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Abstract. The stable isotope values of seawater (δ18O and δ2H) provide valuable information on the exchange of water between 

the ocean, atmosphere, and cryosphere and on ocean mixing processes. As such, observational seawater δ18O and δ2H data 

place powerful constraints on hydrologic changes in the modern ocean. Seawater δ18O data are also essential for calibrating 

paleoclimate proxies based on the δ18O of marine carbonates and are an increasingly critical diagnostic tool for assessing model 

performance and skill in isotope-enabled global climate models. Despite their broad value, no centralized and actively-curated 20 

database for this type of data exists, even though a growing number of new seawater δ18O datasets have been generated over 

the last decade. As such, many seawater δ18O datasets remain ‘hidden’. To improve the accessibility of seawater δ18O data for 

the Earth Science research community, the Past Global Changes (PAGES) CoralHydro2k project has created a new, machine-

readable, and metadata-rich database of observational seawater δ18O data, paired with seawater δ2H and salinity data, that is 

compliant with findability, accessibility, interoperability, and reusability (FAIR) standards for digital assets. The data has been 25 

collected from public databases and repositories, direct researcher data submissions, scientific papers, and student theses. In 

total, the PAGES CoralHydro2k Seawater δ18O Database contains over 18,600 data points with extensive metadata that makes 

the database suitable for a myriad of research applications. For hidden data, we searched for and included all datasets within 

the global ocean. For public data, our data collation efforts were focused on the upper 50 m from 35°N to 35°S (to aid in 

CoralHydro2k’s seawater δ18O reconstruction studies using δ18O and Sr/Ca in tropical-subtropical coral skeletons). We also 30 

provide a set of best practices to the community for reporting seawater isotope data in the future.  
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Short Summary. The stable isotopic composition of seawater is a valuable tool for studying the global water cycle in the past, 

present, and future. However, an active repository dedicated to archiving this type of data has been lacking, and many datasets 

remain hidden from public view. We have created a new database of observational seawater isotope data that is rich in 35 

metadata, publicly accessible, and machine readable to increase its availability and usability for a variety of Earth Science 

applications. 

1 Introduction 

1.1 Progress and challenges in the synthesis of seawater oxygen isotope data 

The stable isotopes of water (δ18O and and δ2H) are powerful tracers of the global water cycle, tracking water as it continuously 40 

cycles between the ocean, atmosphere, and land. As water molecules undergo phase changes during this process, the lighter, 

more abundant isotope (16O and 1H) is preferentially vaporized during evaporation with respect to the heavier, less abundant 

isotope (18O and 2H), while 18O and 2H are preferentially condensed during precipitation (Dansgaard, 1964). This partitioning 

of isotopes based on mass allows the isotope values (where δ18O = [
18𝑂
16𝑂

𝑠𝑎𝑚𝑝𝑙𝑒

18𝑂
16𝑂

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1] ∗ 1000) of water to be used as a tracer of 

the hydrologic cycle (Dansgaard, 1954; Galewsky et al., 2016; Gat, 1996). In the ocean, the isotope values of seawater (δ18Osw 45 

and δ2Hsw) can provide valuable information on an array of processes, including heat and mass exchange with the atmosphere 

(via precipitation and evaporation), large-scale ocean circulation, and freshwater input from rivers and ice sheets (Akhoudas 

et al., 2021; Benetti et al., 2016; Benway and Mix, 2004; Biddle et al., 2019; Craig and Gordon, 1965; Dee et al., 2023; Frew 

et al., 2000; Imbrie et al., 1984; Jacobs et al., 1985; Lisiecki and Raymo, 2005; Meredith et al., 1999; Strain and Tan, 1993). 

δ18Osw and δ2Hsw values can also provide insight into other ocean tracers such as salinity, since they covary strongly due to the 50 

influence of evaporation and precipitation on each of these variables (Craig and Gordon, 1965; LeGrande and Schmidt, 2011). 

However, because key processes act differentially on salinity as compared to the stable isotope values, δ18Osw and δ2Hsw provide 

an additional degree of freedom for constraining ocean mixing and the local moisture budget. Furthermore, stable isotope 

measurements, such as δ18O in marine biominerals and δ2H in lipids, can be used to trace plankton and animal movement and 

provide provenance for ecology, conservation, archaeology, and food forensics studies (Doubleday et al., 2022). Given these 55 

wide-ranging applications, seawater isotope data are used in a wide range of fields, including oceanography, atmospheric 

science, geology, marine biology, archaeology, and geography.  

 

Seawater isotope values also create a common unit that uniquely links paleoclimate reconstructions to modern climate 

observations and isotope-enabled model simulations. Modern δ18Osw data are essential for the calibration of paleoclimate 60 

proxies of past ocean variability based on the δ18O of marine carbonates such as corals, foraminifera, mollusks, ostracods, and 

coralline algae. Recent paleoclimate data assimilation efforts such as the Last Millennium Reanalysis project (e.g., Tardif et 

al., 2019) would greatly benefit from a spatial network of δ18Osw data to improve quantification of proxy uncertainty and for 
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training the proxy system models that underlie those efforts. Modern δ2Hsw data are used in the calibration of 

paleoceanographic proxies based on the δ2H of alkenones and other lipid biomarkers in marine sediments (e.g., Eglinton and 65 

Eglinton, 2008). When used in tandem with δ18O data (i.e., to calculate d-excess in surface ocean and overlying water vapor), 

these data can be used to constrain evaporation parameters (e.g., Benetti et al., 2014). As such, observational and reconstruction 

efforts based on seawater isotope values enable scientists to better understand the underlying physics that govern the water 

cycle, and to extend hydroclimate records back to the preindustrial era, thus contextualizing anthropogenic climate change and 

improving the skill of future climate projections.  70 

 

Observational δ18Osw data can also be used to provide boundary conditions in climate models and to assess model performance 

and skill. The increasing integration of oxygen isotopes of water in climate models – from models of intermediate complexity 

to fully coupled Earth System Models (e.g., Blossey et al., 2010; Bong et al., 2024; Bony et al., 2008; Brady et al., 2019; 

Cauquoin et al., 2019; Dee et al., 2015; Field et al., 2014; Fiorella et al., 2021; Kurita et al., 2011; Lee and Fung, 2008; Noone 75 

and Simmonds, 2002; Nusbaumer et al., 2017; Risi et al., 2010, 2020, 2021; Schmidt et al., 2007; Tada et al., 2021; Wei et al., 

2018; Werner et al., 2011; Yoshimura et al., 2008) – bolsters the interpretation of modern and paleoclimate observations, while 

also providing opportunities to test model performance in resolving key features of the hydrologic cycle, e.g., the representation 

of moisture transport, circulation, and surface water fluxes.  

 80 

Paralleling recent advances in the numerical simulation of water isotopes, new analytical capabilities have also developed in 

recent years, including new in situ atmospheric measurement techniques and strategies (Finkenbiner et al., 2022; Gupta et al., 

2009; Henze et al., 2022), and the development of global atmospheric data products from a variety of remote sensors (e.g., 

Diekmann et al., 2021; Schneider et al., 2022; Worden et al., 2019). As a result, measurements of water isotopes have become 

increasingly incorporated in coordinated observing networks and monitoring studies of precipitation and atmospheric water 85 

vapor, including the Global Network of Isotopes in Precipitation (www.iaea.org/services/networks/gnip) and the National 

Ecological Observatory Network (www.neonscience.org/).  

 

However, no such coordinated observing network for seawater δ18O currently exists. Unlike meteorological observations on 

land, observations of ocean hydrological properties (e.g., precipitation, evaporation, and salinity) are either limited to the past 90 

few decades via satellite remote sensing and the ARGO program (Wong et al., 2020) or are confined to select coastal and 

island locations that have the necessary infrastructure to support sustained in situ measurements of ocean surface properties. 

Furthermore, these ocean observations rarely include δ18Osw because there is currently no cost-effective, easily deployable 

instrumentation to measure seawater isotopes in situ. Thus seawater samples must be taken back to a laboratory for isotopic 

analysis. Despite these structural challenges, a growing number of δ18Osw datasets have been generated in recent decades due 95 

to the accelerated collection of δ18Osw samples, new instrumentation such as cavity-ring down isotope analyzers with reduced 
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analytical costs, and the capability to measure both δ18O and δ2H in parallel, and new sampling devices that enable long-term 

seawater sample collections (e.g., Jannasch et al., 2004; Khare et al., 2021). 

 

In recognition of the broad value of δ18Osw data to the Earth Sciences, a major effort to gather δ18Osw data occurred in the 1990s 100 

(Bigg and Rohling, 2000; Schmidt, 1999; Schmidt et al., 1999) and resulted in the development of the NASA’s Goddard 

Institute for Space Studies (GISS) Global Seawater Oxygen-18 database (https://data.giss.nasa.gov/o18data/), which contains 

over 26,000 global measurements of δ18Osw (and some δ2H data) from the 1950s to 2000s. In 2006, that database was used to 

construct a global gridded dataset of δ18Osw and to characterize regional relationships between δ18Osw and salinity (LeGrande 

and Schmidt, 2006) and it has subsequently been used in a broad range of studies involving δ18Osw. However, the NASA GISS 105 

database is no longer actively updated, with the last δ18Osw measurement added in 2011. As a result, a growing number of new 

δ18Osw datasets published since 2011 remain without an active δ18Osw-specific data repository in which to archive the data. 

Researchers have instead provided the δ18Osw data in the supplemental tables of journal articles, or have archived the δ18Osw 

data with other geochemical data (e.g., coral δ18O), in data repositories such as the National Centers for Environmental 

Information (NCEI) for Paleoclimatology (https://www.ncei.noaa.gov/products/paleoclimatology) and Pangaea 110 

(https://www.pangaea.de/). Because these datasets can be difficult to find, non-machine-readable, and/or decentralized, they 

are not easily accessible to the wide range of research communities that would benefit from this data (see a related review by 

Chamberlain et al., 2021). Furthermore, many publishers and several funding agencies now require researchers to archive their 

data in FAIR and public repositories. For these reasons, a comprehensive database of δ18Osw data that is publicly available and 

actively maintained is critically needed. 115 

1.2 The PAGES CoralHydro2k Seawater δ18O Database 

Inspired by the PAGES (Past Global Changes) Hydro2k Workshop in 2016 (PAGES Hydro2k Consortium, 2017), the PAGES 

CoralHydro2k project was formed in 2017 to investigate the variability of hydrology and temperature in the tropical surface 

ocean during the past 2000 years based on the combination of coral δ18O, which varies with temperature and δ18Osw, and the 

strontium-to-calcium ratio (Sr/Ca) in corals, which is a temperature proxy. The CoralHydro2k project was built upon previous 120 

PAGES 2k efforts, namely Ocean2k and Iso2k (Konecky et al., 2020, 2023; Tierney et al., 2015), which compiled published 

coral δ18O records and other data into new machine-readable databases to track temperature and hydroclimate changes over 

the Common Era. To aid in the calibration and interpretation of the paired coral δ18O and Sr/Ca records in the database, and 

derive coral-based reconstructions of seawater δ18O, the CoralHydro2k project also started to compile δ18Osw data.  

 125 

In recognition of the broad value of δ18Osw data and the growing number of δ18Osw datasets that have been generated during 

the last two decades, the CoralHydro2k Seawater δ18O Database project was launched in 2020 to recover ‘hidden’ δ18Osw data 

that were not easily findable. During the past five years, we have integrated these records, along with any associated δ2H, 

salinity, and temperature data, with data from public databases and repositories to create a new, centralized, machine-readable, 
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and metadata-rich database that aligns with findability, accessibility, interoperability, and reusability (FAIR) standards 130 

(Wilkinson, 2016). Here we provide a detailed description of the PAGES CoralHydro2k Seawater δ18O Database. We highlight 

the opportunities and limitations of this database, and provide a set of best practices to the community for reporting this type 

of seawater isotope data in the future.  

2 Methods 

2.1 Collaborative model 135 

CoralHydro2k and its Seawater δ18O Database started in 2017 as a project in Phase 3 of the PAGES 2k network, a long-running 

initiative to study past global changes over the last 2000 years and to compile paleoclimate data in publicly available, machine-

readable databases (PAGES 2k Network Coordinators, 2017). CoralHydro2k included team members from the Phase 1 PAGES 

2k Ocean2k working group (Tierney et al., 2015) and Phase 2 Iso2k working group (Konecky et al., 2020) and many new 

members, particularly from the coral paleoclimate community. CoralHydro2k continues into Phase 4 of PAGES 2k, focusing 140 

on reconstructing past changes in tropical ocean temperature and hydroclimate using paired Sr/Ca and δ18O from coral archives 

over the last 2000 years (Hargreaves et al., 2020; Walter et al., 2023). Recurring calls went out within the international 

paleoclimate community for working group members, coral experts, and paleo data assimilation experts to join the effort with 

monthly teleconference meetings and one in-person meeting in 2019 (Hargreaves et al., 2020). As a result, the CoralHydro2k 

database was produced, a global, actively curated compilation of coral δ18O and Sr/Ca proxy records of tropical ocean 145 

hydrology and temperature for the Common Era (Walter et al., 2022, 2023). A number of sub-projects were developed in 

conjunction with CoralHydro2k, including a project to develop new proxy system models (PSM) for coral δ18O. The group 

working on this sub-project realized that the spatial and temporal coverage of observational δ18Osw data were too sparse to 

integrate into the PSM framework and that many new δ18Osw datasets produced during the last few decades are not easily 

findable or accessible.  150 

 

Therefore, CoralHydro2k formed a new sub-project in 2020 to compile existing seawater δ18O data with rich metadata 

following FAIR standards (Atwood et al., 2024; DeLong et al., 2022). Researchers were invited to submit their data to the 

CoralHydro2k Seawater δ18O Database via a Qualtrics survey and accompanying YouTube video that provided instructions 

on how to submit data. Additionally, the team set up a Seawater Oxygen Isotopes Community 155 

(https://www.earthchem.org/communities/seawater-oxygen-isotopes/) in the EarthChem Library (ECL), a data repository that 

archives, publishes, and provides access to data in the geosciences. The ECL offers a suite of services for data preservation 

and access, including long-term archiving and data registration with a Digital Object Identifier (DOI). Through the new 

Seawater Oxygen Isotopes Community, new seawater δ18O (and δ2H) datasets can be submitted and assigned a DOI, which 

allows the datasets to be cited and tracked when used by other researchers. The CoralHydro2k members promoted this new 160 
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database at international conferences in the United States and Europe, in the PAGES newsletter (Atwood et al., 2024), and in 

Eos, the monthly magazine of the American Geophysical Union (AGU) (DeLong et al., 2022).  

 

The workload for assembling the seawater data and metadata was performed by CoralHydro2k members and new members of 

the Seawater δ18O Database sub-project. The team was made of volunteer scientists from all academic levels, including 165 

undergraduate and graduate students, postdoctoral researchers, and early- to senior-level scientists from a number of 

international academic and research institutions. The work was completed remotely in synchronous working sessions and 

asynchronously across several virtual platforms (Google Suite, Slack, and Zoom). Data discovery, metadata protocols, and 

compilation were done collaboratively as the project progressed. 

2.2 Data aggregation and formatting 170 

The CoralHydro2k Seawater δ18O Database was designed to be as inclusive and comprehensive as possible in its record-

selection criteria to support the project’s goal of developing a FAIR database of global seawater δ18O measurements, paired 

with δ2H and salinity measurements, and to include as much ‘hidden’ data as possible. Thus, the Seawater δ18O Database 

selection criteria were less restrictive than other PAGES 2k efforts, and the database includes data from peer-reviewed 

scientific literature, student theses and dissertations, public data repositories, and direct author submission.  175 

 

In alignment with FAIR data principles, the Seawater δ18O Database contains extensive metadata. Where available, the 

seawater δ18O data is paired with seawater δ2H, salinity, and temperature data. Eight metadata fields are required, with an 

additional 44 optional metadata fields that provide supporting information on site information, sample collection and storage 

notes, the isotope analysis method and instrumentation, and error information. Additionally, a template is provided to assist 180 

researchers with future submissions to the database and to establish a set of best practices for reporting seawater isotope data. 

 

For hidden data, we searched for and included datasets spanning all depths and all latitudes across the global ocean. For 

publicly available data, we focused on including data from the upper 50 m between 35ºN to 35ºS (to aid in CoralHydro2k’s 

seawater δ18O reconstruction studies using δ18O and Sr/Ca in tropical-subtropical corals). 185 

2.3 Metadata description and quality control 

The metadata is described in this section and Tables 1–2. The CoralHydro2k Seawater δ18O Database team implemented 

several rounds of quality control measures for the data and metadata. Following the Iso2k database procedure (Konecky et al., 

2020), each metadata field has an associated quality control certification “Level” from 1 to 6, described below and in Table 1. 

Level 1 and Level 2 metadata fields constitute ‘essential’ metadata, and if a dataset lacked one of these fields, it was excluded 190 

from the database.  
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● Level 1 fields are required for inclusion in the database and they contain standardized vocabularies, according to 

Table 2. They are recommended as primary fields for filtering and querying records in the database. They were 

subject to the highest Quality Control (QC) standard. Examples of Level 1 metadata are: “Collection year”, 195 

“Collection month”, “Latitude”, “Longitude”, and “Depth”. 

● Level 2 metadata fields are required for inclusion, but they are not generalizable enough to use standardized 

vocabularies. They were subject to the highest QC standard and the metadata were obtained from the original 

publication or data source. An example of Level 2 metadata is “Site name or geographic area”.  

● Level 3 metadata fields add important supplementary information related to the seawater δ18O measurements. They 200 

contain standardized vocabularies and can be used as secondary fields for filtering and querying the database; 

however, they are generally not available for all records and thus not required for inclusion in the database. They 

were subject to the highest QC standard. Examples of Level 3 metadata are: “Collection day”, “δ18O error”, “δ18O 

analysis technique”, “Water isotope analysis date”, “δ2H value”, “Temperature value”, and “Salinity value”.  

● Level 4 metadata fields also add important supplementary information related to the seawater δ18O data, but they are 205 

not generalizable enough to use standardized vocabularies. They are also generally not available for all records and 

thus not required for inclusion in the database. They were subject to the highest QC standard. Examples of Level 4 

metadata are: “δ18O correction notes”, “δ18O error notes”, “Sample ID”, “Publication citation”, “Dataset citation”, 

“Cruise ID”, “δ18O analysis location”, “Sample collection, processing, and storage notes”, and “Water isotope 

analysis notes”.  210 

● Level 5 metadata fields may be useful to some users of the database but they are generally not available for all 

records and thus not required for inclusion in the database. In many cases, these fields contain freeform text with 

direct quotes from the original publications. During the QC certification process, these fields were checked against 

the original publication and a quote or summary of the relevant information was provided in the database, but the 

information provided may not be comprehensive. Examples of Level 5 metadata are: “Location description” and 215 

“Location type”.  

● Level 6 metadata fields may be useful to some users of the database. This metadata field was completed when the 

information was easily accessible from the original publications, but some metadata may be missing. There is only 

one Level 6 metadata field in the database: “Temperature/salinity notes”. 

 220 

Table 1: Description of all metadata fields in the PAGES CoralHydro2k Seawater δ18O Database. Bold text indicates 

required fields in the database (Level 1 and 2). 

Level # Metadata field Metadata field description Type Metadata 

category 

1 CoralHydro2kID* Unique ID for this database Text Entity 

1 Collection year Year of sample collection, YYYY Numeric Entity 

1 Collection month Month of sample collection, MM Numeric Entity 

1 Latitude Latitude of the sampling site in decimal degrees. 

South is negative. Decimal degrees N, from -180 to 

180 

Numeric Entity 

1 Longitude Longitude of the sampling site in decimal degrees. Numeric Entity 
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West is negative. Decimal degrees E, from -180 to 180 

1 Depth Sampling depth, in meters (m) below sea level (no 

minus sign). 

Numeric Entity 

1 Depth units Depth measurement units (meters below sea level) Text Entity 

1 𝛅18O value Measured δ18O value Numeric Seawater 

Data 

1 𝛅18O units δ18O units (per mille) Text Seawater 

Data 

1 𝛅18O correction Indicates whether a correction has been made to the 

δ18O values after the original publication. If the data 

point has been corrected, “Y” is indicated. If the data 

has not been corrected, "N" is indicated. If known 

(e.g., in the data collected from the NASA GISS 

δ18Osw database), the value of the applied correction 

is indicated in the “𝛅18O correction notes” metadata 

field. Additional information about each correction is 

provided in “𝛅18O correction notes” (Level 4) 

metadata field.** 

Logic Seawater 

Data 

1 Evaporation flag Flag indicating the presence of potential evaporation 

effects on δ18O value. "Y" is indicated for cases where 

authors note that sample evaporation could be a 

concern or cases where δ18O data have been corrected 

for evaporation; "N" otherwise. Further information 

is provided in the "Sample collection, processing, and 

storage notes" (Level 4) metadata field. 

Logic Queryable 

1 Reference standard Reference standard used in reporting the δ18O and 

δ2H values (SMOW, VSMOW) 

Text Seawater 

Data 

1 Access date Date in which the data was downloaded from data 

repositories, submitted by researchers, or acquired 

from journal articles (YYYY/MM/DD) 

Text Entity 

     

2 Site name or 

geographic area 

Name of the site or the general area from which the 

water sample was collected 

Text Entity 

     

3 Collection day Day of sample collection, DD.  

In some cases, the collection day was not specified in the 

original publication, only the collection month or a range 

of dates. In these cases, the midpoint of the date range 

Numeric Entity 
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was selected as the collection day and note is made in the 

‘Collection date notes’ (Level 4) metadata field. 

3 Collection time Time of sample collection, in Coordinated Universal 

Time (UTC) 24-hour format, HH:MM:SS 

Text Entity 

3 Water isotope 

analysis date 

Date of water isotope analysis (YYYY/MM/DD) Text Entity 

3 δ18O error Reported error of the δ18O value. Because many different 

types of error are reported in the literature, 

standardization was impossible; therefore, we report the 

most comprehensive error provided. The type of error 

along with any supporting information is provided in the 

"δ18O error notes" (Level 4) metadata field. 

Numeric Seawater 

Data 

3 δ18O error units If δ18O error exists, the units are specified (per mille) Text Seawater 

Data 

3 δ18O analysis 

technique 

Type of instrument used to make the isotope 

measurement (isotope ratio mass spectrometry (IRMS), 

Cavity Ring Down Spectroscopy (CRDS), and off-axis 

integrated cavity output spectroscopy (ICOS) 

Text Entity 

3 δ2H value Measured δ2H value Numeric Seawater 

Data 

3 δ2H units δ2H units (per mille) Text Seawater 

Data 

3 δ2H error Reported error of the δ2H value. Because many different 

types of error are reported in the literature, 

standardization was impossible; therefore, we report the 

most comprehensive error provided.  

Numeric Seawater 

Data 

3 Temperature value Seawater temperature (degrees Celsius) Numeric Seawater 

Data 

3 Temperature units Units of temperature value (degrees Celsius). Text Seawater 

Data 

3 Temperature error Reported error of the temperature value Numeric Seawater 

Data 

3 Salinity value Seawater salinity Numeric Seawater 

Data 

3 Salinity units Salinity units (typically "PSU" or "parts per thousand"). 

Retain original units provided in the publication. 

Text Seawater 

Data 
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3 Salinity error Reported error of the salinity value Numeric Seawater 

Data 

     

4 Collection date notes A note is made here if the collection day was not 

specified in the original publication, and only the 

collection month or a range of dates were specified. In 

this case the midpoint of the date range was selected as 

the collection day.  

Text Entity 

4  Location notes A note is made here if the latitude and longitude 

coordinates are not exact (e.g., some of the NASA GISS 

database entries have notes stating “A: Position was read 

off a graph of locations and therefore is not exact"). In 

these cases, the notes are copied to this metadata field. 

Text Entity 

4 Depth notes If only pressure (and not depth) was reported in the 

original dataset, a note is made here about how the depth 

conversion was performed. If a range of depths is 

provided in the original dataset, the midpoint of the depth 

range is reported in the ‘Depth’ field and the range is 

stated here. 

Text Entity 

4 δ18O correction notes If any δ18O correction was made to the δ18O values 

subsequent to the original publication, the value of the 

correction is reported here, along with any 

accompanying information about how and why the 

correction was made.  

Text Seawater 

Data 

4 δ18O error notes Information about the reported error of the δ18O value, 

including the type of error along with any supporting 

information. 

Text Seawater 

Data 

4 Sample ID Unique sample ID provided by original authors. Text Queryable 

4 δ18O analysis location University or institute where the isotope measurements 

were made. 

Text Entity 

4 Publication citation Citation of the original publication of the data. When the 

data was obtained from a data repository and no 

publication citation was found, “NaN” is entered in this 

field and the relevant citation appears in the “Dataset 

citation” field. 

Text Entity 

4 Publication DOI or 

URL 

DOI or URL of the original publication. Text Entity 

4 Dataset citation If the data was obtained from a data repository, the 

dataset citation is provided here. 

Text Entity 
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4 Dataset URL If the data was obtained from a data repository, the 

dataset URL is provided here. 

Text Entity 

4 Dataset ID If the data was obtained from a data repository, the 

Dataset ID from that repository is provided here.  

Text Entity 

4 Data provenance 

notes 

Indicates the source of the δ18O data (and δ2H, SST, and 

SSS data). In some cases, select metadata may have been 

collected from other data sources, such as the original 

publication, which is indicated in this field. 

Text Entity 

4 Cruise ID Cruise ID, if applicable. Text Entity 

4 Station ID Station ID, if applicable. Text Entity 

4 Cruise report Citation of the cruise report, if applicable. Text Entity 

4 Cruise report URL Link to the cruise report, if applicable. Text Entity 

4 Sample collection, 

processing, and 

storage notes 

Notes on sample collection, sample processing, and 

sample storage. Sample processing includes any 

treatments prior to analysis (distillation, filtration, etc). 

Sample storage includes the type of storage container and 

any preventative measures taken against evaporation 

(sample seals, refrigeration, etc). 

Text Entity 

4 Water isotope 

analysis notes  

Notes on the isotope analysis methods, including details 

of any equilibration steps used between the water and 

CO2 or H2 gas, the specific type of instrumentation used 

for the isotopic analysis, details of the calibration steps 

and standards used, number of replicate measurements, 

corrections for instrumental drift and memory effects, 

and preventative steps taken to minimize salt 

contamination (e.g., for cavity ring down spectroscopy). 

Text Entity 

     

5  Location type Type of water body from which the water samples were 

collected (e.g., open ocean, coastal, bay, lagoon, estuary, 

enclosed sea, marginal/semi-enclosed sea). 

Text Entity 

5 Location description 

 

Description of the sampling location, including a 

description of the major water masses and currents 

influencing the region, as well as details on the surface 

water balance, groundwater or riverine input, upwelling, 

distance from the coastline, depth and geometry of bay 

or lagoon, and/or description of co-located coral reef site 

if applicable. 

Text Entity 
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6 Temperature/salinity 

notes 

Notes on the analysis of temperature and salinity. Text Entity 

*There are four cases in which datasets obtained from the GISS database were not clearly associated with a publication, or the 

provided reference did not match the dataset. In those cases, the Schmidt et al. (1999) database citation is provided in the 

“Dataset citation” metadata field and the author letters “SC” are used in the unique CoralHydro2k ID to reference that citation 225 

(SC99AO0001, SC99PO0001, SC99IO0001, SC99GI0001). Additional details about the citations and data provenance appear 

in the “Data provenance notes” metadata field. 

**Corrections were applied in several datasets in the NASA GISS δ18Osw database to standardize the data based on deep water 

masses to correct for changes in standards, different analysis techniques, and other systematic errors. All corrections are noted 

in the “δ18O correction” metadata field, so the user can remove the corrections if desired. Corrections were also applied in 230 

some datasets in the Reverdin et al. (2022) LOCEAN database to adjust for minor evaporation biases. In that case, the 

correction value is unknown.  

 

Table 2: Standardized controlled vocabulary options for metadata fields in the database. 

Metadata Field Standardized Entries 

Depth units m (below sea level) 

δ18O units per mille 

δ18O correction Y, N 

Evaporation flag Y, N 

Reference standard VSMOW, SMOW 

δ18O error units per mille 

δ18O analysis technique IRMS, CRDS, ICOS 

δ2H units per mille 

Temperature units °C 

Salinity units PSU, PSS-78, PPT, g/L 
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3 Key characteristics of the seawater δ18O data 235 

3.1 Spatial and temporal coverage of the database 

The CoralHydro2k Seawater δ18O Database contains 18,598 data points from 106 datasets (Fig. 1A,B). 53% of the data is 

categorized as “hidden” data (i.e., data not currently available in public databases or public repositories; Fig. 1C,D), and the 

remaining 47% of the data is from public databases or public repositories (Table 3). 10,407 measurements (56%) are from the 

sea surface (depth ≤ 5 m; Fig. 1A), 3,693 (20%) are from the mixed layer (between 5–50 m), and 4,498 (24%) are below 50 240 

m. The time span of the database covers 1972 to 2021 (Fig. 2) and the depth range covers the surface to 5,797 m below sea 

level. The earliest data point in the database was collected in September 1972 and the most recent data point was collected on 

October 8, 2021. 3,480 data points (19%) were collected before the year 2000, and 15,118 data points (81%) were collected 

on or after the year 2000 (Fig. 2). Because the search for hidden datasets focused on the region between 35ºN and 35ºS, 75% 

of the measurements in the database are located within the tropical-subtropical region.  245 

 

 

Figure 1: Locations and seawater δ18O values of data in the database: (A) all surface ocean data (upper 5 m of the water column), 

(B) all subsurface ocean data (below 5 m), (C) the hidden surface ocean data only (upper 5 m), (D) the hidden subsurface ocean data 

only (below 5 m). 250 
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Figure 2: Sample collection dates of the seawater δ18O data in the database from (A) the surface ocean (upper 5 m) and (B) the 

subsurface ocean (below 5 m). 

 

In addition to δ18O measurements, the database also includes paired δ2H, salinity, and temperature measurements when 255 

available. 16,098 data points (87%) have paired salinity values (Fig. 3A), 13,871 data points (75%) have paired temperature 

values (Fig. 3B), and 9,769 data points (53%) have paired δ2H measurements (Fig. 3C). 185 measurements have an evaporation 

flag (Fig. 3D), which allows the user to filter out samples that may be influenced by post-collection evaporation from the 

database.  
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 260 

Figure 3: Locations and seawater δ18O values of the data in the database with (A) paired salinity measurements, (B) paired 

temperature measurements, (C) paired δ2H measurements, and (D) an evaporation flag. 

 

Compared to the seawater δ18O database presented in LeGrande and Schmidt (2006), data coverage in the surface ocean (upper 

5 m) is substantially improved in the tropics and subtropics, particularly in the northern Indian Ocean, the eastern Atlantic 265 

Ocean, the northeast coast of South America, the Mediterranean Sea, and the equatorial Pacific Ocean. However, poor data 

coverage still exists in the western Pacific Ocean and Maritime Continent region, the southeastern Indian Ocean, and the 

subtropical Pacific Ocean regions in both hemispheres. Below 5 m depth, the data coverage is even more limited (Fig. 1B). At 

all depths, regions with reasonable spatial coverage of δ18Osw data contain limited temporal coverage. Typically, only a few 

years of regular measurements are available from the most highly sampled regions. For example, only 13% of locations contain 270 

at least 12 measurements spanning two years within a 2º latitude x 2º longitude grid box (Fig. 4A), and only 9% of the grid 

boxes contain data that cover at least 50% of the annual cycle (i.e., 6/12 months of the calendar year; Fig. 4B). While the 

coverage of seawater isotope data has been growing over the last decade, these measurements are still sparse in space and time, 

thus highlighting the need for globally coordinated sampling campaigns and archiving efforts.  
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 275 

Figure 4: Temporal distribution of near-surface (upper 5m) δ18Osw measurements in the database, aggregated in 2°x2° (lat x lon) 

grid boxes. (A) Total number of δ18Osw measurements in each grid box. (B) Fraction of calendar year with δ18Osw measurements. 

 

Outside of the tropics and subtropics, the coverage of δ18O data in the CoralHydro2k Seawater δ18O Database is more sparse, 

since only hidden datasets were collected from all latitudes and all depths across the global ocean, while datasets from public 280 

repositories were only incorporated into the database if the measurements were made in the upper 50 m between 35°N and 

35°S. Future database development efforts will include incorporating additional hidden and public datasets. 

3.2 Data-model comparisons of the seawater δ18O data 

To assess how the δ18Osw data in the database compares with isotope-enabled climate model simulations and other products, 

we compare the climatological annual cycle in δ18Osw at different island sites using four data products: two simulations of 285 

isotope-enabled General Circulation Models [the National Center for Atmospheric Research Community Earth System Model 

Last Millennium Ensemble (1000 years; Brady et al., 2019) and the NASA Goddard Institute for Space Studies E2-R last 

millennium simulation (ensemble member E4rhLMgTck; 255 years; Colose et al., 2016), a regional ocean model of the Pacific 
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called isoROMS (44 years; Stevenson et al., 2018), and a gridded dataset of global monthly mean δ18Osw based on data 

assimilation with the MITgcm (Breitkreuz et al., 2018). The Breitkreuz dataset is based on a 400-year quasi-equilibrated 290 

simulation of a water isotope-enabled global ocean general circulation model constrained by global monthly δ18Osw data 

collected from 1950 to 2011 and climatological salinity and temperature data collected from 1951 to 1980. 

 

The characteristics of δ18Osw variability at the four selected sites in the tropical Pacific and Atlantic Oceans vary widely across 

the different data products and the δ18Osw observations from the CoralHydro2k Seawater δ18O Database, with large differences 295 

in both the amplitude and phase of the annual cycle of δ18Osw (Fig. 5). These differences could be due to deficiencies in the 

models (associated with model resolution, subgrid-scale parameterizations, and treatment of atmospheric exchange or ocean 

mixing processes), and/or uncertainties in the observational data given the low temporal resolution of the δ18Osw measurements. 

Clearly, more observational data is needed to determine the source of the discrepancies, pointing to the need for more 

coordinated and sustained seawater isotope sampling programs. Seawater isotope sampling at multinational observing systems 300 

that are already in place, such as the Tropical Pacific Observing System (TPOS), Bermuda Atlantic Time-series Study (BATS), 

GO-SHIP, and GEOTRACES, could expand and complement existing observational programs. For example, incorporating 

new sampling devices such as long-term osmotically pumped fluid samplers (Jannasch et al., 2004; Khare et al., 2021) could 

provide a relatively straightforward way to add δ18Osw measurements to existing programs. The development of sustained 

seawater isotope measurements at a network of observational hotspots around the global ocean would provide powerful new 305 

constraints on hydrologic changes in the modern ocean, generating data that could be used to test theoretical predictions, assess 

climate model performance and skill, and calibrate paleoclimate proxies for improved paleoclimate reconstruction. 
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Figure 5: Monthly climatology of δ18Osw at four island locations: Kiritimati Atoll in the Central Pacific Ocean, Palau in the western 

Pacific Ocean, Puerto Rico in the Carribbean Sea, and Dry Tortugas in the Gulf of Mexico. Five data sources are shown: observed 310 
δ18Osw (from this database; black dashed line), simulated δ18Osw from iCESM, iGISS, and isoROMS, and δ18Osw from the 

reanalysis product of Breitkreuz et al., 2018 (purple; monthly climatology constrained by observed monthly δ18Osw data collected 

from 1950 to 2011 and climatological salinity and temperature data collected from 1951 to 1980). The three Earth system models 

are the National Center for Atmospheric Research Community Earth System Model Last Millennium Ensemble (1,000 years; red) 

(Brady et al., 2019), the NASA Goddard Institute for Space Studies E2-R last millennium simulation (ensemble member 315 
E4rhLMgTck; 255 years; yellow) (Colose et al., 2016), and the isoROMs Pacific Ocean simulation (44 years; blue) (Stevenson et al., 

2018). 
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4 Usage notes 

4.1 General applications 

While the primary motivation of the CoralHydro2k Seawater δ18O Database was for coral paleoclimate research, this database 320 

was designed to be useful to researchers from a wide range of disciplines, including paleoceanography and paleoclimatology, 

oceanography, marine biology, Earth science, and climatology. For example, of relevance to oceanography, the seawater δ18O 

data can be coupled with the paired salinity data in the database to explore the relationship between these two parameters and 

investigate hydrological changes of the surface ocean (e.g., Conroy et al., 2017; Durack et al., 2012; LeGrande and Schmidt, 

2006; Wagner and Slowey, 2011). Because this relationship varies with latitude and may vary with time (Conroy et al., 2017; 325 

LeGrande and Schmidt, 2011; Thompson et al., 2022), the seawater δ18O database could be used to more comprehensively 

assess how this relationship varies in space and time. 

 

As for applications in paleoclimatology, the pairing of seawater oxygen isotope data with salinity data can provide transfer 

equations for reconstructing past salinity variations (e.g., Gagan et al., 1998; Kilbourne et al., 2004; McCulloch et al., 1994; 330 

Ren et al., 2003). For example: coral Sr/Ca, a temperature proxy, paired with coral δ18O, a proxy for both temperature and 

δ18Osw, can be used to remove the temperature component from the coral δ18O signal. The derived δ18Osw can then be converted 

to salinity using the local δ18Osw to salinity transfer equation (e.g., Kilbourne et al., 2004). The same method can be applied to 

foraminifera Mg/Ca and δ18O records to reconstruct salinity variations and can also potentially be applied to bivalves, coralline 

algae, ostracods, and otoliths (e.g., Light et al., 2018; Schmidt and Lynch-Stieglitz, 2011; Stott et al., 2004; Trofimova et al., 335 

2020; Warner et al., 2022). Many studies have used this paired approach to reconstruct δ18Osw variations for a wide range of 

time scales (e.g., Brocas et al., 2019; Felis et al., 2009; Giry et al., 2013; Gorman et al., 2012; Hereid et al., 2013; Knebel et 

al., 2024; Wu et al., 2013); however, few studies have been able to validate their reconstructions with observed δ18Osw records 

that span more than one year (Conroy et al., 2017; O’Connor et al., 2021). Instead, most studies use reanalysis products such 

as Simple Ocean Data Assimilation (SODA) (Carton et al., 2000, 2018), or satellite-derived sea surface salinity (SSS) products 340 

(e.g., NASA Aquarius, NASA SMOS) (Boutin et al., 2021) for validating the reconstructions (e.g., Cahyarini et al., 2008; 

Harbott et al., 2023; Hetzinger et al., 2006). 

 

Additionally, the CoralHydro2k Seawater δ18O Database can be used in proxy-system model development, paleo-data 

assimilation, and comparison studies between proxy reconstructions and climate model output (Dee et al., 2023; Evans et al., 345 

2013; Reed et al., 2022; Sanchez et al., 2021; Smerdon, 2012; Stevenson et al., 2018; Thompson et al., 2011). Proxy-derived 

δ18Osw data can be directly compared with simulations from isotope-enabled models as part of the validation process and to 

understand oxygen isotope fractionation processes within the hydrological cycle (Dee et al., 2015; Stevenson et al., 2015, 

2023). Furthermore, the proxy-derived salinity reconstructions can be compared with reanalysis and other salinity data 

products, such as SODA, as a separate validation step (e.g., Cahyarini et al., 2008). Finally, the δ18Osw database offers the 350 
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opportunity for improved proxy system models with rigorous uncertainty quantification of proxy-derived estimates of salinity. 

With such estimates, long reconstructions of salinity would provide valuable insights into the low frequency variability of the 

hydrological cycle over the data sparse tropical oceans. This δ18Osw database is the most comprehensive to date and will be 

updated as new datasets are published to support ongoing research (see Section 6). 

5 Code/Data availability 355 

5.1 Accessing the database 

The CoralHydro2k Seawater δ18O Database follows the FAIR data principles (Wilkinson et al., 2016) that strive to make 

scholarly data findable, accessible, interoperable, and reusable. The CoralHydro2k Seawater δ18O Database uses the Comma 

Separated Values (*.CSV) file format, a machine-readable format for archiving and describing seawater isotope data. Access 

to the database has been granted for reviewers and editors during the review phase. The data are also available upon request 360 

for members of the public that wish to participate in the review process by emailing the corresponding author. Once the review 

period is complete, the database will be archived on the NOAA NCEI World Data Service for Paleoclimatology (study page: 

https://www.ncei.noaa.gov/access/paleo-search/study/34575) and issued a permanent DOI. A mirror copy of the database will 

also be hosted at Waterisotopes.org.  

5.2 Code availability 365 

Example scripts to help users filter and search the database are available on the CoralHydro2k Seawater Database GitHub page 

(https://github.com/CoralHydro2k/ch2kSeawater_Database).  

5.3 Underlying data sources 

The CoralHydro2k Seawater δ18O Database includes records (0–50 mbsl, 35ºN to 35ºS) from ten international databases, 

including the NASA GISS Global Seawater Oxygen-18 database (Table 3). Literature searches were also conducted to find 370 

hidden seawater δ18O data (from all depths and latitudes) published only in tables and supplemental data files of published 

papers, theses, and dissertations. Data was also sourced from author contributions sent directly to this project or the EarthChem 

community (earthchem.org/communities/seawater-oxygen-isotopes). Researchers should adhere to the data use policies for 

the underlying data sources (see Table 3 and Appendices A1–A4).  

 375 

Table 3. Databases included 

Database URL (https://) Notes References 
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British Oceanographic 

Data Centre 

https://www.bodc.ac.uk/ See A1 for data 

usage policies 

Acknowledge the source of the 

information by including any 

attribution statement, see A4. 

CISE LOCEAN 

Seawater Isotope 

(SEANOE) 

www.seanoe.org/data/0060

0/71186/) 

Public domain, see 

URL for data usage 

details. 

(waterisotopes-CISE-LOCEAN 

2024), (Reverdin et al. 2022) 

GEOTRACES geotraces.webodv.awi.de/ See A2 for data 

usage policies 

(GEOTRACES Intermediate Data 

Product Group, 2023) 

Global Ocean Data 

Analysis Project 

(GLODAPv2.2022) 

www.ncei.noaa.gov/access/

metadata/landing-

page/bin/iso?id=gov.noaa.n

odc:0257247 

See A3 for data 

usage policies 

(Key et al., 2023; Olsen et al., 2016) 

NASA GISS Global 

Seawater Oxygen-18 

(GISS) 

data.giss.nasa.gov/o18data/ Public domain (Bigg and Rohling, 2000; Schmidt, 

1999; Schmidt et al., 1999) 

NOAA National 

Centers for 

Environmental 

Information (NCEI) 

www.ncei.noaa.gov/ Public domain Cite original publication, online 

resource, dataset and publication 

DOIs (where available), and date 

accessed 

NOAA NCEI 

Paleoclimatology 

www.ncei.noaa.gov/produc

ts/paleoclimatology 

Public domain Cite original publication, online 

resource, dataset and publication 

DOIs (where available), and date 

accessed 

NOAA NCEI World 

Ocean 

www.ncei.noaa.gov/produc

ts/world-ocean-database 

Public domain (Boyer et al., 2018) 

PANGAEA www.pangaea.de/ Terms of use 

https://www.panga

ea.de/about/terms.p

hp 

(Felden et al. 2023) 

Waterisotopes.org 

(WIDB) 

https://wateriso.utah.edu/w

aterisotopes/ 

See A4 for data 

usage policies 

http://waterisotopes.org 
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6 Database submission of new datasets and versioning scheme 

The CoralHydro2k Seawater δ18O project will accept data submissions for updates to the database. All seawater δ18O 

observations are welcomed regardless of location or water depth. To facilitate this process, a Seawater Oxygen Isotopes 

Community was developed within the EarthChem Library, an open-access repository for geochemical datasets 380 

(earthchem.org/communities/seawater-oxygen-isotopes), where researchers can submit their seawater isotope data and obtain 

a dataset DOI. The Seawater Oxygen Isotopes Community contains a template that can be downloaded to help researchers 

submit their data (scroll to the bottom of the webpage above and click on “Download Template”). This template is aligned 

with the CoralHydro2k Seawater δ18O Database to facilitate future updates to the database. The template has a README tab 

in the Microsoft Excel file with details on the template and an example. We hope that the creation of this site helps researchers 385 

publish their seawater isotope datasets, thus minimizing the number of "hidden" datasets.  

 

The initial release of the CoralHydro2k Seawater δ18O Database will be Version 1.0.0 for this publication. With new 

submissions, the database will grow as new datasets are added. Database users who find errors in the database can use the 

“Report an issue” option in the GitHub site. Datasets submitted to the Seawater Oxygen Isotopes Community within the 390 

EarthChem Library (earthchem.org/communities/seawater-oxygen-isotopes) can be updated through that site. 

 

As the CoralHydro2k Seawater δ18O Database is updated, it will be versioned following the scheme used by other PAGES 

data collection projects (Ahmed et al., 2013; Emile-Geay et al., 2017; Kaufman et al., 2020; McKay and Kaufman, 2014; 

Walter et al., 2023). The version number has three counters in the following form: C1.C2.C3, where C1, C2, and C3 are 395 

incrementing integers. When C1 increases, C2 and C3 reset to zero. When C2 increases, C3 resets to zero. C1 represents the 

number of publications describing the database. C2 increments each time the set of records in the database changes (addition 

or removal of a dataset). C3 increments when the data or metadata within the dataset changes, but the set of records remains 

the same. Upon updates, extensions, or corrections to the database, rather than issuing errata to this publication, changes will 

be included in subsequent versions of the database and updated and described through the online data repository. 400 

7 Citation 

This CoralHydro2k Seawater δ18O Database descriptor publication should be cited when the database is used in whole or in 

part, including its metadata fields, for subsequent studies. We encourage end users of this database to also cite the original 

publications and/or data sources of the underlying primary data (Table 3). To facilitate this process, citation information for 

every data point is included in the metadata, including a full citation and DOI of the original publication, as well as a dataset 405 

citation and DOI for the original public archive of the data. Researchers should also adhere to the data use policies for the 

underlying data sources (see Appendices A1–A4).  
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8 Conclusions and anticipated applications of the Seawater δ18O Database 

Observational seawater δ18O and δ2H data can place powerful constraints on the global water cycle, providing valuable 

information on the exchange of water between the ocean, atmosphere, and cryosphere, as well as on ocean-mixing processes. 410 

As such, these data provide an additional degree of freedom for understanding the complex hydrologic system, beyond what 

standard oceanographic variables like temperature and salinity can offer. They also provide a "common currency" that links 

paleoclimate reconstructions, modern climate observations, and isotope-enabled model simulations, allowing hydrologic 

processes to be evaluated on a wide range of time and spatial scales. Given the broad value of this data, and the growing 

number of seawater δ18O and δ2H datasets that have been generated since 2011, the CoralHydro2k Seawater δ18O Database 415 

was developed to improve the accessibility of seawater isotope data for the Earth Science research community. This new, 

machine-readable, and metadata-rich database contains over 18,600 observational seawater δ18O data points, paired with 

seawater δ2H and salinity data and extensive metadata that makes the database suitable for a myriad of research applications. 

The metadata template also provides a set of best practices for reporting seawater isotope data in future studies.  

 420 

The CoralHydro2k Seawater δ18O Database and its extensive metadata can provide insight into the multiple processes that 

impact seawater δ18O and δ2H. Furthermore, the database can be used to better constrain the relationship between δ18Osw and 

salinity in the global ocean, and assess how this relationship varies in space and time. The database also provides updated 

seawater δ18O and δ2H data critical for the calibration and validation of paleoclimate reconstructions using δ18O and δ2H to 

reconstruct past ocean temperature and salinity variations. For example, recent paleoclimate data assimilation efforts would 425 

greatly benefit from a spatial network of observational δ18Osw data for training the proxy system models that underlie those 

efforts. This database could also be used to construct a new gridded dataset of δ18Osw to update that of (LeGrande and Schmidt 

2006), which has been widely used for providing climate model boundary conditions and to assess model performance and 

skill in resolving key features of the hydrologic cycle. In this way, the PAGES CoralHydro2k Seawater δ18O Database can be 

used in a wide variety of applications to bolster our understanding of the modern climate system, while also providing new 430 

insights into past and future climate variability and change.  
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