Dear Editor and Reviewers,

We thank you for the reviews of our manuscript. We greatly appreciate receiving these detailed and
constructive reviews and they have helped us to improve the paper considerably. Line numbers within this
document refer to the tracked change version of the manuscript.

During the revision process we identified an error within our code which was specific to eddies that crossed
the international date line. In these cases there was an error when the in situ fCO; (sw) Observations were
matched to the eddy. We have now corrected this error which results in ~1,100 fewer matches between
eddies and in situ fCO2 w) observations. This has meant that some statistics in the paper have been
updated but remain robust for anticyclonic (N = 2082) and cyclonic eddies (N = 1376).

The Zenodo repository has been updated with the latest version of our dataset (v0-3).
Yours sincerely,

Daniel J. Ford

Reviewer 1

This manuscript presents a global dataset of long-lived mesoscale eddies (1993—-2022) that includes
coincident environmental variables, neural-network—based estimates of surface ocean fugacity of CO,
(fCO,(sw)), and derived air—sea CO, fluxes with comprehensive uncertainty budgets. The dataset builds on
the authors’ earlier regional work by integrating a satellite-derived global eddy atlas, reanalysis products,
and a refined neural-network methodology (UExO-FNN-U) for estimating fCO,(sw). Using this global
dataset, the authors investigate how long-lived eddies modulate global air—sea CO, fluxes and compare
their results with other recent estimates obtained using different methods. The findings suggest that
anticyclonic eddies tend to enhance the CO, sink, while cyclonic eddies slightly reduce it, although the
underlying mechanisms remain unclear. Overall, this dataset represents a valuable contribution to the
community by improving our understanding of how coherent mesoscale eddies influence air—-sea CO,
exchange. | recommend publication after the following concerns are addressed:

Response: We thank the reviewer for their appraisal of our manuscript. We have addressed all their
comments below.

1. The title references both air-sea CO, fluxes and “biogeochemical conditions,” but the manuscript
provides limited discussion or detail on the latter. It would be useful to clarify what is meant by
“biogeochemical conditions” in this context and to explicitly describe what variables are included in the
dataset beyond those directly used for the flux estimates.

Response: We have now modified the title of the manuscript changing ‘biogeochemical conditions’to
‘environmental conditions’. As the reviewer highlights, we have not included, at this time, additional
biogeochemical observations beyond those required by the air-sea CO: flux calculations. The manuscript
title now reads “UEx-L-Eddies: Decadal and global long-lived mesoscale eddy trajectories with coincident
air-sea CO: fluxes and environmental conditions”.

2. The rationale for restricting the analysis to “long-lived” eddies (>1 year) is not well justified. While it is
plausible that large, long-lived eddies exert stronger influence on air—sea CO, exchange, this assumption
should be clearly articulated. Moreover, excluding shorter-lived eddies may bias the results, as
acknowledged in the comparison with previous studies. The limitations of this choice should be discussed
more explicitly. In addition, Figure 1 (and the associated discussion) would benefit from showing a
percentage map of long-lived eddies relative to the total number of eddies tracked in META. This would
provide readers with a clearer sense of how representative the dataset is compared to the broader eddy



population. If the percentage of long-lived eddies differs substantially across regions, this may imply that
eddy-induced carbon fluxes arise from different mechanisms depending on the local background dynamics
(e.g., Gulf Stream vs. subtropical gyres). In addition, this choice of “long-lived” eddies excludes many
eddies from the most energetic and eddy-rich regions, such as the Gulf Stream, the Kuroshio, and other
western boundary currents and their extensions, where short-lived but highly dynamic eddies dominate as
the authors noted in lines 390. This limitation should be discussed more explicitly.

Response: We have now explicitly stated the reasons for our focus on long-lived eddies. Firstly, as the
reviewer highlights these are the features that likely exert a larger influence on the air-sea CO: flux, and
therefore the signal of the mesoscale modification will be larger against the background air-sea CO: flux
dynamics (for example as shown in Smith et al., 2023). Secondly our selection is a computational choice,
whereby the extensive set of shorter lived eddies would require computation time that exceeds the current
available resources. This information has been added at Lines 101-105 which reads “The focus on these
long-lived eddies was due to their presence likely exhibiting a larger influence on the air-sea CO: flux (e.g.
Smith et al., 2023). Additionally, the selection was due to computational limitations in running the analysis
for the extensive set of shorter lived eddies within the dataset. We are working to extend the analysis to
shorter lived eddies but currently the focus remains on long lived eddies.”.

We have now discussed the limitation of long lived eddies and suggested the potential future work direction
of studying the mesoscale modification for the shorter lived eddies within the limitations section. The
information has been added at Lines 518-524 which reads “The UEx-L-Eddies dataset focusses on larger,
long-lived eddies (lifetimes greater than a year). This criteria will regionally exclude eddies within, for
example, highly dynamic western boundary currents where shorter lived eddies often dominate (Figure 2c,
d). Smith et al. (2023) however show that eddies with smaller radii generally have the same anomaly
direction but with weaker magnitudes when compared to larger eddies. A previous study (Pegliasco et al.,
2022) identified that the shorter lived eddies within the Mesoscale Eddy Product (the same product used
within this study) generally have smaller radii then the longer lived eddies. Therefore we would expect
similar anomalies but of smaller magnitude when studying shorter lived eddies.”.

As suggested, we have now added subplots to Figure 2 that displays the percentage of long lived eddies
that form in 1 degree regions compared to the total number of eddies that form. The updated Figure 2 is
displayed below this response. The new subplots highlight that the long-lived eddies can constitute up to
30% of the total eddy formations. But as highlighted by the reviewer the percentage of long lived eddies
falls to near 0% in western boundary current regions where shorter lived eddy formations are dominant.
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Figure 2: (a) The cumulative air-sea CO2flux into the anticyclonic eddies where the scatter points are plotted at the formation
location of each eddy. (b) same as (a) but for cyclonic eddies. (c) The percentage of long lived anticyclonic eddy trajectories
compared to all eddy trajectories that form in 1 degree by 1 degree regions. (d) same as (c) but for cyclonic eddies. Basemap

from Natural Earth v4.0.0 (https://www.naturalearthdata.com/). Supplementary Figure S1 shows the equivalent of (a) and (b)
in Tg C d*' to remove the differences in eddy lifetime.

3. The results show that long-lived anticyclonic eddies enhance the CO, sink while cyclonic eddies reduce
it, but the mechanisms remain underexplored. Some discussions of potential physical and/or
biogeochemical processes (e.g., temperature effects, stratification, nutrient dynamics, biological production)
that could drive these differences would strengthen the manuscript and help readers interpret the findings.

Response: We thank the reviewer for the suggestion. We have now added a paragraph that explores the
potential mechanisms driving these differences which are supported by the previous research. A
comprehensive analysis of the driving mechanisms is beyond the scope of this manuscript. The new
paragraph at Lines 494-505 reads “The UEx-L-Eddies identifies differences in the mesoscale eddy
modification of the cumulative air-sea CO; flux between anticyclonic and cyclonic eddies globally and
regionally consistent with previous analyses. The driving mechanisms for these differences have been
investigated in previous work. For example, Li et al. (2025) suggest that the competing changes in
dissolved inorganic carbon and biological processes through eddy pumping contribute to the observed
mesoscale eddy modification of the air-sea CO: flux. Additionally, Keppler et al. (2024) showed that the
mesoscale modification of the air-sea CO:; flux had significant seasonal variability in the Southern Ocean,
indicating that underlying driving processes could vary throughout the individual eddies lifetime. Ford et al.
(2023) showed that the changes in air-sea CO: flux in mesoscale eddies could be attributed to changes in
the competing biological and physical processes. Although a comprehensive analysis of the driving
mechanism is beyond the scope of this manuscript, the UEx-L-Eddies shows regional (Figure 8) and
seasonal variability in the mesoscale eddy modification of the air-sea CO: flux (e.g. Figure S4 shows
anticyclonic eddies have stronger uptake in winter). The underlying environmental parameters (e.g. SST,
MLD) could therefore be used to investigate the driving mechanisms for these differences in the mesoscale
modification.”.



https://www.naturalearthdata.com/

Reviewer 2

This manuscript presents a global spatiotemporal database of ocean CO» covering the period 1993-2022,
comprising 5,996 long-lived mesoscale eddies (3,244 anticyclonic and 2,752 cyclonic, each with a lifetime
>1 year). Surface ocean fCO- (sw) was estimated using an improved neural-network approach (UExP-
FNN-U), and air—sea CO; fluxes were calculated with FluxEngine, including a comprehensive uncertainty
assessment. The study addresses a critical gap in air—sea carbon flux research by focusing on eddy-scale
processes, combining satellite-derived eddy trajectories, reanalysis products, and machine-learning
estimates. However, the current version of the manuscript spends too much effort interpreting the results
and their implications, while paying insufficient attention to the methods and the demonstration of data
reliability. Key details regarding data processing, quality control, and the neural-network training procedure
are not clearly described. Moreover, the chlorophyll-based experiments and their comparison or validation
are inadequate. | strongly recommend that the authors substantially strengthen the validation and
methodological sections. Without a more rigorous demonstration of data and method reliability in capturing
eddy features, the manuscript is not yet suitable for publication in Earth System Science Data.

Response: We thank the reviewer for their appraisal of our manuscript. We have addressed all their
comments below.

Major comments:

1. The dataset is mainly based on an existing neural-network model, with no clear modification or
adaptation for eddy-specific environments. The authors should clarify why this model is suitable for
mesoscale eddy applications and provide targeted validation to demonstrate its reliability. How does this
approach differ from other machine-learning models, such as Landschutzer’s framework? What specific
features make it appropriate for eddy conditions? Without clear evidence that the model captures eddy-
related processes or outperforms general models, its applicability to eddy environments remains
unconvincing. Is there any better performance between this data product and other data products like
Landschutzer, Gregor, Chau data product?

Response: The neural network approach used in this study (UExP-FNN-U) to estimate the fCO2 sw) within
the eddy (and surrounding environment) is a similar methodology but different architecture to the
approaches referred to by the reviewer. The UEXP-FNN-U is architecturally similar to the SOM-FNN
approach (Landschiitzer et al., 2016), and the architecture is given in Ford et al. (2024). As highlighted by
analyses within the Global Carbon Budget, the performance of all these approaches on the global scale is
similar.

Although the UExP-FNN-U is not specifically modified for eddy conditions, the impact of the eddies on the
physical and biological conditions will result in a fCO; sw) representative of the eddy conditions. We present
two lines of evidence to support this conclusion. Firstly, previous studies that employ similar methodologies,
have used neural networks trained on all available in situ fCO: sw) within their geographical regions of
interest, and then applied these networks to study the eddy conditions (Ford et al., 2023; Li et al., 2025).
This includes the study of Ford et al. (2023) (which is the basis for this new dataset) who performed an
accuracy and precision analysis and showed that their neural network was able to capture the eddy fCO:
sw) conditions. Secondly, here, we have performed an evaluation within eddies to all available within-eddy in
situ fCO: sw) showing that the UExP-FNN-U has good accuracy (i.e bias close to 0) and a precision within
the locations of eddies that is similar to the global accuracy and precision (as given in Ford et al., 2024).
The within-eddy accuracy and precision estimates were discussed within the text at Lines 402-429 along
with their comparison to the equivalent global assessment statistics of the UExP-FNN-U. In response to
another of this reviewers’ comments, we have now added the spatial residual maps and included seasonal
splits for the within-eddy accuracy and precision estimates. These comparisons show the UExP-FNN-U is
able to capture the eddy dynamics with little bias, and a precision consistent to the global training.



In hindsight we can see that some of our phrasing or naming in the text was a little unclear when we
referred to accuracy and precision estimates, and so this may have confused the reader. Throughout the
text we now clearly refer to all eddy specific performance as ‘within the region of an eddy fCO; (sw) data
performance’ (or similar phrasing) so that it is clearly delineated from ‘global fCO; sv) data performance’.

2. The comparison in Section 4.2 with previous studies (e.g., Guo & Timmermans 2024; Li et al. 2025;
Keppler et al. 2024; Ford et al. 2023) is too general and does not sufficiently explain the sources of
divergence in reported results. To strengthen the discussion, | recommend adding a comparative table or
supplementary figure that systematically summarizes key methodological differences across studies—
including eddy identification criteria, lifetime and radius thresholds, fCO2 estimation methods, temporal
coverage, spatial domain, and uncertainty treatment—and clarifying how these factors may drive
discrepancies in both magnitude and interpretation. This would provide readers with a clearer comparative

framework.

Response: This is a good idea, thank you. We have now added a comparative table (Table 2) that
summarises the differences between the studies compared to in Section 4.2. This new table is now referred
to, and supports, the discussion in the main text.

Table 2: Summary of methodologies in previous studies used to estimate the eddy modification of the air-sea CO:2 flux.
pCO:2 sw) is the partial pressure of CO:z in seawater.

This study Guo and | Lietal. (2025) Keppler et al. | Ford et al
Timmermans (2024) (2023)
(2024)

Eddy Dataset | META 3.2 Mesoscale META 3.2 META 3.2 META 3.1exp
(or signature
decomposition decomposition
approach)
Lifetimes > 1 year N/A >12 weeks >=10 days >1 year
considered
Radius No criteria N/A No criteria >40km No criteria
Threshold
fCO:2 sw) | Global fCO2 (sw) | Eddy resolving | Regional pCO2 | In situ pH with | Regional pCO:2
estimation neural network | model (sw) neural | neural network | (sw) neural
method approach network Total Alkalinity network-

approach approach
Temporal January 1993 to | 1982 to 2000 July 2002 to 1 | Aprii 2014 to | July 2002 to
Coverage December 2022 January 2022 February 2022 December 2018
Spatial Global Global Western Southern Ocean | South  Atlantic
Domain Boundary Ocean

Current

(Kuroshio and

Gulf Stream)
Air sea CO:2 | Comprehensive N/A fCO2 sw) and gas | Standard error | fCOz2 sw) and gas
flux uncertainty transfer of observations | transfer
uncertainty considered considered
treatment




3. The authors should devote greater effort to demonstrating the reliability of the data rather than focusing
excessively on result interpretation. The current evaluation of the fCO, neural network relies only on overall
bias and RMSD, which may obscure regional or seasonal biases. A more thorough validation—such as
stratified tests by region, season, eddy lifetime, eddy size, or chlorophyll level, and spatial maps of
residuals—would better reveal systematic errors and the contribution of different eddy features. Such
analyses are essential to improve uncertainty characterization and strengthen confidence in the derived
air—sea CO, flux estimates.

Response: We thank the reviewer for this suggestion. We have now included the requested spatial maps
of residuals and the seasonal split of results. We have discussed above (in an earlier response) how the
precision and accuracy assessments of the air-sea gas flux estimates are specific and valid for the region
within and around each eddy, and this was supported by references and the eddy-local specific statistics
we have provided. The chlorophyll-a data are climate data records resolved to the spatial resolution
relevant to the mesoscale eddies and, as they are a climate data record, they have been extensively
assessed and evaluated by the teams that produce them; our manuscript provides the references for these
evaluations. Consequently, we feel that the evaluation is now very extensive and well supported by the
literature. We thank the reviewer for the suggestions.

In producing the suggested spatial residual maps, we identified an error within our matching code for
eddies close to the international dateline, and this has now been corrected. Fixing this, reduced the number
of matches between the neural network estimated fCO; sw) within eddies and the SOCAT in situ
observations by ~700 for the anticyclonic eddies and ~400 for the cyclonic eddies. For anticyclonic eddies,
the statistical comparisons between the neural network fCO: sw) and in situ fCO2 sw) now includes 2082
matches, and for cyclonic the number of matches is 1376, therefore our statistics are still robust.

As requested, Figure 4 has been updated to now include residual maps, and the updated Figure 4 is
displayed below in this document. The residual maps did not indicate any regional biases in the UExP-
FNN-U fCO: sw) within the eddies but did highlight that the majority of the in situ versus neural network
estimated fCO: sw) collocations occurred in the Northern Hemisphere where more in situ fCO2 (sw)
observations are made. This information has been added at Lines 263-272, which reads “The within eddy
accuracy and precision estimates between the SOCAT in situ observations and the UEXP-FNN-U fCO2 (sw)
showed good performance (Figure 4) similar to the results for the global scale in Ford et al. (2024)
(weighted bias = -0.18 pyatm, RMSD = 20.65, N = 18226 monthly 1 degree regions). For anticyclonic
eddies, we observed a smaller weighted RMSD (precision) of 19.15 uatm (N=2082 monthly matches;
Figure 4a). For cyclonic eddies we observed a lower RMSD of 16.49 uatm (N = 1376; Figure 4d). Both
eddy types showed small weighted biases (accuracy) and therefore we consider the UExP-FNN-U
generated fCO: sw) within eddies to sufficiently represent the eddy fCO; sw. The differences between the
within-eddy UExP-FNN-U fCO: sw) and in situ SOCAT observations did not indicate regional biases, but did
show a spatial weighting to the Northern Hemisphere where more in situ fCO2 sw) are made (Bakker et al.,
2016; Figure 4c, 1).”.

As requested, we have now included a new Figure (Figure 5) that splits the in situ versus UExP-FNN-U
fCO:2 (swy comparisons for the UExXP-FNN-U into seasons. The new Figure 5 is displayed below in this
document. Figure 5 shows that the UExP-FNN-U has good performance during winter and autumn but
shows slightly larger weighted bias (i.e. slightly reduced accuracy) and RMSD (slightly reduced precision)
during spring and autumn. Overall these comparisons showed no large seasonal biases in the UExP-FNN-
U fCOz sw) retrievals. This information has been added in Section 3.3, at Lines 273-277, which reads
“Seasonally separating the collocated within eddy in situ observations shows that the UExP-FNN-U tended
to show a small weighted bias (accuracy) and smaller RMSD (precision) during winter and autumn (Figure
ba,b,g,h) compared to spring and summer (Figure 5c,d,e,f). Although winter and autumn tended to have
lower collocations between in situ SOCAT observations and the UExP-FNN-U fCO; sw) (Figure 5). These
seasonal comparisons further strengthen the accuracy and precision of the UExP-FNN-U fCO; su) and
indicates no large seasonal biases.”. Additionally within the discussion, we have also added text at Lines
409-411 which reads “Although, we did observe a slightly lower precision during the spring and summer,
which could be due to the lack of a biological predictor (e.g chl-a) reducing the ability of the UExP-FNN-U to
capture these dynamics (Ford et al., 2022) (Figure 5).”.
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These two Figures have also been replicated for the UExP-FNN-U with chl-a as a predictor and appear in
the Supplementary as Figures S2 and S3. Figures S2 and S3 are also displayed below in this document.
These comparisons highlighted that the secondary neural network with chl-a as a predictor showed
improved accuracy and precision, and we noted that the spring and summer indicated greater performance
improvements. We refer to these Figures within the discussion at Lines 422-427, where we have added
new text which reads “This additional neural network showed similar but slightly improved precision (lower
weighted RMSD) when compared to the in situ SOCAT observations, although to a lower number of data
points (Figure S2; anticyclonic bias = -0.92 uatm, RMSD = 17.05 uyatm, N = 1914, cyclonic bias = 0.05
uatm, RMSD = 14.31 uatm, N = 1272). In addition, the seasonal breakdown of the comparisons between
the within eddy UExP-FNN-U with chl-a fCO: w) and the in situ fCO; sw) showed an increase in the
performance of this neural network during spring and summer, highlighting the improvements from chl-a
being added as a predictor (Figure S3).”.
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Figure 4: (a) Comparison of the UExP-FNN-U fCO: (sw) to in situ SOCAT observations within anticyclonic eddies. Solid black
line is the 1:1. Dashed line is the Type Il linear regression. In text statistics are root mean square difference (RMSD), bias,
slope and intercept of a Type Il linear regression and number of matches (N). (b) same as (a) but showing the uncertainty
on the fCO2 sw) (2 sigma; 95% confidence) as errorbars for anticyclonic eddies. (c) Difference between UExP-FNN-U fCOz (sw)
to in situ SOCAT observations within anticyclonic eddies plotted as spatial residuals. (d, e and f) same as (a, b and c) for
cyclonic eddies.
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Figure 5: (a) Comparison of the UExP-FNN-U fCO:2 (sw) to in situ SOCAT observations within anticyclonic eddies during
winter. Solid black line is the 1:1. Dashed line is the Type Il linear regression. In text statistics are root mean square
difference (RMSD), bias, slope and intercept of a Type Il linear regression and number of matches (N). (b) same as (a) but
for cyclonic eddies in the winter. (c) and (d) same as (a) and (b) for spring. (e) and (f) same as (a) and (b) for summer. (g)
and (h) same as (a) and (b) for autumn.
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Figure S2: (a) Comparison of the neural network fCO2 (sw) (with chl-a added as a predictor) to in situ SOCAT observations
within anticyclonic eddies. Solid black line is the 1:1. Dashed line is the Type Il linear regression. In text statistics are root
mean square difference (RMSD), bias, slope and intercept of a Type Il linear regression and number of matches (N). (b)
same as (a) but showing the uncertainty on the neural network fCO: (sw) (2 sigma; 95% confidence) as errorbars for
anticyclonic eddies. (c and d) same as (a and b) for cyclonic eddies.
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Figure S3: (a) Comparison of the neural network fCO:2 sw) (with chl-a added as a predictor) to in situ SOCAT observations
within anticyclonic eddies during winter. Solid black line is the 1:1. Dashed line is the Type Il linear regression. In text
statistics are root mean square difference (RMSD), bias, slope and intercept of a Type Il linear regression and number of
matches (N). (b) same as (a) but for cyclonic eddies in the winter. (c) and (d) same as (a) and (b) for spring. (e) and (f) same
as (a) and (b) for summer. (g) and (h) same as (a) and (b) for autumn.

4. Since ESSD focuses on data production and transparency, it would greatly help readers if the authors
clearly present the framework of the neural-network architecture as well as the workflow of data processing,
testing, and validation. A schematic of machine learning method and a flowchart of data production would
substantially improve clarity and reproducibility.

Response: As suggested, we have now added a new schematic that shows the data processing procedure
applied within our study, which is now the new Figure 1. This new figure can be found below in this
document, and it introduces the eddy tracking, the match up methodology and environmental datasets, and
the generation of the air-sea gas flux data. The neural network approach (UExP-FNN-U) is explained in
detail within a schematic in Ford et al. (2024), and the neural network training is consistent to this
description. We have therefore not added this information to Figure 1, but we have included a summary of
the neural network architecture, and the testing and validation approach used in our study. The updated
text on the UEXP-FNN-U can be found at Lines 124-135 which reads “The methods used are consistent
with those in Ford et al (2024a), so only a summary of the method is provided here. The UExP-FNN-U is a
two-step self-organising map (SOM) feed forward neural network (FNN) setup. The SOM splits the global
ocean into 16 regions with a similar fCO2 sw), SST, SSS and MLD seasonal cycles. A FNN ensemble (10
FNNs for each region) was then trained with in situ monthly 1 degree fCO: sw) observations from the
Surface Ocean CO; Atlas (SOCAT; Bakker et al., 2016) that have been recalculated to a consistent
temperature and depth dataset (Ford, Shutler, et al., 2024). The monthly 1 degree predictor variables of
SST, SSS, MLD and the atmospheric dry mixing ratio of CO2 (xCO: (atm)), and anomalies of each with
respect to a long term monthly climatology were collocated to the in situ fCO: sw). The FNNs consists of an
input layer with nodes equal to the number of input predictors, a hidden layer with a varying number of
nodes depending on a pretraining step and an output layer with a single node. The training data were split
into a 95% training and validation dataset, and a 5% independent test randomly for each month ensuring
the independent data were not clustered in one region. The UExP-FNN-U fCO; sw) estimates are then
typically used to estimate the global ocean CO: sink as described in Ford et al. (2024).”.



Eday polygon

Figure 1: Schematic showing the processing steps to estimate the air-sea CO: flux within long lived eddies (Blue box
background). The pink background boxes indicate the analysis completed to evaluate the accuracy and precision of the
dataset. In figure acronyms are: fugacity of CO: in seawater (fCO2 (sw)), atmospheric dry mixing ratio of CO2 (xCO2 (atm)) and
University of Exeter feed forward neural network with uncertainties (UExP-FNN-U).

5. The analysis focuses only on long-lived eddies (lifetime > 1 year; radius > 30 km), which account for
merely ~0.4% of all eddies in the AVISO data. The authors should justify this restrictive sampling choice.
Because the vast majority of shorter-lived, smaller-scale eddies—particularly prevalent in western boundary
currents and equatorial regions—are excluded, yet they may exert a substantial and possibly different
cumulative influence on air—sea CO; fluxes. To avoid overgeneralization, | recommend that the authors (i)
clearly state that their conclusions apply only to this subset of long-lived eddies, (ii) provide the eddy
lifetime distribution and grouped statistics (e.g., sample size, mean radius, spatial coverage, flux
contribution) across different lifetime classes, and (iii) if feasible, perform a simplified analysis on short-lived
eddies, or otherwise explicitly discuss the likely direction and magnitude of biases introduced by their
exclusion with reference to existing literature.

Response: We have now added information on the reason for our focus of long-lived eddies, which occurs
at Lines 101-105 that reads “The focus on these long-lived eddies was due to their presence likely
exhibiting a larger influence on the air-sea CO: flux (e.g. Smith et al., 2023). Additionally, the selection was
due to computational limitations in running the analysis for the extensive set of shorter lived eddies within
the dataset. We are working to extend the analysis to shorter lived eddies but currently the focus remains
on long lived eddies.”.

We have not been able to run the analysis on shorter lived eddies due to the computational reasons
highlighted above. However, we have now included a statement within the limitations that suggests the
likely direction of the mesoscale eddy modification of the air-sea CO: flux. This text reads at Lines 518-524
as “The UEx-L-Eddies dataset focusses on larger, long-lived eddies (lifetimes greater than a year). This
criteria will regionally exclude eddies within, for example, highly dynamic western boundary currents where
shorter lived eddies often dominate (Figure 2c, d). Smith et al. (2023) however show that eddies with
smaller radii generally have the same anomaly direction but with weaker magnitudes when compared to
larger eddies. A previous study (Pegliasco et al., 2022) identified that the shorter lived eddies within the
Mesoscale Eddy Product (the same product used within this study) generally have smaller radii then the
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longer lived eddies. Therefore we would expect similar anomalies but of smaller magnitude when studying
shorter lived eddies.”.

6. Some data-processing procedures are insufficiently described, which is not sufficient for a data-oriented
paper. The authors note that on some days environmental data (e.g., CCI-SST) are missing due to the
absence of defined eddy polygons, but the extent of this missing data has not been quantified, nor is it clear
whether certain eddies were excluded or flagged. It is recommended to describe the treatment strategy for
cases with substantial data loss (e.g., exclusion, interpolation, or flagging). If no exclusion was applied, the
potential direction of bias should be discussed. This would ensure that database users can properly
interpret and filter eddy time series that may be affected by data quality issues.

Response: This is a good point. We have now added further details to data-processing procedures as
highlighted by the reviewer. For the missing polygons, we have now quantified that the missing data affects
a mean of 2% of an individual eddy daily time series, and these occur randomly throughout the timeseries.
As the impact is randomly through the timeseries (and effects ~2%), the impact on the monthly median
statistics is minimal. We have added this information at Lines 512-517 as “For some eddies the daily
environmental data can have missing values even for complete coverage data (for example, the CCI-SST).
These gaps stem from the METAS3.2 eddy trajectories dataset where the polygon to define the limits of the
eddy does not form correctly, and therefore we were unable to extract values where the polygon was
undefined. No exclusion or interpolation mechanism was implemented as these data gaps affect a mean of
2 % (maximum = 15 %) of an individual eddy daily timeseries, which occur randomly through the
timeseries, and therefore the impact on the monthly median statistics are minimal.”.

7. The authors provide a second fCO; estimate that includes chl-a as an input, but this product is only
available from 1997 onward and contains gaps in polar regions during winter. The manuscript currently
mentions these limitations only briefly, without quantifying their impact. | recommend that the authors
discuss how this affects the temporal and regional representativeness of the results; and (ii) present spatial
difference maps or regional statistics comparing the estimates with and without chl-a, to allow readers to
assess the role of biological factors in different oceanic regimes.

Response: We thank the reviewer for their suggestion. We have now included an additional figure (Figure
9) into our discussion of the chl-a version of the UExP-FNN-U, which replicates Figure 8 for the chl-a
version of the UExP-FNN-U but also shows the results of using the same eddy set with the UExP-FNN-U
without the inclusion of chl-a in the neural network training. Figure 9 is shown below in this document and
confirms that the air-sea CO; flux estimate is different between the two versions, but that all differences fall
within the uncertainties. Notably the South Pacific and Southern Ocean show larger differences than the
other regions. These details are now discussed in a new paragraph at Lines 430-437 which reads “The
impact on the modification of the cumulative air-sea CO; flux by mesoscale eddies due to including chl-a
within the UExXP-FNN-U can be assessed by replicating Figure 8, but using the secondary fCO: (sw) and
resulting air-sea CO; fluxes (Figure 9). Figure 9 shows the regional modification of the air-sea CO; fluxes
by eddies where both neural network variants are able to estimate the fCO; sw) (i.e we show a subset of the
eddies in Figure 8). In all regions both neural networks retrieve a similar signature, but the chl-a version
generally suggests a stronger enhancement (or weaker suppression) of the CO2 sink compared to the
UExP-FNN-U without chl-a. Notably the South Pacific Ocean and Southern Ocean show larger differences
although in all cases these differences fall within the uncertainties. We therefore provide the secondary
neural network to further aid in understanding the processes that are driving mesoscale eddy modification
of the air-sea CO: fluxes.”.
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Figure 9: (a) Ocean basins considered for further analysis, with a colour for each region. Regions follow the RECCAP2
ocean basin definition, but each basin was split at the Equator into North and South. North Indian Ocean was removed due
to low number of eddies analysed. (b) Box plot showing the eddy modification of the air-sea CO: flux using the chl-a version
of the UExP-FNN-U for the region shown with the arrow. Red line indicates the median, box indicates the 25th and 75th
quartiles, whiskers extend from the 25" and 75™ quartiles by 1.5 interquartile ranges. Circles indicate data considered
outliers (greater than 1.5 interquartile ranges outside the 25t and 75t percentile). Dark red shading indicates the 1 sigma
(~68% confidence) uncertainty on the median by propagating the air-sea CO: flux uncertainties using a Monte Carlo
uncertainty propagation. Light red shading indicates the 2 sigma uncertainty on the median (~95% confidence). Blue line
and shading indicates the same but for the UExP-FNN-U without chl-a. X-axis label shows number of eddy (N), the median
modification with the 2 sigma uncertainty for the chl-a version of the UExP-FNN-U labelled with a C, and the UExP-FNN-U
without chl-a labelled with a P. (c), (d), (e), (f), (g) same as (b) for their respective regions identified by the arrow. Basemap
in (a) from Natural Earth v4.0.0 (https://www.naturalearthdata.com/).

8. The discussion on data reliability and methodological limitations is insufficient. The authors should
explicitly identify the main sources of bias arising from both their approach and data, and propose
strategies to improve robustness and reproducibility. For example, conducting additional machine-learning
experiments to trace and quantify potential biases would help strengthen the credibility of the dataset.

Response: We have used an evidence-based approach to guide our discussion of the limitations. The
uncertainty analysis presented within the manuscript shows that the largest contribution is from the fCO2 (sw)
component, and therefore the neural network estimates. We have discussed the potential limitations, and
biases with the fCO: sw) approach within the methodology and discussion. We highlight the exclusion of a
representative biological parameter could affect the neural network, and therefore provide the second
version of the neural network fCO; (sw) estimates that include chl-a. To assess biases in the neural network
estimated fCO: sw) we performed the statistical comparison to the in situ SOCAT observations within
eddies, which has been expanded in response to an earlier comment by the reviewer. We have also now
extended the evaluation of the chl-a neural network fCO: sw) as also suggested by the reviewer.

In addressing the reviewers comment above, we produced a new figure which compared the change in the
eddy flux compared to the surrounding water estimated from the two neural networks (Figure 9). These
showed small differences in the regional modification by both anticyclonic and cyclonic, although on a
smaller sample size due to limitations discussed with the chl-a neural network on Lines 155-159.

We therefore feel the data reliability and methodological limitations are now well discussed within the
manuscript, and we thank the reviewer’ for their earlier comments which have helped to strengthen this
further.
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Minor comments:

1. | suggest adding a table summarizing the data sources and key characteristics of all variables used in
this study (e.g., variable, units, period, resolution, product name, and references). Such a table would
improve clarity, allow readers to quickly assess the datasets employed.

Response: We have now added a new table that summarises the environmental input parameters that are
considered within the analysis. Table 1 is on Line 95 of the manuscript and shown below this response.

Table 1: Summary of the environmental datasets and in situ observations collocated with the long lived mesoscale eddies.

Parameter Units Dataset Temporal Spatial Reference
Resolution Resolution
Sea surface | Kelvin ESA CCI-SST | Daily ~5km (0.05 | (Embury et al.,
temperature v3.0 degree) 2024; Good &
Embury, 2024)
Sea surface | Psu CMEMS Daily ~9km (0.08 | (CMEMS, 2021;
salinity GLORYS12V1 degree) Jean-Michel et
al., 2021)
Mixed layer depth | m CMEMS Daily ~9km (0.08 | (CMEMS, 2021;
GLORYS12V1 degree) Jean-Michel et
al., 2021)
Chlorophyll-a mg m3 OC-CCI v6 Daily 4km (Sathyendranath
et al, 2019,
2023)
Wind speed ms” CCMP v3.1 6 hourly ~25km (0.25 | (Mears et al.,
degree) 2022; Remote
Sensing
Systems et al.,
2022)
Sea level pressure | hPa ERAS5 Monthly ~25km (0.25 | (Hersbach et al.,
degree) 2019, 2020)
XCO2 (atm) ppm NOAA-GML Monthly ~100km (1 | (Lanetal., 2023)
degree)
fCO2 (sw) patm Recalculated Individual cruise | N/A (Bakker et al.,
SOCAT observations 2016; Ford,
Shutler, et al.,
2024)

2. Regarding xCO- (MBL), please clarify how the meridional band product was mapped onto the 1° field
(e.g., through band replication, interpolation, or another approach). Providing this detail would improve the
transparency of the data processing procedure.

Response: We have now added the information on the xCO: (aim), whereby the zonal marine boundary
layer xCO: atm) Was replicated for each longitude. This information has been added at Lines 140-143 as
“These xCO: (am) fields were produced by calculating the monthly average of the xCO: am) for each latitude
(~2.5 degree spacing), which were then interpolated to 1 degree and replicated for each 1 degree
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longitude. A distance weighted mean of the nearest four pixels taken at the mean (centre) position of each
eddy was used to estimate the monthly xCO2 (atm).”.

3. The dataset spans 1993-2022. It is recommended that the authors at least comment on decadal-scale
variations. For example, they could assess whether the impact of eddies on air—sea fluxes remained stable
during the 1990s, 2000s, and 2010s, or if notable changes occurred. Even if a full trend analysis cannot be
conducted in the main text, it would be helpful to provide simple decade-wise statistics (e.g., median
changes per decade) in the supplementary materials to give readers an initial view of long-term evolution.

Response: We have now added a new supplementary table (Table S1) that provides the median eddy
modification for the periods 1993-2000, 2000-2010 and 2010-2020. Table S1 is displayed below this
response. This analysis suggest that the anticyclonic eddies are becoming an increasing enhancer of the
CO:; sink, and the cyclonic eddy suppression is reducing, but the differences are within the reported
uncertainties. We have now mentioned the analysis within the main text at Lines 384-387 which reads
“These data allow a range of analyses to be conducted, for example, in this study, we show how the
mesoscale modification of the air-sea CO:; flux can be determined from these data regionally (Figure 7;
Figure 8) or could be evaluated through time (e.g. Table S1 provides global decadal median mesoscale
modifications suggesting an increasing enhancement of the CO: sink).”.

Table S1: Median decadal eddy modification of the air-sea CO: flux for both cyclonic and anticyclonic eddies. Uncertainties
are the 95 % confidence interval of the propagated uncertainties. Number in square brackets indicates the number of eddies
considered. Note eddies that form in one period and dissipate in another are considered in both periods.

Time period Anticyclonic eddy Cyclonic eddy
modification of air-sea modification of air-sea
CO2 flux COz2 flux

1993 to 2000 -2.57 £6.23 % 1.66 +5.95 %
[753] [617]

2000 to 2010 -4.28 +4.53 % 0.74 £ 4.32 %
[1321] [1119]

2010 to 2020 -5.48 + 3.62 % 0.30 + 3.60 %
[1482] [1283]

4. The manuscript states that SOCAT data have been gridded (monthly 1°) and used for model training and
testing, but the strategy for splitting the training and test sets is not clearly described. It is recommended
that the authors provide details on the partitioning method employed, such as leave-one-time-out or leave-
one-location-out cross-validation, or any other approach used, to clarify the reliability and independence of
the model evaluation.

Response: We have now added the information on the independent test data withheld from the UExP-
FNN-U which is described in Ford et al. (2024). A 5% independent test dataset is withheld from each month
of the full UExP-FNN-U training dataset and ensuring that the data are not clustered in one region. The
remaining data (95%) are randomly split between training and validation for each of the 10 FNN ensemble
members. The independent test data remains completely independent until the accuracy and precision are
assessed. This information has been added at Lines 130-135 which reads “The FNNs consists of an input
layer with nodes equal to the number of input predictors, a hidden layer with a varying number of nodes
depending on a pretraining step and an output layer with a single node. The training data were split into a
95% training and validation dataset, and a 5% independent test randomly for each month ensuring the
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independent data were not clustered in one region. The UExXP-FNN-U fCO: sw) estimates are then typically
used to estimate the global ocean CO: sink as described in Ford et al. (2024).”.

5. Figure 1 currently only shows the eddy formation points and cumulative flux scatter. It is recommended
to also overlay the eddy occurrence frequency or sample density at each grid point (or provide this in a
supplementary figure). This would help assess whether certain large flux values are driven by a few
exceptionally large or long-lived eddies.

Response: We have updated Figure 2 based on the recommendations of both reviewers, where we have
added two new subplots that show the frequency of long-lived eddies formation compared to all eddy
formations within 1 degree regions. The updated Figure 2 can be found on Page 3 of this document. We
have also included the new supplementary Figure S1 that replicates Figure 2 but normalises the cumulative
air-sea CO; flux to the eddy lifetime in days (giving a CO: flux in Tg C d'"). This new supplementary Figure
S1 is shown below in this document.
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Figure S1: (a) The cumulative air-sea CO; flux into the anticyclonic eddies normalised by eddy lifetime in days
where the scatter points are plotted at the formation location of each eddy. (b) same as (a) but for cyclonic
eddies.

6. Although the manuscript notes that anticyclonic eddies enhance CO; uptake while cyclonic eddies
reduce it, it is recommended that the authors further quantify the asymmetry between the two eddy types.
For instance, seasonal or regional statistics of flux differences could be provided, along with a discussion of
potential physical drivers (e.g., temperature, stratification) and biological drivers (e.g., productivity).

Response: We thank the reviewer for the suggestion, and we have now provided a synopsis of the
seasonal variability in the mesoscale modification of the air-sea CO: flux in the supporting information
(Figure S4). Figure S4 is displayed below this response in this document. The regional synopsis of the
mesoscale eddy modification of the air-sea CO: fluxes was presented in the original manuscript (Figure 7,
Figure 8 and discussed in Section 4.2), which has been extended following comments by the reviewer. We
have now added a paragraph that explores the potential mechanisms driving these differences which are
supported by the previous research. A comprehensive analysis of the driving mechanisms is beyond the
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scope of this manuscript. The new paragraph at Lines 494-505 reads “The UEx-L-Eddies identifies
differences in the mesoscale eddy modification of the cumulative air-sea CO:; flux between anticyclonic and
cyclonic eddies globally and regionally consistent with previous analyses. The driving mechanisms for
these differences have been investigated in previous work. For example, Li et al. (2025) suggest that the
competing changes in dissolved inorganic carbon and biological processes through eddy pumping
contribute to the observed mesoscale eddy modification of the air-sea CO: flux. Additionally, Keppler et al.
(2024) showed that the mesoscale modification of the air-sea CO: flux had significant seasonal variability in
the Southern Ocean, indicating that underlying driving processes could vary throughout the individual
eddies lifetime. Ford et al. (2023) showed that the changes in air-sea CO; flux in mesoscale eddies could
be attributed to changes in the competing biological and physical processes. Although a comprehensive
analysis of the driving mechanism is beyond the scope of this manuscript, the UEx-L-Eddies shows
regional (Figure 8) and seasonal variability in the mesoscale eddy modification of the air-sea CO: flux (e.g.
Figure S4 shows anticyclonic eddies have stronger uptake in winter). The underlying environmental
parameters (e.g. SST, MLD) could therefore be used to investigate the driving mechanisms for these
differences in the mesoscale modification.”.
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Figure S4: (a) Box plot showing the eddy modification of the air-sea CO2 flux during winter using the UExP-FNN-U. Red line
indicates the median, box indicates the 25th and 75th quartiles, whiskers extend from the 25" and 75" quartiles by 1.5
interquartile ranges. Circles indicate data considered outliers. Dark red shading indicates the 1 sigma (~68% confidence)
uncertainty on the median by propagating the air-sea CO: flux uncertainties using a Monte Carlo uncertainty propagation.
Light red shading indicates the 2 sigma uncertainty on the median (~95% confidence). X-axis label shows number of eddies
(N), the median modification with the 2 sigma uncertainty. (b) same as (a) but for spring. (c) same as (a) but for summer. (d)
same as (a) for autumn.

7. This study frequently refers to the “weighted mean,” but the weighting scheme is not clearly specified
(e.g., latitude, area, or distance weighting). It is recommended that the authors add a statement clarifying
how the weights are calculated.

Response: We have now clarified that the weighted means are calculated based on distance to mean
location of the eddy and this is now stated at Lines 141-144 and 193-195.
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8. Figure 1 shows that many eddy formation points are located near the coast or continental shelf, but the
manuscript does not specify how eddy polygons overlapping with land on a given day are handled. This
could affect the extraction of sea surface variables and flux estimates. It is recommended that the authors
clarify the treatment in the Methods section (e.g., applying a land mask to retain only the ocean portion, or
excluding eddy days where the overlap with land exceeds a certain threshold). If no such treatment was
applied, it would be helpful to provide in the supplementary materials statistics on the number or fraction of
eddies overlapping with land.

Response: Within Figure 2 some of the eddies do form close to the coastal region, however none of these
overlap with the land. The eddy trajectories and the polygons for the eddy location are estimated from
satellite altimetry sea level heights which do not have land values. Therefore these features cannot overlap
land. We have now added this information at Lines 106-107 which reads “For each eddy trajectory, a daily
position was provided along with a polygon shape that estimates the eddy shape and size from the
altimetry-based data which can not overlap with land.”.

9. This study employs Type Il regression to compare the NN and SOCAT data, but it does not briefly explain
why Type Il rather than ordinary least squares (OLS) regression was chosen. It is recommended to add 1-2
sentences in the statistical comparison section to justify this choice (e.g., Type Il regression is more
appropriate when both the independent and dependent variables contain measurement errors) and to cite
relevant references.

Response: We have now added a sentence to describe why a Type Il regression was used. This sentence
reads at Lines 167-169 as: “A Type Il linear regression was used as uncertainties are presented within both
the in situ and neural network fCO2 sw) (Laws, 1997; York et al., 2004).”.
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