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Dear Editor and Reviewers, 

We thank you for the reviews of our manuscript. We greatly appreciate receiving these detailed and 
constructive reviews and they have helped us to improve the paper considerably. Line numbers within this 
document refer to the tracked change version of the manuscript. 

During the revision process we identified an error within our code which was specific to eddies that crossed 
the international date line. In these cases there was an error when the in situ fCO2 (sw) observations were 
matched to the eddy. We have now corrected this error which results in ~1,100 fewer matches between 
eddies and in situ fCO2 (sw) observations. This has meant that some statistics in the paper have been 
updated but remain robust for anticyclonic (N = 2082) and cyclonic eddies (N = 1376).  

The Zenodo repository has been updated with the latest version of our dataset (v0-3). 

Yours sincerely, 

Daniel J. Ford 

 

 

Reviewer 1 

This manuscript presents a global dataset of long-lived mesoscale eddies (1993–2022) that includes 

coincident environmental variables, neural-network–based estimates of surface ocean fugacity of CO₂ 

(fCO₂(sw)), and derived air–sea CO₂ fluxes with comprehensive uncertainty budgets. The dataset builds on 

the authors’ earlier regional work by integrating a satellite-derived global eddy atlas, reanalysis products, 

and a refined neural-network methodology (UExO-FNN-U) for estimating fCO₂(sw). Using this global 

dataset, the authors investigate how long-lived eddies modulate global air–sea CO₂ fluxes and compare 

their results with other recent estimates obtained using different methods. The findings suggest that 

anticyclonic eddies tend to enhance the CO₂ sink, while cyclonic eddies slightly reduce it, although the 

underlying mechanisms remain unclear. Overall, this dataset represents a valuable contribution to the 

community by improving our understanding of how coherent mesoscale eddies influence air–sea CO₂ 
exchange. I recommend publication after the following concerns are addressed: 

Response: We thank the reviewer for their appraisal of our manuscript. We have addressed all their 

comments below. 

 

1. The title references both air–sea CO₂ fluxes and “biogeochemical conditions,” but the manuscript 

provides limited discussion or detail on the latter. It would be useful to clarify what is meant by 

“biogeochemical conditions” in this context and to explicitly describe what variables are included in the 

dataset beyond those directly used for the flux estimates. 

Response: We have now modified the title of the manuscript changing ‘biogeochemical conditions’ to 

‘environmental conditions’. As the reviewer highlights, we have not included, at this time, additional 

biogeochemical observations beyond those required by the air-sea CO2 flux calculations. The manuscript 

title now reads “UEx-L-Eddies: Decadal and global long-lived mesoscale eddy trajectories with coincident 

air-sea CO2 fluxes and environmental conditions”. 

 

2. The rationale for restricting the analysis to “long-lived” eddies (>1 year) is not well justified. While it is 

plausible that large, long-lived eddies exert stronger influence on air–sea CO₂ exchange, this assumption 

should be clearly articulated. Moreover, excluding shorter-lived eddies may bias the results, as 

acknowledged in the comparison with previous studies. The limitations of this choice should be discussed 

more explicitly. In addition, Figure 1 (and the associated discussion) would benefit from showing a 

percentage map of long-lived eddies relative to the total number of eddies tracked in META. This would 

provide readers with a clearer sense of how representative the dataset is compared to the broader eddy 
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population. If the percentage of long-lived eddies differs substantially across regions, this may imply that 

eddy-induced carbon fluxes arise from different mechanisms depending on the local background dynamics 

(e.g., Gulf Stream vs. subtropical gyres). In addition, this choice of “long-lived” eddies excludes many 

eddies from the most energetic and eddy-rich regions, such as the Gulf Stream, the Kuroshio, and other 

western boundary currents and their extensions, where short-lived but highly dynamic eddies dominate as 

the authors noted in lines 390. This limitation should be discussed more explicitly. 

Response: We have now explicitly stated the reasons for our focus on long-lived eddies. Firstly, as the 

reviewer highlights these are the features that likely exert a larger influence on the air-sea CO2 flux, and 

therefore the signal of the mesoscale modification will be larger against the background air-sea CO2 flux 

dynamics (for example as shown in Smith et al., 2023). Secondly our selection is a computational choice, 

whereby the extensive set of shorter lived eddies would require computation time that exceeds the current 

available resources. This information has been added at Lines 101-105 which reads “The focus on these 

long-lived eddies was due to their presence likely exhibiting a larger influence on the air-sea CO2 flux (e.g. 

Smith et al., 2023). Additionally, the selection was due to computational limitations in running the analysis 

for the extensive set of shorter lived eddies within the dataset. We are working to extend the analysis to 

shorter lived eddies but currently the focus remains on long lived eddies.”. 

We have now discussed the limitation of long lived eddies and suggested the potential future work direction 

of studying the mesoscale modification for the shorter lived eddies within the limitations section. The 

information has been added at Lines 518-524 which reads “The UEx-L-Eddies dataset focusses on larger, 

long-lived eddies (lifetimes greater than a year). This criteria will regionally exclude eddies within, for 

example, highly dynamic western boundary currents where shorter lived eddies often dominate (Figure 2c, 

d). Smith et al. (2023) however show that eddies with smaller radii generally have the same anomaly 

direction but with weaker magnitudes when compared to larger eddies. A previous study (Pegliasco et al., 

2022) identified that the shorter lived eddies within the Mesoscale Eddy Product (the same product used 

within this study) generally have smaller radii then the longer lived eddies. Therefore we would expect 

similar anomalies but of smaller magnitude when studying shorter lived eddies.”. 

As suggested, we have now added subplots to Figure 2 that displays the percentage of long lived eddies 

that form in 1 degree regions compared to the total number of eddies that form. The updated Figure 2 is 

displayed below this response. The new subplots highlight that the long-lived eddies can constitute up to 

30% of the total eddy formations. But as highlighted by the reviewer the percentage of long lived eddies 

falls to near 0% in western boundary current regions where shorter lived eddy formations are dominant. 
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Figure 2: (a) The cumulative air-sea CO2 flux into the anticyclonic eddies where the scatter points are plotted at the formation 
location of each eddy. (b) same as (a) but for cyclonic eddies. (c) The percentage of long lived anticyclonic eddy trajectories 
compared to all eddy trajectories that form in 1 degree by 1 degree regions. (d) same as (c) but for cyclonic eddies. Basemap 
from Natural Earth v4.0.0 (https://www.naturalearthdata.com/). Supplementary Figure S1 shows the equivalent of (a) and (b) 
in Tg C d-1 to remove the differences in eddy lifetime. 

 

3. The results show that long-lived anticyclonic eddies enhance the CO₂ sink while cyclonic eddies reduce 

it, but the mechanisms remain underexplored. Some discussions of potential physical and/or 

biogeochemical processes (e.g., temperature effects, stratification, nutrient dynamics, biological production) 

that could drive these differences would strengthen the manuscript and help readers interpret the findings. 

Response: We thank the reviewer for the suggestion. We have now added a paragraph that explores the 

potential mechanisms driving these differences which are supported by the previous research. A 

comprehensive analysis of the driving mechanisms is beyond the scope of this manuscript. The new 

paragraph at Lines 494-505 reads “The UEx-L-Eddies identifies differences in the mesoscale eddy 

modification of the cumulative air-sea CO2 flux between anticyclonic and cyclonic eddies globally and 

regionally consistent with previous analyses. The driving mechanisms for these differences have been 

investigated in previous work. For example, Li et al. (2025) suggest that the competing changes in 

dissolved inorganic carbon and biological processes through eddy pumping contribute to the observed 

mesoscale eddy modification of the air-sea CO2 flux. Additionally, Keppler et al. (2024) showed that the 

mesoscale modification of the air-sea CO2 flux had significant seasonal variability in the Southern Ocean, 

indicating that underlying driving processes could vary throughout the individual eddies lifetime. Ford et al. 

(2023) showed that the changes in air-sea CO2 flux in mesoscale eddies could be attributed to changes in 

the competing biological and physical processes. Although a comprehensive analysis of the driving 

mechanism is beyond the scope of this manuscript, the UEx-L-Eddies shows regional (Figure 8) and 

seasonal variability in the mesoscale eddy modification of the air-sea CO2 flux (e.g. Figure S4 shows 

anticyclonic eddies have stronger uptake in winter). The underlying environmental parameters (e.g. SST, 

MLD) could therefore be used to investigate the driving mechanisms for these differences in the mesoscale 

modification.”. 

 

 

https://www.naturalearthdata.com/
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Reviewer 2 

This manuscript presents a global spatiotemporal database of ocean CO2 covering the period 1993–2022, 

comprising 5,996 long-lived mesoscale eddies (3,244 anticyclonic and 2,752 cyclonic, each with a lifetime 

>1 year). Surface ocean fCO2 (sw) was estimated using an improved neural-network approach (UExP-

FNN-U), and air–sea CO2 fluxes were calculated with FluxEngine, including a comprehensive uncertainty 

assessment. The study addresses a critical gap in air–sea carbon flux research by focusing on eddy-scale 

processes, combining satellite-derived eddy trajectories, reanalysis products, and machine-learning 

estimates. However, the current version of the manuscript spends too much effort interpreting the results 

and their implications, while paying insufficient attention to the methods and the demonstration of data 

reliability. Key details regarding data processing, quality control, and the neural-network training procedure 

are not clearly described. Moreover, the chlorophyll-based experiments and their comparison or validation 

are inadequate. I strongly recommend that the authors substantially strengthen the validation and 

methodological sections. Without a more rigorous demonstration of data and method reliability in capturing 

eddy features, the manuscript is not yet suitable for publication in Earth System Science Data. 

Response: We thank the reviewer for their appraisal of our manuscript. We have addressed all their 

comments below. 

 

Major comments: 

1. The dataset is mainly based on an existing neural-network model, with no clear modification or 

adaptation for eddy-specific environments. The authors should clarify why this model is suitable for 

mesoscale eddy applications and provide targeted validation to demonstrate its reliability. How does this 

approach differ from other machine-learning models, such as Landschützer’s framework? What specific 

features make it appropriate for eddy conditions? Without clear evidence that the model captures eddy-

related processes or outperforms general models, its applicability to eddy environments remains 

unconvincing. Is there any better performance between this data product and other data products like 

Landschutzer, Gregor, Chau data product? 

Response: The neural network approach used in this study (UExP-FNN-U) to estimate the fCO2 (sw) within 

the eddy (and surrounding environment) is a similar methodology but different architecture to the 

approaches referred to by the reviewer. The UExP-FNN-U is architecturally similar to the SOM-FNN 

approach (Landschützer et al., 2016), and the architecture is given in Ford et al. (2024). As highlighted by 

analyses within the Global Carbon Budget, the performance of all these approaches on the global scale is 

similar.  

Although the UExP-FNN-U is not specifically modified for eddy conditions, the impact of the eddies on the 

physical and biological conditions will result in a fCO2 (sw) representative of the eddy conditions. We present 

two lines of evidence to support this conclusion. Firstly, previous studies that employ similar methodologies, 

have used neural networks trained on all available in situ fCO2 (sw) within their geographical regions of 

interest, and then applied these networks to study the eddy conditions (Ford et al., 2023; Li et al., 2025). 

This includes the study of Ford et al. (2023) (which is the basis for this new dataset) who performed an 

accuracy and precision analysis and showed that their neural network was able to capture the eddy fCO2 

(sw) conditions. Secondly, here, we have performed an evaluation within eddies to all available within-eddy in 

situ fCO2 (sw) showing that the UExP-FNN-U has good accuracy (i.e bias close to 0) and a precision within 

the locations of eddies that is similar to the global accuracy and precision (as given in Ford et al., 2024). 

The within-eddy accuracy and precision estimates were discussed within the text at Lines 402-429 along 

with their comparison to the equivalent global assessment statistics of the UExP-FNN-U. In response to 

another of this reviewers’ comments, we have now added the spatial residual maps and included seasonal 

splits for the within-eddy accuracy and precision estimates. These comparisons show the UExP-FNN-U is 

able to capture the eddy dynamics with little bias, and a precision consistent to the global training. 
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In hindsight we can see that some of our phrasing or naming in the text was a little unclear when we 

referred to accuracy and precision estimates, and so this may have confused the reader. Throughout the 

text we now clearly refer to all eddy specific performance as ‘within the region of an eddy fCO2 (sw) data 

performance’ (or similar phrasing) so that it is clearly delineated from ‘global fCO2 (sw) data performance’. 

 

2. The comparison in Section 4.2 with previous studies (e.g., Guo & Timmermans 2024; Li et al. 2025; 

Keppler et al. 2024; Ford et al. 2023) is too general and does not sufficiently explain the sources of 

divergence in reported results. To strengthen the discussion, I recommend adding a comparative table or 

supplementary figure that systematically summarizes key methodological differences across studies—

including eddy identification criteria, lifetime and radius thresholds, fCO2 estimation methods, temporal 

coverage, spatial domain, and uncertainty treatment—and clarifying how these factors may drive 

discrepancies in both magnitude and interpretation. This would provide readers with a clearer comparative 

framework. 

Response: This is a good idea, thank you. We have now added a comparative table (Table 2) that 

summarises the differences between the studies compared to in Section 4.2. This new table is now referred 

to, and supports, the discussion in the main text.  

Table 2: Summary of methodologies in previous studies used to estimate the eddy modification of the air-sea CO2 flux. 

pCO2 (sw) is the partial pressure of CO2 in seawater. 

 This study Guo and 

Timmermans 

(2024) 

Li et al.  (2025) Keppler et al. 

(2024) 

Ford et al. 

(2023) 

Eddy Dataset 

(or 

decomposition 

approach) 

META 3.2 Mesoscale 

signature 

decomposition 

META 3.2 META 3.2 META 3.1exp 

Lifetimes 

considered 

> 1 year N/A >12 weeks >=10 days >1 year 

Radius 

Threshold 

No criteria N/A No criteria >40km No criteria 

fCO2 (sw) 

estimation 

method 

Global fCO2 (sw) 

neural network 

approach 

Eddy resolving 

model 

Regional pCO2 

(sw) neural 

network 

approach 

In situ pH with 

neural network 

Total Alkalinity 

Regional pCO2 

(sw) neural 

network- 

approach 

Temporal 

Coverage 

January 1993 to 

December 2022 

1982 to 2000 July 2002 to 1 

January 2022 

April 2014 to 

February 2022 

July 2002 to 

December 2018 

Spatial 

Domain 

Global Global Western 

Boundary 

Current 

(Kuroshio and 

Gulf Stream) 

Southern Ocean South Atlantic 

Ocean 

Air sea CO2 

flux 

uncertainty 

treatment 

Comprehensive 

uncertainty  

N/A fCO2 (sw) and gas 

transfer 

considered 

Standard error 

of observations 

fCO2 (sw) and gas 

transfer 

considered 
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3. The authors should devote greater effort to demonstrating the reliability of the data rather than focusing 

excessively on result interpretation. The current evaluation of the fCO₂ neural network relies only on overall 

bias and RMSD, which may obscure regional or seasonal biases. A more thorough validation—such as 

stratified tests by region, season, eddy lifetime, eddy size, or chlorophyll level, and spatial maps of 

residuals—would better reveal systematic errors and the contribution of different eddy features. Such 

analyses are essential to improve uncertainty characterization and strengthen confidence in the derived 

air–sea CO₂ flux estimates. 

Response: We thank the reviewer for this suggestion. We have now included the requested spatial maps 

of residuals and the seasonal split of results. We have discussed above (in an earlier response) how the 

precision and accuracy assessments of the air-sea gas flux estimates are specific and valid for the region 

within and around each eddy, and this was supported by references and the eddy-local specific statistics 

we have provided. The chlorophyll-a data are climate data records resolved to the spatial resolution 

relevant to the mesoscale eddies and, as they are a climate data record, they have been extensively 

assessed and evaluated by the teams that produce them; our manuscript provides the references for these 

evaluations. Consequently, we feel that the evaluation is now very extensive and well supported by the 

literature. We thank the reviewer for the suggestions. 

In producing the suggested spatial residual maps, we identified an error within our matching code for 

eddies close to the international dateline, and this has now been corrected. Fixing this, reduced the number 

of matches between the neural network estimated fCO2 (sw) within eddies and the SOCAT in situ 

observations by ~700 for the anticyclonic eddies and ~400 for the cyclonic eddies. For anticyclonic eddies, 

the statistical comparisons between the neural network fCO2 (sw) and in situ fCO2 (sw) now includes 2082 

matches, and for cyclonic the number of matches is 1376, therefore our statistics are still robust.  

As requested, Figure 4 has been updated to now include residual maps, and the updated Figure 4 is 

displayed below in this document. The residual maps did not indicate any regional biases in the UExP-

FNN-U fCO2 (sw) within the eddies but did highlight that the majority of the in situ versus neural network 

estimated fCO2 (sw) collocations occurred in the Northern Hemisphere where more in situ fCO2 (sw) 

observations are made. This information has been added at Lines 263-272, which reads “The within eddy 

accuracy and precision estimates between the SOCAT in situ observations and the UExP-FNN-U fCO2 (sw) 

showed good performance (Figure 4) similar to the results for the global scale in Ford et al. (2024) 

(weighted bias = -0.18 μatm, RMSD = 20.65, N = 18226 monthly 1 degree regions). For anticyclonic 

eddies, we observed a smaller weighted RMSD (precision) of 19.15 μatm (N=2082 monthly matches; 

Figure 4a). For cyclonic eddies we observed a lower RMSD of 16.49 μatm (N = 1376; Figure 4d). Both 

eddy types showed small weighted biases (accuracy) and therefore we consider the UExP-FNN-U 

generated fCO2 (sw) within eddies to sufficiently represent the eddy fCO2 (sw). The differences between the 

within-eddy UExP-FNN-U fCO2 (sw) and in situ SOCAT observations did not indicate regional biases, but did 

show a spatial weighting to the Northern Hemisphere where more in situ fCO2 (sw) are made (Bakker et al., 

2016; Figure 4c, f).”. 

As requested, we have now included a new Figure (Figure 5) that splits the in situ versus UExP-FNN-U 

fCO2 (sw) comparisons for the UExP-FNN-U into seasons. The new Figure 5 is displayed below in this 

document. Figure 5 shows that the UExP-FNN-U has good performance during winter and autumn but 

shows slightly larger weighted bias (i.e. slightly reduced accuracy) and RMSD (slightly reduced precision) 

during spring and autumn. Overall these comparisons showed no large seasonal biases in the UExP-FNN-

U fCO2 (sw) retrievals. This information has been added in Section 3.3, at Lines 273-277, which reads 

“Seasonally separating the collocated within eddy in situ observations shows that the UExP-FNN-U tended 

to show a small weighted bias (accuracy) and smaller RMSD (precision) during winter and autumn (Figure 

5a,b,g,h) compared to spring and summer (Figure 5c,d,e,f). Although winter and autumn tended to have 

lower collocations between in situ SOCAT observations and the UExP-FNN-U fCO2 (sw) (Figure 5). These 

seasonal comparisons further strengthen the accuracy and precision of the UExP-FNN-U fCO2 (sw) and 

indicates no large seasonal biases.”. Additionally within the discussion, we have also added text at Lines 

409-411 which reads “Although, we did observe a slightly lower precision during the spring and summer, 

which could be due to the lack of a biological predictor (e.g chl-a) reducing the ability of the UExP-FNN-U to 

capture these dynamics (Ford et al., 2022) (Figure 5).”. 
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These two Figures have also been replicated for the UExP-FNN-U with chl-a as a predictor and appear in 

the Supplementary as Figures S2 and S3. Figures S2 and S3 are also displayed below in this document. 

These comparisons highlighted that the secondary neural network with chl-a as a predictor showed 

improved accuracy and precision, and we noted that the spring and summer indicated greater performance 

improvements. We refer to these Figures within the discussion at Lines 422-427, where we have added 

new text which reads “This additional neural network showed similar but slightly improved precision (lower 

weighted RMSD) when compared to the in situ SOCAT observations, although to a lower number of data 

points (Figure S2; anticyclonic bias = -0.92 uatm, RMSD = 17.05 μatm, N = 1914; cyclonic bias = 0.05 

μatm, RMSD = 14.31 μatm, N = 1272). In addition, the seasonal breakdown of the comparisons between 

the within eddy UExP-FNN-U with chl-a fCO2 (sw) and the in situ fCO2 (sw) showed an increase in the 

performance of this neural network during spring and summer, highlighting the improvements from chl-a 

being added as a predictor (Figure S3).”. 

 

Figure 4: (a) Comparison of the UExP-FNN-U fCO2 (sw) to in situ SOCAT observations within anticyclonic eddies. Solid black 
line is the 1:1. Dashed line is the Type II linear regression. In text statistics are root mean square difference (RMSD), bias, 
slope and intercept of a Type II linear regression and number of matches (N). (b) same as (a) but showing the uncertainty 
on the fCO2 (sw) (2 sigma; 95% confidence) as errorbars for anticyclonic eddies. (c) Difference between UExP-FNN-U fCO2 (sw) 
to in situ SOCAT observations within anticyclonic eddies plotted as spatial residuals. (d, e and f) same as (a, b and c) for 
cyclonic eddies.  
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Figure 5: (a) Comparison of the UExP-FNN-U fCO2 (sw) to in situ SOCAT observations within anticyclonic eddies during 
winter. Solid black line is the 1:1. Dashed line is the Type II linear regression. In text statistics are root mean square 
difference (RMSD), bias, slope and intercept of a Type II linear regression and number of matches (N). (b) same as (a) but 
for cyclonic eddies in the winter. (c) and (d) same as (a) and (b) for spring. (e) and (f) same as (a) and (b) for summer. (g) 
and (h) same as (a) and (b) for autumn. 

 

 

Figure S2: (a) Comparison of the neural network fCO2 (sw) (with chl-a added as a predictor) to in situ SOCAT observations 
within anticyclonic eddies. Solid black line is the 1:1. Dashed line is the Type II linear regression. In text statistics are root 
mean square difference (RMSD), bias, slope and intercept of a Type II linear regression and number of matches (N). (b) 
same as (a) but showing the uncertainty on the neural network fCO2 (sw) (2 sigma; 95% confidence) as errorbars for 
anticyclonic eddies. (c and d) same as (a and b) for cyclonic eddies. 
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Figure S3: (a) Comparison of the neural network fCO2 (sw) (with chl-a added as a predictor) to in situ SOCAT observations 
within anticyclonic eddies during winter. Solid black line is the 1:1. Dashed line is the Type II linear regression. In text 
statistics are root mean square difference (RMSD), bias, slope and intercept of a Type II linear regression and number of 
matches (N). (b) same as (a) but for cyclonic eddies in the winter. (c) and (d) same as (a) and (b) for spring. (e) and (f) same 
as (a) and (b) for summer. (g) and (h) same as (a) and (b) for autumn. 

 

4. Since ESSD focuses on data production and transparency, it would greatly help readers if the authors 

clearly present the framework of the neural-network architecture as well as the workflow of data processing, 

testing, and validation. A schematic of machine learning method and a flowchart of data production would 

substantially improve clarity and reproducibility. 

Response: As suggested, we have now added a new schematic that shows the data processing procedure 

applied within our study, which is now the new Figure 1. This new figure can be found below in this 

document, and it introduces the eddy tracking, the match up methodology and environmental datasets, and 

the generation of the air-sea gas flux data. The neural network approach (UExP-FNN-U) is explained in 

detail within a schematic in Ford et al. (2024), and the neural network training is consistent to this 

description. We have therefore not added this information to Figure 1, but we have included a summary of 

the neural network architecture, and the testing and validation approach used in our study. The updated 

text on the UExP-FNN-U can be found at Lines 124-135 which reads “The methods used are consistent 

with those in Ford et al (2024a), so only a summary of the method is provided here. The UExP-FNN-U is a 

two-step self-organising map (SOM) feed forward neural network (FNN) setup. The SOM splits the global 

ocean into 16 regions with a similar fCO2 (sw), SST, SSS and MLD seasonal cycles. A FNN ensemble (10 

FNNs for each region) was then trained with in situ monthly 1 degree fCO2 (sw) observations from the 

Surface Ocean CO2 Atlas (SOCAT; Bakker et al., 2016) that have been recalculated to a consistent 

temperature and depth dataset (Ford, Shutler, et al., 2024). The monthly 1 degree predictor variables of 

SST, SSS, MLD and the atmospheric dry mixing ratio of CO2 (xCO2 (atm)), and anomalies of each with 

respect to a long term monthly climatology were collocated to the in situ fCO2 (sw). The FNNs consists of an 

input layer with nodes equal to the number of input predictors, a hidden layer with a varying number of 

nodes depending on a pretraining step and an output layer with a single node. The training data were split 

into a 95% training and validation dataset, and a 5% independent test randomly for each month ensuring 

the independent data were not clustered in one region. The UExP-FNN-U fCO2 (sw) estimates are then 

typically used to estimate the global ocean CO2 sink as described in Ford et al. (2024).”.  
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Figure 1: Schematic showing the processing steps to estimate the air-sea CO2 flux within long lived eddies (Blue box 
background). The pink background boxes indicate the analysis completed to evaluate the accuracy and precision of the 
dataset. In figure acronyms are: fugacity of CO2 in seawater (fCO2 (sw)), atmospheric dry mixing ratio of CO2 (xCO2 (atm)) and 
University of Exeter feed forward neural network with uncertainties (UExP-FNN-U).  

 

5. The analysis focuses only on long-lived eddies (lifetime > 1 year; radius > 30 km), which account for 

merely ~0.4% of all eddies in the AVISO data. The authors should justify this restrictive sampling choice. 

Because the vast majority of shorter-lived, smaller-scale eddies—particularly prevalent in western boundary 

currents and equatorial regions—are excluded, yet they may exert a substantial and possibly different 

cumulative influence on air–sea CO2 fluxes. To avoid overgeneralization, I recommend that the authors (i) 

clearly state that their conclusions apply only to this subset of long-lived eddies, (ii) provide the eddy 

lifetime distribution and grouped statistics (e.g., sample size, mean radius, spatial coverage, flux 

contribution) across different lifetime classes, and (iii) if feasible, perform a simplified analysis on short-lived 

eddies, or otherwise explicitly discuss the likely direction and magnitude of biases introduced by their 

exclusion with reference to existing literature. 

Response: We have now added information on the reason for our focus of long-lived eddies, which occurs 

at Lines 101-105 that reads “The focus on these long-lived eddies was due to their presence likely 

exhibiting a larger influence on the air-sea CO2 flux (e.g. Smith et al., 2023). Additionally, the selection was 

due to computational limitations in running the analysis for the extensive set of shorter lived eddies within 

the dataset. We are working to extend the analysis to shorter lived eddies but currently the focus remains 

on long lived eddies.”.  

We have not been able to run the analysis on shorter lived eddies due to the computational reasons 

highlighted above. However, we have now included a statement within the limitations that suggests the 

likely direction of the mesoscale eddy modification of the air-sea CO2 flux. This text reads at Lines 518-524 

as “The UEx-L-Eddies dataset focusses on larger, long-lived eddies (lifetimes greater than a year). This 

criteria will regionally exclude eddies within, for example, highly dynamic western boundary currents where 

shorter lived eddies often dominate (Figure 2c, d). Smith et al. (2023) however show that eddies with 

smaller radii generally have the same anomaly direction but with weaker magnitudes when compared to 

larger eddies. A previous study (Pegliasco et al., 2022) identified that the shorter lived eddies within the 

Mesoscale Eddy Product (the same product used within this study) generally have smaller radii then the 
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longer lived eddies. Therefore we would expect similar anomalies but of smaller magnitude when studying 

shorter lived eddies.”. 

 

6. Some data-processing procedures are insufficiently described, which is not sufficient for a data-oriented 

paper. The authors note that on some days environmental data (e.g., CCI-SST) are missing due to the 

absence of defined eddy polygons, but the extent of this missing data has not been quantified, nor is it clear 

whether certain eddies were excluded or flagged. It is recommended to describe the treatment strategy for 

cases with substantial data loss (e.g., exclusion, interpolation, or flagging). If no exclusion was applied, the 

potential direction of bias should be discussed. This would ensure that database users can properly 

interpret and filter eddy time series that may be affected by data quality issues. 

Response: This is a good point. We have now added further details to data-processing procedures as 

highlighted by the reviewer. For the missing polygons, we have now quantified that the missing data affects 

a mean of 2% of an individual eddy daily time series, and these occur randomly throughout the timeseries. 

As the impact is randomly through the timeseries (and effects ~2%), the impact on the monthly median 

statistics is minimal. We have added this information at Lines 512-517 as “For some eddies the daily 

environmental data can have missing values even for complete coverage data (for example, the CCI-SST). 

These gaps stem from the META3.2 eddy trajectories dataset where the polygon to define the limits of the 

eddy does not form correctly, and therefore we were unable to extract values where the polygon was 

undefined. No exclusion or interpolation mechanism was implemented as these data gaps affect a mean of 

2 % (maximum = 15 %) of an individual eddy daily timeseries, which occur randomly through the 

timeseries, and therefore the impact on the monthly median statistics are minimal.”. 

 

7. The authors provide a second fCO2 estimate that includes chl-a as an input, but this product is only 

available from 1997 onward and contains gaps in polar regions during winter. The manuscript currently 

mentions these limitations only briefly, without quantifying their impact. I recommend that the authors 

discuss how this affects the temporal and regional representativeness of the results; and (ii) present spatial 

difference maps or regional statistics comparing the estimates with and without chl-a, to allow readers to 

assess the role of biological factors in different oceanic regimes. 

Response: We thank the reviewer for their suggestion. We have now included an additional figure (Figure 

9) into our discussion of the chl-a version of the UExP-FNN-U, which replicates Figure 8 for the chl-a 

version of the UExP-FNN-U but also shows the results of using the same eddy set with the UExP-FNN-U 

without the inclusion of chl-a in the neural network training. Figure 9 is shown below in this document and 

confirms that the air-sea CO2 flux estimate is different between the two versions, but that all differences fall 

within the uncertainties. Notably the South Pacific and Southern Ocean show larger differences than the 

other regions. These details are now discussed in a new paragraph at Lines 430-437 which reads “The 

impact on the modification of the cumulative air-sea CO2 flux by mesoscale eddies due to including chl-a 

within the UExP-FNN-U can be assessed by replicating Figure 8, but using the secondary fCO2 (sw) and 

resulting air-sea CO2 fluxes (Figure 9). Figure 9 shows the regional modification of the air-sea CO2 fluxes 

by eddies where both neural network variants are able to estimate the fCO2 (sw) (i.e we show a subset of the 

eddies in Figure 8). In all regions both neural networks retrieve a similar signature, but the chl-a version 

generally suggests a stronger enhancement (or weaker suppression) of the CO2 sink compared to the 

UExP-FNN-U without chl-a. Notably the South Pacific Ocean and Southern Ocean show larger differences 

although in all cases these differences fall within the uncertainties. We therefore provide the secondary 

neural network to further aid in understanding the processes that are driving mesoscale eddy modification 

of the air-sea CO2 fluxes.”. 
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Figure 9: (a) Ocean basins considered for further analysis, with a colour for each region. Regions follow the RECCAP2 
ocean basin definition, but each basin was split at the Equator into North and South. North Indian Ocean was removed due 
to low number of eddies analysed. (b) Box plot showing the eddy modification of the air-sea CO2 flux using the chl-a version 
of the UExP-FNN-U for the region shown with the arrow. Red line indicates the median, box indicates the 25th and 75th 
quartiles, whiskers extend from the 25th and 75th quartiles by 1.5 interquartile ranges. Circles indicate data considered 
outliers (greater than 1.5 interquartile ranges outside the 25th and 75th percentile). Dark red shading indicates the 1 sigma 
(~68% confidence) uncertainty on the median by propagating the air-sea CO2 flux uncertainties using a Monte Carlo 
uncertainty propagation. Light red shading indicates the 2 sigma uncertainty on the median (~95% confidence). Blue line 
and shading indicates the same but for the UExP-FNN-U without chl-a. X-axis label shows number of eddy (N), the median 
modification with the 2 sigma uncertainty for the chl-a version of the UExP-FNN-U labelled with a C, and the UExP-FNN-U 
without chl-a labelled with a P. (c), (d), (e), (f), (g) same as (b) for their respective regions identified by the arrow. Basemap 
in (a) from Natural Earth v4.0.0 (https://www.naturalearthdata.com/). 

 

8. The discussion on data reliability and methodological limitations is insufficient. The authors should 

explicitly identify the main sources of bias arising from both their approach and data, and propose 

strategies to improve robustness and reproducibility. For example, conducting additional machine-learning 

experiments to trace and quantify potential biases would help strengthen the credibility of the dataset.  

Response: We have used an evidence-based approach to guide our discussion of the limitations. The 

uncertainty analysis presented within the manuscript shows that the largest contribution is from the fCO2 (sw) 

component, and therefore the neural network estimates. We have discussed the potential limitations, and 

biases with the fCO2 (sw) approach within the methodology and discussion. We highlight the exclusion of a 

representative biological parameter could affect the neural network, and therefore provide the second 

version of the neural network fCO2 (sw) estimates that include chl-a. To assess biases in the neural network 

estimated fCO2 (sw) we performed the statistical comparison to the in situ SOCAT observations within 

eddies, which has been expanded in response to an earlier comment by the reviewer. We have also now 

extended the evaluation of the chl-a neural network fCO2 (sw) as also suggested by the reviewer. 

In addressing the reviewers comment above, we produced a new figure which compared the change in the 

eddy flux compared to the surrounding water estimated from the two neural networks (Figure 9). These 

showed small differences in the regional modification by both anticyclonic and cyclonic, although on a 

smaller sample size due to limitations discussed with the chl-a neural network on Lines 155-159. 

We therefore feel the data reliability and methodological limitations are now well discussed within the 

manuscript, and we thank the reviewer’ for their earlier comments which have helped to strengthen this 

further.  

  

 

https://www.naturalearthdata.com/
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Minor comments: 

1. I suggest adding a table summarizing the data sources and key characteristics of all variables used in 

this study (e.g., variable, units, period, resolution, product name, and references). Such a table would 

improve clarity, allow readers to quickly assess the datasets employed. 

Response: We have now added a new table that summarises the environmental input parameters that are 

considered within the analysis. Table 1 is on Line 95 of the manuscript and shown below this response. 

Table 1: Summary of the environmental datasets and in situ observations collocated with the long lived mesoscale eddies. 

Parameter Units Dataset Temporal 

Resolution 

Spatial 

Resolution 

Reference 

Sea surface 

temperature 

Kelvin ESA CCI-SST 

v3.0 

Daily ~5km (0.05 

degree) 

(Embury et al., 

2024; Good & 

Embury, 2024) 

Sea surface 

salinity 

Psu CMEMS 

GLORYS12V1 

Daily ~9km (0.08 

degree) 

(CMEMS, 2021; 

Jean-Michel et 

al., 2021) 

Mixed layer depth m CMEMS 

GLORYS12V1 

Daily ~9km (0.08 

degree) 

(CMEMS, 2021; 

Jean-Michel et 

al., 2021) 

Chlorophyll-a mg m-3 OC-CCI v6 Daily 4km (Sathyendranath 

et al., 2019, 

2023) 

Wind speed m s-1 CCMP v3.1 6 hourly ~25km (0.25 

degree) 

(Mears et al., 

2022; Remote 

Sensing 

Systems et al., 

2022) 

Sea level pressure hPa ERA5 Monthly ~25km (0.25 

degree) 

(Hersbach et al., 

2019, 2020) 

xCO2 (atm)
 ppm NOAA-GML Monthly ~100km (1 

degree) 

(Lan et al., 2023) 

fCO2 (sw) μatm Recalculated 

SOCAT 

Individual cruise 

observations 

N/A (Bakker et al., 

2016; Ford, 

Shutler, et al., 

2024) 

 

 

2. Regarding xCO2 (MBL), please clarify how the meridional band product was mapped onto the 1° field 

(e.g., through band replication, interpolation, or another approach). Providing this detail would improve the 

transparency of the data processing procedure. 

Response: We have now added the information on the xCO2 (atm), whereby the zonal marine boundary 

layer xCO2 (atm) was replicated for each longitude. This information has been added at Lines 140-143 as 

“These xCO2 (atm) fields were produced by calculating the monthly average of the xCO2 (atm) for each latitude 

(~2.5 degree spacing), which were then interpolated to 1 degree and replicated for each 1 degree 
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longitude.  A distance weighted mean of the nearest four pixels taken at the mean (centre) position of each 

eddy was used to estimate the monthly xCO2 (atm).”. 

 

3. The dataset spans 1993–2022. It is recommended that the authors at least comment on decadal-scale 

variations. For example, they could assess whether the impact of eddies on air–sea fluxes remained stable 

during the 1990s, 2000s, and 2010s, or if notable changes occurred. Even if a full trend analysis cannot be 

conducted in the main text, it would be helpful to provide simple decade-wise statistics (e.g., median 

changes per decade) in the supplementary materials to give readers an initial view of long-term evolution. 

Response: We have now added a new supplementary table (Table S1) that provides the median eddy 

modification for the periods 1993-2000, 2000-2010 and 2010-2020. Table S1 is displayed below this 

response. This analysis suggest that the anticyclonic eddies are becoming an increasing enhancer of the 

CO2 sink, and the cyclonic eddy suppression is reducing, but the differences are within the reported 

uncertainties. We have now mentioned the analysis within the main text at Lines 384-387 which reads 

“These data allow a range of analyses to be conducted, for example, in this study, we show how the 

mesoscale modification of the air-sea CO2 flux can be determined from these data regionally (Figure 7; 

Figure 8) or could be evaluated through time (e.g. Table S1 provides global decadal median mesoscale 

modifications suggesting an increasing enhancement of the CO2 sink).”.  

 

Table S1: Median decadal eddy modification of the air-sea CO2 flux for both cyclonic and anticyclonic eddies. Uncertainties 
are the 95 % confidence interval of the propagated uncertainties. Number in square brackets indicates the number of eddies 
considered. Note eddies that form in one period and dissipate in another are considered in both periods. 

Time period Anticyclonic eddy 

modification of air-sea 

CO2 flux 

Cyclonic eddy 

modification of air-sea 

CO2 flux  

1993 to 2000 -2.57 ± 6.23 % 

[753] 

1.66 ± 5.95 % 

[617] 

2000 to 2010 -4.28 ± 4.53 % 

[1321] 

0.74 ± 4.32 % 

[1119] 

2010 to 2020 -5.48 ± 3.62 % 

[1482] 

0.30 ± 3.60 % 

[1283] 

 

 

4. The manuscript states that SOCAT data have been gridded (monthly 1°) and used for model training and 

testing, but the strategy for splitting the training and test sets is not clearly described. It is recommended 

that the authors provide details on the partitioning method employed, such as leave-one-time-out or leave-

one-location-out cross-validation, or any other approach used, to clarify the reliability and independence of 

the model evaluation. 

Response: We have now added the information on the independent test data withheld from the UExP-

FNN-U which is described in Ford et al. (2024). A 5% independent test dataset is withheld from each month 

of the full UExP-FNN-U training dataset and ensuring that the data are not clustered in one region. The 

remaining data (95%) are randomly split between training and validation for each of the 10 FNN ensemble 

members. The independent test data remains completely independent until the accuracy and precision are 

assessed. This information has been added at Lines 130-135 which reads “The FNNs consists of an input 

layer with nodes equal to the number of input predictors, a hidden layer with a varying number of nodes 

depending on a pretraining step and an output layer with a single node. The training data were split into a 

95% training and validation dataset, and a 5% independent test randomly for each month ensuring the 
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independent data were not clustered in one region. The UExP-FNN-U fCO2 (sw) estimates are then typically 

used to estimate the global ocean CO2 sink as described in Ford et al. (2024).”.  

 

5. Figure 1 currently only shows the eddy formation points and cumulative flux scatter. It is recommended 

to also overlay the eddy occurrence frequency or sample density at each grid point (or provide this in a 

supplementary figure). This would help assess whether certain large flux values are driven by a few 

exceptionally large or long-lived eddies. 

Response: We have updated Figure 2 based on the recommendations of both reviewers, where we have 

added two new subplots that show the frequency of long-lived eddies formation compared to all eddy 

formations within 1 degree regions. The updated Figure 2 can be found on Page 3 of this document. We 

have also included the new supplementary Figure S1 that replicates Figure 2 but normalises the cumulative 

air-sea CO2 flux to the eddy lifetime in days (giving a CO2 flux in Tg C d-1). This new supplementary Figure 

S1 is shown below in this document. 
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Figure S1: (a) The cumulative air-sea CO2 flux into the anticyclonic eddies normalised by eddy lifetime in days 

where the scatter points are plotted at the formation location of each eddy. (b) same as (a) but for cyclonic 

eddies. 

 

6. Although the manuscript notes that anticyclonic eddies enhance CO2 uptake while cyclonic eddies 

reduce it, it is recommended that the authors further quantify the asymmetry between the two eddy types. 

For instance, seasonal or regional statistics of flux differences could be provided, along with a discussion of 

potential physical drivers (e.g., temperature, stratification) and biological drivers (e.g., productivity). 

Response: We thank the reviewer for the suggestion, and we have now provided a synopsis of the 

seasonal variability in the mesoscale modification of the air-sea CO2 flux in the supporting information 

(Figure S4). Figure S4 is displayed below this response in this document. The regional synopsis of the 

mesoscale eddy modification of the air-sea CO2 fluxes was presented in the original manuscript (Figure 7, 

Figure 8 and discussed in Section 4.2), which has been extended following comments by the reviewer. We 

have now added a paragraph that explores the potential mechanisms driving these differences which are 

supported by the previous research. A comprehensive analysis of the driving mechanisms is beyond the 
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scope of this manuscript. The new paragraph at Lines 494-505 reads “The UEx-L-Eddies identifies 

differences in the mesoscale eddy modification of the cumulative air-sea CO2 flux between anticyclonic and 

cyclonic eddies globally and regionally consistent with previous analyses. The driving mechanisms for 

these differences have been investigated in previous work. For example, Li et al. (2025) suggest that the 

competing changes in dissolved inorganic carbon and biological processes through eddy pumping 

contribute to the observed mesoscale eddy modification of the air-sea CO2 flux. Additionally, Keppler et al. 

(2024) showed that the mesoscale modification of the air-sea CO2 flux had significant seasonal variability in 

the Southern Ocean, indicating that underlying driving processes could vary throughout the individual 

eddies lifetime. Ford et al. (2023) showed that the changes in air-sea CO2 flux in mesoscale eddies could 

be attributed to changes in the competing biological and physical processes. Although a comprehensive 

analysis of the driving mechanism is beyond the scope of this manuscript, the UEx-L-Eddies shows 

regional (Figure 8) and seasonal variability in the mesoscale eddy modification of the air-sea CO2 flux (e.g. 

Figure S4 shows anticyclonic eddies have stronger uptake in winter). The underlying environmental 

parameters (e.g. SST, MLD) could therefore be used to investigate the driving mechanisms for these 

differences in the mesoscale modification.”.  

 

Figure S4: (a) Box plot showing the eddy modification of the air-sea CO2 flux during winter using the UExP-FNN-U. Red line 
indicates the median, box indicates the 25th and 75th quartiles, whiskers extend from the 25th and 75th quartiles by 1.5 
interquartile ranges. Circles indicate data considered outliers. Dark red shading indicates the 1 sigma (~68% confidence) 
uncertainty on the median by propagating the air-sea CO2 flux uncertainties using a Monte Carlo uncertainty propagation. 
Light red shading indicates the 2 sigma uncertainty on the median (~95% confidence). X-axis label shows number of eddies 
(N), the median modification with the 2 sigma uncertainty. (b) same as (a) but for spring. (c) same as (a) but for summer. (d) 
same as (a) for autumn. 

 

7. This study frequently refers to the “weighted mean,” but the weighting scheme is not clearly specified 

(e.g., latitude, area, or distance weighting). It is recommended that the authors add a statement clarifying 

how the weights are calculated. 

Response: We have now clarified that the weighted means are calculated based on distance to mean 

location of the eddy and this is now stated at Lines 141-144 and 193-195. 
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8. Figure 1 shows that many eddy formation points are located near the coast or continental shelf, but the 

manuscript does not specify how eddy polygons overlapping with land on a given day are handled. This 

could affect the extraction of sea surface variables and flux estimates. It is recommended that the authors 

clarify the treatment in the Methods section (e.g., applying a land mask to retain only the ocean portion, or 

excluding eddy days where the overlap with land exceeds a certain threshold). If no such treatment was 

applied, it would be helpful to provide in the supplementary materials statistics on the number or fraction of 

eddies overlapping with land. 

Response: Within Figure 2 some of the eddies do form close to the coastal region, however none of these 

overlap with the land. The eddy trajectories and the polygons for the eddy location are estimated from 

satellite altimetry sea level heights which do not have land values. Therefore these features cannot overlap 

land. We have now added this information at Lines 106-107 which reads “For each eddy trajectory, a daily 

position was provided along with a polygon shape that estimates the eddy shape and size from the 

altimetry-based data which can not overlap with land.”. 

 

9. This study employs Type II regression to compare the NN and SOCAT data, but it does not briefly explain 

why Type II rather than ordinary least squares (OLS) regression was chosen. It is recommended to add 1–2 

sentences in the statistical comparison section to justify this choice (e.g., Type II regression is more 

appropriate when both the independent and dependent variables contain measurement errors) and to cite 

relevant references. 

Response: We have now added a sentence to describe why a Type II regression was used. This sentence 

reads at Lines 167-169 as: “A Type II linear regression was used as uncertainties are presented within both 

the in situ and neural network fCO2 (sw) (Laws, 1997; York et al., 2004).”. 
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