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Abstract. On-road transportation is a major contributor to CO2 emissions in cities, and high-resolution CO2 traffic emission 11 

maps are essential for analyzing emission patterns and characteristics. In this study, we developed new hourly CO₂ emission 12 

maps at 100 × 100 m resolution for 20 major cities in France, Germany, and the Netherlands in 2023.  We used commercial 13 

Floating Car Data (FCD) based on anonymized GPS signals periodically reported by individual vehicles, providing hourly 14 

information on mean speed and on the number of GPS sample counts per street. Machine learning models were developed to 15 

fill FCD data gaps and convert sample counts into actual traffic volumes, and the COPERT model was used to estimate speed- 16 

and vehicle type dependent emission factors. Hourly emissions, initially estimated at the street level, were aggregated to 100 17 

× 100 m grid cells. Annual on-road CO₂ emissions across the 20 European cities in 2023 ranged from 0.4 to 7.9 Mt CO2, with 18 

emissions strongly correlated with urban area (R² = 0.98) and, to a lesser extent, population size (R² = 0.74). Spatially, 19 

emissions are either highly concentrated along major highways in cities such as Paris and Amsterdam or more evenly 20 

distributed in cities such as Berlin and Bordeaux, highlighting the need for context-specific mitigation strategies. Temporally, 21 

this study shows the CO2 emission fluctuations due to holiday periods, weekly activity cycles, and distinct usage profiles of 22 

different vehicle types. Due to the low latency of FCD, this approach could support near-real-time traffic emission mapping 23 

in the future. Our approach enhances the spatial and temporal characterization of CO2 emissions in on-road transportation 24 

compared to the conventional method used in gridded inventories, indicating the potential of FCD data for near-real-time urban 25 

emission monitoring and timely policy making. The datasets generated by this study are available on Zenodo 26 

https://doi.org/10.5281/zenodo.16600210(Shi et al., 2025). 27 

 28 

 29 
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1 Introduction 31 

The road transport sector is one of the largest sources of greenhouse gas (GHG) emissions in the European Union and the only 32 

major economic sector where carbon dioxide (CO2) emissions have risen since 1990, primarily due to the widespread use of 33 

fossil fuel-powered passenger cars and freight vehicles. In 2023, it accounts for approximately 26.0% of total EU GHG 34 

emissions (EEA, 2024a). In response to the dual challenge of reducing emissions and developing cleaner mobility 35 

infrastructures, the European Strategy for Low-Emission Mobility outlines three elements: (1) Increasing the efficiency of the 36 

transport system, including the optimization of logistics and intelligent transport systems; (2) Accelerating the deployment of 37 

low-emission alternative energy sources, such as biofuels, renewable electricity, and hydrogen; and (3) Speeding up the 38 

transition to zero-emission vehicles, through regulatory incentives, infrastructure investment, and innovation support 39 

(European Commission, 2016). This transition is not only critical for achieving the EU’s climate neutrality goal, which 40 

involves reducing net CO2 emissions to zero by 2050 (EEA, 2024b), but also for improving air quality, reducing energy 41 

dependence on fossil fuel imports, and enhancing the competitiveness of European industry.  42 

 43 

Emission reduction targets are being translated into concrete actions at the city level. For instance, Paris plans to reduce its 44 

direct emissions by 50% by 2030 and 100% by 2050, compared to 2004. The transport sector, responsible for approximately 45 

20% of Paris' local greenhouse gas emissions(Albarus et al., 2025). Paris has set itself the target of phasing out diesel-powered 46 

mobility by 2024 and petrol-powered mobility by 2030, aligning with the EU-wide ban on the sale of internal combustion 47 

engine vehicles by 2035. In addition, the city is developing financial incentives and support measures for low-carbon mobility. 48 

It is also preparing a low-carbon urban logistics plan for the Paris region between now and 2030(UNFCCC, 2023). Amsterdam 49 

aims to achieve zero-emission transport by 2030, phasing out all fossil-fuel vehicles within city limits(Amsterdam, 2024). The 50 

city is rapidly expanding its electric vehicle infrastructure, as all newly registered vehicles are required to have zero-emission 51 

engines in 2025(CINEA, 2025). Over 70% of trips are already made by walking, cycling, or public transport, making 52 

Amsterdam a leader in sustainable urban mobility. Similarly, to achieve climate neutrality in 2050, Berlin will require a long-53 

term reduction in CO2 emissions in the transport sector to around 1.17 million tonnes of CO2 per year, a reduction of around 54 

77 % compared with 1990 emissions(diBEK, 2025).  55 

 56 

High-resolution emission maps are crucial for monitoring emission changes and providing insights into the effectiveness of 57 

traffic mitigation policies in cities. For example, a high-resolution (1 km²) CO₂ emissions inventory for U.S. road transportation 58 

named DARTE enables detailed analysis at the city scale between 1980 to 2012(Gately et al., 2015), revealing that urban areas 59 

drive most of the emission growth and that traditional population-based downscaling methods substantially misrepresent city-60 

level spatial patterns. Over the past decade, several efforts have been made to improve either the temporal or the spatial 61 

resolution of traffic emission inventories, primarily by incorporating real-world traffic data generated from sensors or GPS 62 

signals. From a temporal resolution perspective, annual aggregated statistics make it impossible to capture short-term 63 
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variations due to weather, policy changes, or special events. Therefore, daily or hourly data were increasingly applied to 64 

improve the accuracy. For example, TomTom collects all the travel times and compares them with the lowest travel times to 65 

calculate congestion indexes based on FCD(index, 2024). Tomtom congestion indexes were used by Carbon Monitor Cities 66 

(Huo et al., 2022) to estimate daily CO2 emissions for 1500 cities. CAMS-TEMPO is a dataset of European emission temporal 67 

profiles that provides gridded monthly, daily, weekly, and hourly weight factors for atmospheric chemistry modelling, and the 68 

European part used hourly traffic data collected from over 20 European cities via open-data portals or personal communications 69 

(Guevara et al., 2021). One-month GPS-based datasets covering 52,834 conventional fuel vehicles registered in the province 70 

of Modena and 40,459 vehicles registered in the province of Firenze were used to generate high-resolution emission maps(De 71 

Gennaro et al., 2016). A near-real-time on-road traffic emission product on 2860 km of the main roads in Bangkok was 72 

automatically generated by retrieving the traffic data from the Google Maps API service and the Python code every 15 min 73 

(Naiudomthum et al., 2022). In recent years, machine learning-based bottom-up approaches have supported the development 74 

of high-resolution emission maps. For instance, an hourly street-level emission map of Chengdu was developed using data 75 

from 1,454 camera-based sensors and 34 highway monitoring sites, employing land-use random forest models(Wen et al., 76 

2022). Similarly, a platform tracking hourly CO₂ emissions at a 30×30 m resolution was designed for Berlin based on local 77 

traffic data, using machine learning methods(Anjos and Meier, 2025).  78 

 79 

Despite recent advancements, most city-level emission datasets still suffer from limitations in either temporal or spatial 80 

resolution, with few achieving both simultaneously. CAMS-TEMPO(Guevara et al., 2021) and Carbon Monitor(Huo et al., 81 

2022) lack road-specific information and provide only outputs at 0.1° resolution and the city level, respectively. The hourly 82 

street-level emission datasets for Chengdu(Wen et al., 2022) and Bangkok(Naiudomthum et al., 2022) only cover one to two 83 

months. The Berlin platform offers high spatial and temporal resolution from 2015 to 2022, but may miss data from smaller 84 

roads, as counting stations are usually located on major roads.  85 

 86 

As part of the Copernicus Atmosphere Monitoring Service (CAMS), this study estimates for the first time hourly street-level 87 

on-road transportation CO₂ emissions, aggregated into 100 m resolution hourly maps for 20 European cities in 2023. Hourly 88 

GPS-based data, reporting traffic counts and speeds of individual vehicles across different road classes, were upscaled using 89 

machine learning to reconstruct complete traffic volumes and speeds across the road networks. Then, CO2 emissions were 90 

estimated using the COPERT model, and emission maps were developed. This approach enhances the spatial and temporal 91 

characterization of CO2 emissions in on-road transportation compared to the downscaling method used in other inventories, 92 

indicating the potential of GPS-based data for supporting future efforts in emission monitoring and developing emission 93 

reduction policies. 94 
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2 Data and Method  95 

2.1 Overview of the Methodology 96 

Figure 1 describes the methodology of this study. The GPS-based high-resolution ‘Floating Car Data’ (FCD) on individual 97 

vehicle flow (GPS vehicles counts per street each hour) and speed covering every street was obtained from a data aggregation 98 

provider that collects GPS position data from cars (passenger cars) and trucks (light commercial vehicles and heavy duty 99 

trucks), providing road-specific information on hourly average speed and sample counts (i.e., the number of cars recorded in 100 

each street for each hour). Those GPS data are linked with precise cities’ road network datasets, providing detailed information 101 

on road length, road functional class, and truck access authorization. All data is anonymized by the data provider to prevent 102 

compromising any individual or organizational data privacy issues.  After raw data processing and cleaning, a machine learning 103 

model was used to fill in missing values in FCD, as well as to transform FCD sample counts limited to vehicles equipped with 104 

GPS into traffic volumes for all vehicles. Then, the COPERT model (Ntziachristos et al., 2009), the EU standard vehicle 105 

emissions calculator, was applied for estimating specific CO₂ emission factors based on individual vehicle hourly average 106 

speed and type. Combined with the road lengths obtained from geographical databases and with fleet structures, we finally 107 

estimate street-level road-specific emissions using the following equation: 108 

𝐸𝑚𝑖𝑠𝑡,𝑣,𝑟 =  𝑁𝑡,𝑟 × 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑣 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑟 × 𝐸𝐹𝑣,𝑠  (1) 109 

Where 𝐸𝑚𝑖𝑠𝑡,𝑣,𝑟  represents CO2 emission at the hour t, for the vehicle type v, on road r. 𝑁𝑡,𝑟  represents the total traffic volume 110 

at hour t, on road r (counts/hour). 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑣 represents the proportion of vehicle type v in the vehicle fleet (%). 𝐿𝑒𝑛𝑔𝑡ℎ𝑟 111 

represents the road length (km) of the road r, and 𝐸𝐹𝑣,𝑠 (g CO2/km) represents the CO2 emission factors for the vehicle type v, 112 

at the hourly average speed s (km/h). 113 

 114 

Our FCD source covers France, Germany, and the Netherlands. Therefore, the 20 most populous cities within these three 115 

countries were selected to develop high-resolution emission maps. Table 1 shows the basic information(population, area, street 116 

length, street density) of the 20 cities in 2023. Note that here Paris is the administrative city jurisdiction (Ville de Paris) 117 

covering the central 20 arrondissements, so its area is much smaller than Berlin, which is both a city and a federal state. 118 

 119 
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Figure 1: The roadmap of this study 121 
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Table 1: Information of 20 selected cities in 2023. 136 

Country City Population 

(Thousand) 

Area(km2) Street length(km) Street 

density(km/km2) 

France Paris 2,103 105.4 2412.9 22.9 

Marseille 862 240.6 3301.7 13.7 

Lyon 513 47.9 985.3 20.6 

Lille 233 39.5 679.8 17.2 

Toulouse 472 118.3 2311.2 19.5 

Nice 343 71.9 1228.0 17.1 

Nantes 303 65.2 1249.4 19.2 

Strasbourg 277 78.3 1252.4 16.0 

Montpellier 278 56.9 1260.1 22.1 

Bordeaux 250 49.4 967.9 19.6 

Germany 

 

Berlin 3,782 891.3 12073.4 13.5 

Hamburg 1,910 755.2 8725.2 11.6 

Munich 1,510 310.7 5220.0 16.8 

Cologne 1,087 405.2 5508.8 13.6 

Frankfurt 776 248.3 3648.5 14.7 

Stuttgart 633 207.3 3660.8 17.7 

Dusseldorf 631 217.4 2741.5 12.6 

Netherland 

 

Amsterdam 883 219.4 3203.8 14.6 

Rotterdam 656 324.1 3555.7 11.0 

The Hague 553 98.1 1796.8 18.3 

 137 

2.2 Description and preparation of FCD 138 

FCD provides hourly average speed and sample counts for each street, with separate data for cars and trucks reporting GPS 139 

data.  The FCD is linked with high-resolution road network datasets that feature information such as road length, speed category, 140 
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road functional class, lane category, on more detailed and complete road networks than public traffic datasets based on sensors. 141 

As shown in Figure 2, public datasets used by previous studies are only available for a few cities and provide hourly traffic 142 

data for 3,739 road segments in Paris (Xavier Bonnemaizon 2024) and 19,808 segments in Berlin (Anjos and Meier, 2025), 143 

respectively. In contrast, FCD gives vehicle count samples and speed information for 36,716 roads in Paris and 122,759 roads 144 

in Berlin, dividing long roads into more segments and encompassing a much greater number of small roads than the city-level 145 

public datasets. All road segments were categorized into major, middle, and small according to the functional class defined by 146 

the FCD. Major roads represent roads connecting major metropolitan areas, middle roads represent roads connecting 147 

neighbourhoods, and small roads represent low-volume roads. 148 

 149 

Figure 2: Monitored road networks in this study and other public datasets in Paris and Berlin. N represents the number of road 150 
segments. (a) and (c) represent road networks from FCD for Paris and Berlin, respectively; (b) and (d) represent networks from Open Data 151 
in Paris and Traffic Detection Systems in Berlin. 152 

 153 

Missing values exist in the FCD due to unstable GPS signals, especially for small roads. The average data coverage of GPS 154 

cars on major, middle, and small roads ranges from 67.0% - 97.7%, 40.4% - 93.8%, and 6.1% - 37.7%, respectively (Figure 155 

S1a). The average data coverage of trucks is lower, ranging from 32.2% - 75.8%, 32.1% - 85.3%, and 1.8% - 32.2%, 156 

respectively (Figure S1b). Machine learning was used here to fill data gaps, as the use of machine learning techniques has 157 

shown great potential for both temporal and spatial imputation of missing data to reconstruct the full volume of traffic(Wen et 158 
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al., 2022). Eight features were chosen as predictors (Table 2) to train models. Temporal features (hour, day of the week, and 159 

month) were used to capture diurnal and seasonal patterns in traffic behaviour. Observed road-specific daily mean traffic 160 

counts and speeds were also used as indicators of baseline traffic intensity. Holiday indicators, including school and public 161 

holidays, were included to account for potential shifts in travel demand. Finally, road characteristics including speed category, 162 

functional class, and lane category were used to describe the physical and functional attributes of each road segment.  163 

 164 

Table 2: Spatial-temporal features used as predictors of traffic variables 165 

Category Features Usage 

Time Hour, Day of week, Month Diel and seasonal pattern 

Road-specific traffic counts/speed Daily mean Baseline traffic intensity 

Holiday School holiday, 

Public holiday 

Potential shifts in travel demand 

Road characteristics Speed category, Functional class, Lane category Road capacity and flow 

characteristics 

 166 

The full-year dataset was partitioned into two temporally isolated subsets: January-June (H1) and July-December (H2) due to 167 

the large-scale dataset. Separate machine learning models were developed for each six-month interval, both incorporating 168 

consistent feature engineering protocols for vehicle type differentiation (Cars and Trucks) and road classification. Model 169 

training was conducted on 80% of the available data, with the remaining 20% held out as an independent test set to evaluate 170 

generalization performance. Random forest (RF) and lightGBM models were tested for Paris to compare their performances. 171 

As shown in Table S1, Random Forest (RF) and LightGBM exhibited comparable predictive performance across different 172 

vehicle types, road types, and target variables (i.e., vehicle count and speed) but LightGBM required significantly less 173 

computational time. In some cases, the efficiency gain is more than 10-fold e.g., to fill gaps of car count on major roads takes 174 
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6.25 s for LightGBM vs. 122.53 s for RF.  This efficiency gains stems from LightGBM’s histogram-based decision tree 175 

learning and its leaf-wise tree growth strategy with depth constraints, which together enable faster training and better scalability, 176 

especially for large datasets with continuous features. Given its high accuracy and computational efficiency, we selected 177 

LightGBM was chosen as the preferred model and trained individually for each of the 20 cities. 178 

 179 

The LightGBM validation results are shown in Table S2. Overall, the model demonstrates strong predictive performance across 180 

different vehicle types and target variables. For car count, performance is consistently high on major roads, with R2 values 181 

typically above 0.90 and reaching up to 0.97 (e.g., The Hague and Amsterdam). On middle and small roads, R2 varies between 182 

0.53 and 0.85, and lower values are often observed in cities with smaller datasets, such as Lyon and Nice, suggesting that data 183 

volume plays a critical role in model accuracy (Figure S2). For car speed, the model also performs well on major roads 𝑅2 184 

(0.85-0.95) but shows greater variability on smaller roads, where R2 drops to as low as 0.39 in some cases (e.g., Paris or Lyon). 185 

The results of trucks are similar to those of cars, but with slightly lower overall performance. Shapley values, a concept from 186 

cooperative game theory, are widely used to explain feature importance in machine learning. This study used the Python 187 

package SHAP to estimate Shapley values applied to the model’s conditional expectation function(SHAP, 2025), revealing 188 

that the daily mean count and hour of day are the most influential predictors, followed by day of week, road class, and 189 

month(Figure S3). High traffic volumes are associated with increased model output, while hourly effects vary by time of day. 190 

In contrast, features such as lane type and school holidays show limited influence.  191 

 192 

2.2 Obtain CO2 emission factors using COPERT 193 

To calculate the speed-dependent emission factors EFCO2 defined by CO2 emissions per km driven for each vehicle type, we 194 

applied the COPERT model, a widely used emissions calculator for vehicles in Europe (Ntziachristos et al., 2009). Monthly 195 

temperature and relative humidity data required as input for COPERT were obtained from ERA5 reanalysis (Hersbach, 2023) 196 

and interpolated to a 0.01° spatial resolution. City-level averages of maximum/minimum temperature and relative humidity 197 

were then calculated within administrative boundaries defined by Eurostat shapefiles to serve as inputs for COPERT.5 198 

Considering the data scale and time cost, instead of running COPERT for each street segment each hour, this study developed 199 

fitting curves between speed and EFCO2 to obtain EFCO2. Except for L-Category vehicles running on diesel, where COPERT 200 

provides a fixed value, emission factors were simulated for various vehicle types at speeds of 20, 40, 60, 80, 100, 120, and 140 201 

km/h. Then, for each city, cubic functions were fitted to COPERT simulations, as given by: 202 

𝐸𝐹 = 𝑎 × 𝑠3 + 𝑏 × 𝑠2 + 𝑐 × 𝑠 + 𝑑 (2)  203 

Where s represents the average speed at hourly resolution, and a, b, c, and d are city-specific constants. Table S3 presents the 204 

parameters of the curve fitting results for all cities, showing a good fit quality with an R² value range from 0.882 to 0.998. In 205 

this way, the corresponding emission factor for any given speed can be determined. Note that we used EFCO2 of the EU6 206 
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standard, since CO₂ emission factors are only marginally influenced by emission standards, and this approach was also adopted 207 

by TomTom (Index, 2024).  208 

 209 

2.3 Estimate real traffic volume from sample count 210 

Road-specific hourly total traffic volume is the key parameter to estimate CO2 emissions. Since not all vehicles transmit GPS 211 

signals and our dataset only captures a subset of the real GPS data for all vehicles, the actual traffic volume is significantly 212 

higher than the sample counts from the FCD. To solve this problem, we established a relationship between real traffic volume 213 

data and GPS sample count using machine learning. Due to the availability of traffic volume data, only the Opendata from 214 

Paris (Parisopendata, 2024) and Traffic detection Berlin(Berlinopendata, 2024) were used for modelling. Opendata from Paris 215 

provides hourly total vehicle flow from permanent sensors with electromagnetic loops on 2086 roads in 2023, but does not 216 

differentiate between vehicle types for the traffic volume. Therefore, the numbers of cars and trucks are estimated based on 217 

the proportion of sample counts from each type in our FCD. Traffic detection in Berlin provides hourly total vehicle volumes 218 

on 19808 roads, and only the volumes of cars were used for modelling. As shown in Figure 2, monitored road networks of 219 

public datasets and FCD are different. The overlap rate and angle are used as criteria to link the two datasets’ shapefiles (Figure 220 

S4). When the overlap rate > 0.7 and the angle <20°, a road is identified as being the same in Opendata and FCD. In this way, 221 

hourly open data from 3,018 monitoring sites in Paris and 202 in Berlin were matched to the FCD, and we got the real volume 222 

and the number of FCD sample counts on the same road. A similar set of predictors as listed in Table 2, except for road-223 

specific traffic counts and speeds, was used to build a LightGBM model to extrapolate FCD sample counts to total traffic 224 

volume. For cars in German cities, we used the LightGBM model trained on Berlin’s data, while for all other cities, we used 225 

the LightGBM trained on Paris’s data. The results of validation are shown in Table S4. The validation results (Table S4) show 226 

that the LightGBM model performs well on major roads in both Paris (R2 = 0.91 for cars and 0.88 for trucks) and Berlin (R2  227 

=0.66 for cars). The accuracy decreases on middle and small roads in Paris (R2  range from 0.22 to 0.38), while the performance 228 

in Berlin remains comparatively good(R2  range from 0.86 to 0.88). 229 

2.4 Fleet structure 230 

This study collected fleet structures data in 2023 for the 20 cities to further map cars and trucks to 5 categories (passenger cars, 231 

light commercial vehicles, buses, L-category and heavy-duty trucks), and 12 sub-categories, 10 fuels (petrol, diesel, CNG, 232 

diesel hybrid, biodiesel, diesel PHEV, CNG biofuel, petrol hybrid, battery electric) (Table S5). The data was collected from 233 

the official statistical websites of France, Germany, and the Netherlands (Table S6). Only direct emissions from fossil fuels 234 

are considered, so the emission factor of battery electric cars is set to 0. 235 

 236 
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2.5 Aggregation onto grids 237 

Python was used to map street network emissions data onto a 100 × 100 m grid. Starting from a shapefile containing road 238 

segments with associated emissions, a spatial join was performed using GeoPandas’ sjoin function to identify which road 239 

segments intersect each grid cell. Emissions were then allocated to the grid cells in a length-weighted manner, proportionally 240 

distributing each road segment’s emissions based on the length of its overlap with each cell. For the projections, cities in 241 

France use EPSG:2154, while most German cities use EPSG:25832; Berlin uses EPSG:25833 due to its location. Dutch cities 242 

are projected using EPSG:28992. 243 

3 Results 244 

3.1 Annual emissions 245 

The total on-road CO2 emissions in 2023 among the 20 cities ranged from 0.4 Mt CO2/yr to 7.9 Mt CO2/yr. The top five 246 

emitting cities are Berlin (7.9 Mt), Hamburg (6.6 Mt), Cologne (4.1 Mt), Munich (3.5 Mt), and Rotterdam (3.0 Mt). Berlin’s 247 

CO₂ emissions are approximately 20 times higher than those of Lille, the city with the lowest emissions in the dataset (0.4 Mt). 248 

On average, the 20 cities emit 2.4 Mt CO₂ per year, with a coefficient of variation of 0.82 (Figure 3a). As shown in Figure 4, 249 

the linear regression analyses between on-road CO₂ emissions and both urban area and population indicate strong positive 250 

relationships. Specifically, CO₂ emissions increase significantly with larger urban areas and higher population sizes. The 251 

regression model yields a high coefficient of determination with an R² value of 0.98 when emissions are regressed against area, 252 

suggesting that urban land extent is a dominant factor influencing total emissions. A similarly positive but weaker correlation 253 

is observed between emissions and population, with an R² value of 0.74, indicating that population size also plays a substantial 254 

role in shaping emission levels. This distinction is further illustrated by a comparison between Paris and Hamburg. While their 255 

populations are relatively similar, Hamburg covers an urban area nearly seven times larger than that of central Paris. 256 

Furthermore, Hamburg’s road network is more than three times as long. As a result, Hamburg exhibits substantially higher on-257 

road CO₂ emissions, reinforcing the observation that urban spatial extent and infrastructure scale are critical determinants of 258 

total emissions, potentially more so than population alone. 259 

 260 

Per capita emissions show a mean of 2.8 tons/person with a coefficient of variation of 0.4, and the ranking is quite different 261 

from total emissions (Figure 3b). Some of the cities with high total emissions also have high per capita emissions, such as 262 

Cologne (3.8 t/person), Rotterdam (4.6 tons/person) and Frankfurt (3.6 tons/person). Other cities like Berlin (2.1 t/person) and 263 

Paris (0.9 t/person) exhibit low per capita values despite their large total emissions. Notably, cities such as Toulouse (3.4 264 

tons/person) and Marseille (3.2 tons/person) have high per capita emissions, highlighting differences in cities' boundaries e.g., 265 

including or not satellite towns commuting with each ‘city’, transportation infrastructure, commuting patterns, and vehicle 266 

efficiency across the regions. Figure 3c illustrates the emissions per unit area, revealing a contrasting pattern to total emissions. 267 
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Paris exhibits the highest emissions per unit area (0.02 Mt/km2), despite having one of the lowest per capita values, which is 268 

indicative of its dense urban environment and intensive transportation activities within a compact city layout and a very dense 269 

street network. Similarly, Toulouse ranks second in per-area emissions, despite being only seventh in total emissions. This 270 

result shows that urban density and mobility intensity significantly influence emission distribution at the local scale.   271 

 272 

 273 

Figure 3: Annual CO2 emission and emission intensities per capita and per unit area of 20 cities in 2023. Grey, light blue and orange 274 
represent cities in Germany, France and the Netherlands, respectively. 275 

 276 
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 277 
Figure 4: Linear relationships between on-road CO₂ emissions, area, and population. Each point represents one city. 278 

 279 

3.2 Spatial patterns 280 

Figure 5 presents the annual emission maps for 20 major European cities, highlighting the diversity in emission spatial patterns. 281 

In addition, two cities from each country were selected to plot cumulative emission curves, as shown in Figure S5. In cities 282 

such as Paris, Amsterdam, The Hague and Dusseldorf, a few major roadways stand out significantly in bright yellow. In Paris, 283 

the top 5% of the highest-emitting 100 m grids contribute 33.1% of total emissions. The ring road known as le Périphérique 284 

emerges as a major hotspot, accounting for 26.9% of the city’s total on-road emissions and having a mean emission level that 285 

is 953.3% higher than the city-wide average. This is primarily attributable to its high traffic density and heavy vehicle usage 286 

driven by significant commuter flows. A similar concentration of emissions is observed in Amsterdam, where the top 5% of 287 

the highest-emitting 100 m grids contribute 30.3% of total emissions, respectively, underscoring the spatially skewed 288 

distribution of traffic-related CO₂. The top 5% of high-emission grids in The Hague and Dusseldorf show a lower contribution 289 

of total emissions (24.5% and 21.9% respectively), but these are still concentrated along major highways such as the A4 and 290 

A12 in the Hague and B8 and A44 in Dusseldorf. The steep curvatures at the start of the cumulative emissions distribution 291 

curves for these two cities suggest that only a few key segments are disproportionately responsible for emissions, albeit to a 292 

lesser extent than in Paris or Amsterdam. 293 

 294 

Cities like Berlin and Bordeaux exhibit a more diffuse emission pattern, with relatively less pronounced hotspots, where the 295 

top 5% of the highest-emitting 100 m grids contribute ~19.0% of total emissions. Their cumulative emission curves 296 

demonstrate gentler slopes, indicating a more uniform spread of emissions across the road network. This suggests that no 297 

single road or corridor dominates in terms of emission contributions and that urban transport emissions are more evenly 298 

distributed. Other cities, including Lyon, Marseille, Frankfurt, and Rotterdam, fall between these two extremes, exhibiting 299 
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varying degrees of emission concentration. For instance, Frankfurt shows notable linear patterns corresponding to high-300 

emission highways intersecting the urban core. In contrast, Rotterdam reveals both concentrated and dispersed emission zones 301 

due to its mixed land use and logistic traffic. Overall, these spatial variations emphasize the importance of city-specific 302 

mitigation strategies. While targeted interventions on a few high-emitting corridors may yield significant benefits in cities with 303 

highly skewed distributions (e.g., Paris or Dusseldorf), broader, network-wide policies may be necessary in more evenly 304 

distributed urban contexts like Berlin or Bordeaux. 305 
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 306 
Figure 5: Annual CO2 emission map of 20 cities at 100m × 100m resolution in 2023.  307 

 308 
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3.3 Temporal patterns 309 

Figure 6 presents the normalized daily CO₂ emissions ratios for Paris, Berlin, Munich, Amsterdam, Lyon, Marseille, and Nice 310 

in 2023. The y-axis represents each day’s CO₂ emissions divided by the city’s total emissions in 2023. These cities were 311 

selected due to the availability of corresponding Carbon Monitor Cities data (hereafter CM-Cities data, shown as green dashed 312 

lines), which enables direct comparison with the results of this study (blue lines). The time series data reveals distinct seasonal 313 

and weekly variations. The summer months (July and August) show a significant decline in emissions in Paris, Amsterdam, 314 

and Lyon, while emissions in all seven cities decline around Christmas, due to business closures and decreased commuting. 315 

For weekly patterns, there is a slight upward trend from Monday to Friday, a noticeable drop on Saturday, and a further decline 316 

on Sunday (Figure S6). The magnitude of the weekend drop varies across cities. In Berlin and Marseille, the median emissions 317 

on Sunday drop by approximately 31.1% and 27.7% compared to Friday in 2023, respectively, representing the most 318 

pronounced Sunday reduction among the six cities. In contrast, Amsterdam exhibits a much smaller Sunday drop compared to 319 

Friday (10.1%).  320 

 321 

In all cities, the median emissions of public holidays (marked in grey shades) and school holidays (marked in light blue shades) 322 

are lower than those of weekdays in 2023. Across all six cities, the median emissions on public holidays and school holidays 323 

were consistently lower than weekday levels in 2023, indicating a general reduction in traffic-related CO₂ emissions during 324 

holiday periods. In Paris, public holiday emissions were exceptionally low, even lower than Sunday levels by 5.2%. The pattern 325 

is different in Marseille, Berlin, and Nice, as the median emissions on public holidays exceeded those on Saturdays by 24.4%, 326 

11.0%, and 6.4%, respectively. The medians of school holidays are generally higher than those of public holidays because a 327 

more limited segment of the population is affected, and the distributions are notably wider. An exception is Amsterdam, where 328 

public holiday emissions slightly surpassed those during school holidays, suggesting a different urban rhythm or school break 329 

dynamics compared to other cities. Also, the day of the week on which a holiday falls also influences emission levels. As 330 

shown in Figure S7, holidays that coincide with weekends tend to show similar emission levels to regular weekend days. When 331 

holidays fall on a Monday, their emission levels are comparable to those of regular Mondays in cities like Berlin, Marseille, 332 

and Nice. 333 

 334 

Although the general emission temporal variability estimated in this study align reasonably with those reported by Carbon 335 

Monitor Cities, as evidenced by the R correlation coefficients ranging from 0.58 to 0.84 across the six selected cities, notable 336 

differences remain. In Paris, CM-cities tends to underestimate both the troughs and peaks of emissions(Huo et al., 2022). In 337 

Lyon, the consistency is relatively high, but the sharp weekend emission drops observed in Carbon Monitor estimates are not 338 

reproduced in this study. In Amsterdam, this study does not show the pronounced weekend decreases during holidays that are 339 

present in Carbon Monitor data.  340 

 341 
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 342 

 343 

Figure 6: Normalized daily CO2 emission of seven cities in 2023. Y-axis represents each day’s CO₂ emissions divided by the city’s total 344 
emissions in 2023. The light blue and grey shades represent school holidays and public holidays, respectively. The y-axis represents each 345 
day’s CO₂ emissions divided by the city’s total emissions in 2023. 346 

 347 

Figure 7 presents the average hourly CO₂ emission patterns for cars across the 20 cities in 2023. The y-axis represents the 348 

average proportion of daily CO₂ emissions for each hour, categorized by day types: holidays (blue), weekdays (orange), and 349 

weekends (green). The hourly patterns for cars in French cities and Dutch cities are similar. On weekdays, there are two 350 

emission peaks at 9:00~10:00 and 18:00~19:00 due to commuting, and the emissions stabilize at relatively high levels between 351 
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these two peaks. After the second emission peak, the emissions decline continuously and reach their lowest point at 4:00 ~ 352 

5:00. The differences between weekdays and holidays are relatively small, but with no or a less pronounced morning peak due 353 

to reduced commuting activity. On weekends, the sum of average emission share in French cities and Dutch cities during 354 

evening and early morning (22:00 to 6:00) reach 22.9% to 29.1%%, significantly higher than that for weekdays (17.4 to 21.7%), 355 

and the first peak is lagged to around 12:00. German cities on weekdays, except for Dusseldorf, the CO2 emission exhibit 356 

earlier morning peaks at 8:00 and a much higher peak around 15:00 ~16:00. On average, evening peak emissions in French 357 

and Dutch cities are only around 15% higher than morning peak levels, but for German cities specifically, the difference ranges 358 

from 9.3% to 60.0%. After the peak, the CO2 emissions in German cities decrease sharply, which is consistent with the trends 359 

reported by the Berlin datasets (Max et al). On weekends, there is only one peak around 13:00. 360 

 361 
Figure 7: Hourly emission patterns of cars in 20 cities.  362 

The hourly patterns for trucks are relatively consistent across all 20 European cities but are notably different from those of 363 

passenger cars(Figure 8). On weekdays, truck-related CO₂ emissions show a peak around 9:00 in nearly all cities, suggesting 364 

synchronized delivery and logistics activity. This peak accounts for 5.4%–6.5% of daily truck emissions in French and Dutch 365 
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cities, and up to 9% in German cities such as Berlin and Hamburg. Truck emissions on weekends and holidays are considerably 366 

reduced, with no discernible peaks in most cities. In some German cities (e.g., Stuttgart and Düsseldorf), truck emissions 367 

remain below 3% of daily total at any hour during holidays, reflecting stricter weekend freight regulations. In contrast,  368 

emissions levels of trucks remain relatively high on weekends, especially in southern cities like Marseille and Nice, where 369 

midday peaks surpass 0.06 of daily emissions and are comparable to weekday levels. 370 

 371 

Figure 8: Hourly emission patterns of trucks in 20 cities.  372 

 373 

3.4 Validation 374 

Table S7 compares the annual emissions estimated in this study with those reported by Carbon Monitor and other available 375 

data sources. Carbon Monitor provides 0.1°× 0.1°daily gridded maps named GRACED(Dou et al., 2023). City boundaries 376 

were applied to clip GRACED grids, and area-weighted daily emissions were aggregated to annual city-level totals. Available 377 
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data of several cities from Climate Trace(Kott et al., 2024), local statistical websites(Bilanz des Statistikamtes Nord, 2024), 378 

and previous studies(Kühbacher et al., 2023; Ulrich et al., 2023; Anjos and Meier, 2025) was also collected. Overall, estimates 379 

of other datasets are much lower than this study, with differences ranging from −94.2% (Nice, Carbon Monitor) to −8.1% 380 

(Berlin, Ulrich et al.’s estimates from Opendata) relative to our estimates. These discrepancies can be explained by the methods 381 

of different datasets. Compared with local statistical reports, our estimates tend to be higher because we include emissions 382 

from vehicles traveling across city boundaries, whereas local statistics typically estimate emissions based only on oil 383 

consumption within administrative limits. GRACED allocates emissions based on EDGARv5 using OpenStreetMap data 384 

without actual traffic volume data, this method likely underestimates emissions in large cities with high-volume roads. Climate 385 

Trace estimates average annual daily traffic (AADT) by integrating Sentinel-2 satellite imagery with AADT data from the U.S. 386 

Department of Transportation’s Federal Highway Administration (FHWA), applying Convolutional Neural Network and 387 

Graph Neural Network models. This U.S.-centric training may limit the models’ applicability in the European context. Finally, 388 

although our approach benefits from a more comprehensive road network, the relatively low accuracy on middle and small 389 

roads may contribute to overestimation of traffic volumes in certain areas, as mentioned in Section 2.3. 390 

 391 

For daily profiles, we have discussed the general consistencies and the notable differences between our estimates and those 392 

from CM-cities (Figure 6, Section 3.3). CM-cities estimated traffic volumes using a sigmoid regression based on TomTom 393 

live congestion indices, which lack spatial granularity (only one value per city), and the model parameters were calibrated 394 

using real-time data from approximately 60 roads in Paris. In addition, CM-cities adopts the Functional Urban Area (FUA) 395 

definition used by the OECD and the European Union, which includes high-density urban centers along with their surrounding 396 

commuting zones, whereas our analysis relies on administrative boundaries. For cities not covered by CM-cities, we compared 397 

daily emissions clipped from GRACED (Figure S8). Without calibration at the city level as CM-cities did, GRACED daily 398 

emissions fail to show a consistent weekday–weekend pattern, and some anomalous peaks occurred (e.g., elevated emissions 399 

in Hamburg in April 2023 and in Frankfurt and Montpellier in late May 2023). Except for The Hague, Rotterdam, and Bordeaux, 400 

the resulting daily profiles showed very poor agreement (R<0.4). These findings suggest that coarse-resolution data are not 401 

suitable for city-level temporal analyses, highlighting the advantage of our city-scale dataset in more accurately representing 402 

actual urban emissions. 403 

4 Discussion 404 

This study demonstrates that integrating new GPS-based traffic data for individual vehicles covering all street segments with 405 

the COPERT model enables the estimation of hourly on-road CO₂ emissions at street level, which were further aggregated into 406 

100 × 100 m grids for display purposes, to generate high-resolution emission maps across 20 European cities. This approach 407 

overcomes the limitations of traditional top-down downscaling methods (e.g., population-based or road-network density 408 

proxies) by applying machine learning to impute the actual traffic volumes from FCD, which only samples the traffic of 409 
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vehicles equipped with GPS. Compared to existing CO2 emission inventories such as CAMS-TEMPO, Carbon Monitor, or 410 

localized platforms in Asian or German cities, our dataset represents a significant advancement by simultaneously achieving 411 

high spatial granularity and temporal resolution. It captures intra-urban variability that is often missed in coarser-resolution 412 

datasets or those relying solely on major road segments. This work highlights the value of integrating GPS-based mobility data 413 

with machine learning and emission modelling to enhance the monitoring of urban transportation emissions and to inform the 414 

design of effective, location-specific mitigation policies. Most recurrent low-carbon transport measures in cities include modal 415 

shift to public transport, low-carbon zones control, and low-emission vehicle development, but each strategy may vary 416 

according to development stages and types of urban land-use transport systems(Creutzig et al., 2012; Nakamura and Hayashi, 417 

2013; Croci et al., 2021). While low-density cities become more compact in the long term but often lack sufficient population 418 

density to support rapid transit systems in the short term, promoting the adoption of electric vehicles, particularly in regions 419 

with low-carbon electricity, may be a more practical approach(Kennedy et al., 2014). This study may support the design of 420 

such strategies by enabling street-level scenarios to quantitatively assess their potential emission reductions. 421 

 422 

Our CO2 hourly emission maps reveal striking spatial heterogeneity within cities. For example, concentrated emission hotspots 423 

along Paris’ ring road, versus more dispersed patterns in Berlin, reflect differences in urban structure, transport systems, and 424 

commuting behaviours. Temporally, we observed national variations in traffic-related emissions during holiday and summer 425 

periods, likely due to country-specific vacation schedules. Our new emission maps can support planning of low-emission zones, 426 

help identify high-flux corridors for targeted energy efficiency measures and provide a basis for congestion-related studies. 427 

Given that traffic congestion is a major driver of both fuel consumption and emissions, our maps offer valuable insights for 428 

designing and evaluating emission reduction strategies.  429 

 430 

However, several sources of uncertainty remain in our approach, primarily stemming from the FCD. First, although we 431 

conducted extensive data cleaning, anomalies occasionally persist due to the instability and noise inherent in the raw data. 432 

Second, there are uncertainties related to the GPS penetration rate. The proportion of vehicles equipped with GPS devices may 433 

vary across vehicle types and cities. For instance, commercial vehicles are more likely to be tracked. This discrepancy may 434 

lead to bias in estimating traffic volume from floating car data (FCD), particularly if the raw data or sensor-based counts do 435 

not distinguish between vehicle categories. This study assumes that other cities have the same penetration rates as Paris or 436 

Berlin, but if the other cities have lower penetrations, then their traffic volumes are underestimated. In such cases, trucks may 437 

be overrepresented in the dataset, potentially leading to overestimation of freight-related emissions. Third, uncertainties also 438 

arise from fleet structures. Due to the lack of detailed vehicle-type distribution at the road segment level, we can only perform 439 

fleet correction for roads where heavy-duty vehicle traffic is explicitly restricted. For other roads, we currently apply city-wide 440 

average fleet compositions, which may not reflect local variations. Finally, significant errors may be introduced during the 441 

conversion from GPS trajectories to actual traffic volume. Our flux-to-volume machine learning models were calibrated using 442 

sensor data from Paris and Berlin only, as high-quality in-situ traffic observations are either unavailable or not publicly 443 
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accessible for other cities. As discussed in Section 3.4, the models for middle and small roads in Paris still require further 444 

refinement for better performance. This limits the models’ generalizability and highlights the need for more comprehensive, 445 

standardized traffic monitoring networks. Some traffic data from other cities are available at daily or annual 446 

resolutions(Bonnemaizon et al., 2025), and integrating these in future work could support broader validation and model 447 

refinement.  Also, the fleet captured by FCD and local monitoring stations can be different. For example, utility vehicles are 448 

captured by FCD but not by the Berlin Open Data traffic counts, which could be the reason for the bad performance when we 449 

try to transform signals to the real volumes for trucks. Incorporating additional top-down constraints, such as detailed fuel 450 

consumption data could potentially improve the accuracy of this step. 451 

 452 

Current work only covers the year 2023, but the underlying GPS-based FCD is typically available with a delay of only about 453 

one week. This creates a clear opportunity to automate the processing pipeline and update the emission estimates on a rolling 454 

basis. Incorporating this capability into Carbon Monitor Cities would allow near-real-time, high-resolution emission 455 

monitoring at the street level, significantly enhancing the system’s responsiveness and value for both research and policy 456 

applications. Also, future work could extend the methodology to include major air pollutants beyond CO₂, and scale the 457 

approach to cover broader regions. Through incorporating more sensor-based traffic measurements across cities, data 458 

representativeness and model validation can be further improved. Such efforts will strengthen the robustness, applicability, 459 

and policy relevance of street-level emission mapping, particularly in supporting timely decision-making and climate or clean 460 

air action monitoring. 461 

5 Data availability 462 

The high-resolution hourly CO₂ emission dataset for 20 cities in 2023 is available in NetCDF format, on Zenodo 463 

https://doi.org/10.5281/zenodo.16600210(Shi et al., 2025). Each city has an individual NetCDF file that provides gridded 464 

hourly emissions over the entire year of 2023. Their central x and y coordinates define the grid cells, and each file includes the 465 

variable CO2_g, representing emissions in grams per hour in the grid. Every grid’s size is 100 m × 100 m.  466 

Supplement 467 

This dataset is accompanied by Supplementary Information, including a detailed methodology document (SI_document.docx) 468 

and additional data tables (SI_tables.xlsx). 469 
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