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Abstract. High–spatial–resolution and long-term data on forest cover and plant functional types (PFTs) are crucial for 

elucidating the impacts of forest cover change on the national terrestrial carbon balance. Since the 1980s, China has undergone 

a substantial expansion in its forest area, primarily driven by large-scale national afforestation programmes. However, existing 10 

land cover products have often failed to capture this long-term increasing trend, leading to an underestimation of forest cover 

change–related ecological processes. Here, we developed a high-resolution (1 km), annual forest cover dataset for China during 

1980–2023. This dataset integrates spatial constraints from multi-source remote sensing data with provincial-level statistics 

from China’s national forest inventories (NFIs), providing a consistent and spatially explicit record of forest dynamics over 

four decades. Building on this primary dataset, we further produced an annual PFT dataset that disaggregates total forest cover 15 

into eight distinct functional types, tailored for use in dynamic global vegetation models (DGVMs). Validation against 

independent data confirms the dataset’s ability to accurately represent historical forest recovery, achieving an overall accuracy 

(OA) of 95.3 ± 0.5%, with classification accuracies for needleleaf and broadleaf forests ranging from 84.4% to 92.0%. To 

evaluate its applicability, we implemented the dataset within the Lund–Potsdam–Jena General Ecosystem Simulator (LPJ–

GUESS). Compared to the widely used PFT dataset from the European Space Agency’s Land Cover Climate Change Initiative 20 

(ESA CCI), our product yields a markedly improved simulation of key biophysical and biogeochemical processes in China, 

enhancing the accuracy of evapotranspiration, leaf area index (LAI), and vegetation carbon flux by 49.4%–77%. With its high 

spatial resolution, long–term temporal coverage, and detailed forest-type classification, our dataset offers a robust foundation 

for assessing the ecological impacts of forest restoration and for constraining estimates of China’s forest carbon sink since 

1980. The dataset is freely available at 10.5281/zenodo.16208012 (Liu et al., 2025). 25 

1 Introduction 

Large-scale afforestation programmes were implemented in China during the past four decades (Tong et al., 2018; Chen et al., 

2019). As a result, forest area in China increased to around 230 million hectares, a rise of 85% compared to the early 1980s 

(IDS, 2018). Recent satellite observations revealed widespread “vegetation greening patterns” in China due to several large-

scale conservation programmes (Piao et al., 2020). These changes have significant implications for carbon dynamics and 30 
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ecosystem services. Specifically, they have enhanced carbon sequestration, reduced soil erosion and acidification in northern 

China, and altered regional climate patterns through changes in surface albedo, evapotranspiration (ET), and aerodynamic 

roughness (Liu et al., 2017; Hong et al., 2020). These findings underscore the critical role of afforestation in mitigating climate 

change and improving ecosystem stability at regional and global scales (Alkama and Cescatti, 2016; Yang et al., 2024). 

Despite these positive developments, precisely quantifying the contribution of these land cover changes to the global 35 

carbon balance remains a significant challenge (Li et al., 2025; Yu et al., 2024). During the period 2014–2023, the net carbon 

emissions from the global land use, land use change, and forestry (LULUCF) sector were estimated at 4.1±2.6 Gt CO2 yr-1, 

accounting for 10% of total anthropogenic CO2 emissions (Friedlingstein et al., 2024). The uncertainty of this estimate exceeds 

50% of the mean flux, making LULUCF the most uncertain component in the global carbon budget (Friedlingstein et al., 2024; 

O’sullivan et al., 2022). These uncertainties primarily arise from disparities in model process representation, inconsistencies 40 

in flux definitions, variability in management practices, and spatiotemporal estimation differences in forest cover and its 

change rates (Ruehr et al., 2023; Hartung et al., 2021; Yu et al., 2022).  

Although remote sensing has greatly improved the availability of land use and land cover change (LUCC) data, significant 

discrepancies among different datasets regarding the estimation of China’s forest area propagates large uncertainties into 

modelling (Tu et al., 2024; Zhu et al., 2025); for instance, it has led to three to five-fold differences in estimates of China’s 45 

terrestrial carbon storage from bookkeeping models (e.g., 17–33 Pg C vs. 6.18 Pg C) (Houghton and Hackler, 2003; Ge et al., 

2008). Cross-dataset comparisons highlight the scale of this issue: estimates of China’s forest area for the year 2010 from five 

different forest datasets ranged from 1.74 to 2.27 million km2, a relative difference of 29% (Qin et al., 2015). Peng et al. (2024b) 

compared eight LULC datasets for the year 2020 and found a maximum discrepancy of 0.34 million km2, an amount equivalent 

to 15% of the area reported by the national forest inventory (NFI). This inter-product inconsistency is particularly problematic 50 

as it contradicts the well-documented trend of forest expansion in China. According to NFI data, the nation’s forest area more 

than doubled from 1.15 million km2 in 1981 to 2.31 million km2 by 2021 (IDS, 2018). This trend is consistent with broader 

assessments by the Food and Agriculture Organization of the United Nations (FAO), which attribute the shift in Asia’s forest 

balance from a net loss in 1990–2000 to a marked net gain in 2000–2010 primarily to China’s sustained afforestation efforts 

(FAO, 2016). However, long-term satellite-based LULC products have struggled to reproduce this marked increase (Yang and 55 

Huang, 2021). For example, the GlobeLand 30 product shows only a minor expansion of 5,700 km2 between 2000 and 2020 

(Chen et al., 2015), while the national land cover database of China (NLCD–China) even indicates a net loss of 14,000 km2 

from 2001 to 2015 (Wei et al., 2024). Consequently, due to these profound disagreements among datasets, the contribution of 

the LULUCF sector to China’s regional carbon budget remains poorly constrained (Xia et al., 2023; Yu et al., 2022). 

The NFI is considered the foundational national dataset for quantifying forest cover and biomass stocks (Zeng et al., 2015; 60 

Xia et al., 2023). Since the implementation of the second NFI during 1977–1981, a standardized sampling and survey 

methodology has been applied nationwide. Subsequently, eight further NFI campaigns have been conducted on a continuous 

five-year cycle (IDS, 2018). Owing to its extensive sample size covering the entire country, the forest area statistics provided 

by the NFI are widely regarded as a reference dataset. This large-scale inventory provides unique bottom-up information that 
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complements top-down data from satellite remote sensing products, ensuring that the spatiotemporal dynamics of land use 65 

activities are captured. Indeed, previous studies have utilized the NFI dataset to estimate the national forest carbon budget 

(Fang et al., 2001; Piao et al., 2009). However, a key limitation of the NFI is that it only provides forest area statistics at the 

coarse provincial level. This spatial aggregation constrains its direct application for simulating carbon dynamics in spatially 

explicit earth system models (Zhu et al., 2025). 

At both global and national scales, dynamic global vegetation models (DGVMs) typically represent key vegetation 70 

processes—such as photosynthesis and evapotranspiration—using a simplified classification of globally representative plant 

functional types (PFTs) that exhibit similar ecological and physiological traits (Gregor et al., 2024; Bergkvist et al., 2025). 

These are known as PFTs, and they are typically defined by traits including photosynthetic pathway (C3/C4), leaf morphology 

(needleleaf/broadleaf), and phenology (evergreen/deciduous) (Islam et al., 2024). Research has shown that explicitly 

incorporating forest restoration processes into DGVMs is critical not only for quantifying their feedback on the carbon cycle, 75 

surface energy balance, and the climate system, but also for providing a science-based foundation for policy assessment (Yue 

et al., 2024; Peng et al., 2024a). To accurately simulate carbon dynamics and vegetation succession, this requires the models 

to be driven by annually updated PFT distribution data (Pugh et al., 2024). However, a high-resolution, annual time-series 

dataset that accurately reflects the changes in PFT composition and spatial patterns during China’s recent forest restoration is 

currently lacking (Yu et al., 2022; Xia et al., 2023). Most existing forest cover products either provide only single-year 80 

classifications or offer PFT information at coarse temporal resolutions, failing to meet the annual input requirements of 

DGVMs (Ran et al., 2012). Furthermore, they often fail to capture the forest recovery trends documented by NFI. While some 

recent studies have developed NFI-based reconstructed forest datasets, these products are typically either too coarse in spatial 

resolution (e.g., 0.5°), do not provide the distribution of individual PFTs, or are not temporally continuous, with maps produced 

only every several years (Yu et al., 2022; Xia et al., 2023). Therefore, there is an urgent need to generate NFI-consistent, high-85 

resolution, and annually resolved long-term maps of both forest cover and PFT distribution. Such a dataset is fundamental for 

robustly assessing China’s forest carbon sink and its driving factors using ecosystem models. 

In this study, we developed a novel method that fuses the temporal constraints from statistical inventories with the spatial 

constraints from remote sensing data to identify the distribution of forest PFTs. We integrated provincial-level forest area 

statistics from the NFI for 1976–2021 with nearly all available LULC and auxiliary remote sensing products. This allowed us 90 

to first reconstruct annual changes in China’s total forest cover at a 1 km spatial resolution from 1980 to 2023. Building on 

this foundation, we then derived the annual distribution of eight distinct PFTs for the period 1981–2013 through a series of 

systematic steps, including the classification of life forms and the derivation of phenological characteristics. The overall goal 

of this work is twofold: first, to provide a dataset that accurately captures the spatiotemporal distribution and trends of China’s 

forests and PFTs since the onset of its national restoration programmers in the 1980s; and second, to demonstrate the 95 

effectiveness of this new dataset in a DGVM. To achieve this, we applied our product in the Lund–Potsdam–Jena General 

Ecosystem Simulator (LPJ-GUESS) model (Lindeskog et al., 2021) and benchmarked its performance against the global PFT 

dataset from the European Space Agency’s Climate Change Initiative (ESA CCI) (Harper et al., 2023) in simulating key land 
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surface variables (GPP, NEE, LAI, and ET). We present the following: (1) changes in China’s forest cover and PFTs in China 

since the 1980s; (2) the historical dynamics of forest gain and loss, including their area, onset year, and duration; and (3) the 100 

performance of our reconstructed PFT distribution compared to existing global datasets when used in a DGVM. Ultimately, 

our dataset is expected to provide critical data support for the accurate simulation of China’s forest carbon sink and the 

scientific assessment of its driving factors since the beginning of the nation’s large-scale forest restoration. 

2 Data 

The forest cover and PFTs were derived from the integration of NFI data with multi-source remote sensing land cover time 105 

series data (Table 1, Table S1). The land cover data provides the spatial distribution of forest cover across different years. For 

specific years, the land cover classification also defined the extent of forest PFTs, based on distinctions in phenology and leaf 

morphology. The NFI data constrained the forest area and structural composition; this ensured that the resulting dataset aligned 

with reported national trends in forest area dynamics. 

Auxiliary data products, such as the satellite-based normalized difference vegetation index (NDVI) data (see Sect. 2.3), 110 

were used to identify potential residual forest pixels in cases of discrepancy between the land cover data and NFI data. For 

example, where the forest cover extracted from the land cover data was less than the area specified by the NFI for a given 

region, NDVI was used as a sensitive indicator of vegetation vigor. Pixels considered more likely to represent forest cover 

were then selected to supplement the forest area and its spatial distribution. 
Table 1. Summary of datasets used in this study. 115 

Data Variable Data Type Resolution Time Data Source 

NFI Tabular Statistics Provincial 1976–2021 
National Forestry and Grassland 

Science Data Center 
(https://www.forestdata.cn/) 

Multi-source LULC Products Raster 
Various, 

resampled to 1 
km 

1980–2023 See Supplementary Table1 

Jeong’s NDVI Raster 0.05° 1982–2021 Jeong et al. (2024)  

Climate Zones Raster ~1 km 
(0.0083°) 1980–2016 (Beck et al., 2018) 

Topographic Raster 1 km Static Amatulli et al. (2018) 

ERA5–Land  Raster 0.1° 1980–2023 Copernicus Climate Data Store 
(https://cds.climate.copernicus.eu/) 

2.1 National Forest Inventories 

To assess the quantity, structure, function, and productivity of its forest resources, the National Forestry and Grassland 

Administration of China conducted ten national forest resource inventories between 1973 and 2023. The inventories took place 

during the periods 1973–1976, 1977–1981, 1984–1988, 1989–1993, 1994–1998, 1999–2003, 2004–2008, 2009–2013, 2014–

2018, and 2019–2021. The data are available from the National Forestry and Grassland Science Data Center (NFGSDC) at 120 
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https://www.forestdata.cn/ (last access: 20 June 2025). The surveys were performed at the provincial level, employing a 

systematic sampling design with fixed plots located at the intersections of the national 1:50,000 or 1:100,000 topographic map 

grids. For each plot, recorded variables included forest cover, forest type area, and standing volume. This study utilized 

provincial-level forest area statistics from the first to the tenth NFI reports. These statistics comprise data for needleleaf forests, 

broadleaf forests, bamboo forests, and economically important timber forests. 125 

2.2 Land use and land cover datasets 

This study utilized nineteen datasets covering the period 1980–2023 as the foundational inputs for the forest cover 

reconstruction (Table S1). Forest cover information was extracted from these LULC products. Pre-processing of the data 

involved several steps: (i) reprojecting all datasets to the WGS_1984_Albers spatial reference system; (ii) resampling to a 1 

km resolution using the nearest neighbor method; and (iii) aligning all data to a common grid framework to ensure a consistent 130 

cell size and spatial extent for China. 

2.3 Satellite-based vegetation index dataset 

This study utilized the global long-term NDVI dataset developed by Jeong et al. (2024), which was produced by fusing data 

from AVHRR and MODIS. The dataset is publicly available at: https://www.environment.snu.ac.kr/data/longterm-vi (last 

access: 13 April 2025). The product addresses temporal inconsistencies between sensors via cross-calibration of the AVHRR 135 

instruments, correction for orbital drift, and the fusion of AVHRR and MODIS data using machine learning techniques. It 

possesses a spatial resolution of 0.05° and a monthly temporal resolution, covering the period 1982–2021. In this study, the 

maximum growing-season NDVI value served as the primary indicator for classifying “potential forest pixels” of a given 

consistency level as forest (see Sect. 3.2). To extend the analysis period to 1980–2023 whilst maintaining continuity, the time 

series was gap-filled at its ends: records for 1980–1981 were substituted with data from 1982, and records for 2022–2023 were 140 

substituted with data from 2021. 

2.4 Zonation products 

To assign phenological types to the small number of remaining unclassified forest pixels (see Sect. 3.3.2), two supplementary 

regional partitioning products were utilized. The first was the Köppen–Geiger climate classification from Beck et al. (2018), 

which classifies Earth’s land surface into 30 distinct climate zones at a 0.0083° resolution (approx. 1 km) based on temperature 145 

and precipitation records from 1980–2016. The data are publicly available from Figshare at: 

https://figshare.com/articles/dataset/Present_and_future_K_ppen-Geiger_climate_classification_maps_at_1-

km_resolution/6396959/2 (last access: 26 May 2025). The second product was a global topographic dataset from Amatulli et 

al. (2018), derived from the 250 m GMTED2010 and 90 m SRTM4.1dev digital elevation models. This dataset classifies the 

global land surface into ten topographic categories: flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit. 150 

The data are publicly available from Earthenv at: https://www.earthenv.org/topography (last access: 25 May 2025). Generally, 
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needleleaf forests are predominantly evergreen, with the notable exception of larch forests, which are deciduous and found 

mainly in boreal regions. In contrast, broadleaf forests are typically deciduous, although those in tropical regions are 

predominantly evergreen. To further classify evergreen and deciduous forest types as either boreal/temperate or tropical (see 

Sect. 3.3.3), this study also utilized 2 m temperature data from the ERA5–Land reanalysis dataset. This dataset provides 155 

monthly mean climate variables at a 0.1° spatial resolution, covering the temporal range 1980–2023. The data are publicly 

available from the Copernicus Climate Data Store at: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-

means?tab=overview (last access: 21 September 2024). 

3 Method 

The framework for mapping forest cover and PFTs is shown in Fig. 1. It includes the interpolation of NFI statistical data, 160 

reconstruction of annual forest cover, validation, and modelling assessment. We constructed annual forest cover maps of China 

for the period 1980–2023 by integrating multiple data sources and derived PFTs through a sequential, multi-step process: first, 

forest life forms were classified using a method analogous to the forest cover reconstruction, second, deriving phenological 

characteristics, and finally, subdividing these intermediate classifications into the final PFTs based on a set of climatic rules. 

Notably, the availability of NFI data for needleleaf and broadleaf forests is restricted to the period 1981–2013. Consequently, 165 

the corresponding annual PFT maps were reconstructed only for these years. Finally, the accuracy of the reconstructed dataset 

was assessed using validation samples from field surveys and independent reference data, and its consistency was analyzed 

against existing LULC datasets. In particular, the reconstructed PFT dataset was used to drive a DGVM to evaluate the 

performance of the updated PFTs in simulating a series of surface fluxes by comparing them against those from a simulation 

using the global PFT dataset from the ESA CCI (Harper et al., 2023). 170 

 
Figure 1. Flowchart for generating annual forest cover and PFT maps. 
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3.1 Interpolation of NFI statistical data 

For the construction of the 1980–2023 forest cover time series, the provincial-level forest area from each NFI period was 

assigned to the final year of that period (e.g., data from the 1973–1976 survey were assigned to the year 1976) (Yue et al., 175 

2024). Given the non-uniform time intervals of the NFI data and the potential for non-linear trends in provincial forest area, 

cubic spline interpolation was employed. This piecewise method constructs a series of cubic polynomials between data points 

and ensures continuity in the first and second derivatives, making it well-suited to handling non-uniform intervals whilst 

providing a high-quality fit and smooth trend lines. Cubic spline interpolation was used to infill missing forest area data for 

the period 1976–2021, whilst the Holt-Winters exponential smoothing method was applied to forecast data for 2022 and 2023. 180 

Owing to provincial-level differences in policy and other influencing factors, the interpolation and forecasting were performed 

independently for each province (Fig. S1). 

For Hong Kong, Macau, and Chongqing, comprehensive statistical data were only available from 2003 onwards, which 

necessitated data extrapolation for the period 1980–2002. Linear regression was used to estimate the historical forest area for 

these regions, adopting a methodology similar to that of Yu et al. (2022) and Yue et al. (2024) (Fig. S1). To mitigate the 185 

uncertainty inherent in this approach, the extrapolated values were not used directly to define the historical forest extent (e.g., 

Fig. S1, Chongqing). Instead, the forest area value from the consistency-level raster (see Sect. 3.2) that most closely matched 

the extrapolated estimate was identified, and its corresponding spatial extent was used as the forest mask for that year. 

3.2 Forest cover reconstruction 

Rather than adopting traditional biophysical definitions of “forest” (e.g., canopy cover ≥ 10%, tree height ≥ 5 m) or adhering 190 

to a single classification standard from the FAO or national bodies, this study developed a data-driven “forest consistency” 

method to reconstruct historical forest cover (Fig. 1). The method involved overlaying all available LULC datasets for each 

year (Fig. S2). For any given pixel, “consistency” (𝐶𝐶𝐶𝐶𝐶𝐶) was defined as the number of datasets that classified it as forest (Fig. 

S3a). A pixel was subsequently identified as a “potential forest pixel” if it was classified as forest in at least one dataset (i.e., 

𝐶𝐶𝐶𝐶𝐶𝐶  > 0). The consistency value was then used to establish priority, whereby a higher 𝐶𝐶𝐶𝐶𝐶𝐶  value indicated a greater 195 

likelihood of the pixel representing true forest cover (Xia et al., 2023; Fang et al., 2020). 

To determine the consistency threshold for the final forest classification, all potential forest pixels were ranked in 

descending order of their 𝐶𝐶𝐶𝐶𝐶𝐶 value. The NFI–derived area for a given province was used as the target value to establish this 

threshold. Specifically, two scenarios were considered. First, if the total area of all potential forest pixels were less than the 

NFI-reported area, all potential pixels were classified as forest, a scenario which could result in an underestimation for that 200 

province. Second, if the total area of potential pixels exceeded the NFI-reported area, a cumulative summation was performed. 

Pixels were incrementally summed, starting from the highest consistency value downwards, until the cumulative area bracketed 

the NFI target area (𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁). If the cumulative area of pixels with 𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 𝑚𝑚 was less than 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁, but the cumulative area of 

pixels with 𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 𝑚𝑚 − 1 exceeded 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 , then 𝑚𝑚 was defined as the consistency threshold. All pixels with a consistency 
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value ≥ 𝑚𝑚 were subsequently classified as forest. To precisely match the NFI target area, however, a portion of the remaining 205 

required area was fulfilled by selecting pixels from the 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑚𝑚 − 1 level. Based on the assumption that, within a given 

consistency level, a higher NDVI value indicates a greater likelihood of forest cover, the maximum growing-season NDVI 

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚) was calculated for all pixels at the 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑚𝑚− 1 level. These pixels were then ranked in descending order of their 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  value. The top 𝑛𝑛 pixels were subsequently selected as “residual forest pixels”, where 𝑛𝑛 was determined by the 

remaining area required to precisely match the NFI target. 210 

In summary, the final forest classification identified pixels exhibiting both high cross-dataset consistency and high 

growing-season NDVI values. The total area of this final classification was strictly constrained by provincial NFI statistics, 

thereby ensuring the reconstructed maps align with the authoritative inventory data. While this method generally ensures a 

close correspondence to the NFI-reported area, a minor systematic underestimation can occur. This is a consequence of pixel 

resolution limitations, particularly when the final area required to meet the NFI target is smaller than that of a single pixel. 215 

3.3 PFT dataset development 

3.3.1 Distinguishing between needleleaf and broadleaf forest types 

Theoretically, the same reconstruction method used for total forest cover could be applied to directly classify four distinct 

PFTs: evergreen needleleaf, evergreen broadleaf, deciduous needleleaf, and deciduous broadleaf forests. However, data 

availability constraints preclude the direct application of this method, since few LULC products offer this level of thematic 220 

detail, particularly for periods before 1990. For instance, for the year 1985, only a single available dataset differentiated 

between needleleaf and broadleaf forests, while for 1980, no dataset provided phenological classifications (i.e., evergreen vs. 

deciduous, Table S1). Consequently, a foundational assumption of this study is that the relative spatial distribution of these 

four PFTs remained static over the analysis period. 

The NFI provides provincial-level forest area statistics for needleleaf and broadleaf forests for the period 1981–2013, but 225 

it lacks phenological classifications (i.e., evergreen vs. deciduous). Therefore, the initial classification step in this study was 

to distinguish between needleleaf and broadleaf forests within the previously reconstructed total forest extent. 

To achieve this, seven LULC products containing forest type information were selected (Table S1). All available temporal 

layers from these seven products, amounting to 73 distinct data layers in total, were subsequently overlaid. Adhering to the 

previously stated assumption of a static PFT distribution, these 73 layers were used to generate two static consistency maps: 230 

one for needleleaf and one for broadleaf forests (Fig. S4). To ensure close spatial correspondence between this PFT 

classification and the main forest cover dataset, the static consistency maps were masked using the annual 1 km forest extent 

maps. This process generated annual consistency maps for each forest type, constrained within the total forest area for each 

respective year. 

A critical preliminary step was required to adapt the main reconstruction method for distinguishing between needleleaf 235 

and broadleaf forests. The primary goal of this step was not to produce a final classification, but to resolve conflicts among the 
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source LULC datasets. This ensured that each pixel could be assigned a single, spatially exclusive ‘type-specific consistency’ 

value, which is a prerequisite for the reconstruction logic that follows. 

To achieve this, two consistency values were calculated for each pixel: needleleaf consistency (𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), representing 

the number of LULC datasets classifying the pixel as needleleaf forest; and broadleaf consistency (𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), representing the 240 

number of datasets classifying it as broadleaf forest. A rule-based approach was then applied to handle the three possible 

scenarios and assign a preliminary, exclusive status to each pixel: 

1. Both consistency values are non-zero (𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 0 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 0): The pixel’s consistency type was determined 

by comparing the two values. If 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , the pixel was designated as a needleleaf consistency pixel. If 

𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 < 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, it was designated as a broadleaf consistency pixel. If 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, the pixel was flagged as 245 

‘ambiguous’, and its classification was deferred to a later stage. 

2. Only one consistency value is non-zero (e.g., 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 0  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0 ): The pixel was designated as a 

consistency pixel of the corresponding forest type for which the value existed. 

3. Both consistency values are zero (𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0 ): The pixel was provisionally flagged as 

“unclassified forest type” in this step, with its final status to be determined later. 250 

The second major step was to generate annual distribution masks for needleleaf and broadleaf forests for each province 

for the period 1981–2013. This was achieved by integrating provincial NFI area statistics with the type-specific consistency 

information. In a process analogous to the total forest cover reconstruction, the NFI area statistics for needleleaf and broadleaf 

forests were used as annual targets. The specific allocation logic, which uses NDVI data as a secondary criterion, depended on 

the relationship between the consistency-derived area and the NFI target area. This resulted in three distinct cases: 255 

1. Both forest types have “valid” consistency data (i.e., the total potential area from the consistency map exceeds the NFI 

target area). In this scenario, the allocation method described previously was applied independently to each type. The 

consistency threshold (𝑚𝑚) was determined, and the remaining area required to meet the NFI target was fulfilled by selecting 

pixels from the 𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑚𝑚 − 1 level, ranked in descending order of their 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  value. 

2. Only one forest type has “valid” consistency data. The “valid” type was processed first, following the same procedure 260 

as in Case 1. For the “invalid” type (where the potential area was less than the NFI target), a hierarchical sourcing strategy was 

used to fulfill its NFI area target. Pixels were drawn sequentially from the following pools, using the NDVI-ranking method 

for selection at each stage: 

First, from pixels flagged as “ambiguous” (𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏).  

Second, from a pixel pool generated using the “valid” type’s unallocated pixels. This involved using the “remainder” 265 

pixels from the “valid” type’s consistency map (i.e., those not selected to meet its own NFI target) to mask the original 

consistency map of the “invalid” type. From this newly masked map, pixels were then selected in descending order of their 

consistency value until the NFI area target for the “invalid” type was fulfilled.  

Third, from pixels flagged as an “unclassified forest type”.  
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3.Neither forest type has “valid” consistency data. In this case, both NFI area targets were fulfilled by drawing pixels 270 

exclusively from the “ambiguous” and “unclassified forest type” pools. The allocation was prioritized for the provincially 

“dominant” type (i.e., the type with the larger NFI area). Once its target was met, the remaining pixels from these pools were 

allocated to the other forest type. The NDVI-ranking method was used for all selections. 

Finally, this process resulted in the output of annual needleleaf and broadleaf forest distribution masks for the specified 

period. 275 

3.3.2 Distinguishing between evergreen and deciduous phenological types 

In a process analogous to the classification of needleleaf and broadleaf types, a further classification was performed to 

distinguish between evergreen and deciduous phenologies. This step utilized a new set of consistency rasters that classified 

pixels based on both life form and phenological type (Fig. S5). However, as the NFI dataset lacks area statistics for these 

phenological types, no area-based constraints could be applied. Instead, the classification was performed directly within the 280 

masks delineated in the previous step. For example, evergreen and deciduous needleleaf forests were identified from within 

the total needleleaf mask based solely on their respective consistency values. An identical operation was performed for 

broadleaf forests. Any pixel within a given life-form mask (i.e., needleleaf or broadleaf) that could not be assigned a 

phenological type was designated as a “residual” pixel (e.g., “residual needleleaf”) and reserved for subsequent processing. 

The previously generated consistency masks were then used to refine the phenological classification within the needleleaf 285 

and broadleaf categories. This was achieved through a pixel-level comparison of type-specific consistency values. The process 

is illustrated below using the example of distinguishing between deciduous broadleaf forest (DBF) and evergreen broadleaf 

forest (EBF). 

1. Pixel has competing classifications: Where a pixel possessed a non-zero consistency value for both deciduous (𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷) 

and evergreen (𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸) broadleaf types, a direct comparison was made： 290 

If 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 > 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 , the pixel was classified as DBF. If 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸  the pixel was classified as EBF. If 

𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸 , the pixel was not assigned a phenological type. Instead, it was designated as “residual broadleaf” and 

reserved for subsequent processing. 

2. Pixel has a single classification: Where a pixel possessed a non-zero consistency value for only one phenological type 

(e.g., 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷  >  0 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸  =  0), it was classified accordingly as either DBF or EBF. 295 

The classification of evergreen and deciduous needleleaf forests (ENF and DNF) followed an identical procedure to that 

of broadleaf forests. This initial stage resulted in the annual classification of four primary PFTs (DNF, ENF, DBF, EBF), 

alongside a category of “residual” pixels requiring further processing. This category comprised pixels confirmed as either 

needleleaf or broadleaf, but for which a phenological type could not yet be assigned. To resolve these pixels, two subsequent 

methods were employed: a neighborhood analysis and an environmental inference method. 300 
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Neighborhood Analysis: For each “residual” pixel, a 10×10 pixel neighborhood window was established around it. Within 

this window, the total number of pixels belonging to each of the four classified PFTs (DNF, ENF, DBF, and EBF) was counted. 

The classification logic was then applied as follows:  

For a “residual needleleaf pixel”, the counts of DNF and ENF neighbors were compared. If the DNF count was greater, 

the pixel was classified as DNF. Conversely, if the ENF count was greater, the pixel was classified as ENF. If the DNF and 305 

ENF counts were equal, or if no classified needleleaf neighbors were present in the window, the pixel was flagged as “pending”. 

An identical logic was applied to “residual broadleaf” pixels, based on the counts of their DBF and EBF neighbors. 

Environmental Inference Method: For the small number of remaining “pending” pixels (typically those with no classified 

neighbors), an environmental inference method was used to assign a final phenology based on climatic and topographic data 

(see Sect. 2.4). The procedure involved the following steps: First, the climate zone and topography data were overlaid to create 310 

a map of unique “environmental strata” (i.e., unique combinations of climate and topography). Second, for each province and 

year, the relative proportion of the four PFTs was calculated within each unique environmental stratum. Third, a “pending” 

broadleaf pixel was assigned the phenological type (EBF or DBF) that was most prevalent within its specific environmental 

stratum, according to the calculated proportions. The same logic was applied to “pending” needleleaf pixels. 

Finally, the classifications from all steps were merged to produce the annual distribution maps for the four PFTs (DNF, 315 

ENF, DBF, and EBF) for each province. 

3.3.3 Final PFT classification 

Adopting the methodology of Bonan et al. (2002) and utilising the historical climate data (see Sect. 2.4), the four preliminary 

forest types were further subdivided into eight final PFTs. The specific climatic variables used for this classification are detailed 

in Table 2 and include:  320 

𝑇𝑇𝑐𝑐 is the mean temperature of the coldest month.  

𝐺𝐺𝐺𝐺𝐺𝐺 (Growing Degree Days) are the annual cumulative temperature exceeding a 5℃ baseline.  

The daily growing degree days (𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑) are calculated as follows: 

𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ max (𝑇𝑇𝑑𝑑 − 𝑇𝑇𝑏𝑏 , 0)365
𝑑𝑑=1           (1) 

Where: 325 

𝑇𝑇𝑑𝑑 is the mean daily temperature, and 𝑇𝑇𝑏𝑏  is the base temperature for growth, set at 5℃ 

Since daily mean temperature data are not available in the ERA5–Land product, an alternative method was employed to 

estimate GDD. This involved substituting the monthly mean temperature for 𝑇𝑇𝑑𝑑  in Eq. (1) and then multiplying the result by 

the number of days in that month to yield a monthly GDD value. The annual GDD was subsequently calculated as the sum of 

these monthly values. 330 

Through the sequence of methods detailed above, a comprehensive historical dataset of forest cover for China, classified 

by PFT, was produced. 
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Table 2. Classification scheme for deriving PFTs from forest life forms and climatic rules. 

Plant Functional Type Forest type Climate Rules 
Needleleaf evergreen tree, temperate needleleaf evergreen tree 𝑇𝑇𝑐𝑐 > -19°C and 𝐺𝐺𝐺𝐺𝐺𝐺 > 1200 
Needleleaf evergreen tree, boreal 

 

needleleaf evergreen tree 
 

𝑇𝑇𝑐𝑐 ≤ -19°C or 𝐺𝐺𝐺𝐺𝐺𝐺 ≤ 1200 
 

Needleleaf deciduous tree needleleaf deciduous tree none 
Broadleaf evergreen tree, tropical broadleaf evergreen tree 𝑇𝑇𝑐𝑐 > 15.5°C 

Broadleaf evergreen tree, temperate broadleaf evergreen tree 𝑇𝑇𝑐𝑐 ≤ 15.5°C 
Broadleaf deciduous tree, tropical broadleaf deciduous tree 𝑇𝑇𝑐𝑐 > 15.5°C 

Broadleaf deciduous tree, temperate broadleaf deciduous tree -15°C < 𝑇𝑇𝑐𝑐 ≤ 15.5°C and 𝐺𝐺𝐺𝐺𝐺𝐺 > 1200 
Broadleaf deciduous tree, boreal broadleaf deciduous tree 𝑇𝑇𝑐𝑐 ≤ -15°C or 𝐺𝐺𝐺𝐺𝐺𝐺 ≤ 1200 

3.4 Validation 

The accuracy of the reconstructed forest cover maps was validated using independent field survey data. The validation was 335 

conducted in two stages: first for needleleaf and broadleaf forest types, and subsequently for the total forest area. Two primary 

sources of data were used for this validation. The first was the global all-season sample set from Li et al. (2017), the first of its 

kind, developed from Landsat-8 data. Generated through visual interpretation in Global Mapper software, this global dataset 

contains approximately 340,000 training samples (~90,000 locations) and 140,000 validation samples (~36,000 locations). For 

the present study, a subset was selected, comprising forest samples from 2014 and 2015 within the study area. Additionally, 340 

samples from land types commonly confused with forest (e.g., cropland and grassland) were aggregated into a single “non-

forest” category. This process yielded 1,412 forest and 2,591 non-forest samples from this source. The second source was a 

nationwide field survey conducted between 2011 and 2013, which recorded plot-level details including vegetation type. From 

this field campaign, 2,860 independent validation samples for needleleaf and broadleaf forest types were obtained, comprising 

1,433 broadleaf and 1,427 needleleaf forest samples. Combining these sources resulted in a final validation dataset of 6,863 345 

independent samples (Fig. S6). This dataset was used to generate confusion matrices and calculate overall accuracy (OA), 

user’s accuracy (UA), producer’s accuracy (PA), and the F1-score for the reconstructed maps. 

In addition to this sample-based validation, an indirect accuracy assessment was performed by analyzing the consistency 

among the input LULC datasets. This approach is pertinent as the final product is an integration of these sources. Here, 

consistency is defined at the pixel level as the number of LULC datasets that concur on the classification of a specific forest 350 

type. The underlying assumption of this analysis is that a higher consistency value for a given pixel indicates greater confidence 

in its classification and a higher likelihood of it being correct (Xia et al., 2023). 

3.5 Forest change analysis 

Forest change is defined as the transition of land cover between forest and non-forest states over a given period. It is typically 

classified into change events (i.e., forest gain or loss) and stable states (i.e., persistent forest or persistent non-forest) (Winkler 355 

et al., 2021). Forest gain represents a transition from a non-forest to a forest state, while forest loss is the reverse process 
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(Hansen et al., 2013). To identify the onset year and duration of forest change events across China for the period 1980–2023, 

a pixel-level time-series analysis was developed based on the annual forest mask sequence. 

This methodology is illustrated here using the detection of forest gain. First, the annual forest masks were standardized 

into binary values (0 = non-forest; 1 = forest) to create a spatiotemporal data cube. For this analysis, a “stable” forest state was 360 

defined as a pixel remaining as forest for at least three consecutive years (Yang and Song, 2023). The onset year of a forest 

gain event was then identified for each pixel as the first year it transitioned from a non-forest state to a stable forest state. 

Following the identification of a gain event, the duration of forest persistence was calculated. This duration is the number 

of years from the onset of the gain until either: (a) the pixel underwent a stable loss event, defined as transitioning to non-

forest and remaining so for at least three consecutive years, or (b) the end of the study period (2023) if no such loss event 365 

occurred. The detection of forest loss events and their duration followed the inverse logic. 

This analysis produced four maps: two indicating the onset year for forest gain and loss events, and two representing the 

duration of these respective periods. 

3.6 Modelling assessment 

The impact of the new PFT distribution on surface fluxes was assessed using LPJ–GUESS (Lindeskog et al., 2021), a process-370 

based DGVM. The primary objective of the simulation was to evaluate how the updated PFT map influences key carbon and 

water fluxes at the land surface. 

To isolate the effect of the PFT distribution, two distinct model experiments were conducted. Both experiments were 

driven by identical climate forcing data from the ERA5–Land reanalysis product (including temperature, precipitation, and 

downward shortwave radiation) for the period 1981–2013. The crucial difference between the experiments was the PFT input 375 

map: 

EXP1 utilised the new PFT map developed in this study. 

EXP2 utilised the global PFT dataset from ESA CCI as a baseline for comparison. 

In both experiments, the PFT distribution from the year 2010 was applied cyclically for each year of the simulation to 

maintain a static land cover driver. The LPJ–GUESS model was run at a 0.1° × 0.1° spatial resolution. The simulation period 380 

was 1981–2013; model outputs before 1981 were considered part of the “spin-up” phase and were discarded from the analysis. 

The outputs from the two experiments were compared for the China region across a range of land surface variables, 

including gross primary productivity (GPP), net ecosystem exchange (NEE), leaf area index (LAI), and actual 

evapotranspiration (ET). As the PFT map was the sole variable altered between the two experiments, any observed differences 

in the output fluxes could be directly attributed to its influence. 385 

https://doi.org/10.5194/essd-2025-475
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



14 
 

4 Results 

4.1 Accuracy assessment of the reconstructed forest cover dataset 

Validation based on field survey data from five time points shows that for the total forest classification, the overall accuracy 

in 2014 and 2015 was 94.79 ± 0.49% and 95.74 ± 0.53%, respectively, while the user’s accuracy for forest types in these two 

years was 93.65 ± 0.81% and 94.11 ± 1.06%, respectively (Table 3). For the period 2011–2013, the overall accuracy for 390 

needleleaf forests ranged between 84.35 ± 1.6% and 90.18 ± 2.3%, while for broadleaf forests, the range was 85.41 ± 1.5% to 

92.02 ± 2.16%. The F1-score for broadleaf forests was slightly higher than for needleleaf forests (Table 4). We also found that 

the reconstructed broadleaf forests exhibited higher consistency than the needleleaf forests (Figure S3b, S3c). Notably, 

according to our methodology, a pixel-weighted average over the 1980–2023 period indicates that approximately 6.9% of 

pixels in the reconstructed needleleaf forests and 2.7% in the reconstructed broadleaf forests did not fall within their 395 

corresponding consistency type. 
Table 3. Confusion matrix for the reconstructed total forest cover classification for 2014 and 2015. 

  Classification     

Year Reference Forest Non-forest User’s Accuracy 
(%) 

Producer’s Accuracy 
(%) 

F1-Score 
(%) 

Overall Accuracy 
(%) 

2014 Forest 841 72 93.65±0.81 92.11±0.89 92.88 
94.79±0.49 

2014 Non-forest 57 1508 95.44±0.52 96.36±0.47 95.9 
2015 Forest 463 36 94.11±1.06 92.79±1.16 93.44 

95.74±0.53 
2015 Non-forest 29 997 96.52±0.57 97.17±0.52 96.84 

Table 4. Confusion matrices and accuracy metrics for the needleleaf and broadleaf forest classifications for the period 2011–2013. 

  Classification     

Year Reference broadleaf needleleaf User’s Accuracy 
(%) 

Producer’s Accuracy 
(%) 

F1-Score 
(%) 

Overall Accuracy 
(%) 

2011 broadleaf 420 90 87.32±1.52 82.35±1.69 84.76 85.41±1.5 
2011 needleleaf 118 407 90.24±1.4 77.52±1.82 83.4 84.35±1.6 
2012 broadleaf 644 98 92.4±1 86.79±1.24 89.51 89.93±1.11 
2012 needleleaf 115 642 93.18±0.96 84.81±1.31 88.8 89.19±1.18 
2013 broadleaf 170 11 91.89±2.01 93.92±1.78 92.9 92.02±2.16 
2013 needleleaf 27 118 95.93±1.79 81.38±3.24 88.06 90.18±2.3 

The internal consistency of the reconstructed total forest cover was assessed at ten specific time points: 1980, 1985, 1990, 

1995, 2000, 2005, 2010, 2015, 2020, and 2023 (Fig. 2). The number of inputs LULC datasets available for the reconstruction 400 

varied at each time point, with 4, 6, 5, 6, 9, 10, 9, 9, 10, and 4 products used for each respective year. The analysis showed that 

for each of the ten time points, 87.3%, 70.8%, 82.9%, 69.8%, 40.1%, 23.7%, 24.0%, 25.6%, 24.6%, and 35.2% of the 

reconstructed forest pixels, respectively, achieved the maximum possible consistency score. Conversely, pixels with the lowest 
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possible consistency (𝐶𝐶𝐶𝐶𝐶𝐶 =  1) consistently accounted for a small fraction of the total reconstructed forest area, ranging 

from 0.01% to 6.9% across different years (Fig. 2). Spatially, areas with lower forest consistency were predominantly located 405 

in the arid and semi-arid regions of northwestern China (e.g., Xinjiang, Qinghai, Ningxia) and the highly fragmented 

landscapes of the eastern coastal plains (e.g., Tianjin, Shandong, Jiangsu, Shanghai). In contrast, high-consistency forest areas 

were mainly concentrated in regions with extensive and stable forest cover, primarily in southern and central China, including 

provinces such as Hubei, Zhejiang, Guangxi, Guizhou, Yunnan, and Jiangxi (Fig. S6 and S7). 
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 410 
Figure 2. The spatial distribution of reconstructed forest cover is presented at five-year intervals from 1980–2023 (a) 1980, (b) 1985, (c) 
1990, (d) 1995, (e) 2000, (f) 2005, (g) 2010, (h) 2015, (i) 2020, (j) 2023, along with corresponding cross-product consistency scores. The 
reconstruction for each time point was compared against an ensemble of data products sourced externally (n = 4, 6, 5, 6, 9, 10, 9, 9, 10, and 
4, respectively). The inset pie chart (lower left) quantifies the areal proportion of the reconstructed forest dataset at various consistency levels, 
which serves as a proxy for the confidence in the resulting maps. 415 
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A comparison and analysis of the NFI data with the forest area estimates reconstructed in this study at the provincial scale (Fig. 

3) shows a good match for multiple years (1981–2021), with an 𝑅𝑅2 close to 1 and a p-value < 10-27. This indicates that the 

reconstructed data from this study is highly consistent with the NFI statistics in terms of overall trends. However, at the 

provincial level, slight discrepancies were still observed for some provinces (e.g., Inner Mongolia, Heilongjiang, Yunnan, and 

Xinjiang), where the reconstructed estimates in certain years were either slightly higher or lower than the NFI data. These 420 

discrepancies show a more pronounced trend after 2013. 
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Figure 3. Scatter plot comparing provincial-level forest area as reported by NFI with estimates from the reconstructed maps of this study. 

4.2 Reconstructed Forest cover dataset description 

This dataset provides annual forest cover distribution from 1980 to 2023 (Fig. 2) and the distribution of eight PFTs from 1981 425 

to 2013 at a 1 km spatial resolution (Fig. 4). The data are supplied in the WGS 1984 Albers equal-area conic projection. The 

eight PFTs, are: (1) boreal evergreen needleleaf forest, (2) temperate evergreen needleleaf forest, (3) temperate evergreen 

broadleaf forest, (4) boreal deciduous broadleaf forest, (5) temperate deciduous broadleaf forest, (6) tropical deciduous 

broadleaf forest, (7) tropical evergreen broadleaf forest, and (8) deciduous needleleaf forest. The complete dataset is openly 

accessible at the Zenodo repository under the DOI 10.5281/zenodo.16208012 (Liu et al., 2025, last access: 20 July 2025). 430 

For the reference year 2013, the dataset indicates that China’s forests are composed of evergreen needleleaf forest (26.1%), 

deciduous broadleaf forest (23.4%), evergreen broadleaf forest (18.1%), and deciduous needleleaf forest (6.2%). Although 

temperate evergreen needleleaf and boreal deciduous broadleaf forests were the two largest components by area prior to 2000, 

their proportional contributions to the total forest area subsequently declined from 27.1% to 21.1% and from 19.2% to 14.2%, 

respectively. Conversely, the proportional representation of temperate evergreen broadleaf and temperate deciduous broadleaf 435 

forests expanded, increasing from 15.3% to 17.9% and from 6.4% to 8.9%, respectively (Fig. 4). 

Spatially, the primary forest regions are concentrated in Northeast, Southeast, and Southwest China, whereas forest cover 

is relatively sparse in Northwest, Central, and East China. Furthermore, evergreen needleleaf and evergreen broadleaf forests 

are predominantly distributed across Southern China. Deciduous needleleaf forests are concentrated in the Greater Khingan 

Range in the northernmost part of Northeast China, while deciduous broadleaf forests are mainly located in Northeast China 440 

and the Qinling Mountains of Central China. 
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Figure 4. Spatial distribution patterns and area proportions of China’s forest PFTs for selected years between 1981 and 2013, (a)-(h) 
correspond to the years 1981, 1985, 1990, 1995, 2000, 2005, 2010, and 2013, respectively, (i) Temporal dynamics and total variation in 
PFTs from 1981 to 2013. 445 

Regarding its temporal evolution, our reconstructed forest dataset faithfully reproduces the long-term dynamics of forest cover 

in China (Fig. 5). According to statistics from the NFI, China’s forest cover has a mean annual growth rate of 1.75%. The 

reconstructed forest cover dataset reveals a substantial increase in China’s total forest area from 117.14 million hectares (Mha) 

in 1980 to 213.15 Mha in 2023, with a peak of 236.50 Mha observed in 2020 (Fig. 5a). This represents an annualized growth 

rate of 1.82%, demonstrates strong agreement with this national benchmark. Furthermore, our dataset accurately captures the 450 

distinct historical trajectories of two principal forest categories–broadleaf and needleleaf forests–since the 1980s (Fig. 5b and 

5c). This net increase was primarily propelled by the expansion of temperate and boreal forests. For example, the area of 

temperate evergreen broadleaf forest more than doubled between 1981 and 2013, increasing from 17.96 Mha to 40.04 Mha 

(Fig. 4i). During this period, significant areal gains were also recorded for temperate evergreen needleleaf, boreal deciduous 

broadleaf, and temperate deciduous broadleaf forests. In contrast, absolute changes in the extent of tropical PFTs and deciduous 455 

needleleaf forests were minimal over the same interval (Fig. 4i). 

 
Figure 5. Temporal dynamics of national-scale total forest area, comparing the results of this study with data from NFI and other selected 
LULC products: (a) forest, (b) needleleaf forest, and (c) broadleaf forest. 

4.3 Spatiotemporal patterns of forest cover change in China 460 

Between 1980 and 2023, the total area experiencing forest change (gross change) amounted to 242.11 million hectares (Mha), 

equivalent to approximately 25% of China’s terrestrial surface. This comprised 180.53 Mha of forest gain (19% of the national 

land area) and 153.48 Mha of forest loss (16% of the national land area). Forests that remained stable, persisting from 1980 to 

2023, covered 572.77 Mha. This stable area represents 49% of the total forest extent in 1980, implying that the remaining 51% 
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of the original 1980 forest cover underwent some form of change during the study period (Fig. 6q). We observed a prevalent 465 

pattern of forest change across several regions of China, characterized by a progression from more accessible areas (i.e., lower 

elevations near roads) to more remote locations (i.e., higher elevations far from roads). This dynamic often manifested as an 

core-to-edge expansion of existing forest patches (Fig. 6a-p). Temporally, both forest loss and gain were continuous dynamic 

processes throughout the entire period. A prominent peak in forest turnover occurred between 1991 and 1993, culminating in 

1992 when the combined area of gain and loss surpassed 35 Mha. Post-2000, both gain and loss area exhibited a general 470 

downward trend, albeit with notable fluctuations. A moderate resurgence in turnover was observed between 2009 and 2011, 

after which forest loss and gain events tended to occur more concurrently (Fig. 6q). 

Furthermore, our analysis reveals that events of forest loss are typically of short duration (Fig. S8). Over 35% of all observed 

losses persisted for only 3–6 years, with most loss events being transient and lasting fewer than 15 years. In contrast, forest 

gain is characterized by substantially longer persistence, with a modal duration of 31–34 years. This suggests the long-term 475 

stability of large tracts of newly established forests. The statistical distributions of persistence durations for forest gain and 

loss are markedly different. Loss events are predominantly concentrated in the shorter-duration intervals, whereas periods of 

gain are more concentrated in the medium- to long-duration brackets. This divergence indicates that newly established forests 

tend toward greater stability and longevity, while forest loss manifests as a more fragmented and ephemeral phenomenon. 
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Figure 6. Spatio-temporal dynamics of forest gain and loss in China from 1980 to 2023. This figure presents: (a-h) the spatial patterns of 
forest gain, showing onset year and duration; (i-p) the spatial patterns of forest loss; and (q) the national-scale temporal dynamics, including 
the annual areas of forest gain and loss and a summary of total stable, gained, and lost forest areas. 

4.4 Modelling results 

We assessed the impact of different PFT forcing datasets on ecosystem simulations by comparing outputs from the LPJ–485 

GUESS model driven by our reconstructed PFT product (hereafter 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) versus the global PFT map from the European 

Space Agency (ESA) (hereafter 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔). The analysis, exemplified using data for the year 2010, quantifies the resulting 

differences in key ecosystem variables: GPP, NEE, LAI, and ET (Fig. 7). While annual-scale results are also presented (Fig. 

S9), we focus here on the mean differences (𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  minus 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) during the summer period (June–August) to accentuate 

the primary impacts. The results indicate that the most marked divergences in simulated carbon and water fluxes are spatially 490 

coincident with regions where the two products show substantial differences in the fractional coverage of tree PFTs. Regions 

with a higher tree cover fraction in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  dataset relative to 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , particularly in northeastern China (Fig. 7e, red), 

exhibit correspondingly elevated GPP, LAI, and ET, alongside a diminished NEE. Consequently, the resulting differentials 

are positive for the former variables and negative for NEE. Conversely, where the 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  dataset specifies greater tree 

coverage, such as in southwestern China (Fig. 7e, blue), these relationships are inverted. 495 
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Figure 7. Comparison of LPJ–GUESS model simulations (a−d) and their underlying PFT forcing data (e) for summer 2010. The first four 
panels (a−d) show differences in simulated GPP, NEE, LAI, and ET. Panel (e) shows differences in tree PFTs cover derived directly from 
the input PFT maps. For all panels, the maps display the spatial difference (𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍− 𝑷𝑷𝑷𝑷𝑷𝑷𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈), while the plots show the zonal mean 
and standard deviation for the 𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 (red) and 𝑷𝑷𝑷𝑷𝑷𝑷𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 (blue) datasets individually. Note that data in panels (a-d) are model outputs, 500 
whereas data in panel (e) are from the input maps. 

To assess the realism of the simulations, we benchmarked the model outputs against a suite of remote sensing-based products 

(FLUXCOM GPP, FLUXCOM NEE, GIMMS LAI4g, and GLEAM ET), with all datasets aggregated to a common 0.1° 

resolution (Fig. 8 for summer, June–August; Fig. S10 for the annual scale). In Fig. 8a and 8b, we first present a direct 

comparison between the surface fluxes simulated using our reconstructed PFT map (𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ) and the observational 505 

benchmarks. This baseline comparison highlights inherent discrepancies attributable to both structural biases in the LPJ–

GUESS model and uncertainties within the remote sensing products themselves. Fig. 8c then isolates the impact of the PFT 

forcing by showing the change in absolute simulation error relative to the observational data. It explicitly maps areas of 

improvement (demarcated in red) and degradation (in blue) in model performance when using 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  in place of 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . 
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 510 
Figure 8. Model-data comparison for GPP, NEE, LAI, and ET for summer (June–August) 2010. (a) Ecosystem variables simulated by the 
LPJ–GUESS model using our reconstructed 𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 dataset. (b) Corresponding observation-based benchmark products from FLUXCOM 
(GPP, NEE), GIMMS (LAI4g), and GLEAM (ET). (c) The difference in absolute error between model runs, calculated as |𝑷𝑷𝑷𝑷𝑷𝑷𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 −
𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶| − |𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 − 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶|. Positive values indicate that 𝑷𝑷𝑷𝑷𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 reduces the simulation error (improves performance) 
compared to 𝑷𝑷𝑷𝑷𝑷𝑷𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈, whereas negative values indicate an increase in error (performance degradation), and the right-hand bar graph 515 
displays the percentages of error reduced, increased, and no change. 

High simulated GPP values (>0.2 kgC/m2) are concentrated in the forested regions of northeastern (e.g., the Greater Khingan 

and Changbai Mountains), the central Qinling Mountains, and southeast China. Conversely, low GPP values are characteristic 

of the arid and semi-arid regions of the northwest and the Tibetan Plateau (Fig. 8a), where productivity is constrained by water 

availability and low temperatures. On a macroscale, the simulation accurately captures this geographical distribution. However, 520 

the model tends to underestimate GPP compared to the FLUXCOM product, particularly in northern, central, and southwestern 

China (Fig. 8a and 8b). Regarding the impact of the PFT forcing, the 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  map demonstrates a distinct advantage by 

reducing simulation errors across 74% of the domain, where it reduces simulation error (red areas in Fig. 8c). In other areas, 
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such as southwestern and parts of central China, using 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  increases the simulation error compared to 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (blue 

areas in Fig. 8c). 525 

The simulation of NEE exhibits greater uncertainty compared to that of GPP. Observational data (Fig. 8b) indicate that 

China’s forested regions function as strong carbon sinks during the summer (NEE < -0.02 kgC/m2). While the 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  driven 

simulation correctly identifies northeastern, central, and southwestern China as carbon sinks, it incorrectly depicts eastern 

China, particularly the southeast, as a strong carbon source (NEE > 0.02 kgC/m2), thus failing to reproduce the observed 

magnitude of carbon uptake in these forests (Fig. 8a). Despite this systematic bias, the use of 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙   results in a substantial 530 

improvement of 49.4% in the simulation of NEE relative to 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (Fig. 8c). Across large portions of the country, especially 

in the northeast, the absolute error is substantially reduced (indicated by deep red coloration). The areas where simulation error 

increases (blue regions) are concentrated in parts of eastern and southeastern China. 

The simulated LAI exhibits a spatial pattern analogous to that of GPP, characterized by a general decline in values from 

east to west. However, when compared against the observation-based data, the model demonstrates an underestimate of LAI, 535 

particularly pronounced in southern China. The application of the 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  dataset substantially reduces LAI simulation errors 

across 70.5% of the domain (demarcated by red in Fig. 8c), underscoring the superiority of the new PFT map. Nevertheless, 

in some parts of the northeast and southwest, the LAI simulation error increases (blue areas), in strong spatial correspondence 

with the areas of increased GPP error.  

The simulation of ET demonstrates a spatial pattern consistent with the other variables analyzed. In simulations driven 540 

by 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , high ET values are concentrated in southeastern and northeastern China (Fig. 8a). Relative to remote sensing-

derived products (Fig. 8b), the model exhibits a general underestimation of ET. In terms of model improvement (Fig. 8c), 

𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  substantially reduces the simulation error across 77% of China (indicated by large swaths of red), apart from some 

regions in the southwest. 

5 Discussion 545 

5.1 Comparison with other forest datasets 

The spatial accuracy of the reconstructed PFT dataset was quantitatively evaluated against four existing products (MODIS, 

ESA CCI, CLCNMO, and GLC_FCS30). The assessment utilized 2,860 ground-truth samples of needleleaf and broadleaf 

forests from nationwide field surveys conducted from 2011–2013 (Fig. S6). For direct comparison, all datasets were 

standardized to a 1km resolution within the same projection and spatial extent. The reconstructed PFT dataset achieved an 550 

overall classification accuracy of 88.51%, which is higher than MODIS (68.74%), ESA CCI (86.46%), CLCNMO (77.46%), 

and GLC_FCS30 (86.52%) (Table 5). Specifically: For broadleaf forests, the dataset’s accuracy (89.12%) surpassed most 

products, though it was slightly lower than GLC_FCS30 (90.12%). For needleleaf forests, the dataset’s accuracy (87.91%) 

was the highest among all evaluated products. Although the User’s Accuracy (UA) and Producer’s Accuracy (PA) were not 
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uniformly superior, the dataset’s F1-score (87.91%) was highest. This independent validation confirms the high spatial 555 

accuracy of the reconstructed PFT data in comparison to prominent existing datasets. 
Table 5. Comparison of mapping accuracy based on ground-truth samples from 2011–2013 for this study, MODIS, ESA CCI, CLCNMO, 
and GLC_FCS30. 

  Broadleaf Needleleaf Overall 
  2011 2012 2013 Mean 2011 2012 2013 Mean Mean 
This study PA (%) 82.35 86.79 93.92 87.69 77.52 84.81 81.38 81.24 84.46  
 UA (%) 87.32 92.4 91.89 90.54 90.24 93.18 95.93 93.12 91.83  
 F1 (%) 84.76 89.51 92.9 89.06 83.4 88.8 88.06 86.75 87.91  
 OA (%) 85.41 89.93 92.02 89.12 84.35 89.19 90.18 87.91 88.51  
MODIS PA (%) 62.55 64.82 69.06 65.48 14.48 19.42 14.48 16.13 40.80  
 UA (%) 90.37 92.68 88.65 90.57 96.2 92.45 91.3 93.32 91.94  
 F1 (%) 73.93 76.29 77.64 75.95 25.17 32.1 25 27.42 51.69  
 OA (%) 78.26 80.05 77.91 78.74 56.33 58.51 61.35 58.73 68.74  
ESA_CCI PA (%) 80 86.12 91.71 85.94 73.33 76.09 73.1 74.17 80.06  
 UA (%) 89.28 92.21 91.21 90.90 91.02 92.75 92.98 92.25 91.58  
 F1 (%) 84.38 89.06 91.46 88.30 81.22 83.6 81.85 82.22 85.26  
 OA (%) 85.41 89.53 90.49 88.48 82.8 84.92 85.58 84.43 86.46  
CLCNMOa PA (%) - - 90.61 90.61 - - 33.1 33.1 61.86  
 UA (%) - - 83.25 83.25 - - 100 100 91.63  
 F1 (%) - - 86.77 86.77 - - 49.74 49.74 68.26  
 OA (%) - - 84.66 84.66 - - 70.25 70.25 77.46  
GLC_FCS30b PA (%) 87.25 - 96.13 91.69 68.57 - 64.14 66.36 79.02  
 UA (%) 88.65 - 90.16 89.41 95.49 - 97.89 96.69 93.05  
 F1 (%) 87.94 - 93.05 90.50 79.82 - 77.5 78.66 84.58  
 OA (%) 88.21 - 92.02 90.12 82.42 - 83.44 82.93 86.52  

Notes: PA, UA and OA are abbreviations for the producer’s accuracy, user’s accuracy, and overall accuracy, respectively. The 
F1 represents the harmonic mean of the PA and the UA. 560 
a. The CLCNMO dataset was only available for 2013. 
b. The GLC_FCS30 dataset is produced at 5-year intervals. For this study’s validation, its 2010 data was used as a proxy for 
2011, and its 2015 data was used as a proxy for 2013. 

The temporal evolution of the reconstructed PFT dataset aligns closely with NFI records, which document a significant 

increase in national forest cover from approximately 12% in the early 1980s to 24% at present, largely due to extensive 565 

afforestation programs (Fig. 5). In contrast, existing LULC products overwhelmingly fail to reproduce the historical trend of 

forest expansion in China since the 1980s (Fig. 5). Nearly all these datasets substantially underestimate the rate of forest growth. 

The CNLUCC dataset, for example, depicts a largely static forest area from 1980 to 2023, thereby failing to capture the marked 

gains resulting from China’s afforestation programmes. Although the GLASS_GLC product indicates an increase, its forest 
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area estimations are considerably higher than the official NFI statistics. Moreover, existing LULC products are unable to 570 

accurately resolve the divergent historical trajectories of needleleaf and broadleaf forests. Therefore, a re-evaluation of the 

impacts of China’s forest cover change on terrestrial ecosystems using this newly developed, validated dataset is warranted. 

5.2 A spatiotemporally constrained approach for reconstructing forest PFTs via multi-source data fusion 

This study developed a method to integrate the “top-down” spatial detail derived from multi-source remote sensing products 

with the “bottom-up” statistical constraints provided by the NFI. The methodology involved harmonizing disparate LULC data 575 

sources into a uniform spatial framework via systematic resampling, re-projection, and aggregation. A consistency metric 

(𝐶𝐶𝐶𝐶𝐶𝐶) was computed to quantitatively assess spatial disagreements in forest identification among these sources. This metric 

functions as a diagnostic tool, elucidating inter-source congruence and leveraging this consensus to construct more robust 

maps of forest cover and PFTs; pixels with higher 𝐶𝐶𝐶𝐶𝐶𝐶  values are prioritized, whereas regions with low 𝐶𝐶𝐶𝐶𝐶𝐶  values, 

indicative of poor source data consensus, are assigned a lower priority unless their inclusion is mandated by NFI area 580 

constraints. This strategy effectively mitigates classification-level uncertainty by integrating a “majority vote” consensus with 

external statistical controls. Furthermore, the approach utilizes an annual maximum NDVI mask to delineate supplementary 

forest patches. This application of an NDVI mask, supported by prior research, effectively filters spurious forest signals from 

mountainous terrains, barren lands, and sparsely vegetated areas (Qin et al., 2015). 

Therefore, our methodology addresses the intrinsic limitations of relying on a single data modality, resolving a well-585 

documented deficiency in extant land cover products. Specifically, these products often fail to represent the full extent of the 

significant, policy-driven expansion of Chinese forests post-1980, thereby underestimating the rate of forest cover growth (Fig. 

5) (Yue et al., 2024; Zhu et al., 2025; Yu et al., 2022). Consequently, DGVMs driven by these historically inaccurate datasets 

are likely to substantially underestimate China’s carbon sink. We tested the hypothesis that a more accurate vegetation map 

would improve land surface model performance. Driving the LPJ–GUESS dynamic vegetation model with our reconstructed 590 

PFT maps resulted in markedly improved simulations compared to those using the ESA CCI global PFT dataset (Fig. 8 and 

Fig. S10). The spatial pattern of these improvements aligns directly with regions where our dataset’s tree cover diverges most 

from the global product, especially in northeastern China (Fig. 7 and Fig. S9). This provides powerful evidence for the critical 

role of accurate vegetation representation in simulating carbon and water cycles. By providing a more precise depiction of 

historical forest dynamics, our dataset offers stronger constraints on model parameterizations of surface albedo, canopy 595 

structure, and transpiration, leading to more robust flux estimations. 

5.3 Limitations and future work 

First, as an integrated data product, our dataset inherits uncertainties from its primary sources: the input LULC data and the 

NFI statistics. Most satellite based LULC datasets rely on machine learning classifiers, whose accuracy is contingent upon the 

representativeness, quantity, and quality of training samples. Furthermore, our dataset’s accuracy is substantially dependent 600 

on the NFI data, which possesses its own uncertainties stemming from inventory methodologies and the representativeness of 
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ground plots. Notably, the precision of NFI data has improved over time due to the progressive evolution of its sampling design; 

for example, the introduction of combined ground-truth and remote sensing samples in the fourth NFI (1989–1993) and a 

significant increase in remote sensing samples since the sixth NFI (1999–2003) markedly enhanced its accuracy (Lei et al., 

2009). Consequently, any uncertainty within the NFI data will inevitably propagate into our reconstructed dataset. 605 

Second, for provinces with limited historical data (e.g., Chongqing, Hong Kong, and Macau), we employed linear 

extrapolation to generate annual provincial-level statistics. This approach was predicated on prior findings that national 

afforestation targets exhibit a quasi-linear temporal trend (an increase of ~1.8 million ha/year) (He et al., 2024; Xu et al., 2023), 

suggesting a consistent, progressive afforestation strategy driven by government policy. Nevertheless, this method introduces 

a degree of uncertainty (Fig. S1). To mitigate this, we constrained the extrapolated area by defining a consistency-level 610 

threshold, which was selected to ensure that the cumulative area of all pixels at or above this level most closely matched the 

target value for a given year. While this technique maximizes spatial and quantitative accuracy under the available data 

constraints, discrepancies may still exist between our reconstructed results and the actual forest area in these provinces prior 

to 2003, where the true conditions are unknown. 

Finally, while our PFT distribution map significantly improves the simulation performance of DGVMs compared to the 615 

ESA CCI PFT product, this model-based validation is relative, not absolute. This can lead to discrepancies between simulated 

outcomes and on-the-ground reality (Fig. 8a, b, Fig. S10a, b), with errors potentially attributable to the internal 

parameterization of the LPJ–GUESS model. The model’s default parameters are primarily calibrated for European ecosystems 

and may not align with the unique ecophysiology, disturbance regimes, and soil hydrology of China (Li et al., 2022; Peng et 

al., 2019). A comprehensive, large-scale parameter calibration for China was beyond the scope of this study. A key avenue for 620 

future research is to disentangle the interacting uncertainties among data inputs, model structure, and climate drivers. 

Enhancing differentiated, regional-scale modeling and identifying underlying mechanisms will be critical for improving the 

predictive power of terrestrial ecosystem models and the accuracy of forest carbon sink estimations in China. 

6 Data availability 

The reconstructed forest cover dataset generated in this study is publicly available in the Zenodo repository at 625 

https://doi.org/10.5281/zenodo.16208012 (Liu et al., 2025). All third-party datasets used for this analysis are publicly available 

from their original sources as listed below: National Forest Inventory records for China are accessible from the National 

Forestry and Grassland Data Center at http://www.forestdata.cn/. The following datasets are available from the Resource and 

Environment Science and Data Center (https://www.resdc.cn/): the China National Land Use/Cover Change (CNLUCC), 

Moderate Resolution Land Use and Cover (MLUD), and Wu_LC datasets (last access: 7 May 2025). The following datasets 630 

were accessed via Google Earth Engine (https://code.earthengine.google.com): the Copernicus Global Land Service (CGLS), 

MODIS Land Cover Type (MCD12Q1), Hansen Global Forest Change (Hansen), JRC Forest Types, and Global Forest Canopy 

Height (GFCH) (last access: 13 April 2025). The following datasets are provided by the European Space Agency (ESA) 
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(http://climate.esa.int/en/projects/land-cover): ESACCI_LC, GlobCover, and ESA_WorldCover (last access: 12 April 2025). 

Datasets from Tsinghua University (http://data.ess.tsinghua.edu.cn), including FROM_GLC, GLASS_GLC, and the first all-635 

season sample set for mapping global land cover with Landsat-8 data, were accessed from their data portal (last access: 10 

April 2025). China Land Cover Dataset (CLCD) is publicly available at https://doi.org/10.5281/zenodo.4417810 (Yang and 

Huang, 2021). Global Land-Cover-Related Datasets with Fine Classification System (GLC_FCS30) is publicly available at 

https://doi.org/10.5281/zenodo.8239305 (Liu et al., 2023). Global Forest Cover 30m (GFC30) is available from the Data 

Sharing and Service Portal at https://data.casearth.cn/dataset/6188d5be819aec0dc5853a4d (last access: 10 April 2025). Global 640 

Land Cover 2000 (GLC2000) is available from the National Earth System Science Data Center at 

https://www.geodata.cn/data/datadetails.html?dataguid=60781990406898&docId=12324 (last access: 10 April 2025). 

Consensus Land Cover of northern mid-to-high latitudes (CLCNMO) is publicly available at 

https://globalmaps.github.io/glcnmo.html (last access: 12 April 2025). GlobeLand30 is available for download from the 

National Geomatics Center of China at http://www.globallandcover.com/ (last access: 10 April 2025). Long-term Normalized 645 

Difference Vegetation Index (Jeong’s NDVI) is available from Seoul National University at 

https://www.environment.snu.ac.kr/data/long-term-vi (last access: 11 April 2025). The Köppen–Geiger climate classification 

maps are available from Figshare at https://figshare.com/articles/dataset/Present_and_future_K_ppen-

Geiger_climate_classification_maps_at_1-km_resolution/6396959/2 (last access: 26 May 2025). A global topographic dataset 

is publicly available from Earthenv at https://www.earthenv.org/topography (last access: 25 May 2025). ERA5-Land monthly 650 

averaged data (2m temperature, total precipitation, surface solar radiation downwards) are publicly available from the 

Copernicus Climate Data Store at https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-

means?tab=overview (last access: 21 September 2024). Fluxcom GPP and NEE products are available from the project website 

at https://fluxcom.org/CF-Products/ (last access: 10 January 2025). GIMMS LAI4g is publicly available in the Zenodo 

repository at https://doi.org/10.5281/zenodo.7649107 (Cao et al., 2023). GLEAM Evapotranspiration (ET) products are 655 

available for download at https://www.gleam.eu/#downloads (last access: 23 July 2024). 

7 Conclusion 

To address the failure of existing land cover products in capturing the extensive forest expansion from large-scale afforestation 

in China since 1980, this study presents a reconstructed dataset of annual forest cover at 1 km resolution for the period 1980–

2023 and the distribution of eight PFTs from 1981–2013. This paper details a method that integrates spatial forest distribution 660 

constraints from a suite of remote sensing products with provincial-level forest area constraints from NFI. The resultant dataset 

reproduces NFI-consistent forest dynamics with a 95.3% overall accuracy (𝑅𝑅2 ≈ 1), and its application within a DGVM 

markedly improves the simulation accuracy of key ecosystem variables by 49.4% to 77%. This work thus provides a critical 

data foundation for more robust assessments of the ecological effects of forest restoration and for refining regional carbon sink 

estimations. The dataset’s reliability is, however, inherently constrained by uncertainties in the source data, particularly in 665 
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highly fragmented landscapes. Future research should therefore aim to decouple the interplay between data inputs, model 

structure, and climate drivers to advance the predictive capability of ecosystem models further. 
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