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Abstract. Mesoscale eddies are prevalent features within the global ocean that modify the physical, chemical and biological 

properties as they move and evolve. These modifications can alter the air-sea exchange of CO2, and therefore these features 

may be hotspots for enhanced or reduced CO2 uptake compared to the surrounding environment. The understanding of the 10 

global and regional effect of mesoscale eddies on ocean CO2 uptake is however limited and largely based on single eddies or 

small regional subsets. Here, we provide a global dataset of 5996 long lived eddies trajectories (lifetimes greater than a year) 

with corresponding air-sea CO2 fluxes all tracked using a Lagrangian approach between 1993 to 2022. The trajectories 

comprise 3244 anticyclonic (‘warm core’) and 2752 cyclonic (‘cold core’) eddies and the dataset provides the 

biogeochemical environmental conditions, including the CO2 fluxes, within and outside each eddy. The dataset refines a 15 

previous regional methodology with a focus on climate quality environmental parameters and uses a global neural network 

for estimating the fugacity of CO2 in seawater (fCO2 (sw)) along with a comprehensive air-sea CO2 flux uncertainty budget. 

These refinements provide a robust foundation for studying the modulation of air-sea CO2 fluxes by mesoscale eddies. As an 

example use of the dataset, we investigate the role of mesoscale eddies in modifying the global and regional air-sea CO2 

fluxes, by comparing the eddy driven air-sea CO2 flux to that of the surrounding environment. We find that globally, long-20 

lived anticyclonic eddies enhanced the CO2 sink by 4.5 ± 2.8 % (95 % confidence), while long-lived cyclonic eddies reduce 

the CO2 sink by 0.7 ± 2.6 %. Collectively, the long-lived eddies indicate an enhancement of the ocean CO2 sink by 2.7 ± 1.1 

Tg C yr-1. Propagating the air-sea CO2 flux uncertainties was found to be a key component needed to fully understand 

apparent differences between previous regional and global studies. The long lived eddies (UEx-L-Eddies) dataset is available 

on Zenodo at https://doi.org/10.5281/ZENODO.16355763 (Ford et al., 2025). 25 
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1. Introduction 

Mesoscale eddies are known to affect the physical, chemical and biological properties of the oceans (Dufois et al., 2016; 

Frenger et al., 2013; Laxenaire et al., 2019; Li et al., 2025; Nencioli et al., 2018; Orselli et al., 2019b, a; Pezzi et al., 2021). 

These rotating bodies of water have radii on the order 100 km, lifetimes from a few days to multiple years, and can transit 30 

ocean basins transporting distinct water masses within them (Chelton et al., 2011; Pegliasco et al., 2022b). Eddies generally 

fall into two categories; (1) anticyclonic and (2) cyclonic. Anticyclonic eddies are associated with high pressure centres, 

clockwise rotation in the Northern Hemisphere (or anticlockwise in the Southern Hemisphere), warmer sea surface 

temperatures (SST), and a depression of isopycnals (and downwelling of water within the eddy core). Whereas cyclonic 

eddies are generally the opposite; low pressure centres, anticlockwise rotation in the Northern Hemisphere (or clockwise in 35 

the Southern Hemisphere), cooler SSTs, and an elevation of isopycnals (and upwelling in the eddy core). During their 

lifetimes, these eddies can alter the air-sea CO2 exchange through their modification of the ocean and atmospheric properties. 

As the CO2 solubility in seawater is highly temperature sensitive, the fCO2 (sw) in anticyclonic eddies could theoretically be 

elevated and therefore the features may act as a weaker CO2 sink or stronger CO2 source compared to the surrounding 

environment. Conversely the opposite may be true for cyclonic eddies, with reduced fCO2 (sw), and increased capacity to act 40 

as a stronger ocean CO2 sink. But mesoscale eddies are complex dynamic features, and these generalisations may not always 

apply as their response will always be dependent upon the ocean basin conditions where the eddy formed and through which 

the eddy moves, along with how they evolve and interact with that ocean water and the atmosphere. For example, Chen et al. 

(2007) identified a cyclonic eddy acting as a weaker CO2 sink compared to the surrounding environment due to upwelling of 

CO2 and nutrients within the eddy core. Orselli et al. (2019b) showed six anticyclonic Agulhas eddies that were acting as a 45 

stronger CO2 sink (than the surrounding water) during Austral winter. Pezzi et al. (2021) identified an anticyclonic eddy 

acting as a strong CO2 source in the Southwestern Atlantic. Whereas, through using a biogeochemical model, Song et al. 

(2016) suggested that these eddy modifications may have seasonal differences, whereby anticyclonic (cyclonic) eddies 

acteding as stronger (weaker) CO2 sinks in summer, but stronger (weaker) sources in winter. 

Despite the abundance of mesoscale eddies, previous studies generally investigate singular eddies (Chen et al., 2007; Jones 50 

et al., 2017; Pezzi et al., 2021) or a regional subset of eddies (Ford et al., 2023; Orselli et al., 2019b; Song et al., 2016) and 

their effect on the air-sea CO2 flux. Thus, the global cumulative effect of all types of eddies on the air-sea CO2 flux is still 

under investigation. Ford et al. (2023), used a Lagrangian tracking approach and suggested that long-lived (lifetimes greater 

than one year) mesoscale eddies enhanced the air-sea CO2 flux in the South Atlantic Ocean by ~0.05 Tg C yr-1 (~0.08%). 

Guo and Timmermans (2024) used a spatial and timeseries decomposition to extract the mesoscale flow impact on the air-55 

sea CO2 fluxes globally, and estimate a small integrated effect of 0.72 Tg C yr-1 (compared to global ocean uptake of ~2.9 Pg 

C yr-1). However, this result may include mesoscale signals not related to mesoscale eddies (Guo and Timmermans, 2024). 
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Li et al. (2025), using a method that tracked individual eddies similar to Ford et al. (2023), showed that mesoscale eddies 

within the Kuroshio and Gulf Stream western boundary currents could enhance the CO2 sink by 28.34 ± 9.41 Tg C yr-1.  

 60 

In this paper we produce a global dataset of long lived (defined as lifetimes greater than one year) mesoscale eddies (N = 

5996; radii > 30 km) and their associated air-sea CO2 fluxes tracked in a Lagrangian mode between 1993 and 2022. The 

methodology refines the approach described in Ford et al. (2023), using a global neural network approach and published 

tools which are also used to generate one ocean carbon sink dataset submission to the annual Global Carbon Budget 

assessments (Friedlingstein et al., 2025). Following recommendations for global ocean carbon assessments (Shutler et al., 65 

2024) we prioritise the use of climate quality satellite data records (Embury et al., 2024; Sathyendranath et al., 2019) within 

the analysis. The uncertainties on the air-sea CO2 fluxes are systematically assessed following the work of Ford et al. 

(2024a). These refinements provide a robust foundation to studying the modulation of air-sea CO2 flux by mesoscale eddies, 

with an uncertainty budget. We demonstrate the use of the global dataset to assess regional and global air-sea CO2 fluxes of 

long-lived eddies and to estimate their net impact on CO2 uptake of the ocean. 70 

2. Methods 

Figure 1 shows a schematic of the implementation of the methodology within this study to estimate the air-sea CO2 flux 

within mesoscale eddies. 

 Formatted: Normal
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Figure 1: Schematic showing the processing steps to estimate the air-sea CO2 flux within long lived eddies (Blue box background). 

The pink background boxes indicate the analysis completed to evaluate the accuracy and precision of the dataset. In figure 

acronyms are: fugacity of CO2 in seawater (fCO2 (sw)), atmospheric dry mixing ratio of CO2 (xCO2 (atm)) and University of Exeter 

feed forward neural network with uncertainties (UExP-FNN-U).  

2.1 Satellite and reanalysis data 80 

The importance of prioritising the use of climate data records to study long time series and the ocean carbon sink was 

highlighted in Shutler et al. (2024). We used the European Space Agency’s climate change initiative (CCI) climate data 

records SST-CCI (v3; ~4 km; 1993 to 2022) for SST (Embury et al., 2024; Good and Embury, 2024) and the Ocean Colour 

CCI (OC-CCI) for the chlorophyll-a (chl-a) concentrations (v6; ~4 km; 1997 to 2022; Sathyendranath et al., 2019, 2023), 

with their respective per observation uncertainties (Table 1). The CCI-SST was bias corrected for a cool bias with respect to 85 

global SST drifters, representative of SST at 20 cm (~0.05K; Embury, 2023; Embury et al., 2024), which is used to provide 

an accurate estimation of fCO2 (sw) (in section 2.3), and for the air-sea CO2 flux calculation (in section 2.4).  

We were unable to use the sea surface salinity (SSS) CCI climate data record for our application due to the 8 day temporal 

resolution of these data. We therefore used the Copernicus Marine Service GLORYS12V1 ocean reanalysis product for SSS 

(~9 km; 1993 to 2022; CMEMS, 2021; Jean-Michel et al., 2021), and the ocean mixed layer depth (MLD) as no climate data 90 

record is available for MLD. No climate data record is available for wind speed, therefore the Cross-Calibrated Multi-
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Platform (CCMP) wind speed dataset (6-hourly; ~25 km; 1993 to 2022) was chosen (Mears et al., 2022; Remote Sensing 

Systems et al., 2022) which is often used for ocean carbon assessments (Ford et al., 2024a). 

 

Table 1: Summary of the environmental datasets and in situ observations collocated with the long lived mesoscale eddies. 95 

Parameter Units Dataset Temporal 

Resolution 

Spatial Resolution Reference 

Sea surface 

temperature 

Kelvin ESA CCI-SST v3.0 Daily ~5km (0.05 

degree) 

(Embury et al., 

2024; Good and 

Embury, 2024) 

Sea surface salinity Psu CMEMS 

GLORYS12V1 

Daily ~9km (0.08 

degree) 

(CMEMS, 2021; 

Jean-Michel et 

al., 2021) 

Mixed layer depth m CMEMS 

GLORYS12V1 

Daily ~9km (0.08 

degree) 

(CMEMS, 2021; 

Jean-Michel et 

al., 2021)  

Chlorophyll-a mg m-3 OC-CCI v6 Daily 4km (Sathyendranath 

et al., 2019, 

2023) 

Wind speed m s-1 CCMP v3.1 6 hourly ~25km (0.25 

degree) 

(Mears et al., 

2022; Remote 

Sensing Systems 

et al., 2022) 

Sea level pressure hPa ERA5 Monthly ~25km (0.25 

degree) 

(Hersbach et al., 

2019, 2020) 

xCO2 (atm)
 ppm NOAA-GML Monthly ~100km (1 degree) (Lan et al., 

2023) 

fCO2 (sw) μatm Recalculated 

SOCAT 

Individual cruise 

observations 

N/A (Bakker et al., 

2016; Ford et 

al., 2024d) 
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 2.2 Eddy Trajectories Atlas 

The satellite altimetry based Mesoscale Eddy Product (version META3.2) as described in Pegliasco et al. (2022b, a), and 

distributed by the Archiving, Validation, and Interpretation of Oceanographic Satellite data (AVISO), was used to identify 

the trajectories of mesoscale eddies between 1993 and 2022. We extracted the eddy trajectories globally, that had a lifetime 100 

greater than one year, which gave 3244 anticyclonic eddies and 2752 cyclonic eddies for further analysis. The focus on these 

long-lived eddies was due to their presence likely exhibiting a larger influence on the air-sea CO2 flux (e.g. Smith et al., 

2023). Additionally, the selection was due to computational limitations in running the analysis for the extensive set of shorter 

lived eddies within the dataset. We are working to extend the analysis to shorter lived eddies but currently the focus remains 

on long lived eddies. 105 

For each eddy trajectory, a daily position was provided along with a polygon shape that estimates the eddy shape and size 

from the altimetry-based data which can not overlap with land.. These eddy polygons were used to extract a daily timeseries 

of the environmental data described in Section 2.1, where the daily conditions within the eddy were calculated (mean, 

median, standard deviation, interquartile range, maximum number of available data points, number of valid data points). 

This was repeated for the area surrounding the eddy, where we consider the ‘area outside’ to be a circle centred on the eddy 110 

but with three times the mean radius of the eddy and the area inside the eddy polygon itself removed. The chosen radii (of 

three times the mean radius) was used as Ford et al. (2023) showed that the results of their study were consistent when using 

a ‘surrounding area criterion’ between two and five radii. 

Daily timeseries of conditions within and surrounding the eddy, were then converted to a monthly median timeseries using 

the daily median values. The daily median was chosen to reduce the impact of any potential outliers caused by any limited 115 

data coverage due to cloud cover in the chlorophyll-a record. The daily median and mean were generally consistent for the 

SST, SSS, MLD and wind speed fields as these are spatially complete fields. 

 2.3 fCO2 (sw) neural network (UExP-FNN-U) and uncertainty 

The monthly fCO2 (sw) and air-sea gas fluxes were estimated using the methods and tools of the University of Exeter Physics 

Feed Forward neural network with uncertainties (UExP-FNN-U) which are routinely used to generate ocean sink data for the 120 

annual Global Carbon Budget assessments (Friedlingstein et al., 2025), and described in Ford et al. (2024a). The UExP-

FNN-U methodology approach estimates the fCO2 (sw) based on in situ data that is considered representative of the subskin 

layer (~0.2 m water depth), which allows for an accurate air sea CO2 flux calculation (Woolf et al., 2016; Section 2.4). The 

methods used are consistent with those in Ford et al (2024a), so only a summary of the method is provided here. The UExP-

FNN-U is a two-step self-organising map (SOM) feed forward neural network (FNN) setup. The SOM splits the global 125 

ocean into 16 regions with a similar fCO2 (sw), SST, SSS and MLD seasonal cycles. A FNN ensemble (10 FNNs for each 

region) was then trained with in situ monthly 1 degree fCO2 (sw) observations from the Surface Ocean CO2 Atlas (SOCAT; 
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Bakker et al., 2016) that have been recalculated to a consistent temperature and depth dataset (Ford et al., 2024d)., Thealong 

with monthly 1 degree predictor variables of SST, SSS, MLD and the atmospheric dry mixing ratio of CO2 (xCO2 (atm)), and 

anomalies of each with respect to a long term monthly climatology were collocated to the in situ fCO2 (sw). The FNNs 130 

consists of an input layer with nodes equal to the number of input predictors, a hidden layer with a varying number of nodes 

depending on a pretraining step and an output layer with a single node. The training data were split into a 95% training and 

validation dataset, and a 5% independent test randomly for each month ensuring the independent data were not clustered in 

one region. The UExP-FNN-U fCO2 (sw) estimates are then typically used to estimate the global ocean CO2 sink as described 

in Ford et al. (2024a).  135 

 

To estimate the fCO2 (sw) fFor each eddy the monthly median timeseries of the SST, SSS, MLD were provided to the UExP-

FNN-U to estimate the fCO2 (sw). The xCO2 (atm) was calculated from the National Oceanic and Atmospheric Administration 

Global Monitoring Laboratory (NOAA-GML) monthly 1 degree fields (Lan et al., 2023) that were used within the neural 

network training. These xCO2 (atm) fields were produced by calculating the monthly average of the xCO2 (atm) for each latitude 140 

(~2.5 degree spacing), which were then interpolated to 1 degree and replicated for each 1 degree longitude.  where Aa 

distance weighted mean of the nearest four pixels taken at the mean (centre) position of each eddy was used to estimate the 

monthly xCO2 (atm).  in the month was used. Anomalies in SST, SSS, MLD and xCO2 (atm) were calculated with respect to a 1 

degree monthly climatology.  

The uncertainties in the fCO2 (sw) were calculated as described in Ford et al. (2024a). The fCO2 (sw) uncertainty has three 145 

components: (1) the network uncertainty estimated as the two standard deviation of the 10 neural network ensemble, (2) the 

parameter uncertainty was the propagated input parameter uncertainties and was estimated using a lookup table and (3) the 

evaluation uncertainty which was the evaluation with respect to the SOCAT observations (Bakker et al., 2016). All three 

components are combined in quadrature, assuming they are independent and uncorrelated (Taylor, 1997), to provide a total 

uncertainty (considered 95% confidence). The uncertainty components were calculated for each fCO2 (sw) estimate. 150 

Additionally, a second version of the neural network was run. This version included chl-a (and the chl-a anomaly) as a 

predictor and was used to produce a second estimate of fCO2 (sw). Ford et al. (2022a) highlighted that the inclusion of more 

representative biological parameters improved the regional estimation of fCO2 (sw) in the South Atlantic Ocean. Therefore, 

this additional neural network output was generated using the same software used to create the UExP-FNN-U estimate of 

fCO2 (sw) (Ford et al., 2024c) just with the added chl-a predictor. However, we note the limitation of this second fCO2 (sw) 155 

estimate that uses chl-a. This dependency on optically derived remote sensing data (ie the chl-a data) means that it was 

limited to producing estimates after October 1997 (as routine ocean colour observations are not available before this date) 

and it could not provide estimates during polar winter due to missing daily chl-a data (as the low light levels inhibit optical 

retrievals).  
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The neural network estimated fCO2 (sw) were compared to recalculated SOCAT observations (Ford et al., 2024d; Goddijn-160 

Murphy et al., 2015) within eddies to assess the accuracy and precision of the estimates. The individual cruise SOCAT 

observations are gridded (to monthly 1 degree) to provide the training and independent test data to the UExP-FNN-U, and 

therefore these fCO2 (sw) observations are not strictly independent. For each eddy trajectory, the ungridded SOCAT 

observations were collocated with the daily eddy polygon. The daily SOCAT observations that fell within the eddy were 

then aggregated into monthly mean fCO2 (sw), which could be compared to the neural network monthly fCO2 (sw). We 165 

calculated a series of statistics including the bias, root mean square difference (RMSD), slope and intercept of a Type II 

linear regression to characterise the differences between the neural network outputs and monthly mean SOCAT fCO2 (sw). A 

Type II linear regression was used as uncertainties are presented within both the in situ and neural network fCO2 (sw) (Laws, 

1997; York et al., 2004). As in Ford et al. (2021) weighted variants of these statistics were also calculated to capture the 

uncertainties in both sets of data (neural network output and the SOCAT in situ data), assuming a SOCAT fCO2 (sw) 170 

uncertainty of 5 μatm (Bakker et al., 2016) and the calculated neural network total fCO2 (sw) uncertainty.  

 

 2.4 Air-sea CO2 flux calculations and uncertainties 

The CO2 flux calculations were performed using FluxEngine v4.0.9.1 (Holding et al., 2019; Shutler et al., 2016), using the 

“rapid” transport approximation (Woolf et al., 2016), at monthly time steps. The evidence continues to grow supporting the 175 

calculation of air-sea CO2 fluxes with consideration of the vertical temperature gradients, which is supported by theoretical 

(Woolf et al., 2016), observation based (Dong et al., 2022b; Shutler et al., 2020; Watson et al., 2020), modelling (Bellenger 

et al., 2023), and recently two in situ studies (Dong et al., 2024; Ford et al., 2024b). Therefore, the air-sea CO2 fluxes were 

calculated using a bulk formulation that allows for the vertical temperature gradients to be captured. The calculations are 

consistent with the methods used to create the UExP-FNN-U dataset that is submitted to the annual Global Carbon Budget 180 

assessments (Friedlingstein et al., 2025), except here a simplified approach to determine the skin SST value is used.  

The air sea CO2 flux (F) was calculated as: 

𝐹 = 𝑘600 (𝑆𝑐
600⁄ )−0.5(𝛼𝑠𝑢𝑏𝑠𝑘𝑖𝑛𝑓𝐶𝑂2 (𝑠𝑤,𝑠𝑢𝑏𝑠𝑘𝑖𝑛) − 𝛼𝑠𝑘𝑖𝑛𝑓𝐶𝑂2 (𝑎𝑡𝑚))                                                       (1) 

Where k is the gas transfer velocity estimated from the monthly wind speeds and the Nightingale et al. (2000) gas transfer 

parameterisation. αsubskin and αskin are the solubility of CO2 at the base, and top of the mass boundary layer respectively, and 185 

were calculated as a function of SST and SSS (Weiss, 1974). αsubskin was calculated from the bias corrected CCI-SST SST 

and the CMEMS SSS. αskin was calculated with the same datasets, but with a fixed cool (-0.17K) (Donlon et al., 1999) and 

salty (+0.1 psu) skin effect. We used a fixed cool skin here, instead of the dynamic cool skin approach (that uses COARE 

3.5; Fairall et al., 1996) as used within the UExP-FNN-U Global Carbon Budget submission due to the computation 

overhead needed to extract the additional environmental fields required for the calculations. This simplified approach has 190 
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only a small effect on the global scale (Dong et al., 2022b), and therefore we do not see it as a limitation. fCO2 (atm) was 

estimated for the NOAA-GML xCO2 (atm), ERA5 sea level pressure (Hersbach et al., 2019) and the CCI-SST with a cool salty 

skin following Dickson et al. (2007). fCO2 (sw,subskin) was provided by the neural network fCO2 (sw). The ERA5 sea level 

pressure was retrieved from monthly 0.25 deg fields, using a distance weighted mean of the 4 closest observations to the 

mean monthly eddy position. None of the eddies considered were under sea ice (as the eddy detection data and algorithm 195 

cannot track in areas of ice), and therefore the term “1 – ice” which is generally included within Eq. 1 (to linearly scale the 

gas fluxes with sea ice concentration) has not been included. 

The air-sea CO2 flux uncertainties were calculated following the methods in Ford et al. (2024a), and consistent literature 

values for the uncertainties in the wind speed (1.9 ms-1; 95% confidence; Mears et al., 2022a), salinity (0.2 psu; 95% 

confidence; Jean-Michel et al., 2021), xCO2 (atm) (0.4 μatm; 95% confidence; Lan et al., 2023) and gas transfer 200 

parameterisation (20%; 95% confidence; Woolf et al., 2019). The SST uncertainty was extracted from the daily CCI-SST 

dataset and were converted to monthly uncertainties assuming a five day temporal correlation (Ford et al., 2024a). The 

uncertainties were calculated at the 95% confidence (or the 2 sigma). 

The monthly mean daily flux of CO2 (g C m−2 d−1) was multiplied by the number of days and the mean area of the eddy as 

provided by the eddy trajectories, in the respective month. The fluxes (Tg C mon−1) were then added cumulatively to retrieve 205 

the net cumulative CO2 flux for each eddy (Tg C). Collating the combined uncertainties requires careful consideration of 

their temporal correlations. Some uncertainties will be temporally decorrelated, and others have temporal correlations. We 

used the assumptions made in Ford et al. (2024a), that the SST, SSS, wind speed, xCO2 (atm) and fCO2 (sw), and components 

dependent on these uncertainties, are temporally uncorrelated and are therefore propagated assuming they are independent 

(Taylor, 1997). Whereas, the remaining uncertainties that stem from the Schmidt number, solubilities and gas transfer 210 

parameterisation algorithm uncertainties are assumed temporally correlated and therefore are summed (Ford et al., 2024a). 

The air-sea CO2 flux calculations and uncertainty estimates were computed for the two variants of fCO2 (sw). The 

computations were also applied separately for the eddy and the area outside the eddy, assuming the same area coverage of 

the eddy for both calculations (i.e allowing the cumulative fluxes to be compared for the same area coverage). 

 2.5 Modification of air-sea CO2 fluxes due to the existence of the eddy 215 

As shown in Ford et al. (2023), the air-sea CO2 flux into an eddy can be considered as two components: (1) the flux that 

would occur without the presence of the eddy and (2) the mesoscale modification of the flux through both oceanic and 

atmospheric effects of the eddy presence. The flux that would occur without the eddy being present can be estimated using 

the conditions that are driving the air-sea CO2 flux in the environment surrounding the eddy. This reference flux can be 

removed from the air-sea CO2 flux calculated for within the eddy to indicate the mesoscale modification of the flux due to 220 
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the existence of the eddy, which was converted to a percentage change with respect to the surrounding environment CO2 

flux, following Ford et al. (2023).  

The eddy modification of the air-sea CO2 flux was calculated for each individual eddy, and then the median percentage 

modification was estimated for global and regional subsets, due to the lower sensitivity to outliers. We repeat the percentage 

change calculations in a Monte Carlo uncertainty propagation approach to evaluate the full extent of the uncertainties, 225 

whereby the eddy modification flux was perturbed within their uncertainties (95%) 1000 times independently (i.e., assuming 

the individual eddy flux modification uncertainties are uncorrelated). The two standard deviation value of the resulting 

ensemble was taken as the 95% confidence on the median percentage change for the global or regional subsets due to the 

uncertainties. 

3. Results 230 

3.1 Geographical distribution of mesoscale eddy cumulative air-sea CO2 flux 

In total 5996 eddies were tracked and their air-sea CO2 flux estimated, which comprised 3244 anticyclonic and 2752 

cyclonic eddies between 1993 and 2022 (Figure 2Figure 1). The geographical distribution of the cumulative air-sea CO2 flux 

into both eddy types generally followed the global distribution of air-sea CO2 fluxes. The temperate regions showed eddies 

with strong CO2 sink characteristics over their lifetimes, whereas eddies in the subtropical showed weaker CO2 sinks, or 235 

even CO2 sources. Regionally the Indian Ocean showed stronger CO2 sinks associated with anticyclonic eddies when 

compared to the Atlantic and Pacific Oceans (Figure 2Figure 1a). The South Pacific showed anticyclonic eddies acting as 

weaker CO2 sinks compared to the North Pacific and had more eddies acting as CO2 sources. Notable regions where cyclonic 

eddies were acting as strong CO2 sinks are within the Indian Ocean, and Northwestern Atlantic Ocean (Figure 2Figure 1b). 

Cyclonic eddies in the South Pacific tended to act more as CO2 sources than sinks (Figure 2Figure 1b). The Southern Ocean 240 

showed the anticyclonic and cyclonic eddies acting as either weak CO2 sinks or weak CO2 sources (Figure 2Figure 1). 
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Figure 2Figure 1: (a) The cumulative air-sea CO2 flux into the anticyclonic eddies where the scatter points are plotted at the 

formation location of each eddy. (b) same as (a) but for cyclonic eddies. (c) The percentage of long lived anticyclonic eddy 245 
trajectories compared to all eddy trajectories that form in 1 degree by 1 degree regions. (d) same as (c) but for cyclonic eddies. 

Basemap from Natural Earth v4.0.0 (https://www.naturalearthdata.com/). Supplementary Figure S1 shows the equivalent of (a) 

and (b) in Tg C d-1 to remove the differences in eddy lifetime. 

3.2 Example eddy trajectory 

Figure 3Figure 2 shows an example of an eddy trajectory in the North Pacific Ocean that was selected due to the ~3 year 250 

lifetime, that highlights the seasonality and variability of the environmental data, the fCO2 (sw) and associated air-sea CO2 

fluxes with the uncertainties shown. Over the three years the eddy moves around a relatively small region within the 

subpolar region (Figure 3Figure 2c). Within the eddy, an expected SST seasonal cycle was present (Figure 3Figure 2a), 

along with an interannual variability within the SSS timeseries (Figure 3Figure 2b). The estimated fCO2 (sw) also highlighted 

a clear seasonal cycle with higher fCO2 (sw) in the winter months, and lower fCO2 (sw) in the summer (Figure 3Figure 2d). The 255 

eddy exhibited a period of strong CO2 outgassing during winter, followed by a small CO2 sink within the summer months 

(Figure 3Figure 2e). When cumulatively summed, the air-sea CO2 fluxes indicate that the eddy outgassed CO2 over its 

lifetime, but clearly this outgassing was not year-round (Figure 3Figure 2f). The example eddy illustrates the available data 

https://www.naturalearthdata.com/
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that could be used to evaluate the driving mechanism that are affecting the fCO2 (sw) and air-sea CO2 fluxes over the eddy’s 

lifetime. 260 

3.3 UExP-FNN-U fCO2 (sw) compared to SOCAT observations within eddies 

The UExP-FNN-U was trained on a global dataset of fCO2 (sw) and so it is important to assess its performance within eddies 

which providesproviding some level of confidence that the eddy variability is being correctly captured. The within eddy 

accuracy and precision estimates between the SOCAT in situ observations and the UExP-FNN-U fCO2 (sw)within the eddies  

showed good performance (Figure 4Figure 3) similar to the results for the global scale in Ford et al. (2024a) (weighted bias = 265 

-0.08 18 μatm,  and RMSD = 20.675, N = 18226 monthly 1 degree regions). For anticyclonic eddies, we observed a larger 

smaller weighted RMSD (precision) of 28.49 19.15 μatm (N=2726 2082 monthly matches; Figure 4Figure 3a). For cyclonic 

eddies we observed a lower RMSD of 24.3116.49 μatm (N = 17761376; Figure 4Figure 3dc). Both eddy types showed small 

weighted biases (accuracy) and therefore we consider the UExP-FNN-U generated fCO2 (sw) within eddies to sufficiently 

represent the eddy fCO2 (sw). The differences between the within-eddy UExP-FNN-U fCO2 (sw) and in situ SOCAT 270 

observations did not indicate regional biases, but did show a spatial weighting to the Northern Hemisphere where more in 

situ fCO2 (sw) are made (Bakker et al., 2016; Figure 4c,f). 

Seasonally separating the collocated within eddy in situ observations shows that the UExP-FNN-U tended to show a small 

weighted bias (accuracy) and smaller RMSD (precision) during winter and autumn (Figure 5a,b,g,h) compared to spring and 

summer (Figure 5c,d,e,f). Although winter and autumn tended to have lower collocations between in situ SOCAT 275 

observations and the UExP-FNN-U fCO2 (sw) (Figure 5). These seasonal comparisons further strengthen the accuracy and 

precision of the UExP-FNN-U fCO2 (sw) and indicates no large seasonal biases. Figure 4Figures 3b and Figure 43de show that 

the uncertainties calculated for the fCO2 (sw) were able to sufficiently represent the differences to the SOCAT observations. 

Thereby providing validity to the fCO2 (sw) contribution to the air-sea CO2 flux uncertainty budgets. 

 280 
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Figure 3Figure 2: Exemplar eddy trajectory (eddy 194465) in the North Pacific Ocean with calculated air-sea CO2 fluxes (a) Sea 

surface temperature (SST) for the example eddy’s lifetime. Black line is the daily SST, where dark grey and light grey shading 285 
indicates the 1 sigma (~67% confidence) and 2 sigma (~95% confidence) uncertainties. Red line is the median monthly SST. (b) 

same as (a) for sea surface salinity. (c) Geographical eddy trajectory, where colour indicates the age of eddy (blue is eddy 

formation and yellow is eddy dissipation). (d) Monthly timeseries of fugacity of CO2 in seawater (fCO2 (sw); solid line) and dry 

mixing ratio of CO2 in the atmosphere (xCO2 (atm); dashed line) for the eddy. Dark grey and light grey shading indicates the 1 

sigma (~67% confidence) and 2 sigma (~95% confidence) uncertainties on the fCO2 (sw). Red dots indicate fCO2 (sw) in situ 290 
observations from the Surface Ocean CO2 Atlas within the eddy. (e) same as (d) but for the air-sea CO2 flux where a positive flux 

means CO2 outgassing. Dashed black line indicates an air-sea CO2 flux of 0. (f) same as (d) but for the cumulative air-sea CO2 flux. 

Red line and banding indicate the cumulative air-sea CO2 flux for the surrounding environment. 
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 295 

Figure 3 

Figure 4: (a) Comparison of the UExP-FNN-U fCO2 (sw) to in situ SOCAT observations within anticyclonic eddies. Solid black line 

is the 1:1. Dashed line is the Type II linear regression. In text statistics are root mean square difference (RMSD), bias, slope and 

intercept of a Type II linear regression and number of matches (N). (b) same as (a) but showing the uncertainty on the fCO2 (sw) (2 

sigma; 95% confidence) as errorbars for anticyclonic eddies. (c) Difference between UExP-FNN-U fCO2 (sw) to in situ SOCAT 300 
observations within anticyclonic eddies plotted as spatial residuals. (c d, e and fand d) same as (a, and  b and c) but for cyclonic 

eddies.  

 

Formatted: Normal, Space After:  8 pt, Line spacing:  
Multiple  1.08 li

Formatted: Normal



17 

 

 

 

 

Figure 5: (a) Comparison of the UExP-FNN-U fCO2 (sw) to in situ SOCAT observations within anticyclonic eddies during winter. 305 
Solid black line is the 1:1. Dashed line is the Type II linear regression. In text statistics are root mean square difference (RMSD), 

bias, slope and intercept of a Type II linear regression and number of matches (N). (b) same as (a) but for cyclonic eddies in the 

winter. (c) and (d) same as (a) and (b) for spring. (e) and (f) same as (a) and (b) for summer. (g) and (h) same as (a) and (b) for 

autumn. 

 310 

3.4 Uncertainty in the mesoscale eddy cumulative air-sea CO2 flux 

Two exemplar eddies, eddy A with a lifetime of 12 months and eddy B with a lifetime of 42 months, are shown in Figure 

6Figure 4. These were selected to highlight the differences in the relative and absolute contributions of each uncertainty 

component to the total uncertainty, and how these can change over time for eddies of differing lifetimes. The absolute 

uncertainty magnitudes for eddy B were larger than eddy A (Figure 6Figure 4b, d), but the relative contributions of each 315 

component showed similarities. 

For both eddies at the end of their life, the fCO2 (sw) component was the dominant source to the uncertainty for the whole 

lifetime, followed by the gas transfer parameterisation uncertainty. For eddy A, wind speed was the next largest contributor 

to the uncertainties, whereas for the eddy B, the solubility component uncertainties were larger than the wind speed 

uncertainty.  320 

Throughout both eddy lifetimes the dominant uncertainty contributions changed. For eddy A, at formation showed that the 

wind speed and solubility components were larger contributors than the gas transfer uncertainty until four months after 

formation (Figure 6Figure 4b). Within eddy B, the wind speed was a larger contributor than the solubility components until 
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12 months after formation, at which time the solubility component becomes a larger contributor (Figure 6Figure 4d). 

Uncertainties due to the Schmidt number and fCO2 (atm) terms were a small contribution to the uncertainty in both eddies. 325 
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Figure 4Figure 6: (a) The total cumulative air-sea CO2 flux uncertainty (2 sigma) for an exemplar anticyclonic eddy, eddy A, (1 

year lifetime; eddy 496) split into the relative contributions for the individual components. (b) The total air-sea CO2 flux 

uncertainty in absolute terms. Legend in (b) corresponds to colours in (a). (c) and (d) same as (a) and (b) but for eddy B, an 330 
anticyclonic eddy (42 months lifetime; eddy 194465). Note different x-axis limits for (a) and (b) compared to (c) and (d). 

3.5 Global and regional mesoscale modifications of the air-sea CO2 flux 

An example application of the dataset was to assess the modification of the cumulative air-sea CO2 flux by individual eddies 

at their dissipation. The analysis indicated that individual eddies could enhance (negative percentage changes) or suppress 

(positive percentage changes) the CO2 sink. (Figure 7Figure 5). Both anticyclonic (Figure 7Figure 5a) and cyclonic eddies 335 

(Figure 7Figure 5b) showed individual eddies that were either enhancing or suppressing the air-sea CO2 flux. Regional 

signatures in the air-sea CO2 flux modification were apparent, for example anticyclonic eddies in the South Pacific and 

Southern Ocean had a greater tendency to enhance the CO2 sink, whereas in the Indian Ocean there was not a discernible 

tendency. Cyclonic eddies in the Southern Ocean indicated a larger suppression of the CO2 sink than for example the North 

Pacific.  340 

Considering all the eddies studied and the calculated uncertainties, anticyclonic eddies were identified to enhance the 

cumulative CO2 flux, where these eddies acted as stronger CO2 sink (weaker CO2 source) by 4.5 ± 2.8 % (95 % confidence). 

Cyclonic eddies indicated a slight suppression of the cumulative air-sea CO2 flux by 0.7 ± 2.6 %, acting overall to weaken 

the CO2 sinks (or as stronger CO2 sources). Here we note, at the 95 % confidence the cumulative CO2 sink enhancement by 

anticyclonic eddies was significantly difference from 0 (i.e the confidence interval did not include 0) when uncertainties 345 

were accounted for, but this was not significantly different from 0 for cyclonic eddies. 

The regional differences can be emphasised by considering median eddy modifications within different regional subsets 

(Figure 8Figure 6) instead of globally (Figure 8Figure 5c, d). The eddy modification of CO2 fluxes within the regions 

showed differing magnitudes that fall within different significance bands when the uncertainties are accounted for. For 

example, the Southern Ocean shows an anticyclonic enhancement of the CO2 sink of 5.76.2 ± 5.03 % (significant at 95 % 350 

confidence), with cyclonic eddies suppressing the CO2 sink by 2.5 ± 4.6 %. In the North Pacific, we find similar results 

where anticyclonic eddies enhance by 5.6 ± 5.2 %, and cyclonic eddies suppress by 1.7 ± 7.41 %. Consistent results were 

found for the South Pacific but noting the cyclonic eddies showed a larger uncertainty interval of 11.54 %. Interestingly, 

tThe South Atlantic Ocean shows the opposite eddy modifications to much of the global ocean where ed the anticyclonic 

suppressed enhancement of the sink by 0.3 1.8 ± 15.06 % and cyclonic eddies appear to enhance the CO2 sink by 0.1 7 ± 355 

14.33.7 %. The uncertainty intervals on these are however the largest of any region, likely due to the lowest number of 

eddies considered. 
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Figure 5Figure 7: (a) Geographical distribution of the anticyclonic eddies’ modification of the cumulative air-sea CO2 flux. 360 
Negative values indicate a stronger CO2 sink (weaker CO2 source), and positive values indicate a weaker CO2 sink (stronger CO2 

source). (b) same as (a) for the cyclonic eddies. (c) Box plot showing the anticyclonic eddy modification of the air-sea CO2 flux. Red 

line indicates the median, box indicates the 25th and 75th quartiles, whiskers extend from the 25 th and 75th quartiles by 1.5 

interquartile ranges. Circles indicate data considered outliers. Dark red shading indicates the 1 sigma (~68% confidence) 

uncertainty on the median by propagating the air-sea CO2 flux uncertainties using a Monte Carlo uncertainty propagation. Light 365 
red shading indicates the 2 sigma uncertainty on the median (~95% confidence). X-axis label shows number of eddies (N), the 

median modification with the 2 sigma uncertainty. (d) same as (c) but for the cyclonic eddies. Basemap in (a) and (b) from Natural 

Earth v4.0.0 (https://www.naturalearthdata.com/). 

https://www.naturalearthdata.com/
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 370 

Figure 6Figure 8: (a) Ocean basins considered for further analysis, with a colour for each region. Regions follow the RECCAP2 

ocean basin definition, but each basin was split at the Equator into North and South. North Indian Ocean was removed due to low 

number of eddies analysed. (b) Box plot showing the eddy modification of the cumulative air-sea CO2 flux for the region shown 

with the arrow. Red line indicates the median, box indicates the 25th and 75th quartiles, whiskers extend from the 25 th and 75th 

quartiles by 1.5 interquartile ranges. Circles indicate data considered outliers (greater than 1.5 interquartile ranges outside the 375 
25th and 75th percentile). Dark red shading indicates the 1 sigma (~68% confidence) uncertainty on the median by propagating the 

air-sea CO2 flux uncertainties using a Monte Carlo uncertainty propagation. Light red shading indicates the 2 sigma uncertainty 
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on the median (~95% confidence). X-axis label shows number of eddy (N), the median modification with the 2 sigma uncertainty. 

(c), (d), (e), (f), (g) same as (b) for their respective regions identified by the arrow. Basemap in (a) from Natural Earth v4.0.0 

(https://www.naturalearthdata.com/). 380 

4. Discussion 

4.1 Mesoscale eddy air-sea CO2 fluxes and uncertainties 

The mesoscale eddy air-sea CO2 fluxes provide both the CO2 fluxes for each month with uncertainties and the corresponding 

environmental data (i.e SST, SSS) within and outside of each eddy (Figure 3Figure 2). These data allow a range of analyses 

to be conducted, for example, in this study, we show how the mesoscale modification of the air-sea CO2 flux can be 385 

determined from these data regionally (Figure 7Figure 5; Figure 8Figure 6) or could be evaluated through time (e.g. Table 

S1 provides global decadal median mesoscale modifications suggesting an increasing enhancement of the CO2 sink). Other 

potential applications could include, analysing the thermal and non-thermal components in driving the global eddy modified 

air-sea CO2 fluxes (as illustrated by Ford et al. (2023) for the South Atlantic), or for investigating nutrient entrainment within 

the eddies and how it links to biological variations within the eddy track, or the variability in phytoplankton biomass and / or 390 

productivity within the eddies which are important for improving our understanding of carbon rate dynamics, and their 

impacts on ecology and biodiversity. The dataset presented here therefore provides the basis for a wide range of studies to 

assess the evolution of mesoscale eddies and their air-sea CO2 fluxes alongside understanding the linkages with their 

localised environmental conditions.  

The dataset air-sea CO2 flux estimates are accompanied by a comprehensive uncertainty budget developed by Ford et al. 395 

(2024a) (Figure 3Figure 2; Figure 6Figure 3). This is the first dataset of eddy air-sea CO2 fluxes to include a uncertainty 

budget that has been built on the principles where all known sources of uncertainty are systematically considered (however 

small) and propagated to the final uncertainty using standard propagation techniques and a well-established uncertainty 

framework (BIPM, 2008; Taylor, 1997). The budget therefore provides an uncertainty on each air-sea CO2 flux estimate, and 

the fCO2 (sw), which can be accounted for within further analyses (e.g. as used in Ford et al., 2021, 2022b) and aids in 400 

assigning confidence to any results, as demonstrated in the example results that have been presented.  

The comparisons to thebetween the UExP-FNN-U fCO2 (sw) and SOCAT fCO2 (sw) observations within eddies provide further 

confidence in the retrieved UExP-FNN-U fCO2 (sw) and resulting air-sea CO2 fluxes (Figure 4; Figure 5). We showed that for 

both the anticyclonic and cyclonic eddies the within eddy accuracy (bias) and precision (RMSD) showed greater 

performance when compared were similar to the global scale performance of these approaches (Ford et al., 2024a). This 405 

result was consistent with Ford et al. (2023) for the South Atlantic Ocean, who showed that both eddy types were well 

represented by the neural network approach (except Ford et al. (2023) determined this from a lower number of crossover 

data points than presented here). Li et al. (2025) also showed for their neural network approach, similar accuracy and 

https://www.naturalearthdata.com/
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precision results for the fCO2 (sw) within eddies for four western boundary current regions. Although, we did observe a 

slightly lower precision during the spring and summer, which could be due to the lack of a biological predictor (e.g chl-a) 410 

reducing the ability of the UExP-FNN-U to capture these dynamics (Ford et al., 2022a) (Figure 5).  Although we did observe 

a slightly lower precision (higher RMSD), likely due to eddy related processes that are not fully captured within the neural 

network approach. These results also provide validity to the calculated fCO2 (sw) uncertainties, which in the majority of cases 

are dominated by the fCO2 (sw) evaluation uncertainty component. As the retrieved within eddy fCO2 (sw) bias and RMSD was 

similar showed greater performance comparedto the global UExP-FNN-U performance (given in Ford et al., 2024),  we are 415 

confident in the UExP-FNN-U fCO2 (sw) and uncertainty estimates within the eddies.  

Within the UEx-L-Eddies we provide a secondary fCO2 (sw) estimate (and associated air-sea CO2 fluxes) from a global fCO2 

(sw) neural network, which included chl-a as a predictor. We include the additional neural network because Ford et al. (2022a) 

highlighted that the inclusion of more representative biological parameters improved the regional estimation of fCO2 (sw) in 

the South Atlantic Ocean, which is likely to be the same for other regions. Previous studies have shown the importance of 420 

biological modulation of fCO2 (sw) within eddies (Orselli et al., 2019b), the resulting CO2 fluxes, and how the importance 

changes over the eddy lifetime (Ford et al., 2023). This additional neural network showed similar but slightly improved 

precision (lower weighted RMSD) when compared to the in situ SOCAT observations, although to a lower number of data 

points (Figure S1S2; anticyclonic bias = -0.17 92 uatm, RMSD = 27.3617.05 μatm,; N = 1914; cyclonic bias = 0.74 05 μatm, 

RMSD = 23.5714.31 μatm, N = 1272). In addition, the seasonal breakdown of the comparisons between the within eddy 425 

UExP-FNN-U with chl-a fCO2 (sw) and the in situ fCO2 (sw) showed an increase in the performance of this neural network 

during spring and summer, highlighting the improvements from chl-a being added as a predictor (Figure S3). These 

estimates are however restricted to regions between 50 ºN and 50 ºS due to the availability of ocean colour chl-a data in polar 

winter (i.e for a full eddy timeseries the eddy must remain within the available ocean colour data). 

The impact on the modification of the cumulative air-sea CO2 flux by mesoscale eddies due to including chl-a within the 430 

UExP-FNN-U can be assessed by replicating Figure 8, but using the secondary fCO2 (sw) and resulting air-sea CO2 fluxes 

(Figure 9). Figure 9 shows the regional modification of the air-sea CO2 fluxes by eddies where both neural network variants 

are able to estimate the fCO2 (sw) (i.e we show a subset of the eddies in Figure 8). In all regions both neural networks retrieve 

a similar signature, but the chl-a version generally suggests a stronger enhancement (or weaker suppression) of the CO2 sink 

compared to the UExP-FNN-U without chl-a. Notably the South Pacific Ocean and Southern Ocean show larger differences 435 

although in all cases these differences fall within the  Weuncertainties. We therefore provide the secondary neural network to 

further aid in understanding the processes that are driving mesoscale eddy modification of the air-sea CO2 fluxes. 
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Figure 9: (a) Ocean basins considered for further analysis, with a colour for each region. Regions follow the RECCAP2 ocean 440 
basin definition, but each basin was split at the Equator into North and South. North Indian Ocean was removed due to low 

number of eddies analysed. (b) Box plot showing the eddy modification of the air-sea CO2 flux using the chl-a version of the UExP-

FNN-U for the region shown with the arrow. Red line indicates the median, box indicates the 25th and 75th quartiles, whiskers 

extend from the 25th and 75th quartiles by 1.5 interquartile ranges. Circles indicate data considered outliers (greater than 1.5 

interquartile ranges outside the 25th and 75th percentile). Dark red shading indicates the 1 sigma (~68% confidence) uncertainty on 445 
the median by propagating the air-sea CO2 flux uncertainties using a Monte Carlo uncertainty propagation. Light red shading 

indicates the 2 sigma uncertainty on the median (~95% confidence). Blue line and shading indicates the same but for the UExP-

FNN-U without chl-a. X-axis label shows number of eddy (N), the median modification with the 2 sigma uncertainty for the chl-a 

version of the UExP-FNN-U labelled with a C, and the UExP-FNN-U without chl-a labelled with a P. (c), (d), (e), (f), (g) same as (b) 

for their respective regions identified by the arrow. Basemap in (a) from Natural Earth v4.0.0 450 
(https://www.naturalearthdata.com/). 

Previous eddy trajectory datasets have been produced, for example Dong et al. (2022a), which include environmental 

datasets (e.g. SST) that can be used to understand the effects of eddies on physical and biological properties. The UEx-L-

Eddies however extends the principles of these datasets to include air-sea CO2 fluxes but also has a focus on climate quality 

dataset (i.e the ESA CCI datasets) and provides comprehensive uncertainties. Therefore it provides a robust dataset for 455 

understanding long-lived eddy effects on the surface properties and air-sea CO2 fluxes. In the future, we plan to include in 

situ observations by Biogeochemical Argo floats (BGC-Argo; Roemmich et al., 2019), which could be used to provide in 

situ based fCO2 (sw) and air-sea CO2 fluxes to further verify the air-sea CO2 fluxes (e.g., as suggested by Keppler et al. 

(2024)). 

 460 
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 4.2 Comparison to previous global and regional eddy modifications of the air-sea CO2 fluxes 

Previous studies have investigated the effect of mesoscale eddies on global and regional air-sea CO2 fluxes (Table 2). Guo 

and Timmermans (2024) evaluate the cumulative effect of mesoscale variability on the air-sea CO2 flux globally, which they 

find enhances the global air-sea CO2 flux by 0.72 Mt C yr-1, or 0.72 Tg C yr-1. With the UEx-L-Eddies, if the individual eddy 

air-sea CO2 flux modifications are summed for the whole dataset, we find a global cumulative enhancement of the ocean 465 

CO2 sink by long-lived mesoscale eddies of 75 ± 33 Tg C between 1993 and 2022. This would be equivalent to 2.7 ± 1.1 Tg 

C yr-1 (95 % confidence interval). The calculated uncertainties with the UEx-L-Eddies allows robust uncertainty estimates to 

be provided alongside further analyses of the individual eddies, allowing significance of comparisons to be assessed. 

Differences here may be due to Guo and Timmermans (2024) including mesoscale variability not associated with mesoscale 

eddies (such as filaments, and current meanders), as their method does not track individual eddies. It could also be due to the 470 

UEx-L-Eddies only covering long-lived eddies, that represent 0.4 % of eddies within the META3.2 trajectories dataset and 

therefore misses the contribution of smaller eddies (Pegliasco et al., 2022b) that would be included with Guo and 

Timmermans (2024).  

Li et al. (2025) showed for the Kuroshio current that anticyclonic eddies enhanced the CO2 sink by 15 ± 1.73 %, and 

cyclonic eddies reduced the CO2 sink by 5.7 ± 1.5 %. Similar results were also shown for the Gulf Stream. Both the Gulf 475 

Stream and the Kuroshio current are dominated by short-lived eddies (e.g., those that survive for less than 1 year) in 

comparison to the long-lived eddies studied within the UEx-L-Eddies dataset, and therefore comparing these two estimates is 

inappropriate. However, our regional results for the North Pacific and North Atlantic Oceans do show a consistent direction 

of change (i.e., an enhanced sink) but with smaller magnitudes (Figure 8Figure 6).  

Keppler et al. (2024) investigate the role of mesoscale eddies in modifying the air-sea CO2 flux in the Southern Ocean using 480 

Biogeochemical Argo profilers between April 2014 to December 2022. They find anticyclonic eddies enhanced the air-sea 

CO2 sink by 7 ± 2 % and cyclonic eddies reduced the air-sea CO2 flux by 2 ± 2 % (1 sigma uncertainties). Within the UEx-

L-Eddies, we found that anticyclonic eddies enhanced the CO2 sink by 5.76.2 ± 5.03 % (2 sigma uncertainties), and cyclonic 

eddies reduced the sink by 2.5 ± 4.56 % between 1993 and 2022 (Figure 8Figure 6g). These consistent results provide 

confidence to the air-sea CO2 flux estimates within the UEx-L-Eddies. 485 

Ford et al. (2023) showed that within the South Atlantic Ocean, anticyclonic (N = 36) and cyclonic (N = 31) eddies enhanced 

the CO2 sink by 3.7 % and 1.7 %, respectively. In our analysis for the South Atlantic Ocean (Figure 8Figure 6e) we showed 

that anticyclonic suppressed enhanced the CO2 sink by 0.31.8 ± 15.01 (N = 207) and cyclonic eddies enhanced the CO2 sink 

by 0.71 ± 13.74.3 % (N = 155) respectively, where confidence intervals are expressed as 95 % confidence. Within this 

dataset, we consider ~5 times more eddies than Ford et al. (2023) and find that the air-sea CO2 flux uncertainties have a large 490 

effect on our resulting confidence, making the results indistinguishable at 95 % confidence (even at 67 % confidence the two 
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are indistinguishable). The comparison highlights the importance of the calculated uncertainties and their use within further 

analyses and comparisons with other air-sea CO2 fluxes. 

The UEx-L-Eddies identifies differences in the mesoscale eddy modification of the cumulative air-sea CO2 flux between 

anticyclonic and cyclonic eddies globally and regionally consistent with previous analyses. The driving mechanisms for 495 

these differences have been investigated in previous work. For example, Li et al. (2025) suggest that the competing changes 

in dissolved inorganic carbon and biological processes through eddy pumping contribute to the observed mesoscale eddy 

modification of the air-sea CO2 flux. Additionally, Keppler et al. (2024) showed that the mesoscale modification of the air-

sea CO2 flux had significant seasonal variability in the Southern Ocean, indicating that underlying driving processes could 

vary throughout the individual eddies lifetime. Ford et al. (2023) showed that the changes in air-sea CO2 flux in mesoscale 500 

eddies could be attributed to changes in the competing biological and physical processes. Although a comprehensive analysis 

of the driving mechanism is beyond the scope of this manuscript, the UEx-L-Eddies shows regional (Figure 8) and seasonal 

variability in the mesoscale eddy modification of the air-sea CO2 flux (e.g. Figure S4 shows anticyclonic eddies have 

stronger uptake in winter). The underlying environmental parameters (e.g. SST, MLD) could therefore be used to investigate 

the driving mechanisms for these differences in the mesoscale modification.  505 

 

Table 2: Summary of methodologies in previous studies used to estimate the eddy modification of the air-sea CO2 flux. pCO2 (sw) is 

the partial pressure of CO2 in seawater. 

 This study Guo and 

Timmermans 

(2024) 

Li et al.  (2025) Keppler et al. 

(2024) 

Ford et al. (2023) 

Eddy Dataset 

(or 

decomposition 

approach) 

META 3.2 Mesoscale 

signature 

decomposition 

META 3.2 META 3.2 META 3.1exp 

Lifetimes 

considered 

> 1 year N/A >12 weeks >=10 days >1 year 

Radius 

Threshold 

No criteria N/A No criteria >40km No criteria 

fCO2 (sw) 

estimation 

method 

Global fCO2 (sw) neural 

network approach 

Eddy resolving 

model 

Regional pCO2 (sw) 

neural network 

approach 

In situ pH with 

neural network 

Total Alkalinity 

Regional pCO2 (sw) 

neural network- 

approach 

Temporal January 1993 to 1982 to 2000 July 2002 to 1 April 2014 to July 2002 to 
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Coverage December 2022 January 2022 February 2022 December 2018 

Spatial 

Domain 

Global Global Western 

Boundary Current 

(Kuroshio and 

Gulf Stream) 

Southern Ocean South Atlantic 

Ocean 

Air sea CO2 

flux 

uncertainty 

treatment 

Comprehensive 

uncertainty  

N/A fCO2 (sw) and gas 

transfer 

considered 

Standard error of 

observations 

fCO2 (sw) and gas 

transfer 

considered 

 

 510 

 4.3 Limitations when using the UEx-L-Eddies 

For some eddies the daily environmental data can have missing values even for complete coverage data (for example, the 

CCI-SST). These gaps stem from the META3.2 eddy trajectories dataset where the polygon to define the limits of the eddy 

does not form correctly, and therefore we were unable to extract values where the polygon was undefined. No exclusion or 

interpolation mechanism was implemented as these data gaps affect a mean of 2 % (maximum = 15 %) of an individual eddy 515 

daily timeseries, which occur randomly through the timeseries, and therefore the impact on the monthly median statistics are 

minimal. 

The UEx-L-Eddies dataset focusses on larger, long-lived eddies (lifetimes greater than a year). This criteria will regionally 

exclude eddies within, for example, highly dynamic western boundary currents where shorter lived eddies often dominate 

(Figure 2c, d). Smith et al. (2023) however show that eddies with smaller radii generally have the same anomaly direction 520 

but with weaker magnitudes when compared to larger eddies. A previous study (Pegliasco et al., 2022b) identified that the 

shorter lived eddies within the Mesoscale Eddy Product (the same product used within this study) generally have smaller 

radii then the longer lived eddies. Therefore we would expect similar anomalies but of smaller magnitude when studying 

shorter lived eddies. 

5. Summary 525 

The UEx-L-Eddies is a dataset of the air-sea CO2 fluxes for (N=5996) long lived mesoscale eddies calculated in a 

Lagrangian mode within the global ocean. We use a global fCO2 (sw) neural network (as used within one dataset submitted to 

the Global Carbon Budget called UExP-FNN-U) to estimate the fCO2 (sw) within the eddies at a monthly resolution. We 
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prioritise the use of climate quality datasets within the analysis. The air-sea CO2 fluxes (also calculated following the 

methods of UExP-FNN-U) are accompanied by a comprehensive uncertainty budget (using a published methodology), that 530 

considers all known sources of uncertainty. We show for an exemplar eddy that the seasonal cycles of the eddy fCO2 (sw) and 

air-sea CO2 fluxes are captured and can be cumulatively added to assess the CO2 uptake (or outgassing) of individual eddies. 

The comprehensive air-sea CO2 flux uncertainties provide a robust basis for assessing the confidence in the eddy air-sea CO2 

flux estimates and can be propagated to further analysis. This illustrates how the importance of the different uncertainty 

components can change through time highlighting the shortfall of only quantifying selected contributions to the uncertainties 535 

or assuming fixed values. 

Within the uncertainty assessment, we find that the fCO2 (sw) in the eddies are estimated with an accuracy (bias) of ~1-0.69 

μatm and a precision (RMSD) of 19.1528.21 μatm for anticyclonic (N = 2082), and accuracy of 0.28~1 μatm and a precision 

of 24.0416.49 μatm for cyclonic eddies (N = 1376). These accuracy and precision estimates provide validity to the neural 

network fCO2 (sw). 540 

We demonstrate a use case of the UEx-L-Eddies dataset to evaluate the air-sea CO2 flux modification, and resultant 

integrated net CO2 sink, by long-lived mesoscale eddies, globally and regionally. We find that anticyclonic eddies enhance 

the net sink by 4.5 ± 2.8 % (N = 3244), and cyclonic eddies suppress by 0.7 ± 2.6 % (N = 2752) where uncertainties are the 

95% confidence interval. Regional differences in the eddy modification are observed, for example within the Southern 

Ocean, anticyclonic eddies enhanced the CO2 sink by 5.76.2 ± 5.03 %, and cyclonic eddies reduced the sink by 2.5 ± 4.55.6 545 

%. We demonstrate how the use case results are consistent with previous regional analyses. Our example also highlighted the 

importance of using the accompanying uncertainty information when comparing studies, and caution should be taken in 

drawing conclusions from small samples or individual eddies, without considering the underlying comprehensive uncertainty 

budgets for the air-sea CO2 fluxes. The data presented could now be used to understand the processes occurring within these 

eddies that are driving these modifications of the air-sea CO2 fluxes, and how regionally these processes may vary. 550 
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Data and Code Availability 

The code for the analysis is availableavailable, and version controlled on Github at 

https://github.com/JamieLab/pyEddyCO2. The UEx-L-Eddies dataset are available on Zenodo 

(https://doi.org/10.5281/ZENODO.16355763; Ford et al., 2025). The AVISO+ eddies trajectories data (META 3.2) was 

retrieved from AVISO+ (https://doi.org/10.24400/527896/A01-2022.005.220209; Pegliasco et al., 2022a). The CCI-SST 560 

climate record (v3.0) were retrieved from CEDA (https://doi.org/10.5285/4A9654136A7148E39B7FEB56F8BB02D2; Good 

and Embury, 2024). The OC-CCI chl-a (v6) were retrieved from CEDA 

(https://doi.org/10.5285/5011D22AAE5A4671B0CBC7D05C56C4F0; Sathyendranath et al., 2023). The CMEMS 

GLORYS12V1 SSS and MLD were retrieved from CMEMS (https://doi.org/10.48670/moi-00021; CMEMS, 2021). The 

CCMP wind speeds (v3.1) were retrieved from Remote Sensing Systems (https://doi.org/10.56236/rss-uv6h30; Remote 565 

Sensing Systems et al., 2022). The xCO2 (atm) were retrieved from NOAA-GML (https://doi.org/10.15138/DVNP-F961; Lan 

et al., 2023). In situ SOCAT observations that have been recalculated to a consistent depth and temperature dataset were 

retrieved from Zenodo (https://doi.org/10.5281/zenodo.15706025; Ford et al., 2024d). 
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