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Abstract. This article presents the CONUS Fire EXtent (CONFEX) database. This database, based on the VIIRS S-7 
NPP 375m data product, provides wildfire perimeter, centroid, ignition location, start and end date for the period 2012 8 
– 2023, for the CONUS and Alaska regions. The algorithm takes hotspot locations from VIIRS S-NPP, clusters them 9 
into actual wildfires based on DBSCAN clustering and calculates the perimeter and centroid of each cluster, attaching 10 
a geodata frame to each cluster or fire. When validated for some recent large fires against the CALFIRE database, an 11 
F1 score of 85 -96% and a CSI of 74 – 93 % were found, showing the efficiency of the algorithm in aggregating 12 
hotspots spatially and temporally accurately. This is the first publicly available high-resolution wildfire extent dataset 13 
developed for the CONUS and Alaska regions using VIIRS S-NPP 375m data product. The database provides a 14 
valuable resource for researchers to understand the complexities of the fire regimes in the CONUS and Alaska regions. 15 

 16 

1. Introduction 17 

Wildfire is nature’s self-cleansing ritual and a natural part of the carbon cycle (Santín et al., 2015). Natives living in 18 
forested regions understood the importance of wildfires and for centuries implemented cultural burning as a duty 19 
towards the land that sustained them (Greenler et al., 2024).  Overtaking of the native populations led to the 20 
exploitation of the forests (Marks-Block & Tripp, 2021). The implementation of fire suppression policies, curtailment 21 
of indigenous fire stewardship, mass deforestation of fire-resistant tall trees for fuel purposes, ever increasing thirst 22 
for inhabiting wildlands, and on top of that climate change, has led to the current fire pandemic (Martinez et al., 2023; 23 
Copes-Gerbitz et al., 2024). In the last two decades fires have raged wrath in the western fire regime of the Continental 24 
United States, and their number and severity are expected to increase (Westerling, 2016; Harvey, 2016; Westerling et 25 
al., 2006; Iglesias et al., 2022; Holden et al., 2018; Brown et al., 2004). Wildfires have a massive impact on the 26 
biosphere. There is a positive feedback loop between climate change and wildfires, with the latter leading to the release 27 
of more greenhouse gases, like CO2 and NOx, into the atmosphere from biomass burning further aggravating the 28 
already hot planet (Barbero et al., 2014). The permafrost thaw and the wildfire regime in the boreal forests create a 29 
positive feedback loop, with the former, caused by a changing climate, leading to drier and warmer near surface 30 
conditions, increasing fire propagation capacity, and the latter leading to ground subsidence, thickening of the organic 31 
content of surface soil layer, changes in the vegetation from coniferous to broad leafed, all leading to increased 32 
permafrost thaw (Kim et al., 2024; Kornei, 2020; Li et al., 2021). Massive fires have also led to the intrusion of aerosol 33 
into the stratosphere which is causing a slow but steady ozone depletion (Hirsch & Koren, 2021; Ma et al., 2024). At 34 
the surface, wildfires destroy the top layer of the soil leading to enhanced erosion and runoff, increasing the probability 35 
of flooding events (Wieting et al., 2017).  36 

In this dynamic and ever worsening cycle, researchers have been trying to understand this force of nature, with a 37 
massive increase in studies related to wildfires in the last decade. Three prominent areas in this research are predicting 38 
the regions ripe for wildfires, especially at the urban wildland interface and along utility distribution lines (Taylor et 39 
al., 2024; Barzani et al., 2024; Syphard et al., 2024), real-time wildfire monitoring (Tong et al., 2024; Zhao & Ban, 40 
2025; Briley & Afghah, 2024), and modelling the propagation of an already ignited fire, to effectively dispose of 41 
suppression resources ( Hu et al., 2024; Sadrabadi & Innocente, 2024; Pereira et al., 2024). These fields need accurate, 42 
detailed and global datasets which can be used to study not only the spatial distribution of these fires but also the 43 
temporal and spatial evolution of these fires, given the topographic expanse.  44 
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Wildfire related data can be acquired through manual or remote sensing methods.  Manual methods primarily consist 45 
of firefighting units monitoring fires, and of forest service departments surveying burnt areas post fire. After 46 
monitoring and surveying, wildfire reports are created based on that information and are made available for public 47 
knowledge. The information recorded may include characteristics like probable cause of fire, amount of area burnt, 48 
and the extent of damage inflicted (Porter et al., 2019; Brown et al., 2002; Short, 2022). Manual data has been the 49 
primary mode for centuries, and for most fires around the urban centers can be reliable in terms of its details about the 50 
location of ignition, possible reason, initial mode of spread, and the level and type of discomfort and damage. This 51 
provides valuable knowledge for preparing for future fires, through development of more resilient urban infrastructure. 52 
However, this data is most accurate at urban or urban wildland interfaces, since that has been the priority for centuries 53 
and rightly so. One of such databases is Shorts (2022). This database is one of the most comprehensive ground-based 54 
datasets for CONUS, spanning across 28 years from 1992 -2020. The fire entries are manually submitted by local, 55 
state and federal organizations. 56 

Remote sensing methods include satellite and low elevation airborne instruments. Broadband spectral sensing and 57 
hyperspectral sensing are the two competing surveillance techniques in use currently (Barmpoutis et al., 2020; 58 
Dennison & Roberts, 2009; Veraverbeke et al., 2018). Hyperspectral sensing employs a large number (~100) of minute 59 
spectral bands (< 0.002 µm) which overlap, while broadband spectral sensing employs a smaller number (3 – 15) 60 
relatively larger (>0.002 µm) spread out spectral bands (Veraverbeke et al., 2018). For active fire detection both reside 61 
in the short-wave near infrared (1.2 – 2.5 µm) to mid infrared range (3 – 5 µm), where we have a noninterference 62 
window, while the nearest infrared (0.7 – 1.2 µm) and visible range (0.4 - 0.7 µm) are not useful due to smoke 63 
interference (Veraverbeke et al., 2018). Another spectral range utilized for active fire detection is the thermal infrared 64 
band (8 – 12 µm), due to significant fire emissions and the presence of a window in the atmospheric absorption 65 
spectrum, however it is close to the earth’s average temperature emission peak (~ 9.7 µm). Burnt area mapping is 66 
usually done by utilizing the differences in the land cover and moisture differences, and for this microwave spectral 67 
region can be utilized especially for negating cloud interferences. Infrared and visible regions are widely employed 68 
and are very efficient except for cloud interference (Leblon et al., 2016). 69 

 Airborne instruments have been employed for wildfire detection and monitoring since the 1960s. The AAS/5 scanner, 70 
onboard the Beechcraft AT 11 aircraft provided useful fire surveillance imagery as early as 1962 (Warren & Wilson, 71 
1981). In 1998 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was developed by the Jet Propulsion 72 
Laboratory, California Institute of Technology, which has been employed for wildfire surveillance through 73 
hyperspectral imaging (Green et al. 1998). In 2008, Airborne Prism experiment (APEX) instrument, another 74 
hyperspectral marvel, was developed and has also been employed to the same end (Itten et al. 2008).  Since then, 75 
development in optics and electronics has led to much more sophisticated instrumentation been applied for wildfire 76 
surveillance, techniques like 4π-sr Spectroradiometry, MODIS/ASTER Airborne Simulator (MASTER) scanning 77 
spectrometer, and Differential Absorption Lidar - High Spectral Resolution Lidar (DIAL-HSRL), used in the FIREX 78 
– AQ mission in 2019 (Warneke et al., 2023).   The airborne instruments have high spatial resolution but can only be 79 
employed for specific missions because of their limited spatial coverage, the need for a carrier and constant 80 
maintenance, making them unfeasible for long-term or large area surveillance. Tower mounted cameras at optimized 81 
locations based on terrain in forests for early fire detection has also been a very useful tool (Heyns et al., 2019; Bao 82 
et al., 2015).  Manual, tower mounted camera-based, and airborne instrument-based monitoring of fire for active fire 83 
management are critical since the revisit time of spaceborne instruments is still too large for such advisory (Leblon et 84 
al., 2016; Allison et al., 2016). 85 

Satellite fire surveillance came into use a decade and a half after the beginning of the era of   meteorological satellites. 86 
The quality of satellite-based fire data depends on the orbital type, the instrument used, and the accuracy of the 87 
algorithm converting the received signal into actual values. Wildfire-related satellite data has evolved through the 88 
years concurrently with the development of satellite technology and computing power. Dozier (1981) provided the 89 
basis of the earliest method of extracting remote sensing wildfire data from the passive Advanced Very High-90 
Resolution Radiometer (AVHRR) imagery (3.55 – 3.83 µm and 10.5 -11.5 µm channels) onboard the National Oceanic 91 
and Atmospheric Administration (NOAA) managed, NOAA-6 satellite of the Television Infrared Observation 92 
Satellite-N series (TIROS-N), facilitated by the presence of two channels in the thermal infrared (IR), primarily 93 
intended for sea surface temperature measurements (Nordin & Aziz, 2007). Dozier hypothesized based on the Planck’s 94 
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radiation law that the temperature difference acquired from the radiation sensed at two different channels at subpixel 95 
level is because of varying surface temperature within the pixel rather than interference in the atmosphere and thus 96 
can be employed to extract the magnitude and the subpixel spatial fractions of the two temperatures. However, he 97 
assumed that there were only two sub-pixel temperatures, a known base (acquired from non-fire pixels), and a target, 98 
and this method worked well for unsaturated pixels. However, AVHRR’s relatively high resolution meant a lower 99 
saturation threshold (450 K over 0.02 Km2 field of view (FOV)), hindering large fire monitoring, and the NOAA-6 100 
had a single pass each day, making it difficult to track fire progress (Prins & Menzel, 1992). The same algorithm was 101 
applied to the imagery (3.9 and 11.2 µm channels) from the Visible Infrared Spin Scan Radiometer Atmospheric 102 
Sounder (VAS) on board the NOAA’s Geostationary operational environmental satellite (GOES). The coarser 103 
resolution (13.8 Km for 3.9 µm and 6.9 km for 11.2 µm), meant that even though it missed small burns, it performed 104 
better for large fires due to higher saturation limit (450 K over 5 km2 FOV). Moreover, as early as 1983, it proved to 105 
be a useful tool for monitoring the temporal evolution of wildfires thanks to the hourly data availability (Prins & 106 
Menzel, 1992; VAS (1980), n.d.). However, the pixels were still manually checked for fire presence. In 1994 the 107 
Cooperative Institute for Meteorological Satellite Studies (CIMSS) developed an automated biomass burning 108 
algorithm (ABBA) to classify the VAS pixels for fire, essentially for monitoring basin wide biomass burning over 109 
South America, while still relying on the Dozier (1981) method (Prins & Menzel, 1994).  The temporal resolution was 110 
improved to 15 minutes and the IR resolution was improved to 4 km with the 1994 launch of GOES-8 (Kaufman et 111 
al., 1998). The Block 5 Defense meteorological Satellite program (DMSP) satellites were used for providing nighttime 112 
monitoring of fires at a 2.7 Km resolution in the 0.4 – 1.1 µm range, as early as 1992 to monitor African savanna 113 
burns. However, due to lack of data access the quantification of area was not possible (Cahoon et al., 1992). More 114 
detailed information on the early evolution of fire detection techniques using AVHRR onboard NOAA 6 – 14 is 115 
provided in the article written by Kaufman et al. (1998). Giglio and Kendall (2001) found that the Dozier algorithm 116 
led to ± 50% random error in detecting burnt area and ± 100 K random error in detecting temperature, under sensitivity 117 
analysis of fires > 0.05% of the pixel size.  118 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument was launched onboard the Earth observing 119 
mission (EOM) satellites, terra, in 1999, and aqua, in 2002 (Xiong et al., 2015). The MODIS instrument has 4 special 120 
fire channels 2 each for 4 µm and 11 µm, with 500 m spatial resolution, and the algorithm used for its data 121 
quantification is provided by Giglio et al. (2003, 2016, 2021).  The original MODIS fire detection algorithm, the 122 
version 3 or Collection 3, was provided by Kaufman et al. (1998) which suffered high false alarm rate in deserts, or 123 
regions of sparse vegetation, and omission of smaller fires. In response to which Collection 4 algorithm was developed 124 
by Giglio et al. (2003). Collection 5 product was launched in mid-2006, it has been seen that the threshold for fire 125 
detection is high when considered over various terrains and regions and omits fires in some regions (Boschetti et al., 126 
2009). The 310 K 4 µm threshold causes most of the omissions. Even the Collection 5 algorithm struggled with 127 
omission of large fires due to thick smoke and falsely generated alarms due to clearing of forests. The Collection 6 128 
and 6.1 algorithm addresses those issues. Offshore gas flaring was also incorporated in the Collection 6 algorithm 129 
(Giglio et al. 2016; 2021). The Landsat 7 imagery and Advanced Spaceborne Thermal Emission and Reflection 130 
Radiometer (ASTER) imagery are used for validation of the MODIS product. The brightness temperatures from 1 km 131 
MODIS channels for 12 µm, 11 µm, and 4 µm are used for deriving the fire product. For sunlight hours, aggregation 132 
to 1 km of reflectance of 2.1 µm, 0.85 µm and 0.65 µm are employed. The swath imagery is checked for fire pixels 133 
by the algorithm and each pixel is defined as unknown, fire, non-fire, cloud or missing data. 134 

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was an upgrade to NASA’s AVHRR instrument 135 
launched on October 2011 onboard the Suomi National Polar-Orbiting Partnership (S-NPP) and then on NOAA-20 in 136 
2017 and NOAA-21 satellites in November 2022, as part of the EOM (Justice et al., 2013; Cao et al., 2018; Xiong & 137 
Butler, 2020; Xiong et al., 2023). The VIIRS has 22 moderate 750 m resolution M bands, and 6 high 375 m resolution 138 
I bands. The temporal resolution is 12 h or less, and the threshold for fire detection at nighttime is as low as 5 m2 139 
(Schroeder et al., 2014).  140 

VIIRS 750 m channel active fire application related product (ARP) was built on the MODIS Collection 4 algorithm, 141 
applying the same tests to the VIIRS 750 m multi-spectrum (Justice et al. 2013). In the subsequent upgrades, a 142 
pixelated parameter for fire characterization and 2D image classifier were added to the VIIRS 750 m product 143 
(Schroeder et al. 2014). VIIRS 750 m product is based on the 4 µm and 11 µm channel data. A new nighttime algorithm 144 
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uses the Day-Night Band (DNB) and 1.61 µm channel for sub pixel high temperature and gas flare detection at night 145 
(Elvidge et al., 2013). 146 

The VIIRS 375m channels are also used for fire -detection. The product algorithm processes five I band, and one M 147 
band given in figure 1. The five channels of I band extend from the mid to thermal infrared region and are thus used 148 
for fire detection. I4 (3.55 – 3.93 µm) is the main channel for fire detection and is used to distinguish between subpixel 149 
fires and non-fires, with a 367 K saturation temperature (Schroeder et al. 2014). This channel is 0.3 µm below the 150 
M13 channel (3.973 – 4.128 µm) that corresponds to the VIIRS 750 m ARP. Channel I5 (10.5 – 12.4 µm) is the thermal 151 
channel against which the I4 channel checks for non-fires. The rest of the three channels are used in the algorithm for 152 
water body discrimination, sun glint and clouds. For validation of VIIRS 375 imagery, Landsat- 8 data is used. 153 

 154 

Figure 1: Channels used in the 375 m active fire detection algorithm (adapted from Schroeder & Giglio, 2016) 155 

In the current article a wildfire dataset developed based on the VIIRS 375 m active fire product is presented (Qadiri 156 
and Cerrai, 2025). The dataset was developed to fill the gaps present in the currently available CONUS datasets.  157 
Currently available manual datasets do not provide fire extents over large domains, while the satellite derived datasets 158 
either have low spatial resolution due to the raw product used or do not provide fire extent. This product uses a very 159 
high resolution VIIRS S-NPP product available on a global scale at high temporal resolution (2 - 4 passes per 12 160 
hours). In this article, section 2 will explain the motivation and methodology behind the evolution of the dataset. 161 
Section 3 will explain data characteristics and some case studies to highlight the dataset in detail with examples of 162 
some well-known fires. 163 

 164 

2. Methodology  165 

2.1 Motivation 166 

The product described in this manuscript was created due to lack of a dependable wildfire dataset product for the 167 
Northeast of CONUS. We analyzed the ground-based dataset by Short et al. (2022), and the MODIS and VIIRS 168 
satellite pixel products from NASA fire information for resource management system (NASA | LANCE | FIRMS) 169 
(Figure 2). The Short database was created to supplement the National fire program analysis (FPA) system. There are 170 
some spatial inconsistencies in the Shorts database even though significant improvements have been made to the 171 
current version compared to previous versions. It further lacks fire extent or perimeter information. The MODIS and 172 
VIIRS S-NPP fire product from NASA FIRMS (NASA | LANCE | FIRMS) were just the fire pixels or hotspots and 173 
not actual fires. By comparing the MODIS and the VIIRS products, we found that the number of fire pixels in VIIRS 174 
is much higher than the one detected by MODIS due to the higher resolution.   175 
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 176 

Figure 2 Comparison of short et al (2016) database and MODIS firms hotspot product for the Northeast CONUS for 2001. 177 

To address the shortcomings related to lack of spatial extent, spatial inconsistency, different resolutions and 178 
identification of hotspots instead of actual fires, we developed a novel CONUS Fire Extent (CONFEX) product for 179 
CONUS and Alaska, based on the VIIRS hotspot or fire pixel data from NASA FIRMS. 180 

The final product was developed for the period 2012- 2023 based on the availability of the NASA FIIRMS data. All 181 
the pixels were retained, and the entire CONUS and Alaska were processed. The CONFEX database contains the area, 182 
the start date, the end date, the centroid location and perimeter of the fire. The work was aided by some earlier products 183 
formed based on MODIS and VIIRS (Artés et al., 2019; Chen et al., 2022) but there is no database of this kind based 184 
on VIIRS 375 S-NPP for the CONUS to the authors knowledge. 185 

2.2 Algorithm for the generation of the CONFEX product 186 

The algorithm uses the VIIRS S-NPP 375 m resolution pixel or hotspot data, available from the NASA FIRMS website, 187 
as input (Figure 3). The hotspots are first re-projected into a EPSG: 5070 geographic coordinate system, suited for 188 
CONUS, to keep as close to the actual distance as possible accommodating the earth’s shape at low latitudes. Then, 189 
each hotspot is converted into a normalized feature vector. The algorithm then uses DBSCAN to calculate the 190 
Euclidean distance and absolute temporal difference in pairs for hotspots and each pair with both values below custom 191 
metrics are in the same cluster. The clustering distance threshold for each pair is 750-meter. This comes from the fact 192 
that it is twice as much as 375 m, therefore for two tangent circles of radius 375 m, the distance between two points 193 
is 750 m. The clustering temporal distance threshold is 120-hour, which is based on the fact that we assumed absence 194 
of a fire, if no fire is detected over multiple overpasses in a period of 5 days. Once the clustering is done, if the cluster 195 
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contains more than 3 hotspots, Delaunay triangulation is performed, keeping the triangles in which the circumradius 196 
is not more than 1/∞. Finally, polygonization of the filtered triangles is performed to assign an alpha shape to the 197 
cluster (concave hull) which has been previously used by other researchers for assigning shapes to fire clusters (Chen 198 
et al., 2022). For clusters containing less than 3 hotspots, convex hull is used to assign shapes.  After assigning the 199 
shapes, the areas of the resultant concave or convex polygons are calculated. The resultant polygon is saved as a shape 200 
file for each fire cluster. The resultant data set is composed of geodata frames assigned to each cluster, with attributes 201 
of ignition time and date, end time and date, area, ignition latitude, ignition longitude, centroid latitude, and centroid 202 
longitude.  Moreover, a csv file in which each row corresponds to the summary of all the important attributes of one 203 
cluster’s geodata frame is also created. This summary file also contains the cluster ID which can be used to locate the 204 
shapefile with the same ID name. 205 

 206 

Figure 3 Algorithm for developing CONFEX from VIIRS S-NPP 375 m data. 207 

 208 

3. Dataset characteristics 209 

In this section, we analyzed the CONFEX database to provide an overview of its spatial and temporal characteristics 210 
and highlight its strengths and limitations. From a time series of the newly developed CONFEX summary database 211 
computed over the CONUS area and Alaska, it is possible to find that the year characterized by the largest burnt area 212 
was 2020, with 38844.96 Km2, followed by 2021 (Figure 4 a). The fire season is bimodal with one peak in March and 213 
the other in October (Figure 4 b). It is also possible to notice a very high interannual variability. As an example, the 214 
burnt area in 2023 has been less than half the activity in 2020. 215 
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 216 

Figure 4 a) Time series for total area burned each year based on the CONFEX; b) Time series for number of fires each 217 
month across years in CONFEX 218 

The regional trend of the number of fires in CONFEX reveals that the fire season is bimodal for the south with one 219 
peak in spring and the other in late fall (Figure 5 b). The west has a unimodal fire activity with peak lasting from late 220 
fall to early winter. Midwest has unimodal activity with spring peak, while the activity in northeast is uniform 221 
throughout the year with relatively more activity in summer but no clear peaks. The yearly area trend reveals that the 222 
west has the most burnt area followed by the south and midwest, respectively (Figure 5 c). The northeast has the 223 
lowest fire activity of the four regions. 224 

 225 

Figure 5 a) Different regions of CONUS and Alaska. b) Regional monthly trend of number of fires for CONUS and Alaska 226 
regions, based on CONFEX. c) Timeseries for total area burnt for different regions of CONUS and Alaska regions based 227 
on CONFEX. 228 

In Figure 6, it is possible to see an example of fire perimeter and attributes for the Caldor fire. As per CALFIRE, the 229 
area burnt in Caldor was 897.73 Km2 which is 6.7% lower than the 962.1 Km2 observed through CONFEX (Caldor 230 
Fire | CAL FIRE). The CALFIRE provides a temporal span of the Caldor fire from 8/14/2021 to 10/21/2021 while 231 
CONFEX from 8/15/2021 to 10/05/2021. The alpha shape is supplemented by the various attributes which are 232 
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available for every shape file or cluster. The number of points in each cluster is also presented, to provide an estimate 233 
of the number of hotspots detected by VIIRS in that cluster.  234 

The CONFEX contains individual shape files of all the fires from 2012 to 2023, as captured by VIIRS S-NPP 375 m. 235 
The final product contains a csv file summary of all the fires, which can be readily used in ignition modelling.  236 

 237 

 238 

Figure 6 Database example for Caldor fire California (Aug – Oct 2021). 239 

We compared the fire perimeter of three large fires, Caldor, North Complex, and Soberanes, from CONFEX with the 240 
Department of Forestry and Fire Protection's Fire and Resource Assessment Program (FRAP) California database 241 
(data.ca.gov/dataset/California-fire-perimeters-1950) (Figure 7). We computed a confusion matrix by creating a 242 
bounding box around the two perimeters and we showed the results in Figure 8 and Table 1. The bounding box was 243 
divided into 0.01° by 0.01° cells and based on that a confusion matrix was developed. These are just three examples, 244 
and the database is enormous (1,202,150) and individual results may vary; however, these examples gave very 245 
satisfactory results. 246 

 247 

Figure 7  Comparison of perimeters from CONFEX and California Fire Department (CALFIRE) for Caldor, North 248 
complex, and Soberanes fires with respect to bounding boxes for confusion matrix analysis. 249 
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 250 

Figure 8  Confusion Matrices for the three fires depicted above. 251 

Table 1 True Positive Rate, False Positive Rate, True Negative Rate, False Negative Rate, F1 score, Critical Success Index 252 
for the confusion matrices above, for the three fires. 253 

Fire Name TPR FNR TNR FPR F1 Score CSI 

Caldor 99.3% 0.7% 96.4% 3.6% 96.6% 93.4% 
North Complex Fire 97.0% 3.0% 98.0% 2.0% 96.5% 93.2% 
Soberanes 82.0% 18.0% 95.5% 4.5% 85.4% 74.5% 

 254 

The TPR values range from 82 – 99% and indicate that the clustering process was able to correctly capture the majority 255 
of the three fires. The TNR values from 95 – 98% show that whenever there was no fire, there was no false detection, 256 
or the algorithm did not incorporate pixels of a different fire. The FNR value varies from 0.7 – 18%, the high value 257 
was in case of Soberanes fire, in which the algorithm was not able to detect a considerable portion of the fire, which 258 
is detected as a separate fire cluster, since the clustering process was based on the entire database. However, looking 259 
at the F1 score, CSI shows a good overall performance of the algorithm in classifying the pixels in right clusters. 260 

 261 

4. Data Availability 262 

The data set presented in this work is available on Mendeley data repository. The DOI for the dataset is 263 
10.17632/sk6jwy7xmg.2 (Qadiri and Cerrai, 2025). 264 

 265 

5. Conclusion 266 

In this article we defined a new wildfire database for the CONUS and Alaska regions. The CONFEX database is based 267 
on the VIIRS S-NPP 375m satellite data product. Currently available datasets are either spatially inconsistent or lack 268 
perimeter information or are based on low resolution satellite products. The CONFEX database was created to address 269 
these gaps by using a high resolution VIIRS S-NPP 375m data product. The final product contains the perimeter, start 270 
date, end date, ignition and centroid location of the wildfires. The algorithm we developed takes the hotspot data and 271 
clusters it into actual fires over the specified region by using DBSCAN clustering, based on custom metrics. When 272 
compared with already available fire extents for three well known fires, we attained an F1 score of 85.5 – 96.6 % and 273 
a CSI of 73.5 – 93.4 %, showcasing the efficacy of the algorithm in classifying the hotspots. The CONFEX database 274 
has the potential to become an important asset for researchers looking for a comprehensive, high-resolution product 275 
for the CONUS and Alaska regions. 276 
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