in the sample cell. Accurate quantification of the

428 mCP dye concentration is particularly important when applying the DB'17 methodology for impurity correction,
429 since the $434A_{imp}$ value is directly proportional to the mCP dye content. Therefore, sample-specific estimates of
430 mCP dye concentration via $488A$ allow for a more precise estimate of the $434A_{imp}$ value.

431 Since 2018, OVIDE-BOCATS cruises have incorporated measurements at $488A$ following the recommendation by
432 Carter et al. (2013). The additions of 75 μL of 2 mM mCP dye solution to 28 mL seawater sample resulted in
433 averaged $488A$ values of 0.359 ± 0.027 ($N = 2,193$), 0.358 ± 0.027 ($N = 2,154$), and 0.377 ± 0.032 ($N = 2,342$)
434 during the 2018, 2021, and 2023 cruises, respectively. These averages were not statistically different from one
435 another, resulting in a $488A$ mean value of 0.370 ± 0.033 for the period 2018–2023. This $488A$ mean value was used
436 to derive a parameterization for estimating $488A$ from R values, fitted for an mCP dye concentration in the cell of
437 5.36 μM —particularly useful for pre-2018 cruises, where $488A$ was not measured. For these earlier cruises, $488A$
438 was estimated using the following parameterization:
439

$$440 \quad 488A = 578A \cdot (-2.5486 R^{2.5} + 17.338 R^2 - 46.779 R^{1.5} + 63.109 R - 43.393 R^{0.5} + 12.962) \quad (7).$$



441 This fit, based on 6,910 samples from the 2018, 2021, and 2023 cruises (Supporting Information Fig. 3), explained
442 98.9% of the variance ($R^2 = 0.989$) and reproduces $488A$ with a mean error of 0.002 ± 0.010 . It enabled a more
443 accurate estimation of mCP dye concentrations across all cruises and improved the assessment of mCP dye impurity
444 effects on $434A$ (see Sect. 3.4). Additionally, it enhanced the accuracy of mCP dye perturbation corrections using
445 $\Delta R/488A$ and $\Delta pH_T/488A$ (Table 1). A simplified parameterization using $434A$ (e.g., $434A = -0.0747 \cdot R + 0.403$ for 3.3
446 μM mCP dye concentration in the sample cell) is possible, but requires correction for $434A_{imp}$.
447

449 2.2.5 pH_T measurement repeatability

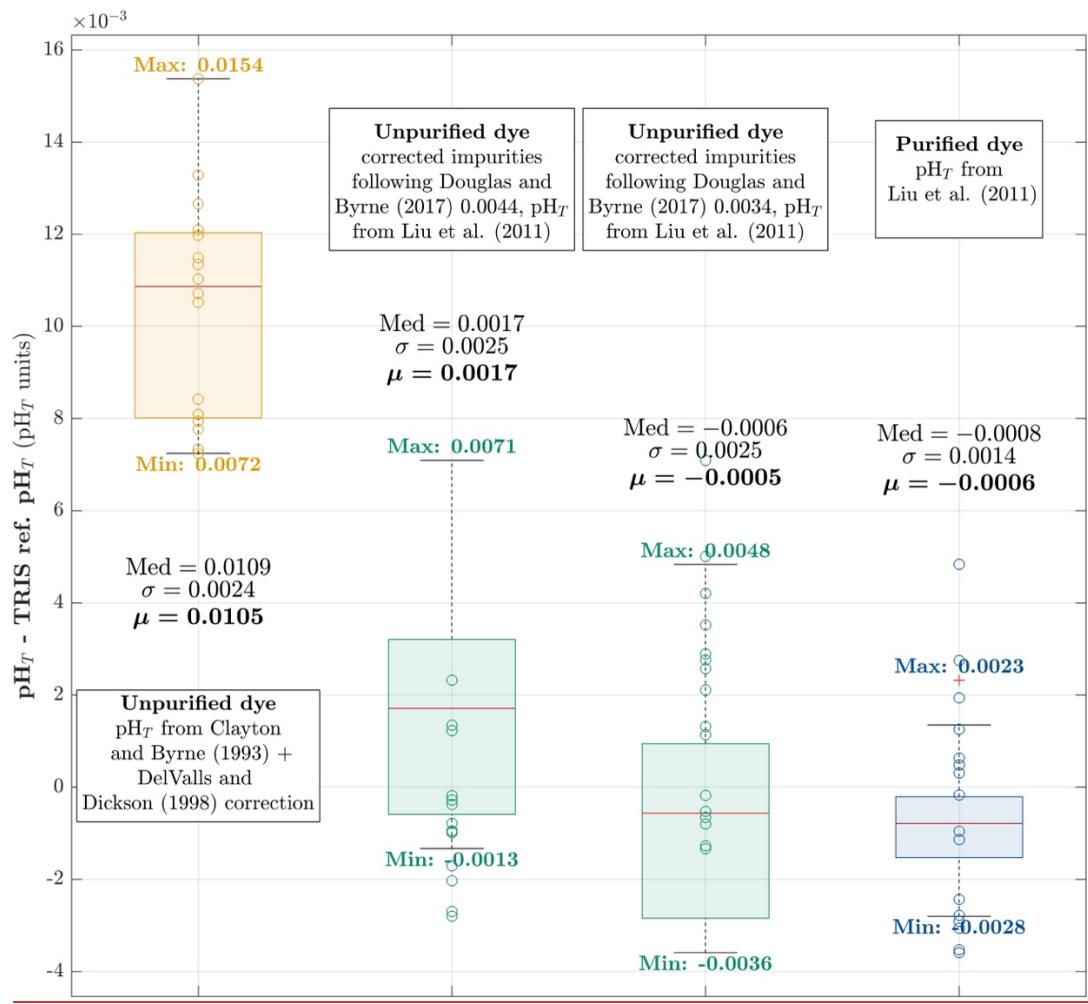
450 Throughout the 11 OVIDE-BOCATS cruises, a total of 502 duplicate samples were collected to evaluate the
451 reproducibility of pH_T measurements using an unpurifiedimpure mCP dye. At selected stations, two Niskin bottles
452 were closed at the same depth to obtain replicates. Any uncertainty introduced by collecting duplicates on two
453 different Niskin bottles (e.g., small leaks, biological activity, or delay in closing) was neglected. Figure 4 displays
454 the absolute pH_T differences between replicates for each cruise. The overall mean and standard deviation of these
455 differences is 0.0014 ± 0.0015 pH_T units ($N = 502$). The highest reproducibility was obtained in 2021, with 92
456 duplicate samples yielding a mean difference of 0.0007 ± 0.0010 pH_T units. This improved reproducibility,
457 particularly evident during the two most recent cruises, coincides with more precise evaluations of mCP dye effects
458 (Table 1) and likely reflects the better performance of the spectrophotometer used (PerkinElmer Lambda 800; Table
459 1), contributing to the overall improvement in data quality. Typical reproducibility across OVIDE-BOCATS
460 cruises ranged between 0.0007 and 0.0018 pH_T units.

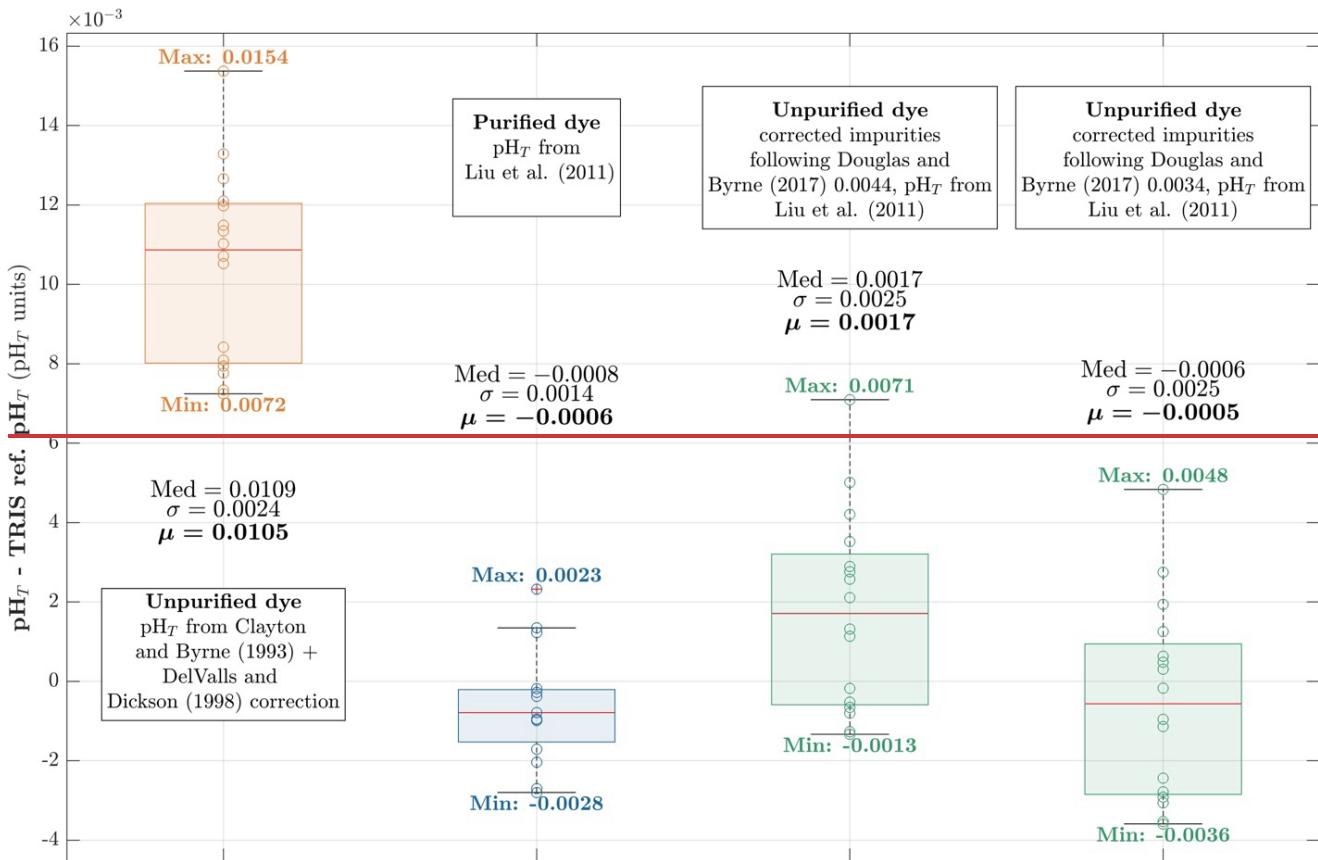
461 3. Assessment of the effect of indicator dye impurities on pH_T

462 During the OVIDE-2018, BOCATS2-2021, and BOCATS2-2023 cruises, paired measurements were performed in
463 duplicate samples collected from the same Niskin bottle and measured using two types of mCP dye: (i) purified
464 mCP, provided by Dr. Byrne's laboratory, University of South Florida, USA (FB6 batch), and (ii) unpurified mCP,
465 commercially available from Sigma-Aldrich (Cat. No. 211761-5G, batch #07005HH). pH_T values were obtained
466 applying the L'11 parametrization to R values obtained with purified mCP dye, and the CB'93 parametrization
467 combined with the DVD'98 correction (CB'93+DVD'98 hereafter) to R values obtained with unpurified mCP dye.

470 **Figure 4.** Whisker boxplots showing pH_T repeatability across OVIDE-BOCATS cruises (2002–2023),
471 represented as the absolute difference between duplicate samples collected during each cruise. The number of
472 duplicate samples analyzed per cruise were: 34 (2002), 64 (2004), 84 (2006), 21 (2008), 0 (2010), 17 (2012), 7
473 (2014), 14 (2016), 90 (2018), 92 (2021), and 79 (2023). For each cruise, the subset mean (μ) and standard deviation
474 (σ) are indicated, as well as the minimum and maximum values. The overall mean (μ_T) and standard deviation (σ_T)
475 across all 10 cruises are shown in the inset textbox. μ_T is also plotted as a horizontal dashed line, with σ_T represented
476 as a shaded gray band. Each boxplot displays the median (horizontal line), first (Q1) and third (Q3) quartiles (box
477 edges), and the minimum and maximum within 1.5 times the interquartile range (IQR = Q3 – Q1) (whiskers).

478 **3.1 TRIS buffer validation**


479 TRIS buffers in synthetic seawater (batch numbers 30 and 40) were obtained from Prof. Dickson's laboratory
480 (Scripps Institution of Oceanography; USA). These buffers were supplied in 125 mL borosilicate glass bottles and


481 contained an equimolar mixture of *TRIS/TRIS-HCl* in a synthetic seawater of nominal salinity 35. The reference
482 pH_T values of these batches can be calculated following DVD'98. Multiple bottles from both batches were
483 measured during the BOCATS2-2021 and BOCATS2-2023 cruises using two mCP dye solutions: (i) unpurified
484 mCP (75 μ L of 2 mM solution; Sigma-Aldrich; [5.36 \$\mu\$ M final mCP dye concentration in the sample cell](#)), and (ii)
485 purified mCP (10 μ L of 11 mM solution; provided by Prof. R. Byrne's laboratory; [3.93 \$\mu\$ M final mCP dye](#)
486 [concentration in the sample cell](#)).

487 Each buffer sample was measured in quadruplicate. Following blank measurement, the sample was placed in the
488 spectrophotometer's thermostated cell holder and allowed to equilibrate for 10—15 minutes. Measurements were
489 then conducted at 3-minute intervals. To ensure full thermal stabilization, only the last two measurements out of
490 the four were retained for analysis. Temperature at the end of the fourth measurement was recorded using a
491 calibrated Physics 100-1 thermometer, with an uncertainty of $\pm 0.01^\circ\text{C}$.

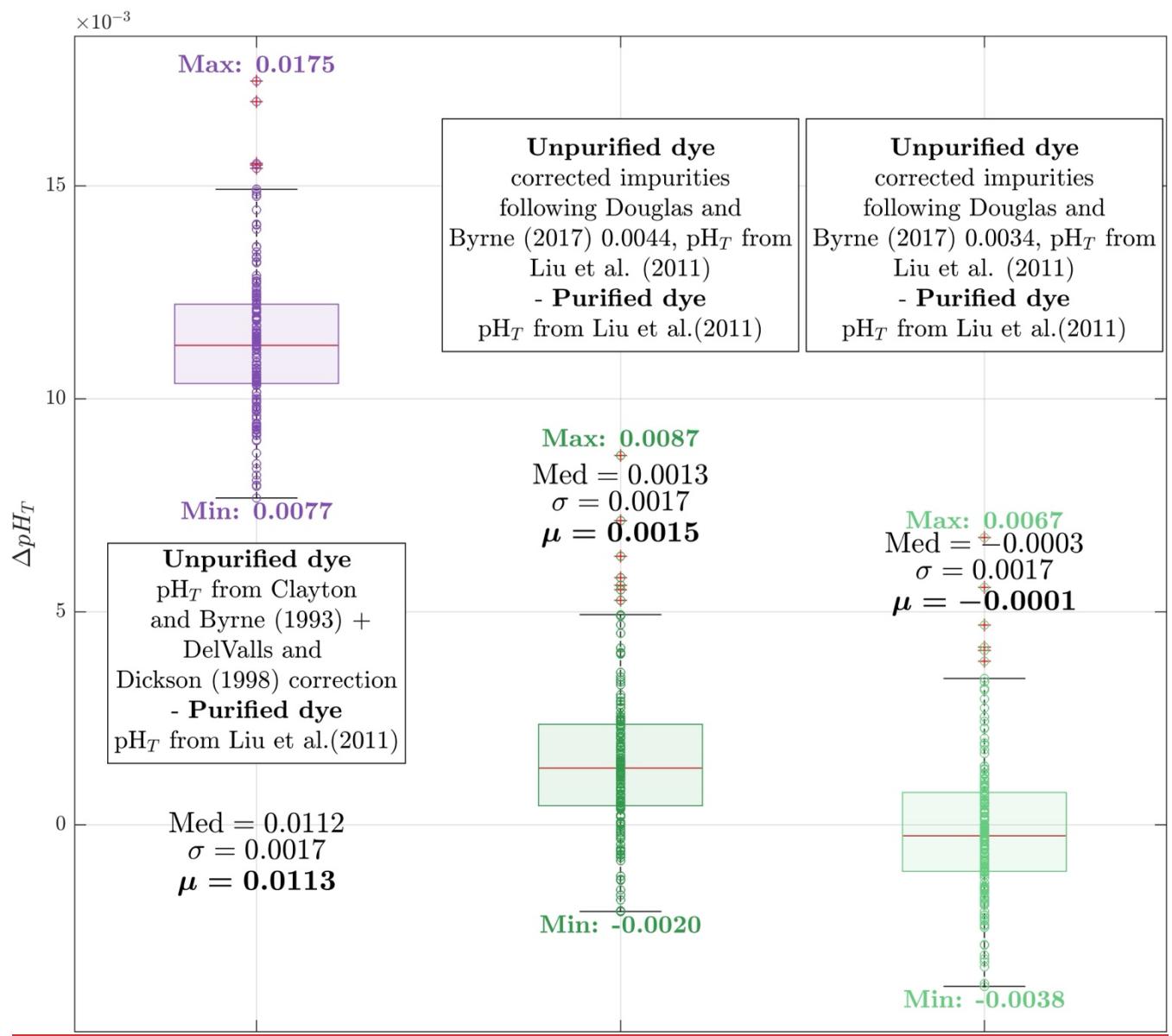
492 A total of 16 measurements performed using Sigma-Aldrich unpurified mCP dye, following the OVIDE-BOCATS
493 protocol (CB'93+DVD'98; see Sect. 2.2.2), showed a consistent positive bias of **0.0105 ± 0.0013 pH_T** units relative
494 to the nominal *TRIS* pH_T values (Fig. 5). In contrast, 15 measurements conducted with the purified mCP dye,
495 applying the L'11 parameterization, yielded values that were tightly centered around the nominal *TRIS* pH_T values,
496 with a negligible bias of **-0.0003 ± 0.0011 pH_T** units. No ΔR or ΔpH_T corrections were applied to either dataset, as
497 the buffer capacity of *TRIS* is approximately 20 times higher than that of seawater, rendering the impact of the mCP
498 dye addition on pH_T negligible.
499

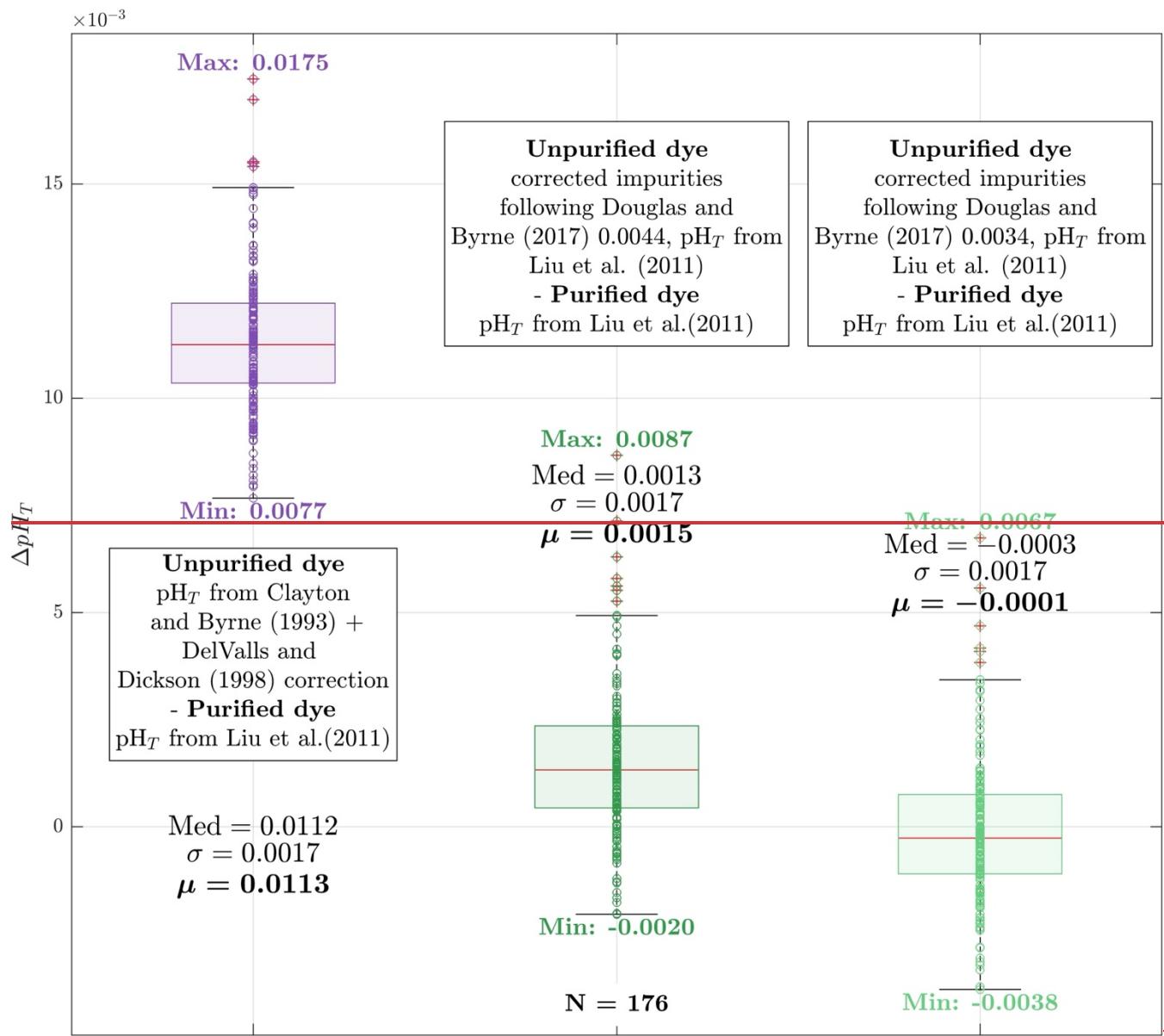
500 The correction of $_{434}\text{A}_{\text{imp}}$ due to mCP dye impurities, as proposed by DB'17, was evaluated using a value of $_{434}\text{A}_{\text{imp}}$
501 = 0.004413 absorbance units (given in their Table 2 for Sigma-Aldrich lot #11517KC at a mCP dye concentration
502 of 3.3 μM in the seawater sample). Applying this correction enabled the use of the L'11 parameterization,
503 substantially reducing the observed difference with purified mCP dye measurements to **0.0020 ± 0.0013 pH_T** units.
504 Recognizing that impurities can vary between batches of the same mCP dye brand, a second test using $_{434}\text{A}_{\text{imp}}$ =
505 0.0034 absorbance units, consistent with that obtained by Álvarez et al. ([2025 submitted](#)), further reduced the offset
506 to **-0.0005 ± 0.0013 pH_T** units.

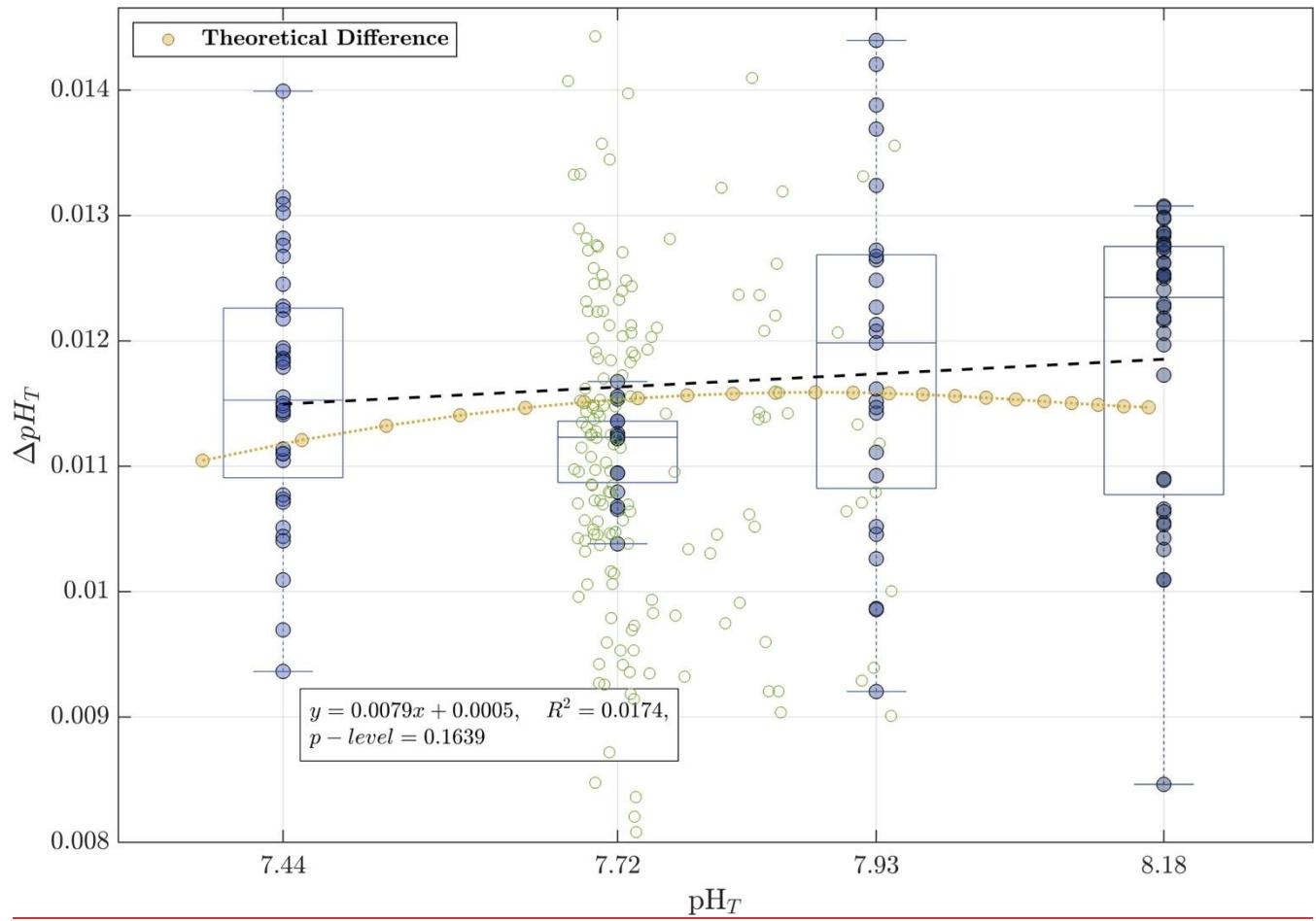
508
509 **Figure 5.** Whisker boxplots of pH_T differences relative to TRIS buffer reference values, comparing results obtained
510 using purified and unpurified mCP dyes. Each boxplot represents a different calculation approach: the orange
511 boxplot shows pH_T computed using unpurified mCP dye with the CB'93 parameterization and DVD'98 correction
512 (N = 16); the blue boxplot shows pH_T computed using purified mCP dye with the L'11 parameterization (N = 15);
513 and green boxplots show pH_T computed using unpurified mCP dye corrected for impurities using the DB'17
514 methodology with $_{434}A_{imp} = 0.0044$ and $_{434}A_{imp} = 0.0034$ absorbance units, respectively, and pH_T then calculated
515 using the L'11 parameterization. Within each boxplot, the red line indicates the median (Med), the box edges denote
516 the first and third quartiles, and whiskers extend to data points within 1.5 times the interquartile range. Mean (μ)
517 and standard deviation (σ) values are provided for each subset, and the minimum and maximum values are
518 indicated.

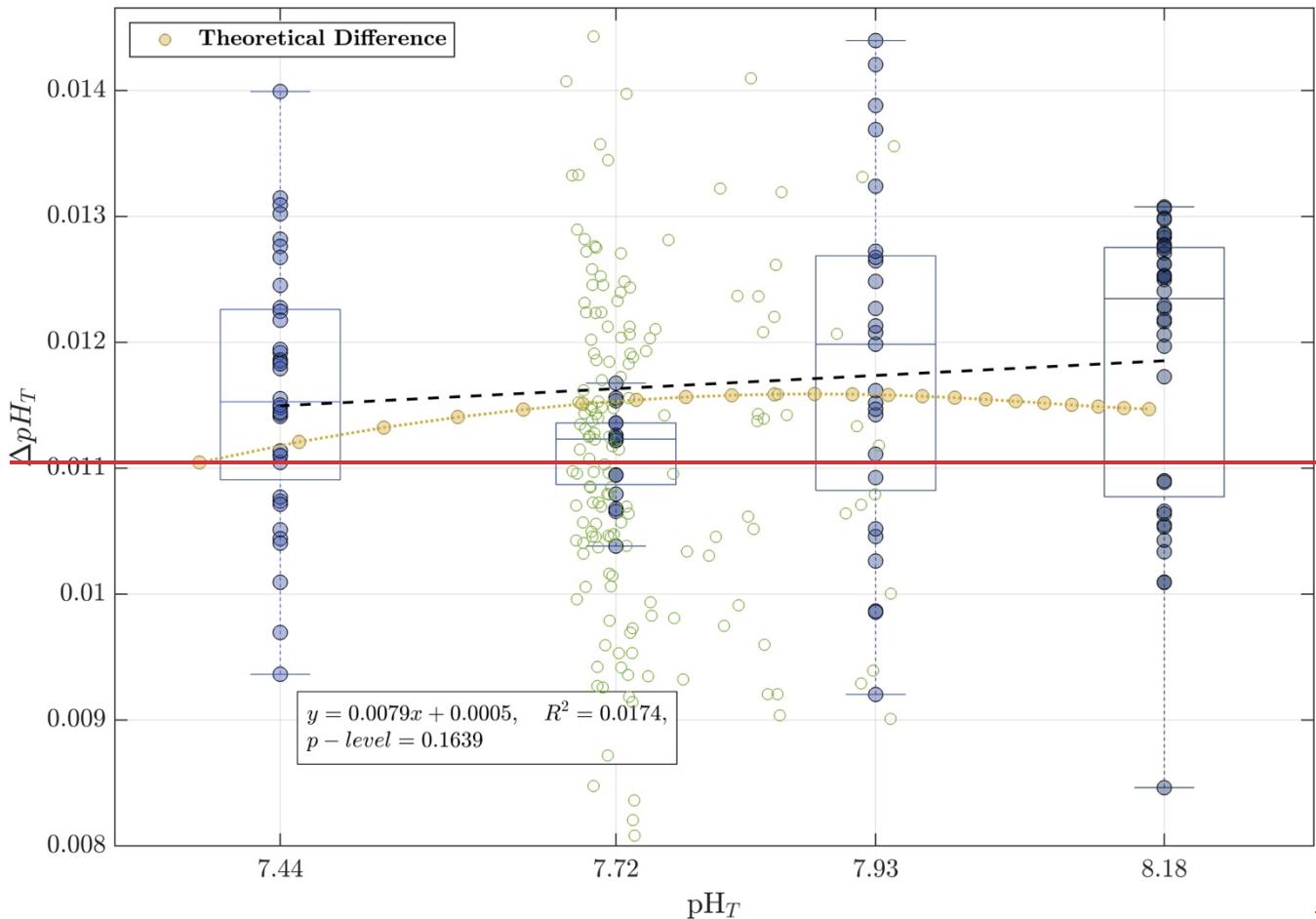
519 **3.2 Duplicate measurements of natural seawater**

520 During the 2021 cruise, six duplicate pH_T samples were collected at each hydrographic station along the OVIDE-
521 BOCATS transect, with sampling points carefully distributed throughout the water column to represent different
522 water masses. In addition to the routine pH_T determinations conducted according to the OVIDE-BOCATS protocol
523 (i.e., addition of 75 μ L of Sigma-Aldrich [2 mM] mCP dye solution and pH_T computed using CB'93+DVD'98; see
524 Sect. 2.2.2), these six replicate samples per profile were also measured using purified mCP dye (10 μ L of [11 mM]
525 mCP dye supplied by Dr. Byrne's laboratory, and pH_T determined using the L'11 parameterization).
526


527 These duplicate measurements encompassed the full pH_T range typically observed during OVIDE-BOCATS
528 cruises (7.7 to 8.0 pH_T units). As shown in Fig. 6, the standard OVIDE-BOCATS procedure yields pH_T values that
529 are, on average, 0.0113 ± 0.0017 ($N = 176$) pH_T units higher than those obtained using the purified mCP dye and
530 the L'11 parameterization. These results align with the findings from the *TRIS* buffer experiments (see Sect. 3.1).
531 The differences between the two methods showed no significant dependence on pH_T (Fig. 7, green dots), in
532 agreement with the theoretical expectation illustrated in Fig. 2 (blue line, Aldrich-3.4).
533


534 When the DB'17 methodology was applied using a $_{434}\text{A}_{\text{imp}}$ value of 0.004413 absorbance units at $_{488}\text{A} = 0.225$, the
535 offset was reduced to 0.0015 ± 0.0017 pH_T units—statistically indistinguishable from zero. Using a $_{434}\text{A}_{\text{imp}}$ value
536 of 0.0034 absorbance units further minimized the offset to -0.0001 ± 0.0017 pH_T units, corroborating the impurity
537 correction results from the TRIS buffer experiment. The individual $_{434}\text{A}_{\text{imp}}$ values applied here are proportionally
538 dependent on the $_{488}\text{A}$ in each measurement.


539 3.3 Duplicate measurements of modified seawater


540 During the OVIDE-2018 cruise, surface seawater with a salinity of 35.7 was treated using HCl or Na_2CO_3 to
541 produce four distinct pH_T levels (7.45, 7.70, 7.95, and 8.19). These were stored in separate Niskin bottles and
542 sampled using the same protocol as for natural seawater. For each batch, four to six samples were analyzed for pH_T
543 using the standard OVIDE-BOCATS procedure (CB'93+DVD'98 and 75 μL of unpurified Sigma-Aldrich mCP
544 dye [2 mM] solution added to the cell; 5.36 μM final mCP dye concentration in the sample cell), and an equivalent
545 number was measured using purified mCP dye (75 μL of mCP dye [2.5 mM] solution added to the cell; 6.70 μM
546 final mCP dye concentration in the sample cell; FB5-2017 from Dr. Byrne's laboratory and the L'11
547 parameterization). This experiment extends the comparison conducted with *TRIS* buffer and natural seawater to a
548 wider pH_T range, representative of conditions encountered in the South Atlantic and Pacific Oceans.

549 The mean pH_T offset between the two methods (measuring with unpurified mCP dye and applying CB'93+DVD'98
550 versus purified mCP dye and applying the L'11 parameterization) across 22 measurements was 0.0109 ± 0.0011
551 pH_T units, consistent with previous results from *TRIS* and natural seawater duplicate samples (Sect. 3.1 and Sect.
552 3.2). No significant trend was observed across the pH_T range (Fig. 7, regression p-level > 0.05). Similarly,
553 differences observed in natural seawater (green dots in Fig. 7) also showed no significant correlation with pH_T
554 (slope = -0.000 ± 0.002 ; p-level > 0.05). Furthermore, the magnitude and behavior of the observed differences are
555 consistent with theoretical expectations (Fig. 2, yellow line), assuming a $_{434}\text{A}_{\text{imp}}$ value of 0.0034 absorbance units
556 for Sigma-Aldrich mCP dye at a final concentration in the cell of 3.3 μM (as per Table 2 of DB'17).

569
570 **Figure 7.** Differences in pH_T measurements between replicate samples measured using unpurified mCP dye
571 (CB'93+DVD'98) and purified mCP dye (L'11 parameterization) across four pH_T levels obtained from modified
572 seawater experiments. The black dashed line shows the linear regression of the differences as a function of pH_T ,
573 with regression statistics summarized in the inset box. The yellow line represents the expected pH_T differences
574 assuming a $_{434}\text{A}_{\text{imp}}$ value of 0.034 absorbance units, as modeled in Fig. 2. Green dots correspond to the 176
575 individual pH_T differences presented in the first (purple) boxplot of Fig. 6.

576 **3.4 pH_T correction**

577 DB'17 proposed a value of $_{434}\text{A}_{\text{imp}} = 0.004413$ absorbance units for a Sigma-Aldrich mCP dye at a final
578 concentration of $3.3 \mu\text{M}$ in the sample cell ($_{488}\text{A} = 0.225$; Takeshita et al., 2021). Based ~~However, based~~ on our
579 experimental results, we found that a better fit under our conditions corresponded to a $_{434}\text{A}_{\text{imp}}$ value of 0.0034
580 absorbance units, which is reasonable given that we are working with a different lot of mCP dye. Given that $_{434}\text{A}_{\text{imp}}$
581 is proportional to $_{488}\text{A}$, which in turn reflects the final mCP dye concentration in the cell, we derived the following
582 relationship:

583
$$_{434}\text{A}_{\text{imp}} = 0.0034 / 0.2250 \cdot {}_{488}\text{A} = 0.0151 \cdot {}_{488}\text{A} \quad (8).$$

584 Accordingly, the impurity correction was applied to each sample by subtracting the computed $_{434}\text{A}_{\text{imp}}$ (Eq. 8) from
585 the sample measured $_{434}\text{A}$, yielding:

586 $_{434}\text{A}_{\text{corr,pur}} = _{434}\text{A} - _{434}\text{A}_{\text{imp}} = _{434}\text{A} - (0.0151 \cdot _{488}\text{A}) \quad (9),$

587 $R_{\text{corr,pur}} = (578\text{A} - 730\text{A}) / (_{434}\text{A}_{\text{corr,pur}} - 730\text{A}) \quad (10),$

589 where $_{434}\text{A}_{\text{corr,pur}}$ is the corrected $_{434}\text{A}$, and $R_{\text{corr,pur}}$ corresponds to the R value as if measured with a purified mCP
590 dye. Subsequently, pH_T was recalculated using the L'11 parameterization.

591 Implementing this correction required a comprehensive recovery and reassessment of historical $_{434}\text{A}$, $_{578}\text{A}$, and $_{488}\text{A}$
592 values dating back to the 2002 cruise. Note that for data prior to 2018, $_{488}\text{A}$ values were estimated from Eq. (7).
593 While corrections related to the mCP dye addition effect were included in the data published in GLODAPv2.2023
594 (Lauvset et al., 2024), the $_{488}\text{A}$ -based correction described in Sect. 2.2.3 had not yet been incorporated. Final pH_T
595 values included in this work were computed from the corrected absorbance data, using the recalculated $R_{\text{corr,pur}}$,
596 along with the updated mCP dye perturbation correction $\Delta(\text{pH}_T/_{488}\text{A})$ -vs- $\text{pH}_{T,1}$.
597

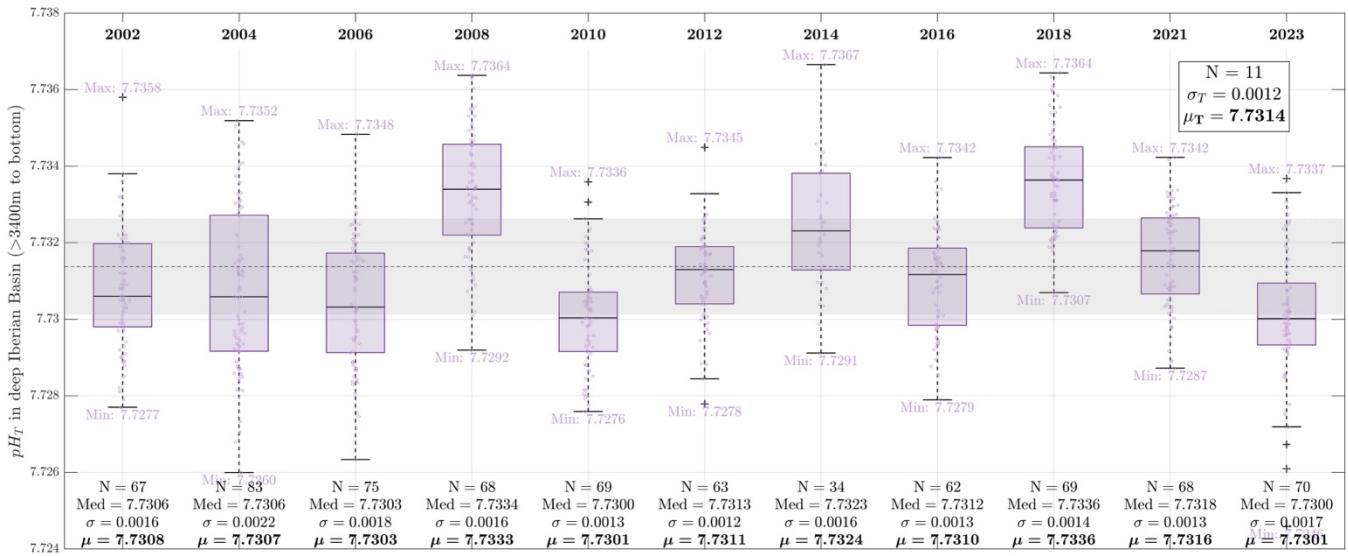
598 4. Results and Discussion

600 4.1 Database product

601 We present a new database comprising 23,843 samples with spectrophotometric pH_T values, each
602 accompanied by complete spatiotemporal metadata—including latitude, longitude, pressure, depth, date, and time—
603 as well as in situ measurements of temperature, salinity, and dissolved oxygen. Dissolved oxygen concentrations
604 were primarily determined using the Winkler titration method; where unavailable or deemed unreliable, values
605 from a calibrated oxygen sensor mounted on the *Conductivity, Temperature, and Depth* (CTD) instrument were
606 used. The dataset incorporates a quality flagging scheme consistent with GLODAPv2 recommendations (Key et
607 al., 2015; Olsen et al., 2016), where flag 2 denotes good data (23,773 samples), 3 (19 samples) and 4 (51 samples)
608 indicate questionable and bad data, respectively, and 9 denotes not measured. Specifically, 71 pH_T values were
609 flagged as questionable (flag = 3).

610
611 Spectrophotometric pH_T data collected between 2002 and 2018, available in the GLODAPv2.2023 release (Lauvset
612 et al., 2024), were computed using the CB'93 parameterization with the DVD'98 correction (+0.0047 pH_T units),
613 and were already available in the GLODAPv2.2023 release (Lauvset et al., 2024). The newly compiled pH_T dataset
614 presented here updates and corrects these data following the procedure presented in Sect. 3.4, applying the DB'17
615 adjustment and L'11 equation. In addition, the dataset significantly extends the temporal coverage by including
616 pH_T measurements from the 2021 and 2023 cruises, which were not previously available; these measurements are
617 also corrected using the same procedure, resulting in a consistent final product across all cruises. In addition, for
618 the first time, associated absorbance readings ($_{434}\text{A}$, $_{578}\text{A}$, and $_{488}\text{A}$) are provided alongside pH_T values. This
619 comprehensive and corrected pH_T dataset provides a robust foundation for future reassessments, such as the
620 application of updated absorbance-to- pH_T parameterizations or transformations to alternative pH scales (e.g., the
621 "free" hydrogen ion scale).

622 4.2 Consistency of the pH_T correction

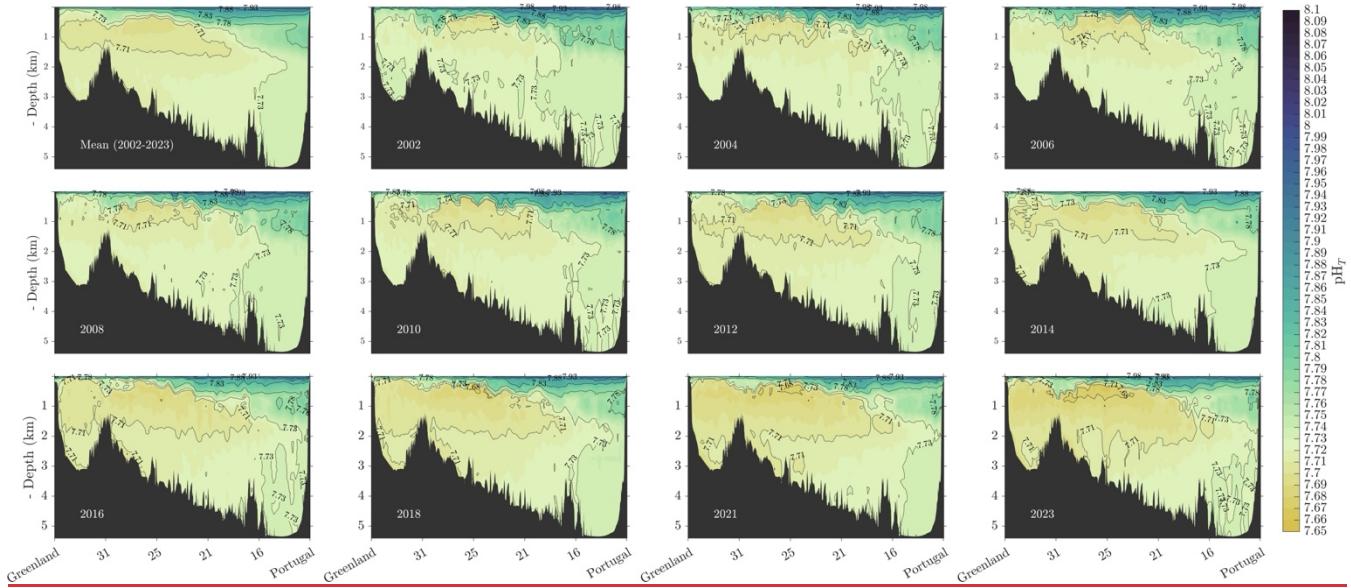

623 The differences between the former-procedure—applying the CB'93 parameterization with the DVD'98 correction
624 to R values derived from unpurified mCP dye—and the updated method presented here—applying the L'11

625 parameterization to R values derived from unpurified mCP dye corrected for the impurity effect (see Sect. 3.4)—
626 are, on average, $+0.011 \pm 0.002$ (1σ) pH_T units ($N = 23$, [843535](#); Supporting Information Fig. 4), in line with results
627 from the assessment experiments described in Section 3. These differences show a slight negative correlation with
628 pH_T, with smaller offsets observed at higher pH_T values (Supporting Information Fig. 4). The slopes of the linear
629 regressions of these differences versus pH_T range from -0.0064 ± 0.0001 to 0.0005 ± 0.0001 pH_T units. It should
630 be noted that this range is comparable in magnitude to other uncertainty sources—such as the effect of the addition
631 of mCP dye to the sample pH_T, and the instrumental measurement uncertainty (e.g., Sect. 2.2.3)—which may
632 contribute to the overall variability in the observed differences.

633 To assess the internal consistency and long-term comparability of the corrected pH_T values, we examined the deep
634 layer of the Iberian Basin, associated with the North East Atlantic Deep Water (NEADW). This layer has been
635 recognized as a stable reference for the OVIDE-BOCATS program, as its properties show minimal long-term
636 variability (García-Ibáñez et al., 2016). Supporting this minimal variability, Steinfeldt et al. (2024) reported no
637 detectable accumulation of anthropogenic CO₂ in this layer based on chlorofluorocarbons measurements.

638 The average pH_T in the NEADW layer over 11 cruises (2002–2023) was 7.7314 ± 0.0015 (1 standard deviation;
639 1σ), with only two cruises (2008 and 2018) exceeding the mean by more than 1 standard deviation (Fig. 8). The
640 standard deviation within individual cruises was generally low (< 0.0018 pH_T units), with the exception of the 2004
641 cruise (0.0022 pH_T units). Additionally, the cruise-specific mean pH_T values showed no correlation with the
642 difference between the old and new pH_T values (Supporting Information Fig. 5). These findings reinforce the
643 reliability of the applied correction for the effects of impurities in the Sigma-Aldrich mCP dye (Sect. 3.4), based
644 on a $_{434}A_{imp}$ value of 0.0034 ± 0.0010 absorbance units for $_{488}A = 0.225$.

645 However, it is important to acknowledge a limitation: the $_{434}A_{imp}$ value was not directly determined for each
646 individual batch of mCP dye, as recommended by DB'17. In practice, this is challenging—especially for older
647 cruises—since the specific mCP dye batches may no longer be available. While Sigma-Aldrich mCP dye batches
648 have been shown to have a narrow impurity range (typically > 90% purity; Álvarez et al., [2025submitted](#)),
649 variations between batches still exist. Thus, assuming a single correction value ($_{434}A_{imp} = 0.0034$) across all cruises
650 could be questioned. We conservatively estimate an absorbance uncertainty of ± 0.001 due to batch variability,
651 which translates to an uncertainty of approximately ± 0.002 pH_T units. The estimate is consistent with the inter-
652 cruise variability observed (Fig. 8), supporting the use of $_{434}A_{imp} = 0.0034$ as a reasonable and robust correction
653 value for the entire OVIDE-BOCATS dataset.

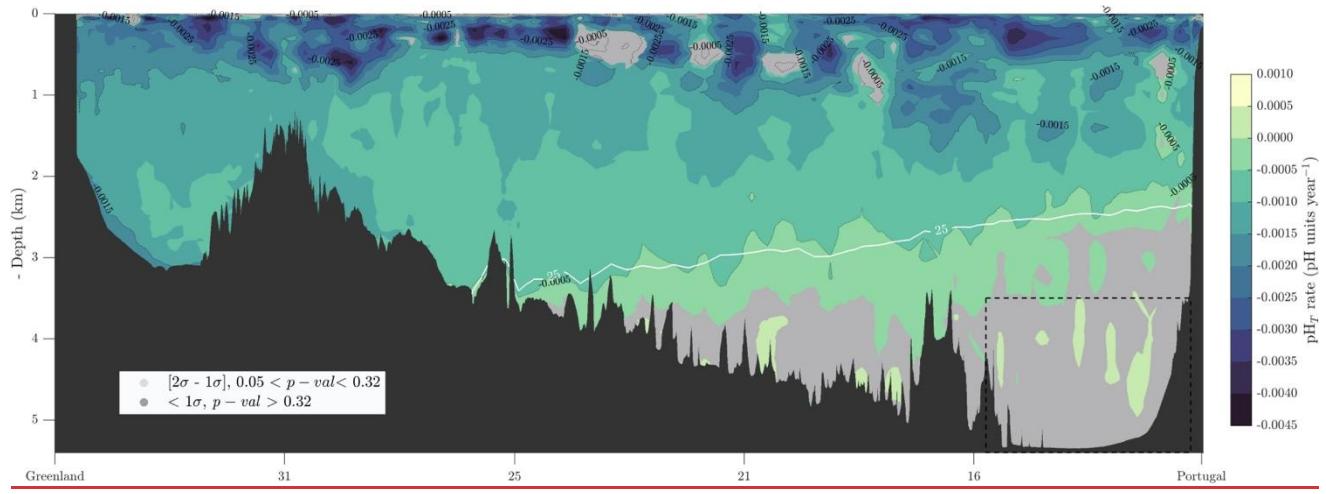

666 et al. (2018) and García-Ibáñez et al. (2021). To assess this impact, aragonite saturation horizons were recalculated
667 using in situ temperature, salinity, AT , and pHT values, both before and after correcting for $_{434}\text{A}_{\text{imp}}$ (see Sect. 3.4),
668 using the carbonate chemistry constants from Lueker et al. (2000) and the boron formulation of Lee et al. (2010).
669

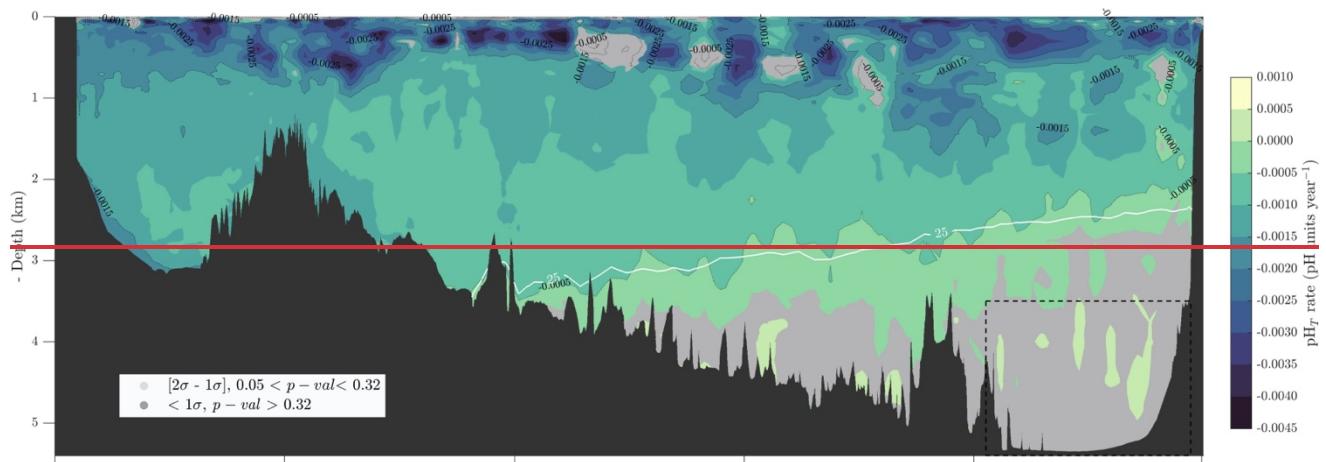
670 This reevaluation reveals a more pronounced reduction in aragonite saturation at the surface (from -0.040 to -
671 0.065), relative to pre-industrial conditions, which progressively diminishes with depth, reaching changes of -0.016
672 near the seafloor. Although changes at depth appear small in absolute terms, the weak vertical gradient in aragonite
673 saturation in deeper layers translates into a significant vertical shift in the saturation horizon—rising by
674 approximately 120 m to 200 m. Based on the reproducibility of the doubloons (Sect. 2.2.5) and the standard
675 deviation of the mean pHT in the NEADW layer over 11 cruises (Sect. 4.2), the uncertainty in the saturation-depth
676 change is estimated at 17 meters, while the uncertainty in the aragonite saturation state is 0.0033 units. For instance,
677 in the NA subpolar gyre, where the aragonite saturation horizon currently resides near 2,700 m depth, the revised
678 (lower) pHT values shift it upward by approximately 150 m. This shift implies that vulnerable cold-water coral
679 ecosystems may be exposed to undersaturation conditions in shallower and more extensive regions than previously
680 estimated. This reassessment underscores the importance of accurate pHT determinations: even subtle biases can
681 propagate into substantial differences in projected impacts on sensitive deep-sea habitats.
682

683 To investigate the spatial and temporal evolution of pHT along the OVIDE-BOCATS section, observations from
684 the new OVIDE-BOCATS database were interpolated onto a common 7 km x 1 dbar grid. Each cruise's station
685 positions were projected onto the grid by identifying the closest grid node (minimum distance), followed by linear
686 interpolations using a Delaunay Triangulation approach (Amidror, 2002). This method ensured optimal station
687 overlap while preserving dataset consistency across years.
688

689 Figure 9 displays the pHT distributions from the 11 cruises (2002–2023), along with the overall mean distribution.
690 Surface waters show the highest pHT values, particularly along the eastern boundary, where elevated temperatures
691 (not shown) partly contribute to the increase. Minimum pHT values generally occur in intermediate waters (~500–
692 1,500 m), except in the Iberian Basin, where the presence of Mediterranean Water—characterized by a warm, saline
693 core at ~1,000 m—causes a downward shift of the pHT minimum to ~2,000 m.
694

695 Notably, a persistent pHT minimum appears in the Iceland Basin between 500 m and 1,000 m, associated with
696 intermediate waters with high Apparent Oxygen Utilization (AOU; Supporting Information Fig. 6a; Lauvset et al.
697 2020). This layer, influenced by older water masses transported by the North Atlantic Current (NAC) and exhibiting
698 elevated remineralization rates (de la Paz et al., 2017), has shown significant spatial expansion over time. Since
699 2016, waters with pHT below 7.71 have progressively expanded eastward, deepening toward ~2,000 m and reaching
700 the Azores-Biscay Ridge (see Fig. 1 for georeference). In addition, the low- pHT layer has spread into the Irminger
701 Basin since 2010.


Figure 9. Distribution of pH_T normalized to 25°C and 1 atm along the OVIDE-BOCATS section (Fig. 1) for each cruise from 2002 to 2023, as well as the overall mean of all 11 OVIDE-BOCATS cruises. The section is plotted with longitudes ($^\circ\text{W}$) in the x-axis.


In the Irminger Basin, a subsurface pH_T minimum (< 7.73) was already evident in 2002, associated with DSOW. This signal reappeared in 2014 with even lower values (< 7.70) and has progressively thickened through to the most recent observations in 2023. Although less intense than the DSOW signal, ISOW in the Iceland Basin has also shown a noticeable OA signal since 2016, reaching comparable pH_T values to those found in DSOW. In contrast, the deep pH_T maximum observed in 2002 at depths of 2,700–3,000 m—extending eastward from 20°W —

714 had largely disappeared by 2010, becoming confined to the Iberian Basin. There, maximum pH_T values persist
715 between 3,000 and 5,250 m depth, corresponding to the core of NEADW.
716

717 This contrast in deep-ocean pH_T between the more recently ventilated waters of the Irminger and Iceland Basins
718 and the older, more stable NEADW is consistent with differential exposure to C_{ant}. Waters in the subpolar basins—
719 having had more recent contact with the atmosphere or mixed with recently ventilated layers—have absorbed more
720 C_{ant}, leading to their enhanced OA (Fig. 10) (García-Ibáñez et al., 2016).
721

722 DSOW exhibits a particularly strong OA (rate < -0.0015 pH_T yr⁻¹), extending along the bottom of the Irminger
723 Basin. A similar, though less intense, signal is seen in ISOW (< -0.0010 pH_T yr⁻¹). The highest OA rates (< -0.002
724 pH_T yr⁻¹) are observed in the surface layers (0—500 m) due to direct air-sea CO₂ exchange, consistent with the rate
725 reported in Reverdin et al. (2018) for surface data in the NA subpolar gyre. These upper layers also exhibit high
726 interannual pH_T variability (Supporting Information Fig. 740), which correlates negatively with AOU (Supporting
727 Information Fig. 6b). This pH_T-AOU relationship suggests a strong influence of mesoscale variability, particularly
728 associated with the NAC, which is known for its energetic and variable meandering in this region (Daniault et al.,
729 2016). As a result, OA rates in NAC-influenced areas may be either enhanced or masked by spatial variability of
730 the natural component in the pH_T variability, sometimes leading to non-significant OA rates despite ongoing C_{ant}
731 uptake.
732

736
737 **Figure 10.** Linear trends in pH_T at 25°C and 1 atm from 2002 to 2023 (i.e., OA rates) along the OVIDE-BOCATS
738 section (Fig. 1), based on high-resolution interpolations. Blue (yellow) shading indicates more (less) negative OA
739 rates. Grey areas denote trends that are not statistically significant at the 1σ level. The white contour represents the
740 silicate isoline of $25 \mu\text{mol kg}^{-1}$, and the dashed black box marks the deep Iberian Basin region used for measurement
741 quality-control (see Sect. 4.2). Longitude ($^\circ \text{W}$) is shown on the x-axis.

742
743 On the other hand, in the deep-water masses east to 30°W , there is a clear transition to non-significant OA rates at
744 depth (Fig. 10). This transition coincides with the $25 \mu\text{mol kg}^{-1}$ silicate isoline, which marks the boundary between
745 NA-origin waters and those with Antarctic influence (García-Ibáñez et al., 2015). At this silicate level, García-
746 Ibáñez et al. (2015) estimated that NEADW accounts for $\sim 30\%$ of the water mass composition, while LSW and
747 ISOW contribute the remaining 70% , with proportions varying with depth. NEADW originates from Antarctic
748 Bottom Water, [which flows into the Eastern North Atlantic Basin from formed in](#) the Vema Fracture Zone ([Mercier and Morin, 1997](#)),
749 and is largely devoid of C_{ant} (Steinfeldt et al., 2024). Consequently, as silicate concentrations
750 increase beyond $25 \mu\text{mol kg}^{-1}$, the influence of NEADW becomes dominant, resulting in non-significant OA rates
751 (Fig. 10), and elevated AOU values (Supporting Information Fig. 6a), consistent with the advanced age and limited
752 ventilation of these waters.

753 5. Conclusions

754 We present a new, rigorously quality-controlled dataset of discrete spectrophotometric pH_T measurements from the
755 North Atlantic, spanning over two decades and including absorbance data. This dataset provides a unique resource
756 for the ocean carbon research community, enabling retrospective reassessment of pH_T values and derived variables
757 under updated methodological standards.

758 Our analysis revealed that pH_T values measured with an unpurified mCP dye from Sigma-Aldrich exhibit a
759 consistent positive bias of $+0.011 \pm 0.002$ pH_T units, on average, compared to those measured using purified mCP
760 dye, with this offset decreasing slightly at higher pH_T . While the correction applied has negligible influence on
761 previously published OA trends, it significantly affects derived variables such as the aragonite saturation horizon,
762 which is now estimated to be up to 200 m shallower in certain regions. These changes have implications for
763 assessing the vulnerability of deep-sea ecosystems to OA and underscore the need for highly accurate pH_T
764 measurements.

766
767 Our results reinforce findings from recent studies (e.g., Carter et al., 2024a; Takeshita et al., 2021, 2022) and
768 support the following recommendations:
769

- 770 1. Ideally, pH_T measurements should be carried out using well-characterized, purified mCP dyes and
771 following consensus procedures that ensure SI traceability (Capitaine et al., 2023; Carter et al., 2024a),
772 regardless of mCP dye used.
- 773 2. Although the correction applied here (${}_{434}\text{A}_{\text{imp}} = 0.0034$) yielded consistent results, we recommend the
774 determination of batch-specific ${}_{434}\text{A}_{\text{imp}}$ values (Douglas & Byrne, 2017; Álvarez et al., [2025 submitted](#)).
- 775 3. The effect of mCP dye addition on sample pH_T is comparable in magnitude to spectrophotometer non-
776 linearity. Our findings support the estimation of this effect via $\Delta(\text{pH}_T/488\text{A})$ -vs- $\text{pH}_{T,i}$ approach proposed by
777 Takeshita et al. (2022), and are consistent with recommendations by Li et al. (2020).
- 778 4. While the mCP dye does not significantly alter the *TRIS* buffer pH_T , accurate temperature control is
779 essential. *TRIS* remains suitable for methodological validation, with spectrophotometer behavior being the
780 primary concern (Capitaine et al., 2023).

781 6. Data availability

782 The complete OVIDE-BOCATS pH_T dataset presented in this study is made available at
783 <https://doi.org/10.5281/zenodo.17141184> (Pérez et al., 2025) in multiple formats to ensure broad accessibility and
784 compatibility with different research workflows. The dataset includes 23,843,535 spectrophotometric pH_T
785 measurements along with associated absorbance data (${}_{434}\text{A}$, ${}_{578}\text{A}$, and ${}_{488}\text{A}$) and complete spatiotemporal metadata
786 from 11 cruises spanning 2002-2023. Data are provided as: (1) comma-separated values (CSV) format for general
787 use, (2) WHP-Exchange bottle format following WOCE Hydrographic Program Exchange format standards, (3)
788 NetCDF format with CF-compliant metadata, and (4) Apache Parquet format with both CF standard names and the
789 proposed metadata conventions of Jiang et al. (2022). This multi-format approach ensures the data can be readily
790 integrated into existing oceanographic databases and analysis workflows, adhering to FAIR (Findable, Accessible,
791 Interoperable, and Reusable) data principles. All formats include quality flags for pH_T following GLODAP
792 recommendations.

793 7. Supplementary Information

794 The supplement related to this article is available online at:
795

800 8. Author contribution

801 FFP, MLM, and AV designed the study, conceptualization, methodology, validation and formal analysis. AV, PL
802 and FFP give supervision, administration and funding. The manuscript was written by MLM and FFP and edited,
803 and also revised by MGI and discussed by all authors. The dataset, data curation and validation were done by FFP,
804 AV, MA and MLM.

805 9. Competing interests

806 Author A. Velo is a member of the editorial board of the journal.

811
812 **Acknowledgments**
813

814 We thank all of the scientists, technicians, personnel, and crew who were responsible for the collection and analysis
815 of the over 23 000 samples included in the final dataset.
816

817 **Financial support**
818

819 F.F. Pérez and A. Padín were supported by FICARAM+ (PID2023-148924OB-I00) project funded by
820 MICIU/AEI/10.13039/501100011033 and FEDER, UE. A. Velo was supported by the European Union under grant
821 agreement no. 101094690 (EuroGO-SHIP). M. López-Mozos was supported by the grant PRE2020-093138 funded
822 by MICIU/AEI/10.13039/501100011033 and by “ESF Investing in your future”. M. Fontela was funded by
823 PTA2022-021307-I, MCIN/AEI/10.13039/501100011033 and by FSE+. M.I. García-Ibáñez and M. Álvarez were
824 supported by the ESMARES (Marine Strategy Directive Framework) program funded by the Spanish Ministry for
825 the Ecological Transition and the Demographic Challenge. N.M. Fajá was supported the Complementary Science
826 Plans for Marine Science of ‘Ministerio de Ciencia, Innovación y Universidades’ included in the Recovery,
827 Transformation and Resilience Plan (PRTR-C17.II) funded through ‘Xunta de Galicia’ with Next Generation EU
828 and the European Maritime Fisheries and Aquaculture Fund.
829

830 This work has been supported by FICARAM+ (PID2023-148924OB-I00) project funded by MICIU/AEI
831 /10.13039/501100011033 and FEDER, UE.
832

833 This work was co-funded by the European Union under grant agreement no. 101094690 (EuroGO-SHIP) and UK
834 Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee [grant numbers:
835 10051458, 10068242, 10068528]. Views and opinions expressed are however those of the author(s) only and do
836 not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European
837 Union nor the granting authority can be held responsible for them.
838

839 **References**
840

841 Álvarez, M., Fajá, N. M., Carter, B. R., Guallart, E. F., Pérez, F. F., Woosley, R. J., & Murata, A. (2020). Global
842 ocean spectrophotometric pH assessment: consistent inconsistencies. *Environmental Science & Technology*,
843 54(18), 10977-10988. <https://doi.org/10.1021/acs.est.9b06932>

844 Álvarez, M., García-Ibáñez, M. I., Acerbi, R., Santiago-Domenech, R., Guallart, E. F., Fajá, N. M., & Arbilla, L.
845 (2025). et al. "Ocean acidification at the crossroads I: Harmonizing unpurified and purified meta-
846 cresol purple spectrophotometric pH_TpH measurements based on absorbance data." Limnology and
847 Oceanography: Methods, submitted.
848

849 Álvarez-Salgado, X. A., Nieto-Cid, M., Álvarez, M., Pérez, F. F., Morin, P., & Mercier, H. (2013). New insights
850 on the mineralization of dissolved organic matter in central, intermediate, and deep water masses of the northeast
851 North Atlantic. *Limnol. Oceanogr.*, 58(2), 681–696. <https://doi.org/10.4319/lo.2013.58.2.0681>
852

853 Amidror, I. (2002). *Scattered data interpolation methods for electronic imaging systems: A survey*. 11(2), 157–
854 176. <https://doi.org/10.1111/1.1455013>
855

856 Asselot, R., Carracedo, L. I., Thierry, V., Mercier, H., Bajon, R., & Pérez, F. F. (2024). Anthropogenic carbon
857 pathways towards the North Atlantic interior revealed by Argo-O2, neural networks and back-calculations. *Nature*
858 *Communications*, 15(1), 1630. <https://doi.org/10.1038/s41467-024-46074-5>

859

860 [Bajon, R., Carracedo, L. I., Mercier, H., Asselot, R., and Pérez, F. F.: Seasonal to long-term variability of natural](#)
861 [and anthropogenic carbon concentrations and transports in the subpolar North Atlantic Ocean, EGUsphere](#)
862 [\[preprint\], , 2025](#)

863

864 Bushinsky, S. M., Nachod, Z., Fassbender, A. J., Tamsitt, V., Takeshita, Y., & Williams, N. (2025). Offset Between
865 Profiling Float and Shipboard Oxygen Observations at Depth Imparts Bias on Float pH and Derived $p\text{CO}_2$. *Global*
866 *Biogeochemical Cycles*, 39(5), e2024GB008185. <https://doi.org/10.1029/2024GB008185>

867

868 Byrne, R. H., & Breland, J. A. (1989). High precision multiwavelength pH determinations in seawater using cresol
869 red. *Deep Sea Research Part A: Oceanographic Research Papers*, 36(5), 803–810.

870

871 Caldeira, K., & Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. *Nature*, 425(6956), 365–365.
872 <https://doi.org/10.1038/425365a>

873

874 Capitaine, G., Stoica, D., Wagener, T., & Fisicaro, P. (2023). Production of a reference material for seawater pHT
875 measurements by a National Metrology Institute. *Marine Chemistry*, 252, 104244.
876 <https://doi.org/10.1016/j.marchem.2023.104244>

877

878 Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., Fong, M. B., & Takeshita, Y. (2018). Updated methods
879 for global locally interpolated estimation of alkalinity, pH, and nitrate. *Limnology and Oceanography: Methods*,
880 16(2), 119–131. <https://doi.org/10.1002/lom3.10232>

881

882 Carter, B. R., Radich, J. A., Doyle, H. L., & Dickson, A. G. (2013). An automated system for spectrophotometric
883 seawater pH measurements. *Limnology and Oceanography: Methods*, 11(1), 16–27.
884 <https://doi.org/10.4319/lom.2013.11.16>

885

886 Carter, B. R., Sharp, J. D., Dickson, A. G., Alvarez, M., Fong, M. B., García-Ibáñez, M. I., ... & Wang, Z. A.
887 (2024a). Uncertainty sources for measurable ocean carbonate chemistry variables. *Limnology and Oceanography*,
888 69(1), 1–21. <https://doi.org/10.1002/lno.12477>

889

890 Carter, B. R., Sharp, J. D., García-Ibáñez, M. I., Woosley, R. J., Fong, M. B., Alvarez, M., ... & Wang, Z. A.
891 (2024b). Random and systematic uncertainty in ship-based seawater carbonate chemistry observations. *Limnology*
892 *and Oceanography*, 69(10), 2473–2488.
893 <https://doi.org/10.1002/lno.12674>

894

895 Chierici, M., Fransson, A., & Anderson, L. G. (1999). Influence of *m*-cresol purple indicator additions on the pH
896 of seawater samples: Correction factors evaluated from a chemical speciation model. *Marine Chemistry*, 65(3),
897 281–290. [https://doi.org/10.1016/S0304-4203\(99\)00020-1](https://doi.org/10.1016/S0304-4203(99)00020-1)

898

899 Clayton, T. D., & Byrne, R. H. (1993). Spectrophotometric seawater pH measurements: Total hydrogen ion
900 concentration scale calibration of *m*-cresol purple and at-sea results. *Deep Sea Research Part I: Oceanographic*
901 *Research Papers*, 40(10), 2115–2129. [https://doi.org/10.1016/0967-0637\(93\)90048-8](https://doi.org/10.1016/0967-0637(93)90048-8)

902
903 Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., Pérez, F. F., Ríos, A. F., Ferron,
904 B., Huck, T., Thierry, V., & Gladyshev, S. (2016). The northern North Atlantic Ocean mean circulation in the early
905 21st century. *Progress in Oceanography*, 146, 142–158. <https://doi.org/10.1016/j.pocean.2016.06.007>
906
907 de la Paz, M., García-Ibáñez, M. I., Steinfeldt, R., Ríos, A. F., & Pérez, F. F. (2017). Ventilation versus biology:
908 What is the controlling mechanism of nitrous oxide distribution in the North Atlantic? *Global Biogeochemical
909 Cycles*, 31(4), 745–760. <https://doi.org/10.1002/2016GB005507>
910
911 DelValls, T., & Dickson, A. (1998). The pH of buffers based on 2-amino-2-hydroxymethyl-1, 3-propanediol ('tris')
912 in synthetic sea water. *Deep-Sea Research Part I*, 45(9), 1541–1554. [https://doi.org/10.1016/s0967-0637\(98\)00019-3](https://doi.org/10.1016/s0967-0637(98)00019-3)
914
915 DeVries, T., Yamamoto, K., Wanninkhof, R., Gruber, N., Hauck, J., Müller, J. D., et al. (2023). Magnitude, trends,
916 and variability of the global ocean carbon sink from 1985 to 2018. *Global Biogeochemical Cycles*, 37,
917 e2023GB007780. Dickson, A. G. (1993). The measurement of sea water pH. *Marine chemistry*, 44(2-4), 131-142.
918 [https://doi.org/10.1016/0304-4203\(93\)90198-W](https://doi.org/10.1016/0304-4203(93)90198-W)
919
920 Dickson, A. G. (2010). Standards for ocean measurements. *Oceanography*, 23(3), 34-47.
921 <https://www.jstor.org/stable/24860884>
922
923 Dickson, A. G., Camões, M. F., Spitzer, P., Fisicaro, P., Stoica, D., Pawlowicz, R., & Feistel, R. (2015).
924 Metrological challenges for measurements of key climatological observables. Part 3: seawater pH. *Metrologia*,
925 53(1), R26. <https://doi.org/10.1088/0026-1394/53/1/R26>
926
927 Dickson, A. G., Sabine, C. L., & Christian, J. R. (2007). *Guide to best practices for ocean CO₂ measurements* (Vol.
928 3). <http://www.oceandatapractices.org/handle/11329/249>
929
930 Douglas, N. K., & Byrne, R. H. (2017). Achieving accurate spectrophotometric pH measurements using unpurified
931 meta-cresol purple. *Marine Chemistry*, 190, 66–72. <https://doi.org/10.1016/j.marchem.2017.02.004>
932
933 Fong, M. B., Takeshita, Y., Easley, R. A., & Waters, J. F. (2024). Detection of impurities in m-cresol purple with
934 Soft Independent Modeling of Class Analogy for the quality control of spectrophotometric pH measurements in
935 seawater. *Marine chemistry*, 259, 104362. <https://doi.org/10.1038/s41598-017-02624-0>
936
937 Fontela, M., Mercier, H., & Pérez, F. F. (2019). Long-term integrated biogeochemical budget driven by circulation
938 in the eastern subpolar North Atlantic. *Progress in Oceanography*, 173, 51-65.
939 <http://doi.org/10.1016/j.pocean.2019.02.004>
940
941 Fontela, M., Pérez, F. F., Carracedo, L. I., Padín, X. A., Velo, A., García-Ibáñez, M. I., & Lherminier, P. (2020a).
942 The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities.
943 *Scientific Reports*, 10(1), Article 1. <https://doi.org/10.1038/s41598-020-71793-2>
944
945 Fontela, M., Pérez, F. F., Mercier, H., & Lherminier, P. (2020b). North Atlantic western boundary currents are
946 intense dissolved organic carbon streams. *Frontiers in Marine Science*, 7, 593757.
947 <https://doi.org/10.3389/fmars.2020.593757>

948

949 Fontela, M., Velo, A., Brown, P.J., Pérez, F.F. (2023). Carbonate System Species and pH. In: Blasco, J., Tovar-
 950 Sánchez, A. (eds) *Marine Analytical Chemistry*. Springer, Cham. https://doi.org/10.1007/978-3-031-14486-8_1

951

952 Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le
 953 Quéré, C., Luijx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshakl, C., Sitch, S., Canadell, J. G., Ciais,
 954 P., Jackson, R. B., Alin, S. R., Anthoni, P., ... Zheng, B. (2023). Global Carbon Budget 2023. *Earth System Science
 955 Data*, 15(12), 5301–5369. <https://doi.org/10.5194/essd-15-5301-2023>

956

957 García-Ibáñez, M. I., Bates, N. R., Bakker, D. C. E., Fontela, M., & Velo, A. (2021). Cold-water corals in the
 958 Subpolar North Atlantic Ocean exposed to aragonite undersaturation if the 2 °C global warming target is not met.
 959 *Global and Planetary Change*, 201, 103480. <https://doi.org/10.1016/j.gloplacha.2021.103480>

960

961 García-Ibáñez, M. I., Pardo, P. C., Carracedo, L. I., Mercier, H., Lherminier, P., Ríos, A. F., & Pérez, F. F. (2015).
 962 Structure, transports and transformations of the water masses in the Atlantic Subpolar Gyre. *Progress in
 963 Oceanography*, 135, 18–36. <https://doi.org/10.1016/j.pocean.2015.03.009>

964

965 García-Ibáñez, M. I., Zunino, P., Fröb, F., Carracedo, L. I., Ríos, A. F., Mercier, H., Olsen, A., & Pérez, F. F.
 966 (2016). Ocean acidification in the subpolar North Atlantic: Rates and mechanisms controlling pH changes.
 967 *Biogeosciences*, 13(12), 3701–3715. <https://doi.org/10.5194/bg-13-3701-2016>

968

969 Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley,
 970 S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H.-O., Rogers, A. D., Baxter, J. M., Laffoley, D.,
 971 Osborn, D., Rankovic, A., Rochette, J., ... Turley, C. (2015). Contrasting futures for ocean and society from
 972 different anthropogenic CO₂ emissions scenarios. *Science*, 349(6243), aac4722.
 973 <https://doi.org/10.1126/science.aac4722>

974

975 Gehlen, M., Séférian, R., Jones, D. O. B., Roy, T., Roth, R., Barry, J., Bopp, L., Doney, S. C., Dunne, J. P., Heinze,
 976 C., Joos, F., Orr, J. C., Resplandy, L., Segschneider, J., & Tjiputra, J. (2014). Projected pH reductions by 2100
 977 might put deep North Atlantic biodiversity at risk. *Biogeosciences*, 11(23), 6955–6967. [https://doi.org/10.5194/bg-11-6955-2014](https://doi.org/10.5194/bg-

 978 11-6955-2014)

979

980 IPCC. (2019). *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.- O. Pörtner, D.C.
 981 Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mientenbeck, M. Nicolai, A. Okem, J. Petzold,
 982 B. Rama, N. Weyer (eds.)]*. Intergovernmental Panel on Climate Change.

983

984 Ishii, M., Carter, B. R., Toyama, K., Rodgers, K. B., Feely, R. A., Chau, T. T. T., Chevallier, F., Desmet, F.,
 985 Gregor, L., Iida, Y., Kitamura, Y., Müller, J. D., & Tsujino, H. (2025). CO₂ Uptake in the Pacific From 1985 to
 986 2018: A Comparative Assessment of Observation and Model Based Estimates. *Global Biogeochemical Cycles*,
 987 39(5), e2024GB008355. <https://doi.org/10.1029/2024GB008355>

988

989 Jiang, L.Q., Pierrot, D., Wanninkhof, R., Feely, R.A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R.H., Carter, B.R.,
 990 Dickson, A.G., Gattuso, J.P., Greeley, D., Hoppema, M., Humphreys, M.P., Karstensen, J., Lange, N., Lauvset,
 991 S.K., Lewis, E.R., Olsen, A., Pérez, F.F., Sabine, C., Sharp, J.D., Tanhua, T., Trull, T.W., Velo, A., Allegra, A.J.,
 992 Barker, P., Burger, E., Cai, W.J., Chen, C.T.A., Cross, J., Garcia, H., Hernandez-Ayon, J.M., Hu, X., Kozyr, A.,
 993 Langdon, C., Lee, K., Salisbury, J., Wang, Z.A., Xue, L., 2022. Best Practice Data Standards for Discrete Chemical

994 Oceanographic Observations. *Front. Mar. Sci.* 8, 2099. <https://doi.org/10.3389/fmars.2021.705638>

995

996 Key, R.M., Olsen, A., van Heuven, S., Lauvset, S.K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T.,
997 Hoppema, M., Jutterstrom, S., Steinfeldt, R., Jeansson, E., Ishi, M., Perez, F.F., & Suzuki, T. (2015). *Global Ocean*
998 *Data Analysis Project, Version 2 (GLODAPv2)*, ORNL/CDIAC-162, ND-P093. Carbon Dioxide Information
999 Analysis Center (CDIAC). http://dx.doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2

1000

1001 Kwiatkowski, L., & Orr, J. C. (2018). Diverging seasonal extremes for ocean acidification during the twenty-first
1002 century. *Nature Climate Change*, 8(2), 141–145. <https://doi.org/10.1038/s41558-017-0054-0>

1003

1004 Lauvset, S. K., [Carter, B. R., Perez, F. F., Jiang, L.-Q., Feely, R. A., Velo, A., & Olsen, A. \(2020\). Processes driving](#)
1005 [global interior ocean pH distribution. Global Biogeochemical Cycles](#), 34, e2019GB006229.

1006

1007 [Lauvset, S. K.,](#) Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., ... & Key, R. M. (2024). The annual
1008 update GLODAPv2. 2023: the global interior ocean biogeochemical data product. *Earth System Science Data*,
1009 16(4), 2047-2072. <https://doi.org/10.5194/essd-16-2047-2024>

1010

1011 Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters,
1012 G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D.
1013 C. E., Barbero, L., Bopp, L., Chang, J., ... Zeng, N. (2015). Global Carbon Budget 2015. *Earth System Science*
1014 *Data*, 7(2), 349–396. <https://doi.org/10.5194/essd-7-349-2015>

1015

1016 Lee, K., Kim, T. W., Byrne, R. H., Millero, F. J., Feely, R. A., & Liu, Y. M. (2010). The universal ratio of boron
1017 to chlorinity for the North Pacific and North Atlantic oceans. *Geochimica et Cosmochimica Acta*, 74(6), 1801–
1018 1811. <https://doi.org/10.1016/j.gca.2009.12.027>

1019

1020 Lee, K., Millero, F. J., Byrne, R. H., Feely, R. A., & Wanninkhof, R. (2000). The recommended dissociation
1021 constants for carbonic acid in seawater. *Geophysical Research Letters*, 27(2), 229–232.
1022 <https://doi.org/10.1029/1999GL002345>

1023

1024 Lherminier, P., Mercier, H., Huck, T., Gourcuff, C., Perez, F. F., Morin, P., Sarafanov, A., & Falina, A. (2010).
1025 The Atlantic Meridional Overturning Circulation and the subpolar gyre observed at the A25-OVIDE section in
1026 June 2002 and 2004. *Deep Sea Research Part I: Oceanographic Research Papers*, 57(11), 1374–1391.
1027 <https://doi.org/10.1016/j.dsr.2010.07.009>

1028

1029 Li, X., García-Ibáñez, M. I., Carter, B. R., Chen, B., Li, Q., Easley, R. A., & Cai, W.-J. (2020). Purified meta-
1030 Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements. *Marine Chemistry*, 225,
1031 103849. <https://doi.org/10.1016/j.marchem.2020.103849>

1032

1033 Liu, X., Patsavas, M. C., & Byrne, R. H. (2011). Purification and Characterization of meta-Cresol Purple for
1034 Spectrophotometric Seawater pH Measurements. *Environmental Science & Technology*, 45(11), 4862–4868.
1035 <https://doi.org/10.1021/es200665d>

1036

1037 Loucaides, S., Rèrolle, V. M., Papadimitriou, S., Kennedy, H., Mowlem, M. C., Dickson, A. G., ... & Achterberg,
1038 E. P. (2017). Characterization of meta-Cresol Purple for spectrophotometric pH measurements in saline and

1039 hypersaline media at sub-zero temperatures. *Scientific reports*, 7(1), 2481. <https://doi.org/10.1038/s41598-017-02624-0>

1040

1041

1042 Lueker, T. J., Dickson, A. G., & Keeling, C. D. (2000). Ocean pCO₂ calculated from dissolved inorganic carbon,
1043 alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO₂ in gas and seawater
1044 at equilibrium. *Marine Chemistry*, 70(1–3), 105–119. [https://doi.org/10.1016/S0304-4203\(00\)00022-0](https://doi.org/10.1016/S0304-4203(00)00022-0)

1045

1046 Ma, J., Shu, H., Yang, B., Byrne, R. H., & Yuan, D. (2019). Spectrophotometric determination of pH and carbonate
1047 ion concentrations in seawater: Choices, constraints and consequences. *Analytica Chimica Acta*, 1081, 18–31.
1048 <https://doi.org/10.1016/j.aca.2019.06.024>

1049

1050 Maurer, T. L., Plant, J. N., & Johnson, K. S. (2021). Delayed-Mode Quality Control of Oxygen, Nitrate, and pH
1051 Data on SOCCOM Biogeochemical Profiling Floats. *Frontiers in Marine Science*, 8.
1052 <https://doi.org/10.3389/fmars.2021.683207>

1053

1054 Mercier, H., Desbruyères, D., Lherminier, P., Velo, A., Carracedo, L., Fontela, M., & Pérez, F. F. (2024). New
1055 insights into the eastern subpolar North Atlantic meridional overturning circulation from OVIDE. *Ocean Science*,
1056 20(3), 779–797. <https://doi.org/10.5194/os-20-779-2024>

1057

1058 Mercier, H., & Morin, P. (1997). Hydrography of the Romanche and Chain Fracture Zones. *Journal of Geophysical*
1059 *Research: Oceans*, 102, 10,373–10,389. Müller, J. D., Bastkowski, F., Sander, B., Seitz, S., Turner, D. R., Dickson,
1060 A. G., & Rehder, G. (2018). Metrology for pH measurements in Brackish Waters—part 1: Extending
1061 electrochemical pH T measurements of TRIS buffers to salinities 5–20. *Frontiers in Marine Science*, 5, 176.
1062 <https://doi.org/10.3389/fmars.2018.00176>

1063

1064 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T.,
1065 Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., & Suzuki, T. (2016). The Global
1066 Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean.
1067 *Earth System Science Data*, 8(2), 297–323. <https://doi.org/10.5194/essd-8-297-2016>

1068

1069 Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da
1070 Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen,
1071 M. K., Kozyr, A., Lauvset, S. K., ... Wanninkhof, R. (2019). GLODAPv2.2019 – an update of GLODAPv2. *Earth*
1072 *System Science Data*, 11(3), 1437–1461. <https://doi.org/10.5194/essd-11-1437-2019>

1073

1074 Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida,
1075 A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
1076 Plattner, G.-K., Rodgers, K. B., ... Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century
1077 and its impact on calcifying organisms. *Nature*, 437, 681–686. <https://doi.org/10.1038/nature04095>

1078

1079 Pérez, F. F., Fontela, M., García-Ibáñez, M. I., Mercier, H., Velo, A., Lherminier, P., Zunino, P., Paz, M. de la,
1080 Alonso-Pérez, F., Guallart, E. F., & Padin, X. A. (2018). Meridional overturning circulation conveys fast
1081 acidification to the deep Atlantic Ocean. *Nature*, 554(7693), 515–518. <https://doi.org/10.1038/nature25493>

1082

1083 Pérez, F. F., López-Mozos, M., Fontela, M., García-Ibáñez, M. I., Fajar, N. M., Padin, X. A., Castaño-Carrera, M.,
1084 de la Paz, M., Carracedo, L. I., Ávarez, M., Lherminier, P., & Velo, A. (2025). Two decades of pHT measurements

1085 along the GO-SHIP A25 section - Dataset [Data set]. Zenodo. <https://doi.org/10.5281/zenodo.17141184>

1086

1087 Pérez, F. F., Mercier, H., Vázquez-Rodríguez, M., Lherminier, P., Velo, A., Pardo, P. C., Rosón, G., & Ríos, A. F.

1088 (2013). Atlantic Ocean CO₂ uptake reduced by weakening of the meridional overturning circulation. *Nature*

1089 *Geoscience*, 6(2), 146–152. <https://doi.org/10.1038/ngeo1680>

1090

1091 Pérez, F. F., Olafsson, J., Ólafsdóttir, S. R., Fontela, M., & Takahashi, T. (2021). Contrasting drivers and trends of

1092 ocean acidification in the subarctic Atlantic. *Scientific Reports*, 11(1), Article 1. <https://doi.org/10.1038/s41598-021-93324-3>

1093

1094

1095 Pérez, F. F., Perez, F. F., Becker, M., Goris, N., Gehlen, M., Lopez-Mozos, M., Tjiputra, J., Olsen, A., Müller, J.

1096 D., Huertas, I. E., Chau, T. T. T., Cainzos, V., Velo, A., Benard, G., Hauck, J., Gruber, N., & Wanninkhof, R.

1097 (2023). *An assessment of CO₂ storage and sea-air fluxes for the Atlantic Ocean and Mediterranean Sea between*

1098 *1985 and 2018* [Preprint]. Preprints. <https://doi.org/10.22541/essoar.170256825.55098483/v2>

1099

1100 Ramette, R. W., Culberson, C. H., & Bates, R. G. (1977). Acid-base properties of

1101 tris(hydroxymethyl)aminomethane (Tris) buffers in sea water from 5 to 40.degree.C. *Analytical Chemistry*, 49(6),

1102 867–870. <https://doi.org/10.1021/ac50014a049>

1103

1104 Resplandy, L., Bopp, L., Orr, J. C., & Dunne, J. P. (2013). Role of mode and intermediate waters in future ocean

1105 acidification: Analysis of CMIP5 models. *Geophysical Research Letters*, 40(12), 3091–3095.

1106 <https://doi.org/10.1002/grl.50414>

1107

1108 Reverdin, G., Metzl, N., Olafsdottir, S., Racapé, V., Takahashi, T., Benetti, M., Valdimarsson, H., Benoit-Cattin,

1109 A., Danielsen, M., Fin, J., Naamar, A., Pierrot, D., Sullivan, K., Bringas, F., & Goni, G. (2018). SURATLANT: A

1110 1993–2017 surface sampling in the central part of the North Atlantic subpolar gyre. Earth System Science Data,

1111 10, 1901–1924. Rivaro, P., Vivado, D., Falco, P., & Ianni, C. (2021). HPLC-DAD Purification and Characterization

1112 of Meta-Cresol-Purple for Spectrophotometric Seawater pH Measurements. *Water*, 13(21), Article 21.

1113 <https://doi.org/10.3390/w13213030>

1114

1115 Robert-Baldo, G. L., Morris, M.J., & Byrne, R. H. (1985). Spectrophotometric determination of seawater

1116 pH using phenol red. Analytical Chemistry, 57(13), 2564–2567.

1117

1118 Rodgers, K. B., Schwinger, J., Fassbender, A. J., Landschützer, P., Yamaguchi, R., Frenzel, H., Stein, K., Müller,

1119 J. D., Goris, N., Sharma, S., Bushinsky, S., Chau, T.-T.-T., Gehlen, M., Gallego, M. A., Gloege, L., Gregor, L.,

1120 Gruber, N., Hauck, J., Iida, Y., ... Velo, A. (2023). Seasonal Variability of the Surface Ocean Carbon Cycle: A

1121 Synthesis. *Global Biogeochemical Cycles*, 37(9), e2023GB007798. <https://doi.org/10.1029/2023GB007798>

1122

1123 Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace,

1124 D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., & Rios, A. F. (2004). The Oceanic Sink for

1125 Anthropogenic CO₂. *Science*, 305(5682), 367–371. <https://doi.org/10.1126/science.1097403>

1126

1127 Steinfeldt, R., Rhein, M., & Kieke, D. (2024). Anthropogenic carbon storage and its decadal changes in the Atlantic

1128 between 1990–2020. *Biogeosciences*, 21(16), 3839–3867. <https://doi.org/10.5194/bg-21-3839-2024>

1129

1130 Takeshita, Y., Johnson, K. S., Coletti, L. J., Jannasch, H. W., Walz, P. M., & Warren, J. K. (2020). Assessment of

1131 pH dependent errors in spectrophotometric pH measurements of seawater. *Marine Chemistry*, 223, 103801.
1132 <https://doi.org/10.1016/j.marchem.2020.103801>

1133

1134 Takeshita, Y., Johnson, K. S., Martz, T. R., Plant, J. N., & Sarmiento, J. L. (2018). Assessment of Autonomous pH
1135 Measurements for Determining Surface Seawater Partial Pressure of CO₂. *Journal of Geophysical Research: Oceans*, 123(6), 4003–4013. <https://doi.org/10.1029/2017JC013387>

1136

1137 Takeshita, Y., Mertz, K. L., Norgaard, A., Gray, S., Verburg, M. H., & Bockmon, E. E. (2022). Accurate
1138 spectrophotometric pH measurements made directly in the sample bottle using an aggregated dye perturbation
1139 approach. *Limnology and Oceanography: Methods*, 20(5), 281–287. <https://doi.org/10.1002/lom3.10486>

1140

1141 Takeshita, Y., Warren, J. K., Liu, X., Spaulding, R. S., Byrne, R. H., Carter, B. R., DeGrandpre, M. D., Murata,
1142 A., & Watanabe, S. (2021). Consistency and stability of purified meta-cresol purple for spectrophotometric pH
1143 measurements in seawater. *Marine Chemistry*, 236, 104018. <https://doi.org/10.1016/j.marchem.2021.104018>

1144

1145 Vázquez-Rodríguez, M., Pérez, F. F., Velo, A., Ríos, A. F., & Mercier, H. (2012). Observed acidification trends in
1146 North Atlantic water masses. *Biogeosciences*, 9(12), 5217–5230. <https://doi.org/10.5194/bg-9-5217-2012>

1147 Woosley, R. J. 2021. Long-term stability and storage of meta-cresol purple solutions for seawater pH
1148 measurements. *Limnol Oceanogr Methods* 19: 810–817. doi:10.1002/LOM3.10462.

1149

1150

1151 Yao, W., Liu, X., & Byrne, R. H. (2007). Impurities in indicators used for spectrophotometric seawater pH
1152 measurements: Assessment and remedies. *Marine Chemistry*, 107(2), 167–172.

1153

1154 Zunino, P., Lherminier, P., Mercier, H., Padín, X. A., Ríos, A. F., & Pérez, F. F. (2015). Dissolved inorganic carbon
1155 budgets in the eastern subpolar North Atlantic in the 2000s from in situ data. *Geophysical Research Letters*, 42(22),
1156 9853–9861. <https://doi.org/10.1002/2015GL066243>

1157