

1 **High spatiotemporal resolution traffic CO₂ emission maps derived**
2 **from Floating Car Data (FCD) for 20 European cities (2023)**

3

4 Qinren Shi¹, Philippe Ciais¹, Nicolas Megel², Xavier Bonnemaizon¹, Rohith Teja Mittakola¹, Richard
5 Engelen³, Chuanlong Zhou¹

6 ¹Le Laboratoire des Sciences du Climat et de l'Environnement, Saint-Aubin, 91190, France

7 ²NEXQT SAS, Paris, France

8 ³ECMWF, Robert-Schuman-Platz 3, 53175 Bonn, Germany

9

10 *Correspondence to:* Qinren Shi(qinrenshi2025@gmail.com) & Chuanlong Zhou(chuanlong.zhou@lsce.ipsl.fr)

11 **Abstract.** On-road transportation is a major contributor to CO₂ emissions in cities, and high-resolution CO₂ traffic emission
12 maps are essential for analyzing emission patterns and characteristics. In this study, we developed new hourly on-road CO₂
13 emission maps with a 100 × 100 m resolution for 20 major cities in France, Germany, and the Netherlands in 2023. We used
14 commercial Floating Car Data (FCD) based on anonymized GPS signals periodically reported by individual vehicles,
15 providing hourly information on mean speed and the number of GPS sample counts per street. Machine learning models were
16 developed to fill FCD data gaps and convert sample counts into actual traffic volumes, and the COPERT model was used to
17 estimate speed- and vehicle-type-dependent emission factors. These models were calibrated using independent traffic
18 observations available for Paris and Berlin, and subsequently applied to the remaining 18 cities in an extrapolated manner due
19 to data availability constraints. Hourly emissions, initially estimated at the street level, were aggregated to 100 × 100 m grid
20 cells. Annual on-road CO₂ emissions across the 20 European cities in 2023 ranged from 0.4 to 7.9 Mt CO₂, with emissions
21 strongly correlated with urban area ($R^2 = 0.98$) and, to a lesser extent, population size ($R^2 = 0.74$). Spatially, emissions are
22 either highly concentrated along major highways in cities such as Paris and Amsterdam or more evenly distributed in cities
23 such as Berlin and Bordeaux, highlighting the need for context-specific mitigation strategies. Temporally, this study shows the
24 CO₂ emission fluctuations due to holiday periods, weekly activity cycles, and distinct usage profiles of different vehicle types.
25 Due to the low latency of FCD, this approach could support near-real-time traffic emission mapping in the future. Our approach
26 enhances the spatial and temporal characterization of CO₂ emissions in on-road transportation compared to the conventional
27 method used in gridded inventories, indicating the potential of FCD data for near-real-time urban emission monitoring and
28 timely policy-making. The datasets generated by this study are available on Zenodo
29 <https://doi.org/10.5281/zenodo.16600210>(Shi et al., 2025).

30

31 **1 Introduction**

32 The road transport sector is one of the largest sources of greenhouse gas (GHG) emissions in the European Union and the only
33 major economic sector where carbon dioxide (CO₂) emissions have risen since 1990, primarily due to the widespread use of
34 fossil fuel-powered passenger cars and freight vehicles. In 2023, it accounts for approximately 26.0% of total EU GHG
35 emissions (EEA, 2024a). In response to the dual challenge of reducing emissions and developing cleaner mobility
36 infrastructures, the European Strategy for Low-Emission Mobility outlines three elements: (1) Increasing the efficiency of the
37 transport system, including the optimization of logistics and intelligent transport systems; (2) Accelerating the deployment of
38 low-emission alternative energy sources, such as biofuels, renewable electricity, and hydrogen; and (3) Speeding up the
39 transition to zero-emission vehicles, through regulatory incentives, infrastructure investment, and innovation support
40 (European Commission, 2016). This transition is not only critical for achieving the EU's climate neutrality goal, which
41 involves reducing net CO₂ emissions to zero by 2050 (EEA, 2024b), but also for improving air quality, reducing energy
42 dependence on fossil fuel imports, and enhancing the competitiveness of European industry.

43

44 Emission reduction targets in the transportation sector are being translated into concrete actions at the city level. For instance,
45 the transportation sector is responsible for approximately 20% of Paris' local greenhouse gas emissions (Albarus et al., 2025),
46 and Paris plans to reduce its direct emissions by 50% by 2030 and 100% by 2050, compared to 2004. Paris has set itself the
47 target of phasing out diesel-powered mobility by 2024 and petrol-powered mobility by 2030, aligning with the EU-wide ban
48 on the sale of internal combustion engine vehicles by 2035. Amsterdam aims to achieve zero-emission transport by 2030,
49 phasing out all fossil-fuel vehicles within city limits (Amsterdam, 2024). The city is rapidly expanding its electric vehicle
50 infrastructure, as all newly registered vehicles are required to have zero-emission engines in 2025 (CINEA, 2025). Similarly,
51 to achieve climate neutrality in 2050, Berlin will require a long-term reduction in CO₂ emissions in the transport sector to
52 around 1.17 million tonnes of CO₂ per year, a reduction of around 77 % compared with 1990 emissions (diBEK, 2025).

53

54 High-resolution emission maps are crucial for monitoring emission changes and providing insights into the effectiveness of
55 traffic mitigation policies in cities. For example, a high-resolution (1 km²) CO₂ emissions inventory for U.S. road transportation
56 named DARTE enables detailed analysis at the city scale between 1980 to 2012 (Gately et al., 2015), revealing that urban
57 areas drive most of the emission growth and that traditional population-based downscaling methods substantially misrepresent
58 city-level spatial patterns. Over the past decade, several efforts have been made to improve either the temporal or the spatial
59 resolution of traffic emission inventories, primarily by incorporating real-world traffic data generated from sensors or GPS
60 signals. From a temporal resolution perspective, annual aggregated statistics make it impossible to capture short-term
61 variations due to weather, policy changes, or special events. Therefore, daily or hourly data were increasingly applied to
62 improve the accuracy. For example, TomTom collects all the travel times and compares them with the lowest travel times to
63 calculate congestion indexes based on FCD (index, 2024). Tomtom congestion indexes were used by Carbon Monitor Cities

(Hu et al., 2022) to estimate daily CO₂ emissions for 1500 cities. CAMS-TEMPO is a dataset of European emission temporal profiles that provides gridded monthly, daily, weekly, and hourly weight factors for atmospheric chemistry modelling, and the European part used hourly traffic data collected from over 20 European cities via open-data portals or personal communications (Guevara et al., 2021). One-month GPS-based datasets covering 52,834 conventional fuel vehicles registered in the province of Modena and 40,459 vehicles registered in the province of Firenze were used to generate high-resolution emission maps (De Gennaro et al., 2016). A near-real-time on-road traffic emission product on 2860 km of the main roads in Bangkok was automatically generated by retrieving the traffic data from the Google Maps API service and the Python code every 15 min (Naiudomthum et al., 2022). In recent years, machine learning-based bottom-up approaches have supported the development of high-resolution emission maps. For instance, an hourly street-level emission map of Chengdu was developed using data from 1,454 camera-based sensors and 34 highway monitoring sites, employing land-use random forest models (Wen et al., 2022). Similarly, a platform tracking hourly CO₂ emissions at a 30×30 m resolution was designed for Berlin based on local traffic data, using machine learning methods (Anjos and Meier, 2025).

Despite recent advancements, most city-level emission datasets still suffer from limitations in either temporal or spatial resolution, with few achieving both simultaneously. CAMS-TEMPO (Guevara et al., 2021) and Carbon Monitor (Hu et al., 2022) lack road-specific information and provide only outputs at 0.1° resolution and the city level, respectively. The hourly street-level emission datasets for Chengdu (Wen et al., 2022) and Bangkok (Naiudomthum et al., 2022) only cover one to two months. The Berlin platform offers high spatial and temporal resolution from 2015 to 2022, but may miss data from smaller roads, as counting stations are usually located on major roads.

As part of the Copernicus Atmosphere Monitoring Service (CAMS), this study estimates for the first time hourly street-level on-road transportation CO₂ emissions, aggregated into 100 m resolution hourly maps for 20 European cities in 2023. Hourly GPS-based data, reporting traffic counts and speeds of individual vehicles across different road classes, were upscaled using machine learning to reconstruct complete traffic volumes and speeds across the road networks. Then, CO₂ emissions were estimated using the COPERT model, and emission maps were developed. This approach enhances the spatial and temporal characterization of CO₂ emissions in on-road transportation compared to the downscaling method used in other inventories, indicating the potential of GPS-based data for supporting future efforts in emission monitoring and developing emission reduction policies.

2 Data and Method

2.1 Overview of the Methodology

Figure 1 describes the workflow of this study. The GPS-based high-resolution ‘Floating Car Data’ (FCD) on individual vehicle flow (GPS vehicles counts per street each hour) and speed covering every street was obtained from a data aggregation provider

96 that collects GPS position data from cars (passenger cars) and trucks (light commercial vehicles and heavy duty trucks),
97 providing road-specific information on hourly average speed and sample counts (i.e., the number of cars recorded in each street
98 for each hour). Those GPS data are linked with precise cities' road network datasets, providing detailed information on road
99 length, road functional class, and truck access authorization. All data is anonymized by the data provider to prevent
100 compromising any individual or organizational data privacy issues. After raw data processing and cleaning, a machine learning
101 model was used to fill in missing values in FCD, as well as to transform FCD sample counts limited to vehicles equipped with
102 GPS into traffic volumes for all vehicles. Then, the COPERT model (Ntziachristos et al., 2009), the EU standard vehicle
103 emissions calculator, was applied for estimating specific CO₂ emission factors based on individual vehicle hourly average
104 speed and type. Combined with the road lengths obtained from geographical databases and with fleet structures, we finally
105 estimate street-level road-specific emissions using the following equation:

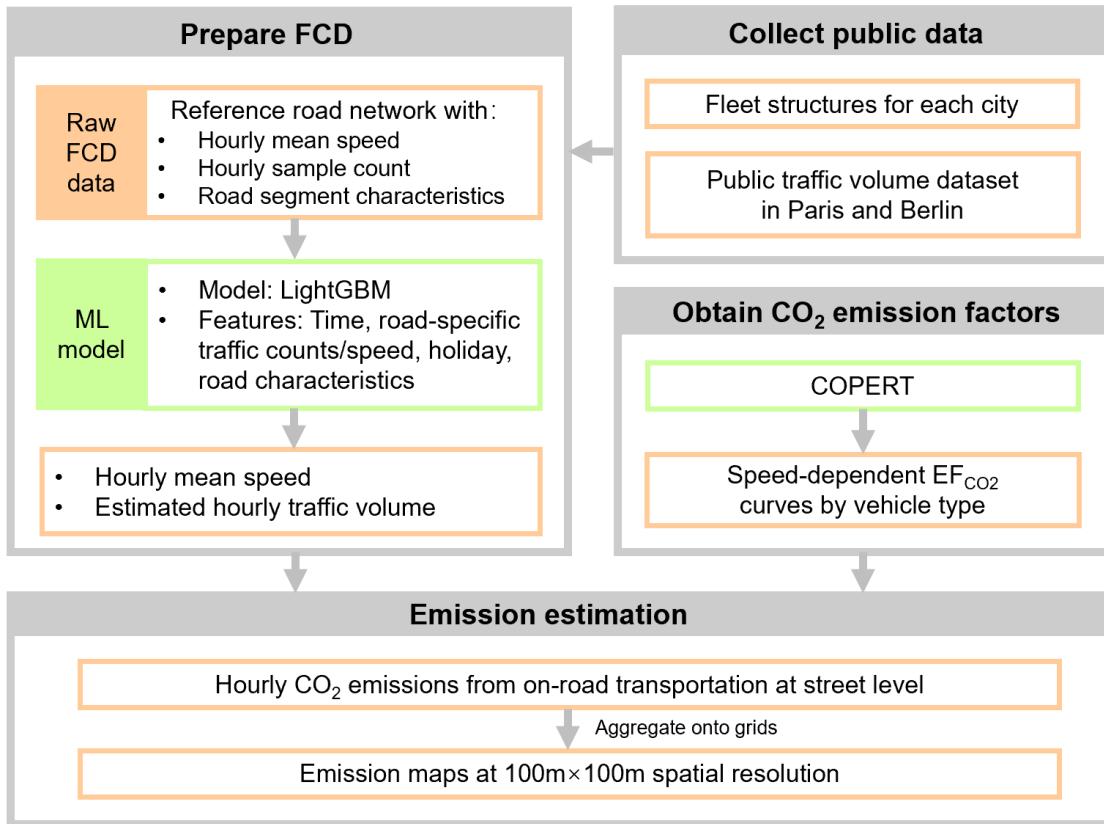
$$Emis_{t,v,r} = N_{t,r} \times Structure_v \times Length_r \times EF_{v,s} \quad (1)$$

106 Where $Emis_{t,v,r}$ represents CO₂ emission at the hour t , for the vehicle type v , on road r . $N_{t,r}$ represents the total traffic volume
107 at hour t , on road r (counts/hour). $Structure_v$ represents the proportion of vehicle type v in the vehicle fleet (%). $Length_r$
108 represents the road length (km) of the road r , and $EF_{v,s}$ (g CO₂/km) represents the CO₂ emission factors for the vehicle type v ,
109 at the hourly average speed s (km/h).

111
112 Our FCD source covers France, Germany, and the Netherlands. Therefore, the 20 most populous cities within these three
113 countries were selected to develop high-resolution emission maps. Table 1 shows the basic information (population, area, street
114 length, street density) of the 20 cities in 2023. Note that here Paris is the administrative city jurisdiction (Ville de Paris)
115 covering the central 20 arrondissements, so its area is much smaller than Berlin, which is both a city and a federal state.

116

117



118

119 **Figure 1: Workflow of this study**

120

121

122

123

124

125

126

127

128

129

130

131

132

133

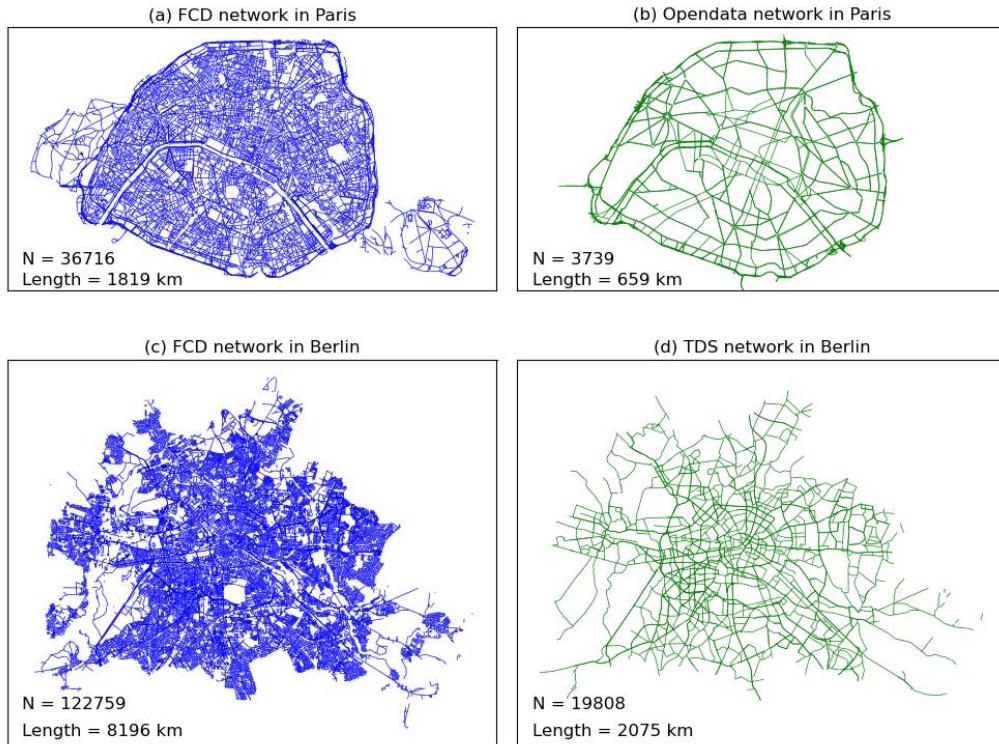
Table 1: Information of 20 selected cities in 2023.

Country	City	Population (Thousand)	Area (km ²)	Street length (km)	Street density (km/km ²)
France	Paris	2,103	105.4	2412.9	22.9
	Marseille	862	240.6	3301.7	13.7
	Lyon	513	47.9	985.3	20.6
	Lille	233	39.5	679.8	17.2
	Toulouse	472	118.3	2311.2	19.5
	Nice	343	71.9	1228.0	17.1
	Nantes	303	65.2	1249.4	19.2
	Strasbourg	277	78.3	1252.4	16.0
	Montpellier	278	56.9	1260.1	22.1
	Bordeaux	250	49.4	967.9	19.6
Germany	Berlin	3,782	891.3	12073.4	13.5
	Hamburg	1,910	755.2	8725.2	11.6
	Munich	1,510	310.7	5220.0	16.8
	Cologne	1,087	405.2	5508.8	13.6
	Frankfurt	776	248.3	3648.5	14.7
	Stuttgart	633	207.3	3660.8	17.7
	Dusseldorf	631	217.4	2741.5	12.6
Netherland	Amsterdam	883	219.4	3203.8	14.6
	Rotterdam	656	324.1	3555.7	11.0
	The Hague	553	98.1	1796.8	18.3

136 2.2 Description and preparation of FCD

137 FCD provides hourly average speed and sample counts for each street, with separate data for cars and trucks reporting GPS
 138 data. The FCD is linked with high-resolution road network datasets that feature information such as road length, speed category,

139 road functional class, lane category, on more detailed and complete road networks than public traffic datasets based on sensors.
140 As shown in Figure 2, public datasets used by previous studies are only available for a few cities and provide hourly traffic
141 data for 3,739 road segments in Paris (Xavier Bonnemaizon 2024) and 19,808 segments in Berlin (Anjos and Meier, 2025),
142 respectively. In contrast, FCD gives vehicle count samples and speed information for 36,716 roads in Paris and 122,759 roads
143 in Berlin, dividing long roads into more segments and encompassing a much greater number of small roads than the city-level
144 public datasets. All road segments were categorized into major, middle, and small according to the functional class defined by
145 the FCD. Major roads represent roads connecting major metropolitan areas, middle roads represent roads connecting
146 neighbourhoods, and small roads represent low-volume roads.



147

148 **Figure 2: Monitored road networks in this study and other public datasets in Paris and Berlin.** N represents the number of road
149 segments. (a) and (c) represent road networks from FCD for Paris and Berlin, respectively; (b) and (d) represent networks from Open Data
150 in Paris and Traffic Detection Systems in Berlin.

151

152 Missing values exist in the FCD due to unstable GPS signals, especially for small roads. The average data coverage of GPS
153 cars on major, middle, and small roads ranges from 67.0% - 97.7%, 40.4% - 93.8%, and 6.1% - 37.7%, respectively (Figure
154 S1a). The average data coverage of trucks is lower, ranging from 32.2% - 75.8%, 32.1% - 85.3%, and 1.8% - 32.2%,
155 respectively (Figure S1b). Machine learning was used here to fill data gaps, as the use of machine learning techniques has
156 shown great potential for both temporal and spatial imputation of missing data to reconstruct the full volume of traffic(Wen et

157 al., 2022). Eight features were chosen as predictors (Table 2) to train models. Temporal features (hour, day of the week, and
158 month) were used to capture diurnal and seasonal patterns in traffic behaviour. Observed road-specific daily mean traffic
159 counts and speeds derived from hourly averages were also used as indicators of baseline traffic intensity. Holiday indicators,
160 including school and public holidays, were included to account for potential shifts in travel demand. Finally, road
161 characteristics including speed category, functional class, and lane category were used to describe the physical and functional
162 attributes of each road segment.

163
164 **Table 2: Spatial-temporal features used as predictors of traffic variables**

Category	Features	Usage
Time	Hour, Day of week, Month	Diel and seasonal pattern
Road-specific traffic counts/speed	Daily mean derived from hourly averages	Baseline traffic intensity
Holiday	School holiday, Public holiday	Potential shifts in travel demand
Road characteristics	Speed category, Functional class, Lane category	Road capacity and flow characteristics

165
166 The full-year dataset was partitioned into two temporally isolated subsets: January-June (H1) and July-December (H2) due to
167 the large-scale dataset. Separate machine learning models were developed for each six-month interval, both incorporating
168 consistent feature engineering protocols for vehicle type differentiation (Cars and Trucks) and road classification. Model
169 training was conducted on 80% of the available data, with the remaining 20% held out as an independent test set to evaluate
170 generalization performance. Random forest (RF) and lightGBM models were tested for Paris to compare their performances.
171 As shown in Table S1, Random Forest (RF) and LightGBM exhibited comparable predictive performance across different
172 vehicle types, road types, and target variables (i.e., vehicle count and speed) but LightGBM required significantly less

173 computational time. In some cases, the efficiency gain is more than 10-fold e.g., to fill gaps of car count on major roads takes
174 6.25 s for LightGBM vs. 122.53 s for RF. This efficiency gain stems from LightGBM's histogram-based decision tree learning
175 and its leaf-wise tree growth strategy with depth constraints, which together enable faster training and better scalability,
176 especially for large datasets with continuous features. Given its high accuracy and computational efficiency, LightGBM was
177 chosen as the preferred model and trained individually for each of the 20 cities.

178

179 The LightGBM validation performance is summarized in Table 3 using mean R^2 , RMSE, and MAE across cities and road
180 classes, while the full city-level validation results are reported in Table S2. 5-fold cross-validation results which aimed at
181 evaluating the robustness of the model are presented in Table S3. Overall, the model demonstrates strong predictive
182 performance across different vehicle types and target variables. For car count, performance is consistently high on major roads,
183 with R^2 values typically above 0.90 and reaching up to 0.97 (e.g., The Hague and Amsterdam). On middle and small roads, R^2
184 varies between 0.53 and 0.85, and lower values are often observed in cities with smaller datasets, such as Lyon and Nice,
185 suggesting that data volume plays a critical role in model accuracy (Figure S2). For car speed, the model also performs well
186 on major roads (R^2 0.85-0.95) but shows greater variability on smaller roads, where R^2 drops to as low as 0.39 in some cases
187 (e.g., Paris or Lyon). The results of trucks are similar to those of cars, but with slightly lower overall performance. Shapley
188 values, a concept from cooperative game theory, are widely used to explain feature importance in machine learning. This study
189 used the Python package SHAP to estimate Shapley values applied to the model's conditional expectation function (SHAP,
190 2025), revealing that the daily mean count and hour of day are the most influential predictors, followed by day of week, road
191 class, and month (Figure S3). High traffic volumes are associated with increased model output, while hourly effects vary by
192 time of day. In contrast, features such as lane type and school holidays show limited influence.

193

194

195

196

197

198

199

200

201

202

203

204

205

206

Table 3: Summary of LightGBM validation performance across cities and road classes.

Vehicle	Item	Road class	Mean R ²	Mean RMSE	Mean MAE
Car	COUNT	Major	0.93	16.34	9.08
Car	COUNT	Middle	0.73	6.09	3.91
Car	COUNT	Small	0.60	3.66	2.15
Truck	COUNT	Major	0.78	3.31	2.00
Truck	COUNT	Middle	0.57	1.88	1.29
Truck	COUNT	Small	0.54	1.87	1.15
Car	SPEED	Major	0.89	6.72	4.64
Car	SPEED	Middle	0.67	6.71	4.87
Car	SPEED	Small	0.58	7.85	5.63
Truck	SPEED	Major	0.84	8.77	6.35
Truck	SPEED	Middle	0.55	7.81	5.85
Truck	SPEED	Small	0.56	7.70	5.65

210 **2.3 Obtain CO₂ emission factors using COPERT**

211 To calculate the speed-dependent emission factors EF_{CO₂} defined by CO₂ emissions per km driven for each vehicle type, we
 212 applied the COPERT model, a widely used emissions calculator for vehicles in Europe (Ntziachristos et al., 2009). Monthly
 213 temperature and relative humidity data required as input for COPERT were obtained from ERA5 reanalysis (Hersbach, 2023)
 214 and interpolated to a 0.01° spatial resolution. City-level averages of maximum/minimum temperature and relative humidity
 215 were then calculated within administrative boundaries defined by Eurostat shapefiles to serve as inputs for COPERT.
 216 Considering the data scale and time cost, instead of running COPERT for each street segment each hour, this study developed
 217 fitting curves between speed and EF_{CO₂} to obtain EF_{CO₂}. Except for L-Category vehicles running on diesel, where COPERT
 218 provides a fixed value, emission factors were simulated for various vehicle types at speeds of 20, 40, 60, 80, 100, 120, and 140
 219 km/h. Then, for each city, cubic functions were fitted to COPERT simulations, as given by:

$$EF = a \times s^3 + b \times s^2 + c \times s + d \quad (2)$$

220 Where s represents the average speed at hourly resolution, and a, b, c, and d are city-specific constants. Table S4 presents the
 221 parameters of the curve fitting results for all cities, showing a good fit quality with an R² value range from 0.882 to 0.998. In
 222 this way, the corresponding emission factor for any given speed can be determined. Note that we used EF_{CO₂} of the EU6
 223 standard, since CO₂ emission factors are only marginally influenced by emission standards, and this approach was also adopted
 224 by TomTom (Index, 2024).

226 **2.4 Estimate real traffic volume from sample count**

227 Road-specific hourly total traffic volume is the key parameter to estimate CO₂ emissions. Since not all vehicles transmit GPS
228 signals and our dataset only captures a subset of the real GPS data for all vehicles, the actual traffic volume is significantly
229 higher than the sample counts from the FCD. To solve this problem, we established a relationship between real traffic volume
230 data and GPS sample count using machine learning. Due to the availability of traffic volume data, only the Opendata from
231 Paris (Parisopendata, 2024) and Traffic detection Berlin (Berlinopendata, 2024) were used for modelling. Opendata from Paris
232 provides hourly total vehicle flow from permanent sensors with electromagnetic loops on 2278 roads in 2023, but does not
233 differentiate between vehicle types for the traffic volume. Therefore, the numbers of cars and trucks are estimated based on
234 the proportion of sample counts from each type in our FCD. Traffic detection in Berlin provides hourly total vehicle volumes
235 on 231 roads, and only the volumes of cars were used for modelling. As shown in Figure 2, monitored road networks of public
236 datasets and FCD are different. The overlap rate and angle are used as criteria to link the two datasets' shapefiles (Figure S4).
237 When the overlap rate > 0.7 and the angle <20°, a road is identified as being the same in Opendata and FCD. In this way,
238 hourly open data from 2278 monitoring sites in Paris and 231 monitoring sites in Berlin were matched to the FCD, and we got
239 the real volume and the number of FCD sample counts on the same road. A similar set of predictors as listed in Table 2, except
240 for road-specific traffic counts and speeds, was used to build a LightGBM model to extrapolate FCD sample counts to total
241 traffic volume. For cars in German cities, we used the LightGBM model trained on Berlin's data, while for all other cities, we
242 used the LightGBM trained on Paris's data. The validation results (Table S5) show that the LightGBM model performs well
243 on major roads in both Paris ($R^2 = 0.91$ for cars and 0.88 for trucks) and Berlin ($R^2 = 0.66$ for cars). The accuracy decreases
244 on middle and small roads in Paris (R^2 range from 0.22 to 0.38), while the performance in Berlin remains comparatively good
245 (R^2 range from 0.86 to 0.88). 5-fold cross-validation results are presented in Table S6.

246

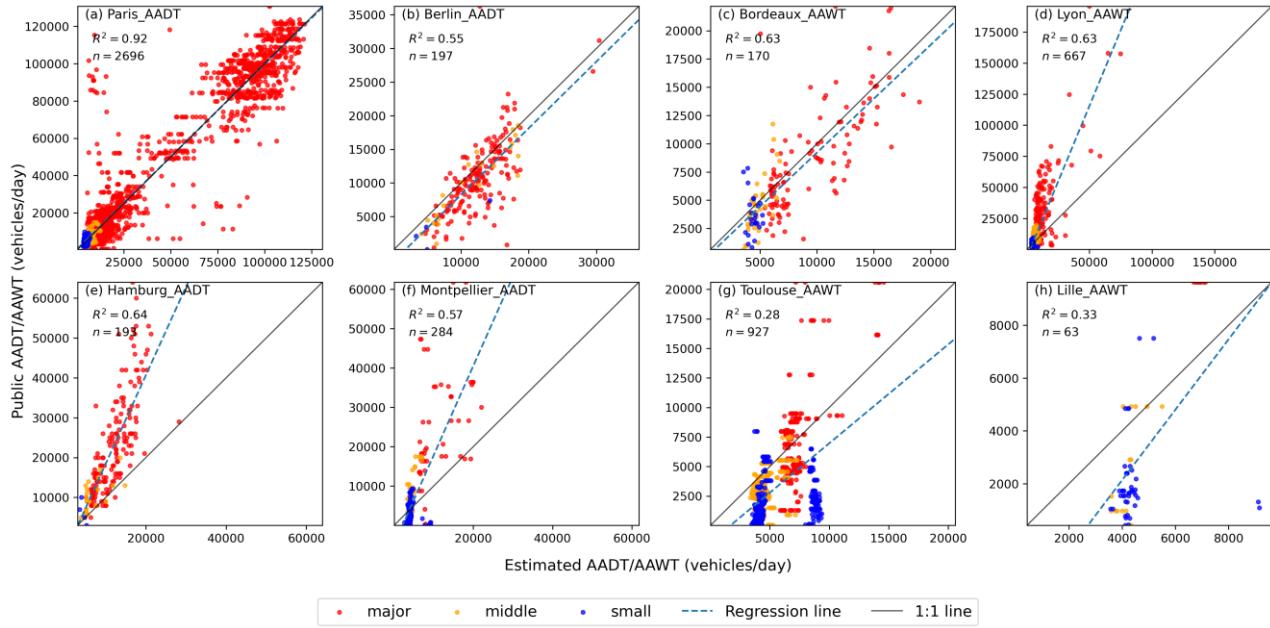
247 In addition to Paris and Berlin that are used for model training, observed traffic-count-based annual average daily traffic flow
248 (AADT, in number of vehicles per day) or annual average weekday traffic (AAWT, equivalent to AADT excluding weekends)
249 datasets are available for six additional cities reported in a recent study(Bonnemaizon et al., 2025): Montpellier and Hamburg
250 (AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT). The comparison which serves as independent external validation
251 to assess our traffic volume estimates is shown in Figure 3. Paris, the most important reference city for model development,
252 shows strong agreement between estimated and public AADT values ($R^2 = 0.92$, $n = 2696$), with data points across all road
253 classes closely aligned with the 1:1 line. Berlin exhibits noticeably larger dispersion, with a moderate R^2 (0.55) derived from
254 a relatively small sample size ($n = 197$), which likely contributes to the lower correlation.

255

256 Lyon, Hamburg, Bordeaux and Montpellier all show moderate correlation (with R^2 around 0.6). However, while simulated and
257 observed traffic volumes are generally well aligned for Bordeaux, public observations for Lyon, Hamburg and Montpellier
258 tend to exceed the simulated values, especially for the major roads. Toulouse and Lille are characterized by low correlation

259 (R² around 0.3), exhibits the weakest consistency between estimated and public traffic volumes. Overall, the scatter plots reveal
 260 pronounced city-to-city heterogeneity in traffic volume agreement, providing important context for subsequent uncertainty
 261 propagation to city-scale emission estimates.

262



263
 264 **Figure 3: Comparison of AADT/AAWT between this study and public datasets**
 265

266 2.5 Fleet structure

267 This study collected fleet structures data in 2023 for the 20 cities to further map cars and trucks to 5 categories (passenger cars,
 268 light commercial vehicles, buses, L-category and heavy-duty trucks), and 12 sub-categories, 10 fuels (petrol, diesel, CNG,
 269 diesel hybrid, biodiesel, diesel PHEV, CNG biofuel, petrol hybrid, battery electric), as shown in Table 4. The data that is
 270 reported annually was collected from the official statistical websites of France, Germany, and the Netherlands (Table S7).
 271 Only direct emissions from fossil fuels are considered, so the emission factor of battery electric cars is set to 0.

272
 273
 274
 275
 276
 277

Table 4: Vehicle categories

Big Category	Category	Fuel
Car	L-Category	Petrol, Diesel
	Buses	Petrol, Diesel, CNG, Diesel Hybrid, Biodiesel, Battery electric, Diesel PHEV
	Passenger Cars	Petrol, Diesel, CNG, Petrol Hybrid, Petrol PHEV, Battery electric, Diesel PHEV
Truck	Heavy Duty Trucks	Petrol, Diesel, Diesel PHEV, Battery electric, CNG
	Light Commercial Vehicles	Diesel, Petrol, Diesel PHEV, Battery electric, CNG, Petrol Hybrid, Petrol PHEV

280 **2.6 Aggregation onto grids**

281 Python was used to map street network emissions data onto a 100×100 m grid. Starting from a shapefile containing road
 282 segments with associated emissions, a spatial join was performed using GeoPandas' `sjoin` function to identify which road
 283 segments intersect each grid cell. Emissions were then allocated to the grid cells in a length-weighted manner, proportionally
 284 distributing each road segment's emissions based on the length of its overlap with each cell. For the projections, cities in
 285 France use EPSG:2154, while most German cities use EPSG:25832; Berlin uses EPSG:25833 due to its location. Dutch cities
 286 are projected using EPSG:28992.

288 **2.7 Uncertainty analysis**

289 Monte Carlo method is widely used in emission studies to estimate uncertainties(Ramírez et al., 2008; Zhao et al., 2011; Super
 290 et al., 2020). To quantify the uncertainty in estimated annual emissions arising from uncertainty in traffic volume estimates,
 291 this study applied a Monte Carlo simulation framework that propagates the observed discrepancies between estimated traffic
 292 volumes and public AADT/AAWT datasets (Figure 3) to the city-scale emission. Because emissions are linearly proportional
 293 to traffic volume, uncertainty in traffic counts can be directly transferred to emission uncertainty. As standard parametric
 294 assumptions (e.g., lognormality) did not adequately describe the tails of the discrepancy distributions, this study adopted a
 295 fully empirical cumulative distribution function (ECDF) approach. Discrepancy ratios were grouped by functional road class
 296 (major, middle, and small). For the six cities with observed AADT/AAWT data(Paris, Berlin, Bordeaux, Lyon, Hamburg,
 297 Montpellier, Toulouse and Lille), discrepancy ratios were sampled directly from the city-specific ECDFs. For cities without
 298 observations, we used country-level pools: ratios for French cities were sampled from the pool formed by the observed French

299 cities, ratios for German cities from the observed German cities, and ratios for Dutch cities from a combined pool of the
300 observed French and German cities.

301
302 For each Monte Carlo iteration j , the set of ratio values corresponding to a given road class was selected. A random value $u \sim$
303 $U(0,1)$ was drawn, and the corresponding correction factor was obtained via quantile sampling from the empirical distribution,
304 $F_R^{-1}(u)$. The total city-scale emissions for iteration j were then computed as:

305
$$T_j = \sum_i E_i \times F_R^{-1}(u)$$

306 where E_i represents the baseline annual emissions of road link i , and the sampled correction factor was consistently applied to
307 all links within the same road class. This process was repeated 10,000 times ($j = 1, \dots, 10,000$), yielding a full ensemble of
308 possible emission totals. From the resulting Monte Carlo ensemble, 95% confidence interval was calculated.

310 **3 Results**

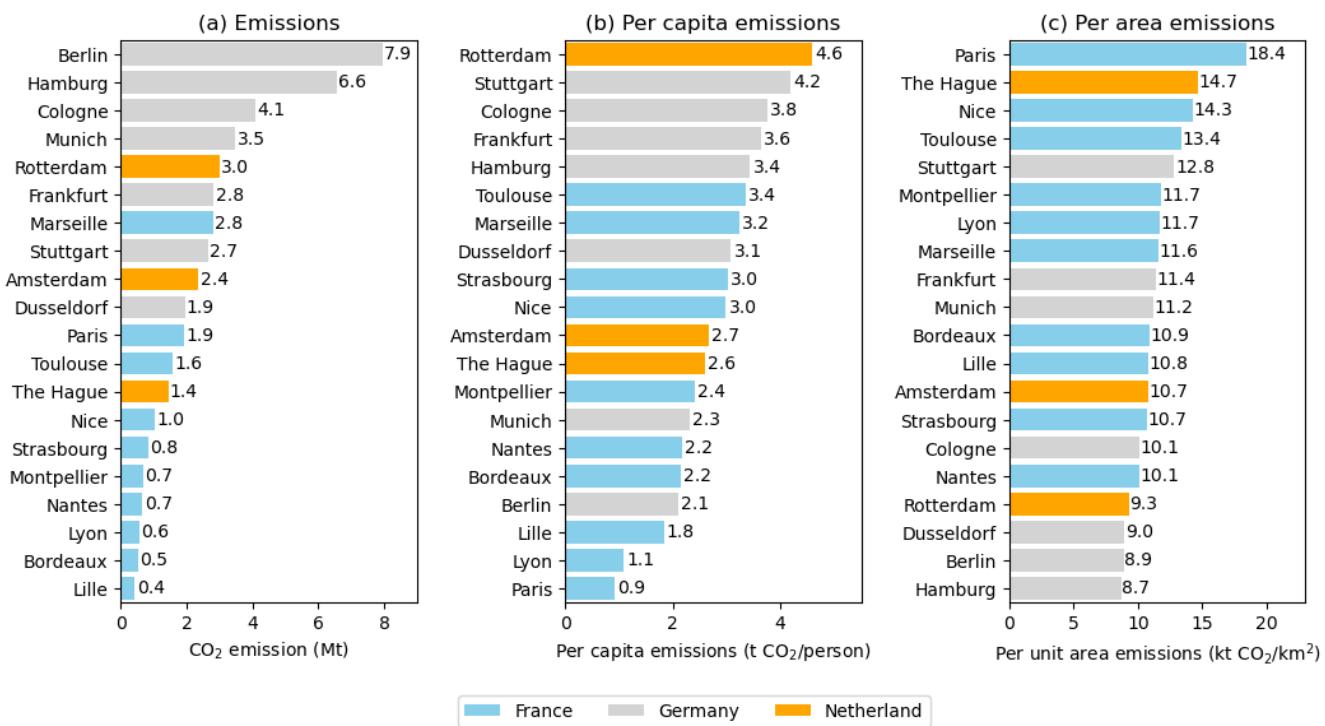
311 **3.1 Annual emissions**

312 The total on-road CO₂ emissions in 2023 among the 20 cities ranged from 0.4 Mt CO₂/yr to 7.9 Mt CO₂/yr. The top five
313 emitting cities are Berlin (7.9 Mt), Hamburg (6.6 Mt), Cologne (4.1 Mt), Munich (3.5 Mt), and Rotterdam (3.0 Mt). Berlin's
314 CO₂ emissions are approximately 20 times higher than those of Lille, the city with the lowest emissions in the dataset (0.4 Mt).
315 On average, the 20 cities emit 2.4 Mt CO₂ per year, with a coefficient of variation of 0.82 (Figure 4a). As shown in Figure 5,
316 the linear regression analyses between on-road CO₂ emissions and both urban area and population indicate strong positive
317 relationships. Specifically, CO₂ emissions increase significantly with larger urban areas and higher population sizes. The
318 regression model yields a high coefficient of determination with an R² value of 0.98 when emissions are regressed against area,
319 suggesting that urban land extent is a dominant factor influencing total emissions. A similarly positive but weaker correlation
320 is observed between emissions and population, with an R² value of 0.74, indicating that population size also plays a substantial
321 role in shaping emission levels. This distinction is further illustrated by a comparison between Paris and Hamburg. While their
322 populations are relatively similar, Hamburg covers an urban area nearly seven times larger than that of central Paris.
323 Furthermore, Hamburg's road network is more than three times as long. As a result, Hamburg exhibits substantially higher on-
324 road CO₂ emissions, reinforcing the observation that urban spatial extent and infrastructure scale are critical determinants of
325 total emissions, potentially more so than population alone.

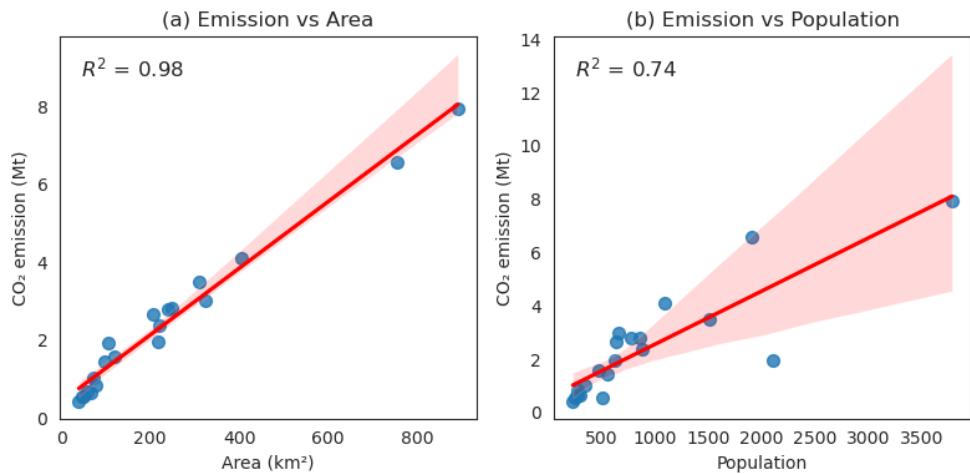
326
327 Table S8 compares the annual emissions estimated in this study with those reported by Carbon Monitor and other available
328 data sources. Carbon Monitor provides 0.1° × 0.1° daily gridded maps named GRACED (Dou et al., 2023). City boundaries
329 were applied to clip GRACED grids, and area-weighted daily emissions were aggregated to annual city-level totals. Available

330 data of several cities from Climate Trace (Kott et al., 2024), local statistical websites (Bilanz des Statistikamtes Nord, 2024),
331 and previous studies (Kühbacher et al., 2023; Ulrich et al., 2023; Anjos and Meier, 2025) was also collected. Overall, estimates
332 of other datasets are much lower than this study, with differences ranging from -94.2% (Nice, Carbon Monitor) to -8.1%
333 (Berlin, Ulrich et al.'s estimates from Opendata) relative to our estimates. These discrepancies can be explained by the methods
334 of different datasets. Compared with local statistical reports, our estimates tend to be higher because we include emissions
335 from vehicles traveling across city boundaries, whereas local statistics typically estimate emissions based only on oil
336 consumption within administrative limits. GRACED allocates emissions based on EDGARv5 using OpenStreetMap data
337 without actual traffic volume data, this method likely underestimates emissions in large cities with high-volume roads. Climate
338 Trace estimates average annual daily traffic (AADT) by integrating Sentinel-2 satellite imagery with AADT data from the U.S.
339 Department of Transportation's Federal Highway Administration (FHWA), applying Convolutional Neural Network and
340 Graph Neural Network models. This U.S.-centric training may limit the models' applicability in the European context. Finally,
341 although our approach benefits from a more comprehensive road network, the relatively low accuracy on middle and small
342 roads may contribute to overestimation of traffic volumes in certain areas, as mentioned in Section 2.4.

343
344 Per capita emissions show a mean of 2.8 tons/person with a coefficient of variation of 0.4, and the ranking is quite different
345 from total emissions (Figure 4b). Some of the cities with high total emissions also have high per capita emissions, such as
346 Cologne (3.8 t/person), Rotterdam (4.6 tons/person) and Frankfurt (3.6 tons/person). Other cities like Berlin (2.1 t/person) and
347 Paris (0.9 t/person) exhibit low per capita values despite their large total emissions. Notably, cities such as Toulouse (3.4
348 tons/person) and Marseille (3.2 tons/person) have high per capita emissions, highlighting differences in cities' boundaries e.g.,
349 including or not satellite towns commuting with each 'city', transportation infrastructure, commuting patterns, and vehicle
350 efficiency across the regions. Figure 4c illustrates the emissions per unit area, revealing a contrasting pattern to total emissions.
351 Paris exhibits the highest emissions per unit area (0.02 Mt/km²), despite having one of the lowest per capita values, which is
352 indicative of its dense urban environment and intensive transportation activities within a compact city layout and a very dense
353 street network. Similarly, Toulouse ranks second in per-area emissions, despite being only seventh in total emissions. This
354 result shows that urban density and mobility intensity significantly influence emission distribution at the local scale.



357 **Figure 4: Annual CO₂ emission and emission intensities per capita and per unit area of 20 cities in 2023.** Grey, light blue and orange
358 represent cities in Germany, France and the Netherlands, respectively.



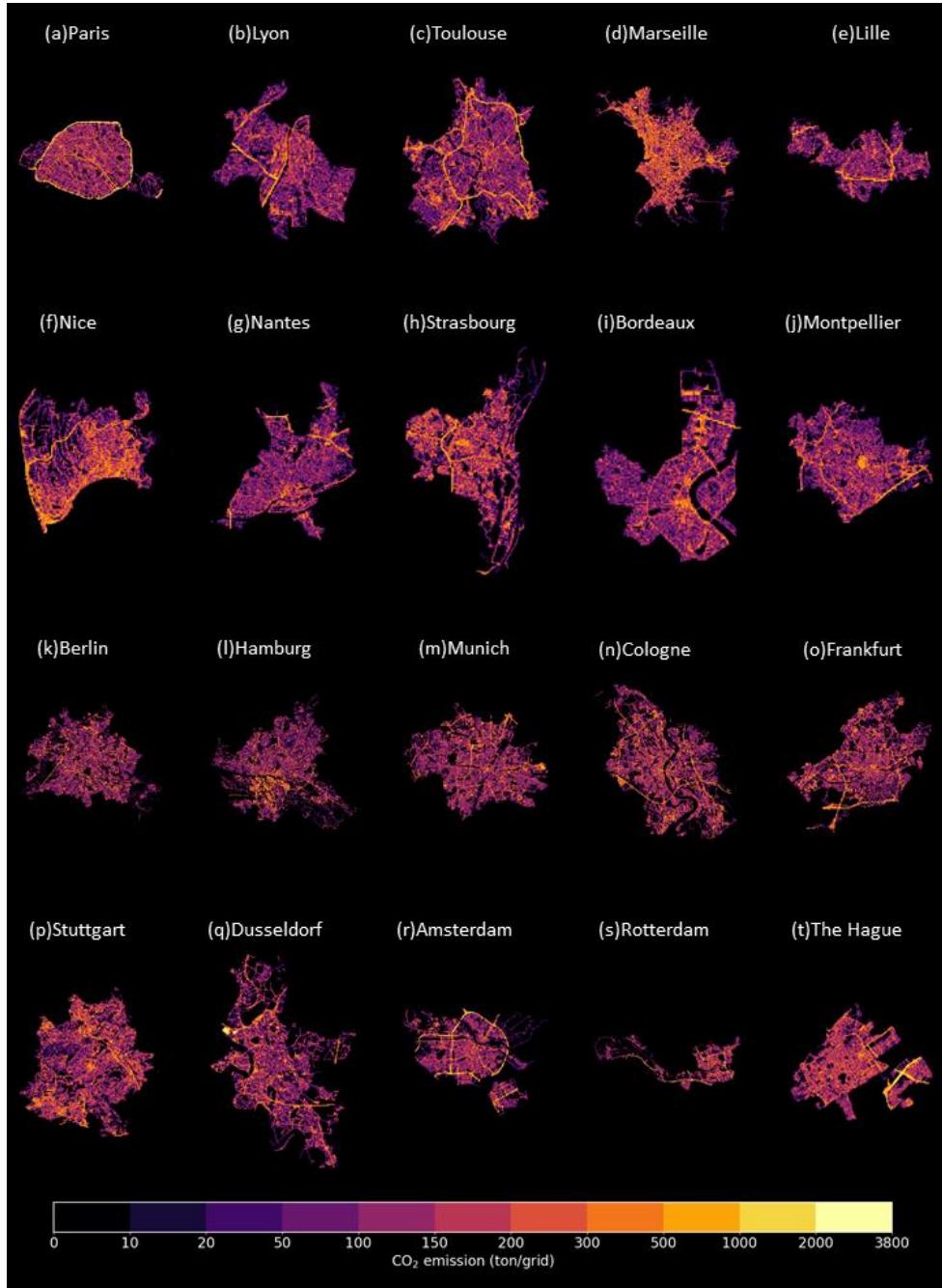
361 **Figure 5: Linear relationships between on-road CO₂ emissions, area, and population. Each point represents one city.**

363 **3.2 Spatial patterns**

364 Figure 6 presents the annual emission maps for 20 major European cities, highlighting the diversity in emission spatial patterns.
365 In addition, two cities from each country were selected to plot cumulative emission curves, as shown in Figure S5. In cities
366 such as Paris, Amsterdam, The Hague and Dusseldorf, a few major roadways stand out significantly in bright yellow. In Paris,
367 the top 5% of the highest-emitting 100 m grids contribute 33.1% of total emissions. The ring road known as le Périphérique
368 emerges as a major hotspot, accounting for 26.9% of the city's total on-road emissions and having a mean emission level that
369 is 953.3% higher than the city-wide average. This is primarily attributable to its high traffic density and heavy vehicle usage
370 driven by significant commuter flows. A similar concentration of emissions is observed in Amsterdam, where the top 5% of
371 the highest-emitting 100 m grids contribute 30.3% of total emissions, respectively, underscoring the spatially skewed
372 distribution of traffic-related CO₂. The top 5% of high-emission grids in The Hague and Dusseldorf show a lower contribution
373 of total emissions (24.5% and 21.9% respectively), but these are still concentrated along major highways such as the A4 and
374 A12 in the Hague and B8 and A44 in Dusseldorf. The steep curvatures at the start of the cumulative emissions distribution
375 curves for these two cities suggest that only a few key segments are disproportionately responsible for emissions, albeit to a
376 lesser extent than in Paris or Amsterdam.

377

378 Cities like Berlin and Bordeaux exhibit a more diffuse emission pattern, with relatively less pronounced hotspots, where the
379 top 5% of the highest-emitting 100 m grids contribute ~19.0% of total emissions. Their cumulative emission curves
380 demonstrate gentler slopes, indicating a more uniform spread of emissions across the road network. This suggests that no
381 single road or corridor dominates in terms of emission contributions and that urban transport emissions are more evenly
382 distributed. Other cities, including Lyon, Marseille, Frankfurt, and Rotterdam, fall between these two extremes, exhibiting
383 varying degrees of emission concentration. For instance, Frankfurt shows notable linear patterns corresponding to high-
384 emission highways intersecting the urban core. In contrast, Rotterdam reveals both concentrated and dispersed emission zones
385 due to its mixed land use and logistic traffic. Overall, these spatial variations emphasize the importance of city-specific
386 mitigation strategies. While targeted interventions on a few high-emitting corridors may yield significant benefits in cities with
387 highly skewed distributions (e.g., Paris or Dusseldorf), broader, network-wide policies may be necessary in more evenly
388 distributed urban contexts like Berlin or Bordeaux.



389

390 Figure 6: Annual CO₂ emission map of 20 cities at 100m × 100m resolution in 2023.

391

392 **3.3 Temporal patterns**

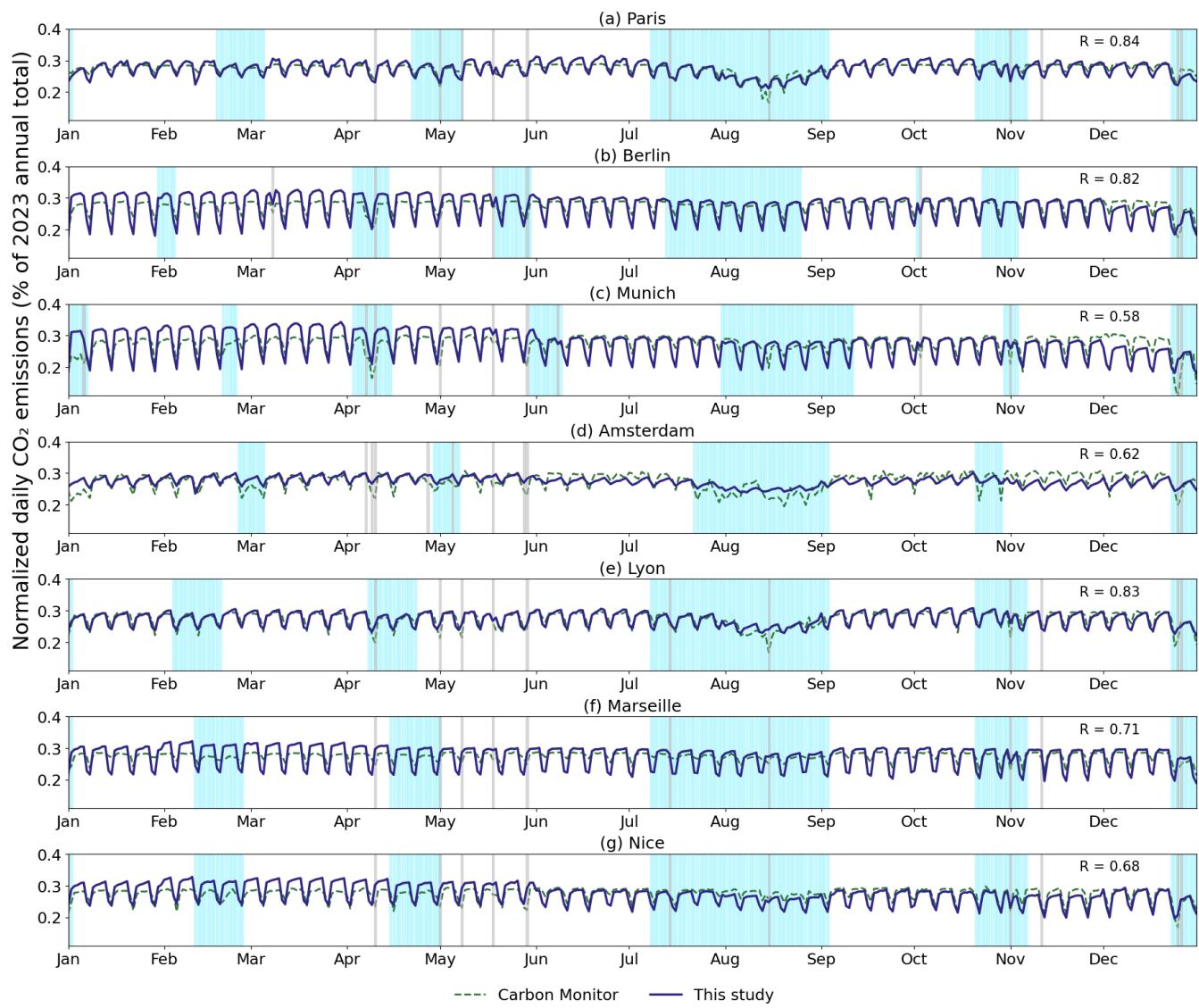
393 Figure 7 presents the normalized daily CO₂ emissions ratios for Paris, Berlin, Munich, Amsterdam, Lyon, Marseille, and Nice
394 in 2023. The y-axis represents each day's CO₂ emissions divided by the city's total emissions in 2023. These cities were
395 selected due to the availability of corresponding Carbon Monitor Cities data (hereafter CM-Cities data, shown as green dashed
396 lines), which enables direct comparison with the results of this study (blue lines). The time series data reveals distinct seasonal
397 and weekly variations. The summer months (July and August) show a significant decline in emissions in Paris, Amsterdam,
398 and Lyon, while emissions in all seven cities decline around Christmas, due to business closures and decreased commuting.
399 For weekly patterns, there is a slight upward trend from Monday to Friday, a noticeable drop on Saturday, and a further decline
400 on Sunday (Figure S6). The magnitude of the weekend drop varies across cities. In Berlin and Marseille, the median emissions
401 on Sunday drop by approximately 31.1% and 27.7% compared to Friday in 2023, respectively, representing the most
402 pronounced Sunday reduction among the six cities. In contrast, Amsterdam exhibits a much smaller Sunday drop compared to
403 Friday (10.1%).

404

405 In all cities, the median emissions of public holidays (marked in grey shades) and school holidays (marked in light blue shades)
406 are lower than those of weekdays in 2023. Across all six cities, the median emissions on public holidays and school holidays
407 were consistently lower than weekday levels in 2023, indicating a general reduction in traffic-related CO₂ emissions during
408 holiday periods. In Paris, public holiday emissions were exceptionally low, even lower than Sunday levels by 5.2%. The pattern
409 is different in Marseille, Berlin, and Nice, as the median emissions on public holidays exceeded those on Saturdays by 24.4%,
410 11.0%, and 6.4%, respectively. The medians of school holidays are generally higher than those of public holidays because a
411 more limited segment of the population is affected, and the distributions are notably wider. An exception is Amsterdam, where
412 public holiday emissions slightly surpassed those during school holidays, suggesting a different urban rhythm or school break
413 dynamics compared to other cities. Also, the day of the week on which a holiday falls also influences emission levels. As
414 shown in Figure S7, holidays that coincide with weekends tend to show similar emission levels to regular weekend days. When
415 holidays fall on a Monday, their emission levels are comparable to those of regular Mondays in cities like Berlin, Marseille,
416 and Nice.

417

418



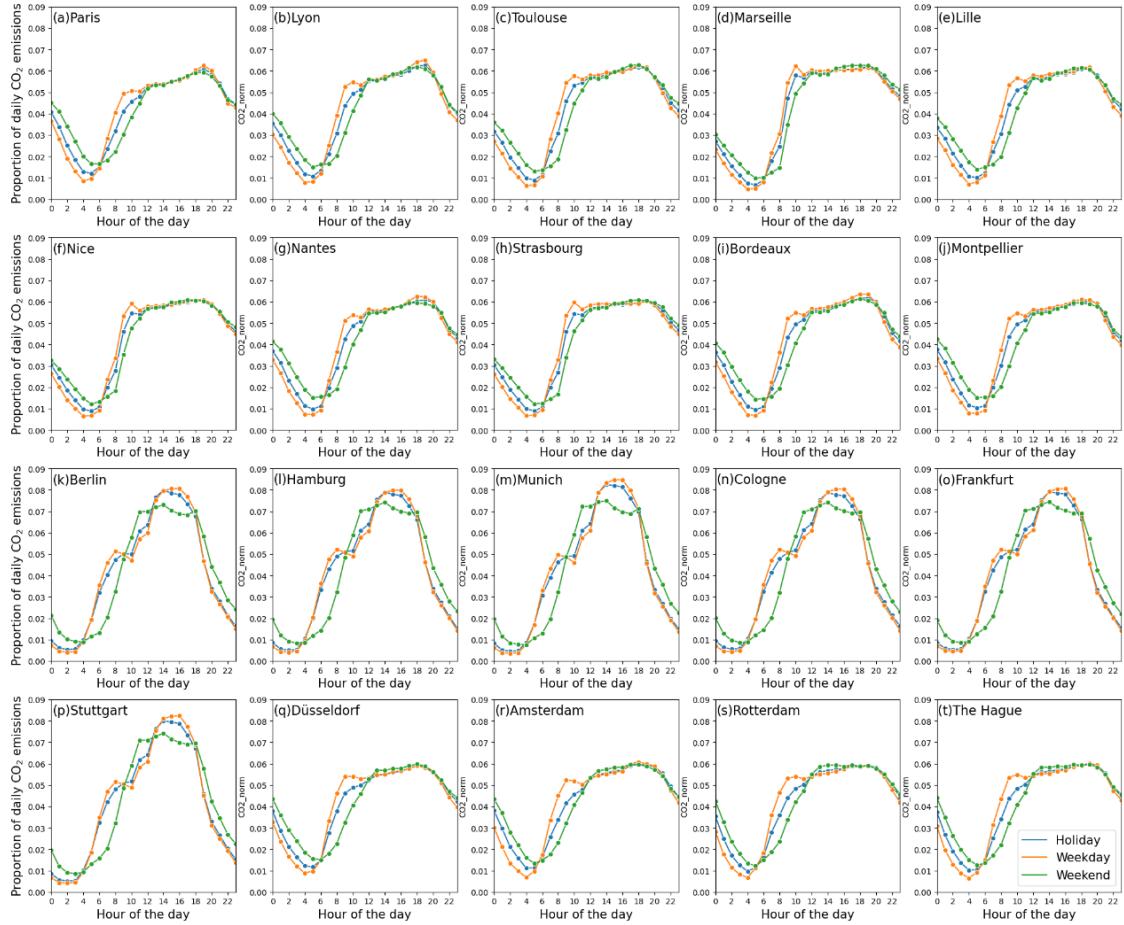
421 **Figure 7: Normalized daily CO₂ emission of seven cities in 2023.** Y-axis represents each day's CO₂ emissions divided by the city's total
 422 emissions in 2023. The light blue and grey shades represent school holidays and public holidays, respectively. The y-axis represents each
 423 day's CO₂ emissions divided by the city's total emissions in 2023.

424 Although the general emission temporal variability estimated in this study align reasonably with those reported by Carbon
 425 Monitor Cities, as evidenced by the R correlation coefficients ranging from 0.58 to 0.84 across the six selected cities, notable
 426 differences remain. In Paris, CM-cities tends to underestimate both the troughs and peaks of emissions (Huo et al., 2022). In
 427 Lyon, the consistency is relatively high, but the sharp weekend emission drops observed in Carbon Monitor estimates are not
 428 reproduced in this study. In Amsterdam, this study does not show the pronounced weekend decreases during holidays that are

429 present in Carbon Monitor data. CM-cities estimated traffic volumes using a sigmoid regression based on TomTom live
430 congestion indices, which lack spatial granularity (only one value per city), and the model parameters were calibrated using
431 real-time data from approximately 60 roads in Paris. In addition, CM-cities adopts the Functional Urban Area (FUA) definition
432 used by the OECD and the European Union, which includes high-density urban centers along with their surrounding
433 commuting zones, whereas our analysis relies on administrative boundaries. For cities not covered by CM-cities, we compared
434 daily emissions clipped from GRACED (Figure S8). Without calibration at the city level as CM-cities did, GRACED daily
435 emissions fail to show a consistent weekday–weekend pattern, and some anomalous peaks occurred (e.g., elevated emissions
436 in Hamburg in April 2023 and in Frankfurt and Montpellier in late May 2023). Except for The Hague, Rotterdam, and Bordeaux,
437 the resulting daily profiles showed very poor agreement ($R < 0.4$). These findings suggest that coarse-resolution data are not
438 suitable for city-level temporal analyses, highlighting the advantage of our city-scale dataset in more accurately representing
439 actual urban emissions.

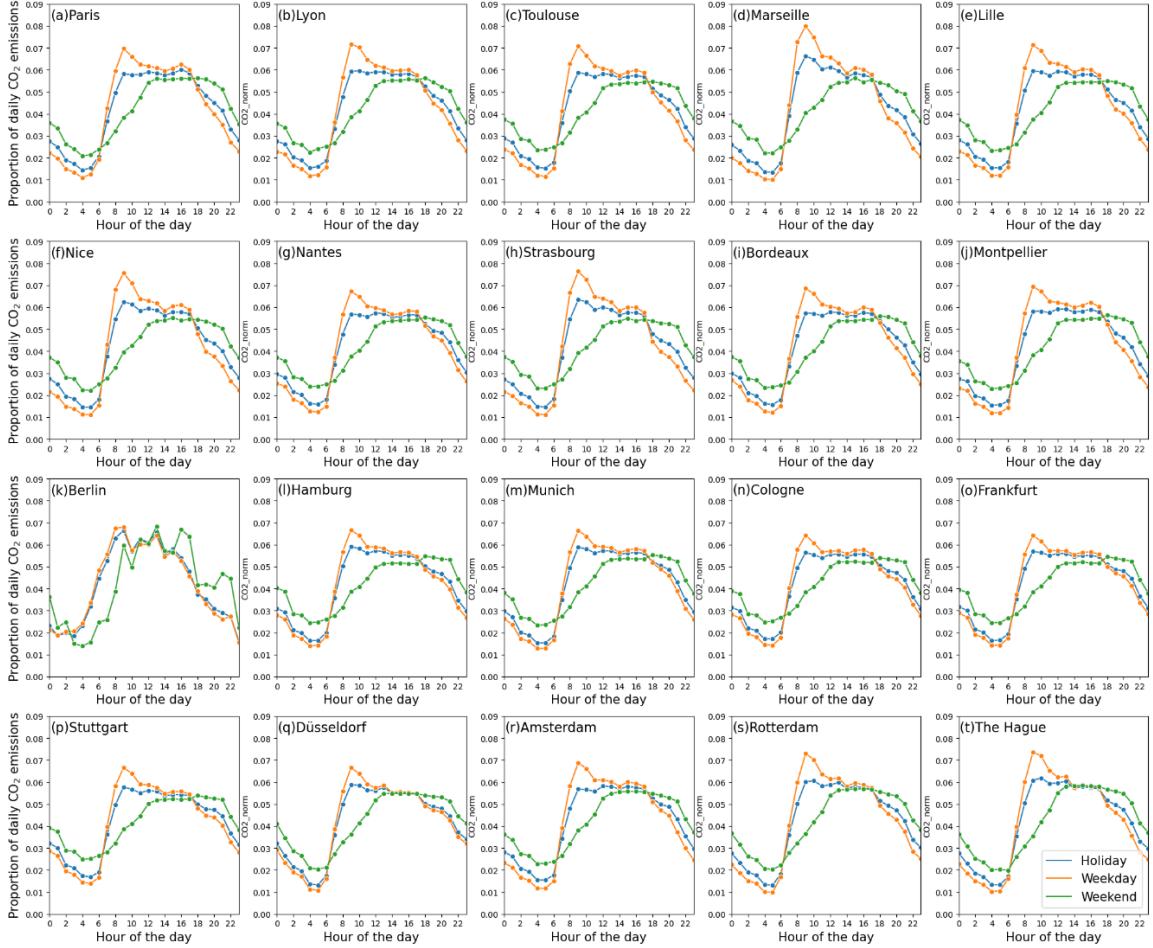
440

441 Figure 8 presents the average hourly CO_2 emission patterns for cars across the 20 cities in 2023. The y-axis represents the
442 average proportion of daily CO_2 emissions for each hour, categorized by day types: holidays (blue), weekdays (orange), and
443 weekends (green). The hourly patterns for cars in French cities and Dutch cities are similar. On weekdays, there are two
444 emission peaks at 9:00~10:00 and 18:00~19:00 due to commuting, and the emissions stabilize at relatively high levels between
445 these two peaks. After the second emission peak, the emissions decline continuously and reach their lowest point at 4:00 ~
446 5:00. The differences between weekdays and holidays are relatively small, but with no or a less pronounced morning peak due
447 to reduced commuting activity. On weekends, the sum of average emission share in French cities and Dutch cities during
448 evening and early morning (22:00 to 6:00) reach 22.9% to 29.1%, significantly higher than that for weekdays (17.4 to 21.7%),
449 and the first peak is lagged to around 12:00. German cities on weekdays, except for Dusseldorf, the CO_2 emission exhibit
450 earlier morning peaks at 8:00 and a much higher peak around 15:00 ~16:00. On average, evening peak emissions in French
451 and Dutch cities are only around 15% higher than morning peak levels, but for German cities specifically, the difference ranges
452 from 9.3% to 60.0%. After the peak, the CO_2 emissions in German cities decrease sharply, which is consistent with the trends
453 reported by the Berlin datasets (Max et al). On weekends, there is only one peak around 13:00.



454
455 **Figure 8: Hourly emission patterns of cars in 20 cities.**

456
457 The hourly patterns for trucks are relatively consistent across all 20 European cities but are notably different from those of
458 passenger cars (Figure 9). On weekdays, truck-related CO₂ emissions show a peak around 9:00 in nearly all cities, suggesting
459 synchronized delivery and logistics activity. This peak accounts for 5.4%–6.5% of daily truck emissions in French and Dutch
460 cities, and up to 9% in German cities such as Berlin and Hamburg. Truck emissions on weekends and holidays are considerably
461 reduced, with no discernible peaks in most cities. In some German cities (e.g., Stuttgart and Dusseldorf), truck emissions
462 remain below 3% of daily total at any hour during holidays, reflecting stricter weekend freight regulations. In contrast,
463 emissions levels of trucks remain relatively high on weekends, especially in southern cities like Marseille and Nice, where
464 midday peaks surpass 0.06 of daily emissions and are comparable to weekday levels.



465

466 **Figure 9: Hourly emission patterns of trucks in 20 cities.**

467

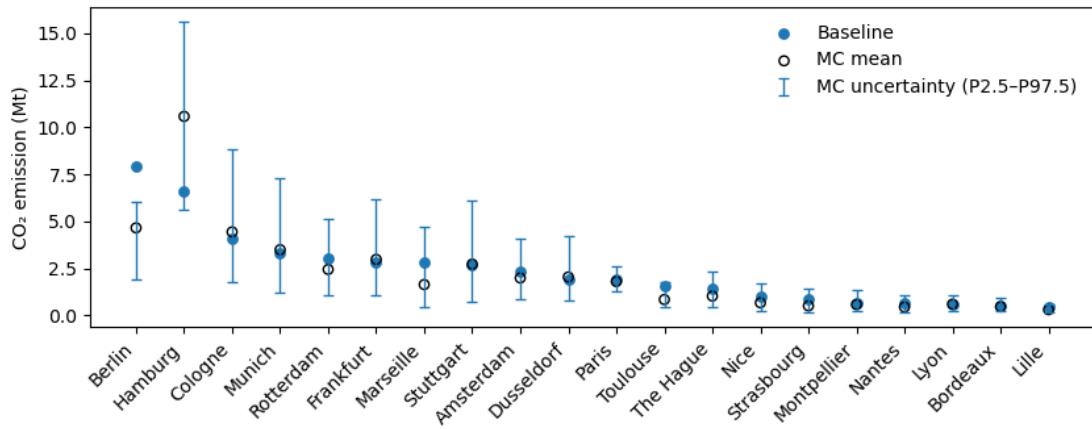
468 **3.4 Uncertainty analysis**

469 Figure 10 shows the uncertainties in annual emissions arising from uncertainty in traffic volume estimates. Overall, the Monte
 470 Carlo-derived mean emission estimates are close to the original deterministic estimates for most cities, with the Monte Carlo
 471 means being on average 13.1% lower across the 20 cities. the differences between the Monte Carlo mean and the deterministic
 472 estimate for Paris (-7.0%), Lyon (+7.3%), and Bordeaux (-13.4%) remain within $\pm 15\%$, indicating relatively stable estimates
 473 despite uncertainty propagation. Noticeable differences are observed for Berlin (-41.4%), Hamburg (+61.4%), Marseille
 474 (-41.2%), and Toulouse (-46.5%), where the differences between the Monte Carlo mean and the deterministic estimate exceed
 475 40%.

476

477 Figure S9 further shows the road-class-specific uncertainties. Across cities uncertainty in annual totals is primarily driven by
 478 emissions associated with small roads, which exhibit the greatest relative variability across all functional classes. We quantify
 479 road-class-specific relative uncertainty using the relative 95% interval width defined as $(P97.5 - P2.5)/\text{mean}$ of the 10,000
 480 Monte Carlo realizations. Using this metric, small roads show the largest relative uncertainty, with a median value of 2.67
 481 (266.7%), compared with 1.74 (174.1%) for middle roads and 1.26 (125.8%) for major roads. In Berlin, the Monte Carlo
 482 estimate is 4.65 Mt CO₂ (95% CI: [1.89, 6.04]), closer to values reported by Anjos et al (2.70 Mt) (Anjos and Meier, 2025) and
 483 Climate Trace (1.99 Mt) (Kott et al., 2024), suggesting that the original deterministic estimate may have overestimated
 484 emissions from small roads. The situation in Hamburg is different. The Monte Carlo mean emission estimate of approximately
 485 10.57 Mt CO₂ (95% CI: [5.64, 15.60]) exceeds that of Berlin, which is unreasonable given Hamburg's smaller urban scale and
 486 lower overall road lengths. This outcome suggests that limited and heterogeneous observational data can bias an upward bias
 487 in the sampled correction factors for small roads, resulting in an overestimation of emissions for this road class and,
 488 consequently, at the city scale.

489
 490 Overall, these contrasting behaviours highlight that city-scale uncertainty is highly sensitive to the treatment of small roads,
 491 particularly in data-scarce contexts. While the Monte Carlo framework provides a robust characterization of uncertainty, its
 492 outcomes for low-traffic road classes should be interpreted with caution and ideally complemented by additional constraints
 493 or external benchmarks.



494
 495 **Figure 10: Emission uncertainties in 20 cities. Filled circles are the original deterministic estimates. Hollow circles indicate Monte**
 496 **Carlo mean estimates, and vertical bars represent the 95% uncertainty interval (P2.5–P97.5).**

497 **4 Discussion**

498 **4.1 Key contributions and implications**

499 This study demonstrates that integrating new GPS-based traffic data for individual vehicles covering all street segments with
500 the COPERT model enables the estimation of hourly on-road CO₂ emissions at street level, which were further aggregated into
501 100 × 100 m grids for visualization, to generate high-resolution emission maps across 20 European cities. This approach
502 overcomes the limitations of traditional top-down downscaling methods (e.g., population-based or road-network density
503 proxies) by applying machine learning to impute the actual traffic volumes from FCD, which only samples the traffic of
504 vehicles equipped with GPS. Compared to existing CO₂ emission inventories such as CAMS-TEMPO, Carbon Monitor, or
505 localized platforms, our dataset represents a significant advancement by simultaneously achieving high spatial granularity and
506 temporal resolution. It captures intra-urban variability that is often missed in coarser-resolution datasets or those relying solely
507 on major road segments. This work highlights the value of integrating GPS-based mobility data with machine learning and
508 emission modelling to enhance the monitoring of urban transportation emissions and to inform the design of effective, location-
509 specific mitigation policies. Most common low-carbon transport measures in cities include modal shift to public transport,
510 low-carbon zones control, and low-emission vehicle development, but each strategy may vary according to development stages
511 and types of urban land-use transport systems (Creutzig et al., 2012; Nakamura and Hayashi, 2013; Croci et al., 2021). While
512 low-density cities become more compact in the long term but often lack sufficient population density to support rapid transit
513 systems in the short term, promoting the adoption of electric vehicles, particularly in regions with low-carbon electricity, may
514 be a more practical approach (Kennedy et al., 2014). This study may support the design of such strategies by enabling street-
515 level scenarios to quantitatively assess their potential emission reductions.

516

517 Our hourly CO₂ emission maps reveal striking spatial heterogeneity within cities. For example, concentrated emission hotspots
518 along Paris' ring road, versus more dispersed patterns in Berlin, reflect differences in urban structure, transport systems, and
519 commuting behaviours. Temporally, we observed national variations in traffic-related emissions during holiday and summer
520 periods, likely due to country-specific vacation schedules. Our new emission maps can support planning of low-emission zones,
521 help identify high-flux corridors for targeted energy efficiency measures and provide a basis for congestion-related studies.
522 Given that traffic congestion is a major driver of both fuel consumption and emissions, our maps offer valuable insights for
523 designing and evaluating emission reduction strategies.

524

525 **4.2 Limitations**

526 Several sources of uncertainty remain in our approach. Because the GPS-to-volume conversion models were calibrated using
527 in-situ sensor data from Paris and Berlin only and extrapolated to the remaining 18 cities, the results may be better suited for
528 analysing spatial patterns, temporal dynamics, and relative differences across cities, rather than for precise reporting of absolute

529 emission magnitudes. To move beyond qualitative statements, we quantify activity-data uncertainty using independent annual
530 AADT/AAWT validation (Section 2.4; Figure 3) and Monte Carlo uncertainty propagation (Section 3.4; Figure 10 and Figure
531 S9). The external validation reveals pronounced inter-city heterogeneity in traffic-volume agreement (with R^2 ranging from
532 approximately 0.3 to 0.92 across cities; Figure 3), which provides the empirical basis for the subsequent uncertainty ranges.
533

534 First, significant uncertainty may be introduced during the conversion from GPS trajectories to actual traffic volume. The flux-
535 to-volume machine learning models were calibrated using sensor data from Paris and Berlin only, because comparable high-
536 resolution traffic counts are either unavailable or not publicly accessible for most other cities. In addition, GPS penetration
537 rates may vary across cities and vehicle types, and the vehicle population captured by FCD may differ from that represented
538 in local monitoring stations, which can affect calibration, particularly for trucks. As discussed in Sections 2.4 and 3.4, model
539 performance is weaker on middle and small roads, and emissions from small roads exhibit the largest uncertainty and potential
540 overestimation. Consistent with this, Monte Carlo mean emission estimates are on average 13.1% lower than the deterministic
541 totals across the 20 cities, and most cities remain within $\pm 15\%$. However, several cities show substantially larger deviations
542 exceeding 40% (e.g., Berlin, Hamburg, Marseille, and Toulouse), indicating that absolute totals are more uncertain where
543 traffic-volume discrepancies are large and observational constraints are limited. For example, Berlin's Monte Carlo estimate
544 is 4.65 Mt CO₂ (95% CI: [1.89, 6.04]), whereas Hamburg shows a much wider and higher range of 10.57 Mt CO₂ (95% CI:
545 [5.64, 15.60]), highlighting the sensitivity of city totals to correction factors on small roads in data-scarce contexts. This
546 reinforces the need for more comprehensive and standardized traffic monitoring networks. Incorporating additional top-down
547 constraints, such as city-level fuel consumption statistics in transportation sector, could further improve the accuracy of traffic
548 volume inference.

549
550 Second, uncertainties also arise from fleet structures. Due to the lack of detailed vehicle-type distribution at the road segment
551 level, we can only perform fleet correction for roads where heavy-duty vehicle traffic is explicitly restricted. For other roads,
552 we currently apply city-wide average fleet compositions, which may not reflect local variations. Although urban fleet structure
553 evolves continuously, available data are reported at coarse temporal resolution; disaggregation to finer temporal scales would
554 introduce substantial uncertainty, and an annual fleet update is therefore adopted to maintain consistency with the data and the
555 emission modelling framework.

556
557 Finally, emissions in this study are estimated using the COPERT, which is based on an average-speed framework and does not
558 explicitly represent microscopic stop-and-go driving behaviours. In contrast, microscopic emission models such as
559 MOVES(USEPA, 2024) explicitly account for such dynamics but require high-frequency trajectory data, which are not
560 available in this study. Moreover, COPERT characterizes vehicle technologies primarily by vehicle category and Euro
561 emission standard, and does not explicitly parameterize changes in emission performance associated with vehicle ageing. As
562 a result, city-specific fleet age structures and local real-world driving conditions may lead to deviations from the standard

563 emission factors used in the model, especially where detailed fleet data are unavailable to further refine the parameterization.
564 Access to locally measured emission factors from in situ studies or the literature would help reduce this source of uncertainty
565 and improve the accuracy of the emission estimates.

566 **4.3 Future work**

567 Current work only covers the year 2023, but the underlying GPS-based FCD is typically available with a delay of only about
568 one week. This creates a clear opportunity to automate the processing pipeline and update the emission estimates on a rolling
569 basis. Incorporating this capability into Carbon Monitor Cities would allow near-real-time, high-resolution emission
570 monitoring at the street level, significantly enhancing the system's responsiveness and value for both research and policy
571 applications. In addition, further feature engineering could improve model performance. As part of ongoing work, we plan to
572 incorporate high-resolution urban context information, such as building-type data, to better capture heterogeneity across
573 different road classes. The proposed framework is flexible and allows additional features to be integrated as new data become
574 available. Also, future work could extend the methodology to include major air pollutants beyond CO₂ and scale the approach
575 to cover broader regions. Through incorporating more sensor-based traffic measurements across cities, data representativeness
576 and model validation can be further improved. Such efforts will strengthen the robustness, applicability, and policy relevance
577 of street-level emission mapping, particularly in supporting timely decision-making and climate or clean air action monitoring.

578 **5 Data availability**

579 The high-resolution hourly CO₂ emission dataset for 20 cities in 2023 is available in NetCDF format, on Zenodo
580 <https://doi.org/10.5281/zenodo.16600210> (Shi et al., 2025). Each city has an individual NetCDF file that provides gridded
581 hourly emissions over the entire year of 2023. Their central x and y coordinates define the grid cells, and each file includes the
582 variable CO2_g, representing emissions in grams per hour in the grid. Every grid's size is 100 m × 100 m.

583 **Supplement**

584 This dataset is accompanied by Supplementary Information, including a detailed methodology document (SI_document.docx)
585 and additional data tables (SI_tables.xlsx).

586 **Author contributions**

587 QS processed and generated the dataset and drafted the initial manuscript. PC designed the study and provided scientific
588 supervision. NM collected the raw data and contributed to the structuring of the dataset. XB and RTM assisted with COPERT
589 data handling, data matching, and emission calculations. RE reviewed the emission estimates and provided constructive

590 feedback on the manuscript. CZ contributed extensively to the machine learning modelling and provided valuable suggestions
591 on the manuscript structure and visualization. All authors reviewed and approved the final manuscript.

592 **Competing interests**

593 The authors declare that they have no conflict of interest.

594 **Acknowledgement**

595 This study is funded by the Copernicus Atmosphere Monitoring Service (under the CAMS2_51a contract), which is
596 implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Commission.

597 **References**

598 Albarus, I., Lauvaux, T., Utard, H., Ciais, P., Crifo, P., and Gros, V.: Unraveling climate targets across the Paris conurbation
599 as a gauge of city ambitions, *npj Urban Sustainability*, 5, 27, 10.1038/s42949-025-00206-y, 2025.
600 Amsterdam, T. C. o.: Roadmap Amsterdam Climate Neutral 2050, 2024.
601 Anjos, M. and Meier, F.: Zooming into Berlin: tracking street-scale CO₂ emissions based on high-resolution traffic modeling
602 using machine learning, *Frontiers in Environmental Science*, 12, 10.3389/fenvs.2024.1461656, 2025.
603 Verkehrsdetektion Berlin: <https://daten.berlin.de/datasets/verkehrsdetektion-berlin>, last access: 28/07/2025.
604 Erneut deutliche CO₂-Minderung in Hamburg: [https://www.hamburg.de/politik-und-
605 verwaltung/behoerden/bukea/themen/klima/klimaschutz-klimaplan/co2-bilanz-hh-2023-169240](https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/klima/klimaschutz-klimaplan/co2-bilanz-hh-2023-169240), last access: 28/07/2025.
606 Bonnemaizon, X., Ciais, P., Zhou, C., Shi, Q., Mittakola, R. T., Goldmann, C., Ben Arous, S., Megel, N., and Davis, S. J.:
607 Harmonized Annual Averaged Traffic Data at Street Segment Level for European Cities, *Scientific Data*, 12, 1365,
608 10.1038/s41597-025-05698-y, 2025.
609 E-Mobility revolution in Amsterdam: https://cinea.ec.europa.eu/news-events/news/e-mobility-revolution-amsterdam-2025-04-23_en?utm_source=chatgpt.com, last access: 28/07/2025.
610 Creutzig, F., Mühlhoff, R., and Römer, J.: Decarbonizing urban transport in European cities: four cases show possibly high
611 co-benefits, *Environmental research letters*, 7, 044042, 2012.
612 Croci, E., Lucchitta, B., and Molteni, T.: Low carbon urban strategies: An investigation of 124 European cities, *Urban Climate*,
613 40, 101022, <https://doi.org/10.1016/j.uclim.2021.101022>, 2021.
614 De Gennaro, M., Paffumi, E., and Martini, G.: Big Data for Supporting Low-Carbon Road Transport Policies in Europe:
615 Applications, Challenges and Opportunities, *Big Data Research*, 6, 11-25, <https://doi.org/10.1016/j.bdr.2016.04.003>, 2016.
616 Field of Action: Transport: https://dibek.berlin.de/?lang=en#caption_c2c12, last access: 28/07/2025.
617 Dou, X., Hong, J., Ciais, P., Chevallier, F., Yan, F., Yu, Y., Hu, Y., Huo, D., Sun, Y., Wang, Y., Davis, S. J., Crippa, M.,
618 Janssens-Maenhout, G., Guizzardi, D., Solazzo, E., Lin, X., Song, X., Zhu, B., Cui, D., Ke, P., Wang, H., Zhou, W., Huang,
619 X., Deng, Z., and Liu, Z.: Near-real-time global gridded daily CO₂ emissions 2021, *Scientific Data*, 10, 69, 10.1038/s41597-
620 023-01963-0, 2023.
621 EEA greenhouse gases — data viewer: [https://www.eea.europa.eu/en/analysis/maps-and-charts/greenhouse-gases-viewer-
622 data-viewers?activeTab=570bee2d-1316-48cf-adde-4b640f92119b](https://www.eea.europa.eu/en/analysis/maps-and-charts/greenhouse-gases-viewer-data-viewers?activeTab=570bee2d-1316-48cf-adde-4b640f92119b), last access: 28/07/2025.
623 Greenhouse gas emissions from transport in Europe: [https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-
624 emissions-from-transport?activeAccordion=309c5ef9-de09-4759-bc02-802370dfa366](https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-transport?activeAccordion=309c5ef9-de09-4759-bc02-802370dfa366), last access: 28/07/2025.
625 Gately, C. K., Hutyra, L. R., and Sue Wing, I.: Cities, traffic, and CO₂: A multidecadal assessment of trends, drivers, and
626 scaling relationships, *Proc Natl Acad Sci U S A*, 112, 4999-5004, 10.1073/pnas.1421723112, 2015.
627

628 Guevara, M., Jorba, O., Tena, C., Denier van der Gon, H., Kuenen, J., Elguindi, N., Darras, S., Granier, C., and Pérez García-
629 Pando, C.: Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission
630 temporal profile maps for atmospheric chemistry modelling, *Earth Syst. Sci. Data*, 13, 367–404, 10.5194/essd-13-367-2021,
631 2021.

632 Huo, D., Huang, X., Dou, X., Ciais, P., Li, Y., Deng, Z., Wang, Y., Cui, D., Benkhelifa, F., Sun, T., Zhu, B., Roest, G., Gurney,
633 K. R., Ke, P., Guo, R., Lu, C., Lin, X., Lovell, A., Appleby, K., DeCola, P. L., Davis, S. J., and Liu, Z.: Carbon Monitor Cities
634 near-real-time daily estimates of CO₂ emissions from 1500 cities worldwide, *Scientific Data*, 9, 533, 10.1038/s41597-022-
635 01657-z, 2022.

636 Tomtom traffic index: <https://www.tomtom.com/traffic-index/about/>, last access: 28/07/2025.

637 Kennedy, C. A., Ibrahim, N., and Hoornweg, D.: Low-carbon infrastructure strategies for cities, *Nature Climate Change*, 4,
638 343–346, 10.1038/nclimate2160, 2014.

639 Transportation Sector - Global Road Emissions, Climate TRACE Emissions Inventory: <https://unfccc.int/climate-action/un-global-climate-action-awards/climate-leaders/city-of-paris>, last access: 28/07/2025.

640 Kühbacher, D., Aigner, P., Super, I., Droste, A., Denier van der Gon, H., Ilic, M., and Chen, J.: Bottom-up estimation of traffic
641 emissions in Munich based on macroscopic traffic simulation and counting data, EGU General Assembly 2023, Vienna,
642 Austria, <https://doi.org/10.5194/egusphere-egu23-12997>, 2023.

643 Naiudomthum, S., Winijkul, E., and Sirisubtawee, S.: Near Real-Time Spatial and Temporal Distribution of Traffic Emissions
644 in Bangkok Using Google Maps Application Program Interface, 10.3390/atmos13111803, 2022.

645 Nakamura, K. and Hayashi, Y.: Strategies and instruments for low-carbon urban transport: An international review on trends
646 and effects, *Transport Policy*, 29, 264–274, <https://doi.org/10.1016/j.tranpol.2012.07.003>, 2013.

647 Ntziachristos, L., Gkatzoflias, D., Kouridis, C., and Samaras, Z.: COPERT: a European road transport emission inventory
648 model, *Information Technologies in Environmental Engineering: Proceedings of the 4th International ICSC Symposium*
649 Thessaloniki, Greece, May 28–29, 2009, 491–504,

650 Comptage routier - Données trafic issues des capteurs permanents: https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents/information/?disjunctive.libelle&disjunctive.libelle_nd_amont&disjunctive.libelle_nd_aval&disjunctive.etat_trafic, last access: 28/07/2025.

651 Ramírez, A., de Keizer, C., Van der Sluijs, J. P., Olivier, J., and Brandes, L.: Monte Carlo analysis of uncertainties in the
652 Netherlands greenhouse gas emission inventory for 1990–2004, *Atmospheric Environment*, 42, 8263–8272,
653 <https://doi.org/10.1016/j.atmosenv.2008.07.059>, 2008.

654 An introduction to explainable AI with Shapley values: https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html, last access: 28/07/2025.

655 Shi, Q., Ciais, P., Megel, N., Bonnemaizon, X., Mittakola, R. T., Engelen, R., and Zhou, C.: High spatiotemporal resolution
656 traffic CO₂ emission maps derived from Floating Car Data (FCD) for 20 European cities (2023), Zenodo [dataset],
657 10.5281/zenodo.16600210, 2025.

658 Super, I., Dellaert, S. N. C., Visschedijk, A. J. H., and Denier van der Gon, H. A. C.: Uncertainty analysis of a European high-
659 resolution emission inventory of CO₂ and CO to support inverse modelling and network design, *Atmos. Chem. Phys.*, 20,
660 1795–1816, 10.5194/acp-20-1795-2020, 2020.

661 Ulrich, V., Brückner, J., Schultz, M., Vardag, S. N., Ludwig, C., Fürle, J., Zia, M., Lautenbach, S., and Zipf, A.: Private
662 Vehicles Greenhouse Gas Emission Estimation at Street Level for Berlin Based on Open Data, *ISPRS International Journal of*
663 *Geo-Information*, 12, 138, 2023.

664 USEPA: Motor Vehicle Emission Simulator: MOVES5, 2024.

665 Wen, Y., Wu, R., Zhou, Z., Zhang, S., Yang, S., Wallington, T. J., Shen, W., Tan, Q., Deng, Y., and Wu, Y.: A data-driven
666 method of traffic emissions mapping with land use random forest models, *Applied Energy*, 305,
667 10.1016/j.apenergy.2021.117916, 2022.

668 Xavier Bonnemaizon , P. C., Chuanlong Zhou, Simon Ben-Arous, Steven J Davis, Nicolas Megel: Scaling traffic variables
669 from sensors sample to the entire city at high spatiotemporal resolution with machine learning: applications to the Paris
670 megacity, <https://eartharxiv.org/repository/view/6948/>, 2024.

677 Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory
678 of anthropogenic atmospheric pollutants in China, *Atmos. Chem. Phys.*, 11, 2295-2308, 10.5194/acp-11-2295-2011, 2011.
679