UEx-L-Eddies: Decadal and global long-lived mesoscale eddy trajectories with coincident air-sea CO₂ fluxes and biogeochemical conditions

Daniel J. Ford ¹, Jamie D. Shutler ¹, Katy L. Sheen ¹, Gavin H. Tilstone ², and Vassilis Kitidis ²

¹ Centre for Geography and Environmental Sciences (CGES), University of Exeter, Penryn, UK.

Correspondence to: Daniel J. Ford (d.ford@exeter.ac.uk)

Supporting Information

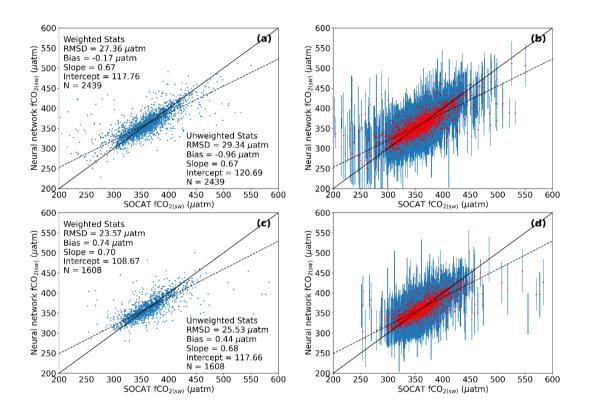


Figure S1: (a) Comparison of the neural network fCO_{2 (sw)} (with chl-a added as a predictor) to in situ SOCAT observations within anticyclonic eddies. Solid black line is the 1:1. Dashed line is the Type II linear regression. In text statistics are root mean square difference (RMSD), bias, slope and intercept of a Type II linear regression and number of matches (N). (b) same as (a) but showing the uncertainty on the neural network fCO_{2 (sw)} (2 sigma; 95% confidence) as errorbars for anticyclonic eddies. (c and d) same as (a and b) for cyclonic eddies.

² Plymouth Marine Laboratory, Plymouth, UK