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Abstract. The Southern Ocean plays a crucial role in regulating atmospheric carbon dioxide (CO2) concentrations and 15 

modulating the global oceanic carbon cycle, thereby substantially mitigating the effects of anthropogenic climate change. 

However, due to the region’s challenging environment and sparse observational coverage, large uncertainties remain regarding 

the magnitude and mechanisms of carbon uptake in the Southern Ocean. In recent decades, the deployment of Argo float arrays 

has facilitated autonomous and continuous profiling of hydrographic and biogeochemical properties from the surface to depths 

of up to 6,000 m, complementing traditional ship-based observations. Nevertheless, high-resolution, integrated datasets that 20 

combine ship-based and Argo-derived observations remain rare, partly due to the challenges of data harmonization, quality 

control, and uncertainty estimation, as well as the indirect nature of carbonate system parameter retrievals from Argo 

measurements. Here, we present a comprehensive, quality-controlled reconstruction of key carbonate system parameters in the 

Southern Ocean interior—including total alkalinity (TA), dissolved inorganic carbon (DIC), pH (total scale), nitrate (NO3), 

phosphate (PO4), silicate (SiO4), anthropogenic carbon (Cₐₙₜ), and aragonite saturation (Ωₐᵣ)—by leveraging machine learning 25 

techniques and integrating all available Argo float profiles with ship-based survey data. The resulting datasets are gridded at 

1°×1° horizontal resolution and 84 vertical pressure levels (0-5,600 dbar), and are provided as distinct climatological products: 

the Float Grid (using all Argo float profiles) and the All-Data Grid (integrating all available Argo and ship-based observations). 

The Float Grid is further separated into the Non-O₂-Float Grid (limited to Core Argo floats) and O₂-Float Grid (limited to 

oxygen-measured Biogeochemical Argo floats). Each gridded product is accompanied by uncertainty estimates. The 30 

climatological products covers nearly the whole Sothern Ocean based on direct measurements instead of applying interpolating 
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mapping methods, thereby providing a more robust result. Model performance is assessed through cross-comparison of Argo 

and shipboard measurements. The gridded products, collectively termed SOCOML (Southern Ocean CO2 Machine Learning 

products), are freely available for downloaded (doi: 10.17632/xzr59ngmpz.1) and are expected to support future studies of 

Southern Ocean carbon cycle. 35 

1 Introduction 

The Southern Ocean (south of 30°S) plays a pivotal role in the global carbon cycle by facilitating anthropogenic carbon uptake 

from the atmosphere and transporting to the ocean interior (Morrison et al., 2022), thereby modulating CO2 concentrations 

from past climates to the present and into the future (Hauck et al., 2023). Since industrialization, rising atmospheric CO2 

concentration has been the primarily driver of the strengthening ocean carbon sink, with the Southern Ocean accounting for 40 

around one-quarter of the anthropogenic carbon (Cant) uptake (Gruber et al., 2019a). Oceanic carbon uptake is fundamentally 

constrained by the amount of carbon in the upper ocean and by the rate at which Cant, in the form of dissolved inorganic carbon 

(DIC), is transported into the ocean interior (Bopp et al., 2015). The large-scale upwelling limb of the meridional overturning 

circulation (MOC) in the mid-latitude Southern Ocean enables the uptake of excess carbon and its subsequent transport 

northward into the upper ocean (Marshall & Speer, 2012; Pellichero et al., 2018) or southward to fill the global abyssal carbon 45 

reservoir (Zemskova et al., 2022; Zhang et al., 2023). Both carbon transport pathways in mid-latitude and high-latitude 

Southern Ocean are interconnected via the global thermohaline circulation, contributing to the removal of anthropogenic 

carbon from the surface ocean.  

The continuous uptake of Cant by the ocean leads to declines in seawater pH and calcium carbonate (CaCO3) saturation, 

collectively referred to as ocean acidification (OA) (Doney et al., 2009). In the Southern Ocean, substantial CO2 uptake causes 50 

buffering capacity and aragonite saturation states (Ωar) to decline faster than the global average (Orr et al., 2005; Petrou et al., 

2019). Recent multidecadal studies found reinvigoration of carbon sink since 2000s (Landschützer et al., 2015; Zemskova et 

al., 2022) and pronounced acidification particularly in the Antarctic Zone (Bednaršek et al., 2012; Xue et al., 2018). To 

quantitatively assess and understand the underlying feedback mechanism involved in carbon uptake and storage, sustained 

high-quality oceanic measurements across timescales and the entire Southern Ocean are highly needed. Key oceanic interior 55 

parameters of the carbonate system—total alkalinity (TA), dissolved inorganic carbon (DIC), and pH—each has strengths for 

explaining climate change process. For example, increasing DIC from Cant storage leads to pH reduction, while TA reflects 

the ocean’s capacity to buffer pH changes (Orr et al., 2005). Moreover, measuring nutrient concentration (nitrate, phosphate 

and silicate) is also associated to the oceanic biogeochemical process (e.g., involved in the calculation of seawater carbonate 

chemistry and Cant (Gruber et al., 1996; van Heuven et al., 2011)). Therefore, a comprehensive dataset that combines TA, DIC, 60 

pH, and nutrients offers detailed insights into the variability of ocean carbon sink (characterized by Cant), the progression of 

OA (characterized by Ωar), and its potential impacts on marine ecosystems (Doney et al., 2020; Gruber et al., 2019b; Kroeker 

et al., 2013; Sabine et al., 2004).  
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Despite its importance in the global carbon cycle, the vast and remote nature of the Southern Ocean severely limits 

observational coverage, especially with regard to biogeochemical parameters. Two major databases compile shipboard 65 

measurements: the Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2016) provides a quality-controlled dataset of the CO2 

fugacity for the global surface ocean and coastal seas, while the Global Ocean Data Analysis Project version 2 (GLODAPv2, 

Olsen et al., 2016) offers quality-controlled data product from the surface into the ocean interior includes TA and DIC. 

However, the scarcity of shipboard measurements, particularly during austral winter, leads to large uncertainty in evaluating 

the Southern Ocean carbon sink (Friedlingstein et al., 2025; Hauck et al., 2020). Measurements of more difficult-to-observe 70 

variables, such as TA, DIC and pH, are particularly scarce, comprising only about half of the data available for other parameters 

in GLODAPv2 database (Figure 1d).  

Novel observations recently collected by profiling floats, as part of the Argo program, have revolutionized the ability to 

monitor the Southern Ocean since the 2000s (Riser et al., 2016; Silvano et al., 2023). These autonomous floats, including Core-

Argo and Biogeochemical Argo (BGC-Argo), measure seawater properties (temperature, salinity, and pressure) and optional 75 

biogeochemical parameters (oxygen, pH, and nitrate, normally for BGC-Argo) between the surface and depths of 2,000 m, 

with Deep-Argo floats reaching depths of up to 6,000 m. The rapid increase in BGC-Argo floats has significantly expanded 

the amount of carbonate system data and thus revealed spatial and temporal variability with depth globally or regionally 

(Williams et al., 2017; Wu et al., 2022; Wu & Qi, 2023). Despite transformative potential, BGC-Argo floats currently constitute 

less than a quarter of all Argo floats in the Southern Ocean (Figure 1). This limited coverage highlights the need to develop 80 

robust methods for deriving carbonate system parameters from all Argo observations, which would greatly improve and 

supplement current observation-based CO2 datasets and support more comprehensive monitoring of ocean carbon dynamics.  

Multiple efforts have focused on retrieving carbonate chemistry variables by utilizing the strong regional correlations among 

seawater properties and by estimating carbonate chemistry parameters using combinations of more readily available variables, 

such as temperature, salinity, and dissolved oxygen. This approach is effective because oceanographic processes influence the 85 

distributions of many seawater properties in similar ways, allowing algorithms to be trained to reproduce carbonate system 

parameters from co-located measurements of other seawater properties (Carter et al., 2021a). Among the primary methods, 

multilinear regression (MLR) and neural networks (NN) are widely used to estimate various seawater properties, including 

nutrients and carbonate chemistry variables. MLR models, such as LIAR (Locally Interpolated Alkalinity Regression, (Carter 

et al., 2021b; Carter et al., 2016)), are straightforward and interpretable but are limited to capturing linear relationships. In 90 

contrast, neural network approaches, like Bayesian neural network (BNN)-based method (CANYON-B, Bittig et al., 2018; 

Sauzède et al., 2017) can model more complex, nonlinear patterns and often provide higher accuracy. Building on MLR and 

NN methods, the ESPER_LIR and ESPER_NN routines were recently introduced to further expand predictive capabilities. 

For instance, Asselot et al., 2024 applied the ESPER_NN method to reconstruct Cant from Argo data, demonstrating the 

combination of Argo float observations with machine-learning approaches offers new perspectives and robust insights into the 95 

storage and transport of Cant in the interior ocean. 
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In the present study, we leverage ESPER_NN model and combine high-accuracy GLODAPv2 database and the profiling 

measurements with fine spatiotemporal resolution to present carbonate system parameters throughout the interior Southern 

Ocean. TA, DIC, pH (total scale), nitrate (NO3), phosphate (PO4) and silicate (SiO4) are obtained through neural networks 

while Ωar is computed using CO2SYS based on reconstructed TA and DIC. And Cant is estimated using TrOCA method (refs 100 

doing the same with TrOCA in Sothern Ocean). We refer to the data products as Southern Ocean CO2 Machine Learning 

products (SOCOML, doi: 10.17632/xzr59ngmpz.1). The rest of the paper describes the data and methodology used in the 

estimation of dataset for ocean carbon research. This is followed by the assessment and climatological variability of the dataset. 

Last, we discuss the uncertainty estimation process and potential influence.  

2 Data used and reprocessing 105 

2.1 GLODAP  

The Global Ocean Data Analysis Project version 2 (GLODAPv2), a bias-corrected observational ocean biogeochemical dataset, 

serves as the ship-based observational data source for this study. Data from GLODAPv2.2023 collected south of 30°S are 

selected, including concurrent measurements of hydrographic properties, nutrients (NO3, PO4 and SiO4), and carbonate system 

parameters (TA, DIC, and pH), as detailed in Table 1. Before reprocessing the data, two cruises (Expocode: 316N19871123 110 

and 318M19771204) were excluded due to noisy at depth or large quality control (QC) adjustments, as reported by (Brendan 

R. Carter et al., 2021a). Subsequently, the remaining 160 cruises undergo secondary QC and adjustment check. Measurements 

flagged as poor quality includes TA and DIC values with adjustments exceeding ± 10 μmol kg-1, pH adjustments greater than 

± 0.015 pH units, and nutrient data with multiplicative adjustments surpassing 10% (Brendan R. Carter et al., 2018; Olsen et 

al., 2016). The precise adjustment values are documented in the GLODAPv2 Adjustment Table, accessible at 115 

https://glodapv2.geomar.de/. Following this QC step, five cruises are excluded for TA, three cruises (1,112 measurements) for 

DIC, one cruise (1,474 measurements) for PO4, and one cruise (940 measurements) for SiO4 (see detailed exclusions in Table 

A1). Although no significant offsets were identified in pH measurements, one cruise (Expocode: 49HG19950414) are excluded 

as noted by (Carter et al., 2018). Importantly, the exclusion of observations for one parameter does not influence the inclusion 

of other parameters, as each parameter exclusion is conducted independently.   120 

The pH data in GLODAPv2 comprise a mixture of spectrophotometric- and potentiometric-derived measurements. To ensure 

data consistency, pH measurements are homogenized to align with pH calculated from TA and DIC, following (Carter et al., 

2018). Classification of pH data are conducted based on documentation available from https://cchdo.ucsd.edu/, as shown in 

Table A2 and Figure A1. 

The ESPER_LIR and ESPER_NN model were trained using data from GLODAPv2.2020, whereas the CANYON-B model 125 

utilized the original GLODAPv2 release. Assessment dataset for model performance comparison were identified from the 

GLODAPv2.2023, consisting of cruises added subsequent to the GLODAPv2.2020 release (i.e., cruise numbers ≥2107). Initial 

comparative analysis among CANYON-B, ESPER_NN, and ESPER_LIR models is conducted using this assessment data.  
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Table 1. Numbers of shipboard GLODAPv2 measurements for each parameter used in this study. The assessment dataset used 

for mode-performance comparisons contains cruises added after the GLODAPv2.2020 release—specifically, those with cruise 130 

identifiers ≥ 2107. 

Target Parameter Oxygen (Y/N) Assessment dataset Total 

TA 
N 15,059 103,140 

Y 14,954 101,870 

DIC 
N 15,376 129,799 

Y 15,270 126,312 

pH 
N 14,996 56,597 

Y 14,894 56,411 

NO3 
N 18,796 232,771 

Y 18,575 226,665 

PO4 
N 18,352 224,262 

Y 18,086 218,876 

SiO4 

N 19,011 242,736 

Y 18,745 234,807 

2.2 Argo data preparation and description 

The Argo float data were download from the Argo Data Assembly Canters (GDACs; FTP: /ifremer/argo/dac/; latest access on 

23 Feb 2025) and processed using adapted code from the SAGEO2 toolbox. This dataset comprises three types of Argo floats 

(Core Argo, BGC-Argo, and Deep Argo) for reconstructing carbonate system parameters and nutrients using models. Since 135 

2000, the Core Argo network has provided high-resolution temperature and salinity profiles with broad coverage (0-2,000 dbar 

at 10-day intervals), forming the foundation for extensive studies of oceanographic processes. Building upon this framework, 

the BGC-Argo extends observational capabilities by employing biogeochemical sensors to measure oxygen, pH, and nitrate. 

To address ongoing uncertainties regarding deep ocean, the recent deployment of Deep Argo floats enables data collection 

down to 6,000 dbar in targeted Southern Ocean basins, providing unprecedented insights into carbon dynamics in abyssal 140 

waters. 

Rigorous quality control leads to the exclusion of three categories of problematic data: 1) floats on the Argo Program's grey 

list identified for sensor drift or transmission errors; 2) floats with 10 or fewer operational cycles, due to insufficient calibration 

stability; and 3) aberrant profiles with incomplete measurements. Additionally, only adjusted data flagged as “Good” or 

“Probably Good” (QC flags 1 and 2, respectively) were included. The remaining floats were systematically classified based 145 

on the presence or absence of oxygen data. This classification yielded two distinct float categories, underpinning our dual-

pathway analytical approach and ensuring robust estimation across diverse observational regimes. Overall, this study includes 
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data from 4,346 Argo floats, of which 525 are equipped with oxygen sensor providing 73,296 profiles, and the remaining 3,821 

floats without oxygen sensor providing 647,650 profiles.  

There are substantial spatial sampling gaps in the high-quality GLODAP data, particularly in the high-latitude Southern Ocean 150 

(Figure 1). Furthermore, Figure 1 reveals a pronounced seasonal bias toward the austral summer, with nearly four times as 

many measurements collected during this period compared to winter. In contrast, Argo floats provide extensive spatiotemporal 

coverage, owing to their flexible deployment and consistent ten-day sampling cycles. Although the number of Argo floats 

equipped with oxygen sensors have increased greatly in recent decades (Figure 1f), the Argo observational network is still 

predominantly composed of Core-Argo floats without oxygen sensors, which constitute over 85% of the dataset and achieve 155 

nearly complete spatial coverage across the Southern Ocean (Figure 1a, c). The broad coverage offers an unprecedented 

foundation for reconstructing carbon system dynamics in the region. However, because of current limitations in data quality 

and correction methods (Maurer et al., 2021; Williams et al., 2017), direct nitrate and pH measurements from Argo floats are 

excluded from this study. Ongoing improvements in quality control and correction procedures may enable the incorporation 

of these measurements in future studies. 160 

 

Figure 1. Spatial and temporal coverage of the measurements in 7,607 stations (dots) from the GLODAPv2.2023 database 

(Lauvset et al., 2024) and 4,603 Argo profiling floats (lines). (a): Geographic distribution of GLODAP, Argo (CTD), and Argo 

(CTD+O2) which is categorized into three types according to the maximum pressure of observation. (b-c): Number of profiling 

measurement covered by shipboard (GLODAP) and float-based (Argo) observations for the entire period since 1972 per 1° × 165 
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1° bin. (c): The parameter types, seasonal, and latitudinal distribution of profiles from all three dataset (grey for GLODAP, 

blue for Argo only with CDT, and red for Argo with CTD and oxygen sensor). The number of GLODAP profiles in (e-f) has 

been multiplied by a factor of 3 for visibility.  

3 Methodology 

3.1 Reconstruction of carbonate system parameters and nutrients 170 

This study employs a dynamically adaptive framework to reconstruct carbonate system parameters and nutrients by integrating 

heterogeneous Argo float observations with high-quality GLODAP measurements. Figure 2 illustrates the overall workflow 

for generating gridded products in the Southern Ocean. Based on performance comparisons (see Section 4.1 for detail), the 

best-performing model is applied to reconstruct key biogeochemical tracers (oxygen, nitrate, phosphate, silicate) as well as 

carbonate system parameters (TA, DIC, pH). To accommodate differences in observational capabilities among Argo floats, 175 

particularly regarding the presence or absence of oxygen sensors, input observations are dynamically sorted into two 

reconstruction pathways:  

1. Full-parameter pathway (green in Figure 2): This pathway utilizes all available measured parameters, including 

hydrographic properties, and dissolved oxygen concentrations from floats equipped with oxygen sensors. 

2. Hydrography-only pathway (blue in Figure 2): This pathway reconstructs targeted parameters and oxygen concentration 180 

based solely on CTD measurements (salinity, temperature, depth) from floats lacking oxygen sensors. 

The resulting dataset includes both reconstructed parameters (derived indirectly from Argo profiles) and direct high-quality 

ship-based observations.  
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Figure 2. Overall workflow for generating interior carbonate system gridded products in Southern Ocean. The top panel shows 185 

data inputs: Argo with CTD only (in blue), Argo with CTD and oxygen sensor (in green), and GLODAP (in purple). All data 

undergo quality control procedures. The workflow comprises three main steps: the top panel depicts model selection 

(CANYON-B, ESPER_LIR, and ESPER_NN); the middle panel illustrates the use of ESPER_NN to predict carbonate 

parameters with or without oxygen data; the bottom panel shows the integration of Argo/GLODAP data into gridded products 

with derived anthropogenic CO2 and aragonite saturation data (see Section 3.2 for detailed calculations). 190 

3.2 Estimation of anthropogenic carbon (Cant) and aragonite saturation state (Ωar) 

Typical methods for calculating Cant from DIC measurements include the ΔC* method (Gruber et al., 1996; Sabine et al., 2004), 

the extended multiple linear regression (eMLR) method (Gruber et al., 2019a), and the Tracer combining Oxygen, inorganic 

Carbon, and total Alkalinity (TrOCA) method (F. Touratier et al., 2007; Franck Touratier & Goyet, 2004) has been widely 

applied. Although the ΔC* method has been widely used to quantify Cant inventory, it relies on parameter customization 195 
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through Optimum Multiparameter (OMP) analysis, which requires direct nutrient measurements of NO₃, PO₄, and SiO₄—data 

not available in our dataset. The eMLR method relies on repeat hydrographic measurements (Friis et al., 2005), which are not 

available for Argo profiles, and its output reflects temporal change in Cant rather than absolute concentration. For these reasons, 

this study employs the TrOCA method, which is relatively straightforward, extensively utilized in Southern Ocean studies, 

and has been demonstrated to be reliable through comparative analyses (Lo Monaco et al., 2005; Zhang et al., 2023).  200 
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where θ is potential temperature, °C; O2 is dissolved oxygen, μmol kg−1; DIC is total inorganic carbon, μmol kg−1; TA is total 

alkalinity, μmol kg−1. In the full-parameter pathway, calculated values utilized observed oxygen concentrations alongside 

model-derived TA and DIC estimates. Conversely, the hydrography-only pathway employed model-derived estimates for all 

three parameters (oxygen, TA, and DIC). Finally, the Cant values are scaled to the reference year to deal with exponential 

increase of anthropogenic CO2 burden in the climatological products (see Section 3.3) (Carter et al., 2021a; Tanhua et al., 205 

2007). A detailed description of the scaling method is given in the Appendix B1. 

The aragonite saturation state (Ωar) is calculated using the CO2SYS software (v3.0, Lewis et al., 2021), requiring TA, DIC, 

temperature, salinity, and pressure as inputs to minimize uncertainty in the results (Orr et al., 2018). The following 

thermodynamic parameterizations are employed: carbonic acid dissociation constants from Lueker et al., 2000, hydrogen 

fluoride (HF) dissociation constants from Perez & Fraga, 1987, the ratio of total boron (BT) to practical salinity (Sp) from (Lee 210 

et al., 2010), and bisulfate dissociation constants (KHSO4) from Dickson et al., 1990. 

3.3 Construction of gridded products 

Profile data for each parameter are sorted into spatial bins of 1° latitude × 1° longitude bins and 84 vertical pressure levels to 

generate homogenized three-dimensional gridded products. Data derived from both float- and ship-based observations are 

integrated into this spatial framework, ensuring robust spatial and depth coverage. To maximize data density, we construct an 215 

“All-Data Grid” by merging all available reconstructions and observations. In addition, three specialized gridded products are 

generated: the “Float Grid”, comprising only float-based reconstructions; the “Non-O₂-Float Grid”, limited to floats without 

oxygen measurements; and the “O₂-Float Grid”, limited to BGC-Argo floats. The latter two grids facilitate sensitivity analyses 

of oxygen’s influence on carbonate system parameter reconstructions. All these gridded datasets serve as the basis for 

subsequent analyses. 220 

Figure 3 demonstrates the vertical sampling spacing of CTD and dissolved oxygen from Argo floats. Typically, floats sample 

at intervals of 10 dbar or finer from the surface down to 200 dbar and at intervals of 50 dbar or finer between 500 to 2000 dbar. 

Floats equipped with oxygen sensors sample dissolved oxygen at higher resolution. Measured CTD profiles are prioritized, 

but interpolated profiles are used when concurrent oxygen data are unavailable. To align with the float sampling scheme and 
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maximize data utilization, the water column (0-5,600 dbar) is divided into 84 vertical pressure levels (highlighted in yellow in 225 

Figure 3): 0–200 dbar at 10-dbar intervals (20 bins), 200–500 dbar at 20-dbar intervals (15 levels), 500–2000 dbar at 50-dbar 

intervals (30 levels), and 2000–5600 dbar at 200-dbar intervals (19 levels). The deepest level (5600 dbar) corresponds to the 

maximum float measurement depth.  

Each Argo float profile is interpolated to these predefined pressure levels using the Piecewise Cubic Hermite Interpolating 

Polynomial routine (“intprofile.m” in the 2nd QC toolbox, Lauvset & Tanhua, 2015). After interpolation and before gridding, 230 

extreme outliers are identified and removed: for each pressure level and Longhurst Biogeographical Province (available at 

http://comlmaps.org/how-to/layers-and-resources/boundaries/longhurst-biogeographical-provinces/), the interquartile range 

(IQR) is calculated for each parameter. Values exceeding 1.5 × IQR are flagged as outliers (Johnson & Purkey, 2024). If an 

outlier is detected for any parameter at a given pressure level in a bin, all parameters from that profile and pressure level are 

discarded. This process prevents anomalous O2, TA, or DIC values from biasing the final gridded products.  235 

 

Figure 3. (a) Sampling spacing of all Argo floats from sea level (0 dbar) to 5600 dbar. The color of the scattered points show 

the frequency. The yellow line illustrates the pressure level used in this study to match sampling spacing and maximum utilize 

available profile data. (b) Histogram of number of profiles per 1° × 1° bin. (c) Histogram of initial year (in blue) and final year 

(in red) per 1° × 1° bin. 240 
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3.4 Comparative analysis between ship-based observations and float-based reconstructions 

To ensure consistency and reliability between float-based reconstructions (including both full-parameter and hydrography-

only pathways) and ship-based observations, three comparative analysis of reconstruction-derived parameters (Cant and Ωar) 

are implemented.  

First, methodological discrepancies between parameters from each pathway are assessed using GLODAPv2 data. Specifically, 245 

values of Cant and Ωar calculated directly from ship-based observations are compared with those estimated from the full-

parameter pathway (Cant_ship_f, Ωar_ship_f) and the hydrography-only pathway (Cant_ship_h, Ωar_ship_h), respectively. This analysis 

quantifies the biases inherent in each reconstruction pathway and is detailed in Section 4.2. Second, within regions exhibiting 

spatial overlap between float-derived reconstructions and independent ship-based estimates, comparisons of float-based Cant 

and Ωar from each pathway are performed following established cross-over quality control procedure (results shown in Section 250 

4.2). Comparisons are restricted to cases where differences are within ±0.005 kg m-3 in potential density (σθ), ±0.005 in neutral 

density(τ), and ±100 dbar between 1,400 and 2,100 dbar depth range (Bushinsky et al., 2025). This targeted analysis serves to 

assess potential discrepancies arising from differences between oxygen-equipped floats and floats without oxygen sensors. 

These two analysis are essential to evaluate potential biases introduced by differences between oxygen-equipped and CTD-

only Argo floats, which is particularly important as oxygen-equipped floats comprise approximately 11% of total Argo float 255 

deployments in the Southern Ocean—potentially leading to disproportionate representation and biases in gridded products.  

Finally, a detailed zonal analysis among the gridded products are conducted to evaluate how observational differences impact 

the spatial consistency and reliability of the final products (results show in Section 4.4).  

3.5 Uncertainty assessment 

3.5.1 Uncertainty of oceanic interior carbonate system parameters 260 

Uncertainty assessment in this study is designed to comprehensively quantify error propagation throughout the reconstruction 

process. The uncertainties of the reconstructed parameters—including TA, DIC, pH, and nutrients—are evaluated by 

considering both the instrument measurement accuracy of Argo sensors and the model-based reconstruction uncertainty. 

Additionally, estimated Cₐₙₜ and Ωar (see Section 3.2) accounts for uncertainty propagation in the calculation (Figure 4). 

Instrument measurement errors reflect the inherent limitations of sensors and are quantified either from the specified precision 265 

of the instruments or by comparing Argo measurements against independent, high-quality reference data (GLODAP). These 

measurement errors establish the baseline uncertainty that propagates through subsequent steps.  

Model uncertainties are evaluated for each reconstruction method. Different models employ distinct approaches to uncertainty 

estimation. For example, CANYON-B models expresses neural network weights as probability distributions, providing 

probabilistic predictions that incorporate model weight uncertainty. In contrast, ESPER_LIR and ESPER_NN report  270 

uncertainties based on the root mean square error (RMSE) of their validation dataset and through interpolation across depth 

and salinity space.  
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Additionally, uncertainties in the calculations of Cₐₙₜ and Ωar are addressed via Monte Carlo simulation (following the principle 

described in Qi et al., 2022). Both measurement and model-derived uncertainties are propagated through the TrOCA and 

CO2SYS calculation steps by repeatedly sampling input parameters within their respective uncertainty bounds. This generates 275 

distributions of Cₐₙₜ and Ωar, and the standard deviations of these distribution are taken as the estimate of propagated uncertainty. 

 

Figure 4. Error propagation that may arise during the calculation process of reconstructed parameters and calculated values 

(Cant and Ωar). 

3.5.2 Uncertainty of gridded products  280 

The uncertainty estimation for gridded products derived from float-based (and optionally, ship-based) observations consists of 

two main components: parameter profile sensitivity and spatial spread uncertainty, which together determine the total 

uncertainty at each grid cell. 

At each pressure level, parameter profile sensitivity ( 𝜎௣௔௥௔௠_௣௥௢௙ ) is assessed by iteratively perturbing reconstructed 

parameters according to their parameter-specific uncertainties, which is accompanied by the construction of the gridded 285 

products as described in Section 3.3. For float-based reconstructions, uncertainty are evaluated as detailed in Section 3.5.1. 

For ship-based observations, both systematic and random uncertainties are incorporated following recommendations from 

Carter et al., 2024, with each observations categorized as direct, calculated, or combined; detailed uncertainty estimates are 

provided in Table A3. 

During the gridding process, all N parameter values (𝑦௣௔௥௔௠,௜) within each 1° × 1° spatial bin and specific pressure level are 290 

combined using weighted averaging: 

 
𝑦௚௥௜ௗ =

∑ 𝑤௜
ே
௜ୀଵ ∙ 𝑦௣௔௥௔௠,௜

∑ 𝑤௜
ே
௜ୀଵ

 
(3) 
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where 𝑦௚௥௜ௗ is the gridded parameter value, 𝑦௣௔௥௔௠,௜ is the 𝑖th profile value interpolated to the pressure level, and 𝑤௜  

is the inverse variance weight (Eq.4), with 𝜎௣௔௥௔௠_௣௥௢௙ being the measurement uncertainty of each observation as provided in 

the SOCOML profile data. 

 𝑤 =
ଵ

ఙ೛ೌೝೌ೘_೛ೝ೚೑
మ (4) 

The weighted spread of observations within each grid cell (𝜎௦௣௥௘௔ௗ) is calculated following Bittig et al., 2018. To estimate the 295 

uncertainty of the climatological mean (𝜎௚௥௜ ), the 𝜎௦௣௥௘௔ௗ  is divided by the square root of the effective sample size (Neff,) 

computed using the Kish formula. 

 
𝜎௦௣௥௘௔ௗ =

ඨ
∑ ೢ೔

ಿ
೔సభ  ∙(೤೛ೌೝೌ೘,೔ష೤೒ೝ೔೏)మ

∑ ೢ೔
ಿ
೔సభ  ష 

∑ ೢ೔
మಿ

೔సభ
∑ ೢ೔

ಿ
೔సభ

   
(5) 

 𝜎௚௥௜ௗ =
𝜎௦௣௥௘௔ௗ

ඥ𝑁௘௙௙

 (6) 

 
𝜎௚௥௜ௗ =

(∑ 𝑤௜
ே
௜ୀଵ )ଶ

∑ 𝑤௜
ଶே

௜ୀଵ

 
(7) 

4 Results and Discussion 

4.1 Model Performance Comparison 

Model performance is evaluated for three widely used approaches for estimating oceanic biogeochemical properties: 300 

ESPER_LIR, ESPER_NN, and the CANYON-B. The models are trained on a different version of the GLODAPv2 dataset 

(CANYON-B on GLODAPv2.2016; ESPER_LIR and ESPER_NN on GLODAPv2.2020). Independent assessment data not 

included in model training are used for comparison (Table 1). Both the full-parameter and hydrography-only reconstruction 

pathways are assessed.  

Under the full-parameter pathway, ESPER_NN achieves the lowest RMSE for most reconstructed parameters (Table 2), 305 

including TA (4.37 µmol kg⁻¹), DIC (6.09 µmol kg⁻¹), PO4 (0.07 µmol kg⁻¹), and SiO4 (2.59 µmol kg⁻¹). ESPER_LIR performs 

slightly better for pH and NO3. Generally, ESPER_NN’s RMSE values for TA and DIC are several percent lower than those 

of ESPER_LIR and CANYON-B, demonstrating superior accuracy relative to the observations.  

Under the hydrography-only pathway, omission of oxygen leads to a notable increase in RMSE for DIC (8.78 µmol kg⁻¹), 

particularly in deep and abyssal waters (Table 2). This highlights the critical role of oxygen measurements as predictors for 310 

deep DIC. Relative to CANYON-B, both TA and DIC exhibit systematic underestimation, with mean full-column mean bias 

of −0.6 and −1.7 µmol kg⁻¹, respectively. These biases are more pronounced than those reported in earlier evaluation (Brendan 

R. Carter et al., 2021a), who found biases of −0.4 and −0.8 µmol kg⁻¹ using 2019–2020 GLODAPv2 data. The increasing 

discrepancies suggest that prediction errors in CANYON-B may be accumulating over time. Similar trends are observed for 
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ESPER_LIR and ESPER_NN, indicating that periodic updates to model training datasets are necessary to mitigate future 315 

underestimation of DIC. 

Uncertainty magnitudes vary among models, reflecting both differences in model structure and in uncertainty estimation 

methodologies. CANYON-B, which directly incorporates measurement uncertainties from input variables, produces larger 

uncertainty. Vertical performance analysis shows that the lowest RMSE values for most parameters are found in deep and 

abyssal layers (comprising 24% of full-column data), while the largest errors are found in surface waters (25%), likely due to 320 

greater variability in surface carbonate chemistry.  

Overall, the ESPER_NN demonstrates the highest accuracy and lowest uncertainty under both reconstruction pathways (Table 

2), supporting its selection as the primary model for reconstructing carbonate system parameters and nutrients in the Southern 

Ocean throughout this work. 
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4.2 Evaluation of bias between full-parameter and hydrography-only pathways 

We first analyze the methodological discrepancies between the two reconstruction pathways using high-quality shipboard 

measurements. Biases in Cant and Ωₐᵣ are quantified by using ship-based observations with concurrent O₂, TA, and DIC 

measurements (N = 93,667). Parameter values derived directly from measured shipboard data are compared with those 

calculated from reconstructed DIC, TA for two pathways (Figure 5).  330 

Under the full-parameter pathway, Cant exhibits a slight negative bias relative to shipboard derived values (Cant_ship_M), with a 

median of –0.08 μmol kg⁻¹ and a mean of –0.16 ± 4.74 μmol kg⁻¹ (95 % CI: [–0.19, –0.12] μmol kg⁻¹). When oxygen is omitted, 

the Cant bias distribution broadens and shifts slightly positive, with a median of 0.07 μmol kg⁻¹ and a mean of 0.02 ± 6.60 μmol 

kg⁻¹ (95 % CI: [–0.02, 0.07] μmol kg⁻¹). Ωₐᵣ biases remain small in both pathways but show a similar pattern: for the full-

parameter pathway, Ωₐᵣ bias is centered near zero (median = 0.0006; mean = 0.0006 ± 0.0433; 95 % CI: [0.0005, 0.0011]), 335 

whereas the hydrography-only pathway yields a slightly larger mean bias and spread (median = 0.0021; mean = 0.0021 ± 

0.0618; 95 % CI: [0.0010, 0.0018]). The hydrography-only pathway results in a median difference (Cant_ship_H – Cant_ship_F; 

Ωₐᵣ_ship_H – Ωₐᵣ_ship_F) of +0.1 μmol kg⁻¹ and 0.001 units with an added methodological uncertainty of ±2.4 μmol kg⁻¹  and ±0.02 

units (Figure A3) compared to the full-parameter pathway. 

Subsequently, biases in float-based estimates from two pathways are further assessed. Comparison results within restricted 340 

seawater property difference are shown in Figure 6a-d. Oxygen concentrations estimated by both pathways exhibit insignificant 

systematic offset, indicating robust performance of float-based oxygen reconstructions. Biases in float-based Cant estimates 

exhibit a moderate positive correlation with oxygen biases, especially at higher latitudes, while Ωₐᵣ biases exhibit a slight 

positive associations with O₂ biases, particularly in the mid-latitudes. The difference in float-based Cant and Ωₐᵣ between the 

two reconstructed pathways are within ±10 μmol kg⁻¹ and ± 0.05 unit, respectively. These ranges are roughly half those 345 

observed for the bias distributions between float-based and ship-based values. 

Overall, the two reconstructed pathways for Argo floats has a narrow bias distribution for reliable Southern Ocean analyses. 

Considering both the methodological uncertainty and random uncertainty (estimated following Section 3.5.1), the uncertainties 

of Cant in both pathways are about ±4~6 μmol kg⁻¹, which remain acceptably low for large-scale biogeochemical 

reconstructions (e.g., compared to Pardo et al., 2014 of ±6 μmol kg⁻¹ and Asselot et al., 2024 of ±5.2 μmol kg⁻¹). 350 
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Figure 5. Histograms of calculation biases between the full-parameter pathway (orange; includes oxygen concentration) and 

the hydrography-only pathway (cyan, excludes oxygen concentration) for (a-b) anthropogenic carbon (Cant) and (c-d) aragonite 

saturation state (Ωar). Bias is defined as the difference between values calculated using ESPER_NN-derived parameters or 

GLODAP shipboard measurements. The grey background denotes the full range of bias values, with all x-axis centered at zero 355 

(bias = 0) for visibility. (b) and (d) were the same as (a) and (b), but with a restricted x-axis range of ±20 μmol kg-1 for Cant 

and ±0.3 for Ωar. Figure legends indicate the calculation pathway, number of data, median values, mean values ± 1 SD, and 

95% confidence intervals. 

 

Figure 6. Scatter comparisons and Spatial distributions of difference in O₂, Cant and Ωₐᵣ between the two reconstruction 360 

pathways. (a) scatter plot comparing float-based and ship-based oxygen measurements under the full-parameter (red) and 

hydrography-only (blue) pathways, and (b) spatial distribution of O₂ differences. (c-d) Scatter plots illustrating correlations 

between differences in O₂ and differences in Cant and Ωₐᵣ, colored by latitude.  

4.3 Climatological distributions 

Climatological spatial distributions of interior carbonate system parameters are obtained by averaging measured and 365 

reconstructed values from both ship-based observations and Argo float-based reconstructions, as well as their calculated values 

of Cant, and Ωar. Shipboard measurements span 1972-2020, while float–based observations span 2000-2025, with oxygen-

equipped floats contributing data since 2003. Figures 7, 8 illustrate the climatological spatial distribution of interior carbon 

system parameters of the Float Grid. The spatial patterns of the gridded products are largely consistent and Section 4.4 provides 

a more detailed analysis of the differences among these products and shipboard estimates. 370 

The absence of continental barriers across much of the Southern Ocean and the transport of the Antarctic Circumpolar Current 

(ACC) result in pronounced meridional gradients dominating the spatial patterns of interior biogeochemical properties. These 

meridional gradients are closely linked to the spatial distribution of the circumpolar hydrographic fronts, including the 

Subtropical Front (STF), the Subantarctic Front (SAF), the Polar Front (PF), and the Southern Antarctic Circumpolar Current 
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Front (SACCF), which are indicated by black lines in the climatological distribution maps. The climatological distributions 375 

further reflect inter-basin variability driven by ocean basin geometry, bathymetry, and ocean circulation differences among the 

Pacific, Atlantic, and Indian Oceans. The averaged profile distributions in the Pacific, Atlantic, and Indian sectors of the 

Southern Ocean ae shown in Figures 7(d, h) and 8(d, h). 

The distribution of DIC and Cant exhibit strong spatial relationships (Figure 7). In the subsurface layer, high DIC and low Cant 

concentrations are found south of the PF, the southern boundary of the ACC, due to upwelling of older, DIC-rich and Cant-380 

poor deep waters (Marshall & Speer, 2012). Conversely, the northern portion of the Southern Ocean, in north of the SAF, 

display low DIC and high Cant concentrations attributed to the transport of Subantarctic Mode Water (SAMW) (Talley, 2013). 

As depth increases into the intermediate layer (1400-2000 dbar), Cₐₙₜ concentrations decline significantly, accompanied by 

increases in DIC. Cant demonstrates pronounced basin-scale variability, with notably low concentrations (0–5 µmol kg⁻¹) in 

mid-to-high latitudes of the southeastern Pacific Ocean, particularly south of the SACCF between 120°W and 180°W. 385 

Conversely, higher Cant concentrations (>20 µmol kg⁻¹) are present in the southwestern Atlantic and Pacific sectors, as well as 

areas south of the PF in the eastern Antarctic region. Regions with elevated DIC typically show lower Cant concentrations, and 

vice versa. However, the eastern Antarctic region, where Antarctic Bottom Waters (AABW) form, exhibits relatively high 

DIC and Cant concentrations (Morrison et al., 2020). In the deep layer (2000-4000 dbar), the spatial patterns of DIC and Cant 

do not change, and their vertical profiles flatten.  390 

The accumulated Cant uptake and increased DIC concentrations intensify OA, leading to declines in both pH and Ωₐᵣ. Spatial 

distributions of pH and Ωₐᵣ (Figure 8) closely resemble those of DIC (Figure 7a–d). In the subsurface layer, pH exhibits a 

spatial distribution pattern nearly identical to DIC. However, Figure 8e demonstrates distinctly lower Ωₐᵣ value south of the 

STF. Both pH and Ωₐᵣ values decrease markedly from the surface to approximately 1000 dbar, with more gradual declines at 

depths below 1000 dbar. In the intermediate and deep layer, the Pacific Sector shows the lowest pH and Ωₐᵣ values, followed 395 

by the Indian Sector and Atlantic Sector, respectively. 

 

Figure 7. Averaged climatological distribution of DIC (a-d) and Cant (e-h) in oceanic sectors and three layers: subsurface layer 

(100 to 300 dbar), intermediate layer (1400 to 2000 dbar), deep layer (2000 to 4000 dbar), and abyssal layer (4000 to 5600 

dbar). The thin black lines show, from north to south, the Subtropical Front (STF), the Subantarctic Front (SAF), the Polar 400 

Front (PF), and the Southern Antarctic Circumpolar Current Front (SACCF). 
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Figure 8. Averaged climatological distribution of pH (a-d) and Ωar (e-h) in oceanic sectors and three layers: subsurface layer 

(100 to 300 dbar), intermediate layer (1400 to 2000 dbar), deep layer (2000 to 4000 dbar), and abyssal layer (4000 to 5600 

dbar). The thin black lines show, from north to south, the Subtropical Front (STF), the Subantarctic Front (SAF), the Polar 405 

Front (PF), and the Southern Antarctic Circumpolar Current Front (SACCF). 

4.4 Assessment of differences among gridded products 

The Float Grid including the Non-O₂-Float Grid and the O₂-Float Grid represents observation-based climatological products 

with strong capability to resolve fine-scale horizontal and vertical distributions of interior ocean carbonate system parameters. 

Figure 9 presents the latitudinal distributions of Cant and Ωₐᵣ across the Southern Ocean for four gridded products in this study 410 

as well as GLODAP-derived data. Additionally, we apply the TRACE method (Carter et al., 2025) to estimate Cant, generating 

a gridded dataset as described in Section 3.3, which serves as an additional comparison (Figure 9b).  

The four gridded products show latitudinal variations that are closely aligned with the GLODAP-derived data (green lines). 

Notably, in the intermediate layers characterized by variety in Cant distributions across oceanic basins (Figure 8f), the 

GLODAP-derived dataset north of 45°S exhibit pronounced zonal gradients, likely due to sparse longitudinal sampling. In 415 

contrast, our products, benefiting from enhanced spatial coverage, better capture the integrated regional variations. The 

TRACE-derived dataset (purple lines) consistently underestimates Cant relative to the TrOCA-derived values, particularly in 

intermediate waters. In deep and abyssal layers, Cant concentrations show an increasing trend from lower latitudes toward 

higher latitudes (60°S–70°S). This pattern may be linked to the formation of AABW, which drives transport of Cant into the 

deep oceans (Zhang et al., 2023).  420 

A direct comparison between the O₂-Float Grid (red lines) and the Non-O₂-Float Grid (black lines) elucidate differences 

attributable to Core Argo versus BGC Argo observations. Reconstructions of Cₐₙₜ and Ωₐᵣ are broadly consistent across 

subsurface and intermediate layers for both float types. Significant discrepancies and steep gradients among gridded products 

are evident in all water layers south of 65°S. Figure A7 illustrates the geographical coverage of float and ship-based 

observations at high latitudes. In the abyssal layer, float observations are restricted to the eastern Weddell Sea near 4100 dbar, 425 

as they may not be representative of abyssal-layer conditions. Notably, we identify a hotspot of high Cant concentrations in the 

southwestern Atlantic Ocean near the SAF and PF (Figure 9a), potentially linked to AABW outflow from the Weddell Sea 
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(Zhang et al., 2023; Silvano et al., 2023). Although Cant estimates in this region are derived predominantly from non‑O₂ Argo 

floats, whose relatively limited spatial and temporal coverage results in increased uncertainties, our products nevertheless 

provides unprecedented insight into a region of the Southern Ocean that was previously under‑sampled.  430 

Overall, the All-Data Grid offers a comprehensive representation of the Southern Ocean interior, while the O2-Float Grid and 

Non-O₂-Float Grid demonstrate the potential and limitations of Argo-based reconstructions for studying carbon dynamics.  

 

Figure 9. Panels (a) and (c) show the climatological distribution of Cant and Ωar in the deep layers, respectively. Panel (b) and 

(d) present latitudinal distributions of Cant and Ωar averaged over four depth layers: subsurface layer (100 to 300 dbar), 435 

intermediate layer (1400 to 2000 dbar), deep layer (2000 to 4000 dbar), and abyssal layer (4000 to 5600 dbar). Black, red, blue, 

green and purple symbols and lines represent Non-O2-Float Grid, Float Grid, All-Data Grid, GLODAP-derived data, and 

TraceV1-derived data, respectively.  

4.5 Uncertainties assessment 

The uncertainty of gridded products arise from both the uncertainties in the parameter estimates and mapping (sampling) errors. 440 

Considering the nonnegligible trends of accumulated Cant, the evaluation of uncertainty in this section mainly focus on the 

anthropogenic CO2. Both random errors and potential biases contribute to the uncertainties in the Cant estimates. In Section 4.1, 

the random errors for individual measurements have been estimated to be about ±4-6 μmol kg⁻¹ in the full-parameter pathway 

and the hydrography-only pathway. The potential bias including uncertainty in inversion algorithm assumptions and formula 

parameters are more difficult to assess quantitatively, but have little effect on the climatological distribution. The mapping 445 

errors, reflecting uncertainties introduced during spatial interpolation, are also challenging to evaluate precisely.  

Traditionally, distribution maps of carbonate system parameters, including Cant, were constructed using limited GLODAPv2 

cruises data (sampling stations are shown in Figure 1b), with spatial coverage extended via regression and interpolation 

methods (Gruber et al., 2019a; Sabine et al., 2004; Barth et al., 2014). In these earlier products, mapping errors strongly 

depended on the vertical and horizontal data distribution and were assumed to be less than 15% Sabine et al., 2004). In contrast, 450 

our gridded products leverage the statistical advantage of aggregating multiple independent observations, resulting in gridded 

uncertainties that are smaller than individual observation uncertainties, and mapping discrepancies reduced to below 7.5 % 
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(Figure  A9). Although our approach may underestimate uncertainty due to potential representativity error, our dataset offers 

a significant improvement in both accuracy and spatial representativeness over previous gap-filling approaches. This 

enhancement is especially valuable for robustly assessing variability and climatological trends in the historically data‑sparse 455 

Southern Ocean. 

5 Data availability 

The raw Argo profile measurements used in this study are publicly available from the Argo Global Data Assembly Center 

(GDAC) at /ifremer/argo/dac/. The processed Argo profile dataset and SOCOML gridded products (Zhong et al.,2025) are 

available at https://data.mendeley.com/datasets/xzr59ngmpz/1. 460 

6 Conclusions 

As the Southern Ocean Argo array has expanded, we applied the ESPER_NN model to reconstruct eight key carbonate system 

parameters — TA, DIC, pH, NO3, PO4, SiO4, Cant and Ωar from Argo profiles. These reconstructions were then gridded into a 

1° × 1° product with 84 pressure levels. The input parameters were dynamically partitioned into full-parameter (with O₂ 

measured) and hydrography-only (without O₂ measured) pathways to leverage the extensive Argo network. To account for 465 

differing data sources, we generated four gridded products: the All-Data Grid, integrating both Argo and GLODAP data, and 

the Float Grid, further divided into the Non-O₂-Float Grid and the O₂-Float Grid. Although the All-Data Grid provides a 

comprehensive climatological distribution derived from multiple integrated data sources, the Float Grid demonstrates greater 

internal consistency. This is because discrepancies arising from measurement instrumentation differences cannot be fully 

eliminated, as clearly illustrated in Figure 7c. Consequently, the All-Data Grid is more suitable for large-scale studies, whereas 470 

investigations focusing on smaller regions should incorporate more rigorous analyses of accuracy and uncertainty. 

Model comparisons and evaluations reveal increasing underestimation of DIC over time, particularly along the hydrography-

only pathway, which lead to progressive underestimation of Cant. This variation of bias underscores the inherent constraints of 

machine learning models trained on data confined to a fixed temporal scope; they cannot extrapolate beyond the observed 

period to capture emerging trends. Despite this, ESPER_NN maintains robust generalization performance against assessment 475 

data. And the bias between two pathways remains relatively small compare to the difference of reconstructed parameters and 

GLODAP measurements. Cant pathway biases remain within ±10 µmol kg⁻¹, and Ωar pathway biases within ±0.05. These biases 

exhibit latitudinal variability correlated with oxygen bias. This supports the feasibility of using machine learning models to 

integrate both Core Argo and BGC Argo data, and highlights the potential for future improvements through the assimilation 

of nitrate and pH observations from Argo floats. 480 

We offer all gridded products including eight oceanic interior carbonate system parameters, along with their uncertainty 

estimates, to the scientific community for advancing Southern Ocean carbon-cycle research and improving new perspective of 

ocean acidification and carbon sequestration based on observational parameters. 

Appendix A: Supplemented tables and figures 

Table A1. List of cruises with excluded measurements from the carbonate system internal consistency training dataset 485 

presented in this work. Numbers in brackets following recommended adjustment values denote stations removed from the 

dataset.  

Cruise Expocode 

Recommended adjustment values 
(+ = add; × = multiply) 

TA 
[+] 

DIC 
[+] 

PO4 
[×] 

SiO4 
[×] 
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2 06AQ19860627  12   

236 316N19720718 -12 
[24-61] 

 
  

240 316N19831113   0.88  
297 323019940104 -12    
378 35MF19990104  43   
430 49HG19950414  -777c   
441 49HH19941213 -16    
696 74DI20041103    0.89 
718 90MS19811009 -12    

-777=Poor data, no adjustment suggested. If one of the three carbon parameters—DIC, TA, or pH—is calculated, it is annotated 

with a subscript c. 

Table A2. All GLODAPv2 cruise located in Southern Ocean that have pH values. 490 

 Expocodes Note 

1 Pure spectrophotometric 

measurements 

29HE20130320, 320620140320, 33RO20161119, 

33RR20160208, 320620170703, 320620170820, 

320620180309, 325020190403, 33RO20180423 

Used. 

2.1 Impure spectrophotometric 

measurements with adjustment to 

calculations from TA and DIC 

318M20091121, 31DS19960105, 33RO20071215, 

33RO20110926, 33RR20080204, 35MF20080207, 

49NZ20030803, 49NZ20071122 

Used. (Brendan R. Carter et 

al., 2018) 

33RO20131223 Used. 

2.2 Impure spectrophotometric 

measurements with adjustment 

applied to submitted data 

320620110219, 33RO20100308, 33RR20090320, 

49NZ20121128, 49NZ20130106, 29HE20190406 
Used. 

2.3 Impure spectrophotometric with 

un-calculate-able pH 

29HE20010305, 29HE20020304, 29HE20100208, 

33RO20050111, 90AV20041104 
Not used. 

3 Calculations 

323019940104, 33MW19950922, 09AR20141205, 

49NZ20191229, 74JC20181103, 740H20111224, 

74EQ20101018, 74EQ20191202 

Used. 

4 Potentiometric measurements 35A319950113 Not used. 

All TA and DIC data from GLODAP used in this study is measured. 

 (Carter et al., 2024). 

Table A3. Uncertainty estimation for measurements and calculations from GLODAP 

  TA DIC pH NO3 PO4 SiO4 

GLODAP 

Measurements 

Pure spectrophotometric pH 
2 2 

0.006 
2% 2% 2% 

Impure spectrophotometric pH 0.010 

Calculations - - 0.008 - 
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Figure A1.  NO.1042 cruise’s (Expocode: 33RO20131223) scatter plot and linear fitting of measured pH and discrepancy 495 

between measured and calculated pH. 

 

Figure A2. Histograms of biases between the full-parameter pathway (orange; includes oxygen concentration) and the 

hydrography-only pathway (cyan, excludes oxygen concentration) for TA and DIC. Bias is defined as the difference between 

values calculated using ESPER_NN-derived parameters or GLODAP shipboard measurements. The x-axis was restricted 500 

within a range of ±20 μmol kg-1 for TA and ±50 μmol kg-1 for DIC. (a-b) Based on total data of GLODAP; (c-d) Based on 

assessment data of GLODAP. Figure legends indicate the calculation pathway, number of data, median values, mean values ± 

1 SD, and 95% confidence intervals. 
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Figure A3. Intercomparison between Cant and Ωar calculations based on ESPER_NN-derived parameters and direct 505 

measurements. (a-b) Scatterplots of Cant concentration calculated using ESPER_NN-derived parameters and direct shipboard 

measurements. (c-d) Same as (a-b), but for Ωar values. The uncertainties are showed in the left-top of subplot a-d.  

 

Figure A4. Averaged climatological distribution of TA (a-d) in oceanic sectors and three layers: subsurface layer (100 to 300 

dbar), intermediate layer (1400 to 2000 dbar), deep layer (2000 to 4000 dbar). The thin black lines show, from north to south, 510 

the Subtropical Front (STF), the Subantarctic Front (SAF), the Polar Front (PF), and the Southern Antarctic Circumpolar 

Current Front (SACCF). 
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Figure A5. Averaged climatological distribution of NO3 (a-d), PO4 (e-h), and SiO4 (i-l) in oceanic sectors (m-o) and four 

layers: subsurface layer (100 to 300 dbar), intermediate layer (1400 to 2000 dbar), deep layer (2000 to 4000 dbar), and abyssal 515 

layer (4000 to 5600 dbar). The thin black lines show, from north to south, the Subtropical Front (STF), the Subantarctic Front 

(SAF), the Polar Front (PF), and the Southern Antarctic Circumpolar Current Front (SACCF). 
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Figure A6. Averaged climatological distribution of TA (a), DIC (b), Cant (c), pH (d), and Ωar (e) in abyssal layer (4000 to 5600 

dbar). The thin black lines show, from north to south, the Subtropical Front (STF), the Subantarctic Front (SAF), the Polar 520 

Front (PF), and the Southern Antarctic Circumpolar Current Front (SACCF). 

 

Figure A7. The location of the observations measured by Argo floats (a) or ship (b) in south of 65°S. The blue and red symbol 

denotes measurement in the intermediate layer (2000-4000 dbar) and the abyssal layer (4000-5600 dbar), respectively.  
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 525 

Figure A8. The uncertainty of the All-Data Grid in the intermediate layer (1400-2000 dbar) for (a) TA, (b) DIC, (c) Cant, (d) 

NO3, (e) PO4, (f) SiO4, (g) pH, and (h) Ωar.  

 

Figure A9. The uncertainty of the Float Grid in the intermediate layer (1400-2000 dbar) for (a) TA, (b) DIC, (c) Cant, (d) NO3, 

(e) PO4, (f) SiO4, (g) pH, and (h) Ωar.  530 

Appendix B: Supplement to the methods 

B1 Scaling method 

To scale the anthropogenic CO2 concentration, we follow Gruber et al., 2019a to estimate the scaling ratio α of the changes 

between the periods of 𝑡ଵ(2001) and 𝑡ଶ(2024) relative to the preindustrial 𝑡଴(1750): 
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𝛼 =
∆௧𝑝𝐶𝑂ଶ

௔௧௠(𝑡ଶ − 𝑡ଵ)

∆௧𝑝𝐶𝑂ଶ
௔௧௠(𝑡଴ − 𝑡ଵ)

∙
γ(𝑡଴. . 𝑡ଵ)

γ(𝑡ଵ. . 𝑡ଶ)
∙

ξ(𝑡ଵ. . 𝑡ଶ)

ξ(𝑡଴. . 𝑡ଵ)
 535 

where α depends mainly on the ratio of the change in atmospheric CO2 (pCO2
atm), but is modified by the changes in the revelle 

factors (γ) and changes in the air-sea disequilibrium (ξ). 

Using pCO2
atm = 280 ppm for t0, 371 ppm for t1, and 423 ppm for t2 (Lan et al., 2025), the ratio of the changes in pCO2

atm is 

0.57 with a very small uncertainty of about ±0.01 considering round up. Taking the revelle factor for 1950 for γ(𝑡଴. . 𝑡ଵ) and 

that for 2013 for γ(𝑡ଵ. . 𝑡ଶ) yields a ratio γ(𝑡଴. . 𝑡ଵ)/γ(𝑡ଵ. . 𝑡ଶ) of 0.90±0.02 for the Southern Ocean (south of 30°S). These 540 

revelle factors were derived by using products from Gregor & Gruber, 2021. Considering the trends of decrease of the air-sea 

equilibrium changes relatively small in subtropics and high latitudes (Matsumoto & Gruber, 2005), we use 0.94±0.05 for the 

ratio ξ(𝑡ଵ. . 𝑡ଶ)/ξ(𝑡଴. . 𝑡ଵ)  following Gruber et al., 2019a. Using all ratio values, 𝛼  are set as 0.48±0.04 (0.019986 yr-1). 

Assuming the ocean reaches the constant steady state over 2001-2024, Cant are normalized as referring to scaling equations of 

Carter et al., 2021a: 545 

𝐶௔௡௧(𝑡௥௘௙) = 𝐶௔௡௧(𝑡) ∙ 𝑒଴.଴ଵଽଽ଼଺∙(௧ೝ೐೑ି௧) 

where Cant(t
ref) is the normalized Cant concentration at the reference year tref (set as 2013, the median Argo observation year), 

and Cant(t) is the estimates for year t. 

Figure B1 shows the climatological distribution of Cant is insensitive to uncertainty in the scaling factor, with anomalous change 

remaining within ±1 μmol kg-1. A smaller scaling factor (α=0.44, Figure B1a-d) produces slightly higher Cant values, whereas 550 

a larger factor (α=0.52, Figure B1e-f) yields lower values, consistent with different assumed rates of oceanic CO2 accumulation. 

 

Figure B1. Sensitivity of anomalous change in Cant distribution to the value of the scaling factor α=0.44 (a-d) and α=0.52 (e-

h) in four layers: subsurface layer (100 to 300 dbar), intermediate layer (1400 to 2000 dbar), deep layer (2000 to 4000 dbar), 

and abyssal layer (4000 to 5600 dbar). 555 
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