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Abstract. On-road transportation is a major contributor to CO2 emissions in cities, and high-resolution CO2 traffic emission 11 

maps are essential for analyzing emission patterns and characteristics. In this study, we developed new hourly on-road CO₂ 12 

emission maps with a 100 × 100 m resolution for 20 major cities in France, Germany, and the Netherlands in 2023.  We used 13 

commercial Floating Car Data (FCD) based on anonymized GPS signals periodically reported by individual vehicles, 14 

providing hourly information on mean speed and the number of GPS sample counts per street. Machine learning models were 15 

developed to fill FCD data gaps and convert sample counts into actual traffic volumes, and the COPERT model was used to 16 

estimate speed- and vehicle-type-dependent emission factors. These models were calibrated using independent traffic 17 

observations available for Paris and Berlin, and subsequently applied to the remaining 18 cities in an extrapolated manner due 18 

to data availability constraints. Hourly emissions, initially estimated at the street level, were aggregated to 100 × 100 m grid 19 

cells. Annual on-road CO₂ emissions across the 20 European cities in 2023 ranged from 0.4 to 7.9 Mt CO2, with emissions 20 

strongly correlated with urban area (R² = 0.98) and, to a lesser extent, population size (R² = 0.74). Spatially, emissions are 21 

either highly concentrated along major highways in cities such as Paris and Amsterdam or more evenly distributed in cities 22 

such as Berlin and Bordeaux, highlighting the need for context-specific mitigation strategies. Temporally, this study shows the 23 

CO2 emission fluctuations due to holiday periods, weekly activity cycles, and distinct usage profiles of different vehicle types. 24 

Due to the low latency of FCD, this approach could support near-real-time traffic emission mapping in the future. Our approach 25 

enhances the spatial and temporal characterization of CO2 emissions in on-road transportation compared to the conventional 26 

method used in gridded inventories, indicating the potential of FCD data for near-real-time urban emission monitoring and 27 

timely policy-making. The datasets generated by this study are available on Zenodo 28 

https://doi.org/10.5281/zenodo.16600210(Shi et al., 2025). 29 

 30 
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1 Introduction 31 

The road transport sector is one of the largest sources of greenhouse gas (GHG) emissions in the European Union and the only 32 

major economic sector where carbon dioxide (CO2) emissions have risen since 1990, primarily due to the widespread use of 33 

fossil fuel-powered passenger cars and freight vehicles. In 2023, it accounts for approximately 26.0% of total EU GHG 34 

emissions (EEA, 2024a). In response to the dual challenge of reducing emissions and developing cleaner mobility 35 

infrastructures, the European Strategy for Low-Emission Mobility outlines three elements: (1) Increasing the efficiency of the 36 

transport system, including the optimization of logistics and intelligent transport systems; (2) Accelerating the deployment of 37 

low-emission alternative energy sources, such as biofuels, renewable electricity, and hydrogen; and (3) Speeding up the 38 

transition to zero-emission vehicles, through regulatory incentives, infrastructure investment, and innovation support 39 

(European Commission, 2016). This transition is not only critical for achieving the EU’s climate neutrality goal, which 40 

involves reducing net CO2 emissions to zero by 2050 (EEA, 2024b), but also for improving air quality, reducing energy 41 

dependence on fossil fuel imports, and enhancing the competitiveness of European industry.  42 

 43 

Emission reduction targets in the transportation sector are being translated into concrete actions at the city level. For instance, 44 

the transportation sector is responsible for approximately 20% of Paris' local greenhouse gas emissions (Albarus et al., 2025), 45 

and Paris plans to reduce its direct emissions by 50% by 2030 and 100% by 2050, compared to 2004. Paris has set itself the 46 

target of phasing out diesel-powered mobility by 2024 and petrol-powered mobility by 2030, aligning with the EU-wide ban 47 

on the sale of internal combustion engine vehicles by 2035. Amsterdam aims to achieve zero-emission transport by 2030, 48 

phasing out all fossil-fuel vehicles within city limits (Amsterdam, 2024). The city is rapidly expanding its electric vehicle 49 

infrastructure, as all newly registered vehicles are required to have zero-emission engines in 2025 (CINEA, 2025). Similarly, 50 

to achieve climate neutrality in 2050, Berlin will require a long-term reduction in CO2 emissions in the transport sector to 51 

around 1.17 million tonnes of CO2 per year, a reduction of around 77 % compared with 1990 emissions (diBEK, 2025).  52 

 53 

High-resolution emission maps are crucial for monitoring emission changes and providing insights into the effectiveness of 54 

traffic mitigation policies in cities. For example, a high-resolution (1 km²) CO₂ emissions inventory for U.S. road transportation 55 

named DARTE enables detailed analysis at the city scale between 1980 to 2012 (Gately et al., 2015), revealing that urban 56 

areas drive most of the emission growth and that traditional population-based downscaling methods substantially misrepresent 57 

city-level spatial patterns. Over the past decade, several efforts have been made to improve either the temporal or the spatial 58 

resolution of traffic emission inventories, primarily by incorporating real-world traffic data generated from sensors or GPS 59 

signals. From a temporal resolution perspective, annual aggregated statistics make it impossible to capture short-term 60 

variations due to weather, policy changes, or special events. Therefore, daily or hourly data were increasingly applied to 61 

improve the accuracy. For example, TomTom collects all the travel times and compares them with the lowest travel times to 62 

calculate congestion indexes based on FCD (index, 2024). Tomtom congestion indexes were used by Carbon Monitor Cities 63 
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(Huo et al., 2022) to estimate daily CO2 emissions for 1500 cities. CAMS-TEMPO is a dataset of European emission temporal 64 

profiles that provides gridded monthly, daily, weekly, and hourly weight factors for atmospheric chemistry modelling, and the 65 

European part used hourly traffic data collected from over 20 European cities via open-data portals or personal communications 66 

(Guevara et al., 2021). One-month GPS-based datasets covering 52,834 conventional fuel vehicles registered in the province 67 

of Modena and 40,459 vehicles registered in the province of Firenze were used to generate high-resolution emission maps (De 68 

Gennaro et al., 2016). A near-real-time on-road traffic emission product on 2860 km of the main roads in Bangkok was 69 

automatically generated by retrieving the traffic data from the Google Maps API service and the Python code every 15 min 70 

(Naiudomthum et al., 2022). In recent years, machine learning-based bottom-up approaches have supported the development 71 

of high-resolution emission maps. For instance, an hourly street-level emission map of Chengdu was developed using data 72 

from 1,454 camera-based sensors and 34 highway monitoring sites, employing land-use random forest models (Wen et al., 73 

2022). Similarly, a platform tracking hourly CO₂ emissions at a 30×30 m resolution was designed for Berlin based on local 74 

traffic data, using machine learning methods (Anjos and Meier, 2025).  75 

 76 

Despite recent advancements, most city-level emission datasets still suffer from limitations in either temporal or spatial 77 

resolution, with few achieving both simultaneously. CAMS-TEMPO (Guevara et al., 2021) and Carbon Monitor (Huo et al., 78 

2022) lack road-specific information and provide only outputs at 0.1° resolution and the city level, respectively. The hourly 79 

street-level emission datasets for Chengdu (Wen et al., 2022) and Bangkok (Naiudomthum et al., 2022) only cover one to two 80 

months. The Berlin platform offers high spatial and temporal resolution from 2015 to 2022, but may miss data from smaller 81 

roads, as counting stations are usually located on major roads.  82 

 83 

As part of the Copernicus Atmosphere Monitoring Service (CAMS), this study estimates for the first time hourly street-level 84 

on-road transportation CO₂ emissions, aggregated into 100 m resolution hourly maps for 20 European cities in 2023. Hourly 85 

GPS-based data, reporting traffic counts and speeds of individual vehicles across different road classes, were upscaled using 86 

machine learning to reconstruct complete traffic volumes and speeds across the road networks. Then, CO2 emissions were 87 

estimated using the COPERT model, and emission maps were developed. This approach enhances the spatial and temporal 88 

characterization of CO2 emissions in on-road transportation compared to the downscaling method used in other inventories, 89 

indicating the potential of GPS-based data for supporting future efforts in emission monitoring and developing emission 90 

reduction policies. 91 

2 Data and Method  92 

2.1 Overview of the Methodology 93 

Figure 1 describes the workflow of this study. The GPS-based high-resolution ‘Floating Car Data’ (FCD) on individual vehicle 94 

flow (GPS vehicles counts per street each hour) and speed covering every street was obtained from a data aggregation provider 95 
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that collects GPS position data from cars (passenger cars) and trucks (light commercial vehicles and heavy duty trucks), 96 

providing road-specific information on hourly average speed and sample counts (i.e., the number of cars recorded in each street 97 

for each hour). Those GPS data are linked with precise cities’ road network datasets, providing detailed information on road 98 

length, road functional class, and truck access authorization. All data is anonymized by the data provider to prevent 99 

compromising any individual or organizational data privacy issues.  After raw data processing and cleaning, a machine learning 100 

model was used to fill in missing values in FCD, as well as to transform FCD sample counts limited to vehicles equipped with 101 

GPS into traffic volumes for all vehicles. Then, the COPERT model (Ntziachristos et al., 2009), the EU standard vehicle 102 

emissions calculator, was applied for estimating specific CO₂ emission factors based on individual vehicle hourly average 103 

speed and type. Combined with the road lengths obtained from geographical databases and with fleet structures, we finally 104 

estimate street-level road-specific emissions using the following equation: 105 

𝐸𝑚𝑖𝑠𝑡,𝑣,𝑟 =  𝑁𝑡,𝑟 × 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑣 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑟 × 𝐸𝐹𝑣,𝑠  (1) 106 

Where 𝐸𝑚𝑖𝑠𝑡,𝑣,𝑟  represents CO2 emission at the hour t, for the vehicle type v , on road r. 𝑁𝑡,𝑟  represents the total traffic volume 107 

at hour t, on road r (counts/hour). 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑣 represents the proportion of vehicle type v in the vehicle fleet (%). 𝐿𝑒𝑛𝑔𝑡ℎ𝑟 108 

represents the road length (km) of the road r, and 𝐸𝐹𝑣,𝑠 (g CO2/km) represents the CO2 emission factors for the vehicle type v , 109 

at the hourly average speed s (km/h). 110 

 111 

Our FCD source covers France, Germany, and the Netherlands. Therefore, the 20 most populous cities within these three 112 

countries were selected to develop high-resolution emission maps. Table 1 shows the basic information (population, area, street 113 

length, street density) of the 20 cities in 2023. Note that here Paris is the administrative city jurisdiction (Ville de Paris) 114 

covering the central 20 arrondissements, so its area is much smaller than Berlin, which is both a city and a federal state. 115 

 116 

 117 
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Figure 1: Workflow of this study 119 
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Table 1: Information of 20 selected cities in 2023. 134 

Country City Population 

(Thousand) 

Area  

(km2) 

Street length  

(km) 

Street density 

(km/km2) 

France Paris 2,103 105.4 2412.9 22.9 

Marseille 862 240.6 3301.7 13.7 

Lyon 513 47.9 985.3 20.6 

Lille 233 39.5 679.8 17.2 

Toulouse 472 118.3 2311.2 19.5 

Nice 343 71.9 1228.0 17.1 

Nantes 303 65.2 1249.4 19.2 

Strasbourg 277 78.3 1252.4 16.0 

Montpellier 278 56.9 1260.1 22.1 

Bordeaux 250 49.4 967.9 19.6 

Germany 

 

Berlin 3,782 891.3 12073.4 13.5 

Hamburg 1,910 755.2 8725.2 11.6 

Munich 1,510 310.7 5220.0 16.8 

Cologne 1,087 405.2 5508.8 13.6 

Frankfurt 776 248.3 3648.5 14.7 

Stuttgart 633 207.3 3660.8 17.7 

Dusseldorf 631 217.4 2741.5 12.6 

Netherland 

 

Amsterdam 883 219.4 3203.8 14.6 

Rotterdam 656 324.1 3555.7 11.0 

The Hague 553 98.1 1796.8 18.3 

 135 

2.2 Description and preparation of FCD 136 

FCD provides hourly average speed and sample counts for each street, with separate data for cars and trucks reporting GPS 137 

data.  The FCD is linked with high-resolution road network datasets that feature information such as road length, speed category, 138 
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road functional class, lane category, on more detailed and complete road networks than public traffic datasets based on sensors. 139 

As shown in Figure 2, public datasets used by previous studies are only available for a few cities and provide hourly traffic 140 

data for 3,739 road segments in Paris (Xavier Bonnemaizon 2024) and 19,808 segments in Berlin (Anjos and Meier, 2025), 141 

respectively. In contrast, FCD gives vehicle count samples and speed information for 36,716 roads in Paris and 122,759 roads 142 

in Berlin, dividing long roads into more segments and encompassing a much greater number of small roads than the city-level 143 

public datasets. All road segments were categorized into major, middle, and small according to the functional class defined by 144 

the FCD. Major roads represent roads connecting major metropolitan areas, middle roads represent roads connecting 145 

neighbourhoods, and small roads represent low-volume roads. 146 

 147 

Figure 2: Monitored road networks in this study and other public datasets in Paris and Berlin. N represents the number of road 148 
segments. (a) and (c) represent road networks from FCD for Paris and Berlin, respectively; (b) and (d) represent networks from Open Data 149 
in Paris and Traffic Detection Systems in Berlin. 150 

 151 

Missing values exist in the FCD due to unstable GPS signals, especially for small roads. The average data coverage of GPS 152 

cars on major, middle, and small roads ranges from 67.0% - 97.7%, 40.4% - 93.8%, and 6.1% - 37.7%, respectively (Figure 153 

S1a). The average data coverage of trucks is lower, ranging from 32.2% - 75.8%, 32.1% - 85.3%, and 1.8% - 32.2%, 154 

respectively (Figure S1b). Machine learning was used here to fill data gaps, as the use of machine learning techniques has 155 

shown great potential for both temporal and spatial imputation of missing data to reconstruct the full volume of traffic(Wen et 156 
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al., 2022). Eight features were chosen as predictors (Table 2) to train models. Temporal features (hour, day of the week, and 157 

month) were used to capture diurnal and seasonal patterns in traffic behaviour. Observed road-specific daily mean traffic 158 

counts and speeds derived from hourly averages were also used as indicators of baseline traffic intensity. Holiday indicators, 159 

including school and public holidays, were included to account for potential shifts in travel demand. Finally, road 160 

characteristics including speed category, functional class, and lane category were used to describe the physical and functional 161 

attributes of each road segment.  162 

 163 

Table 2: Spatial-temporal features used as predictors of traffic variables 164 

Category Features Usage 

Time Hour, Day of week, Month Diel and seasonal pattern 

Road-specific traffic counts/speed Daily mean derived from hourly averages Baseline traffic intensity 

Holiday School holiday, 

Public holiday 

Potential shifts in travel demand 

Road characteristics Speed category, Functional class, Lane category Road capacity and flow 

characteristics 

 165 

The full-year dataset was partitioned into two temporally isolated subsets: January-June (H1) and July-December (H2) due to 166 

the large-scale dataset. Separate machine learning models were developed for each six-month interval, both incorporating 167 

consistent feature engineering protocols for vehicle type differentiation (Cars and Trucks) and road classification. Model 168 

training was conducted on 80% of the available data, with the remaining 20% held out as an independent test set to evaluate 169 

generalization performance. Random forest (RF) and lightGBM models were tested for Paris to compare their performances. 170 

As shown in Table S1, Random Forest (RF) and LightGBM exhibited comparable predictive performance across different 171 

vehicle types, road types, and target variables (i.e., vehicle count and speed) but LightGBM required significantly less 172 
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computational time. In some cases, the efficiency gain is more than 10-fold e.g., to fill gaps of car count on major roads takes 173 

6.25 s for LightGBM vs. 122.53 s for RF.  This efficiency gain stems from LightGBM’s histogram-based decision tree learning 174 

and its leaf-wise tree growth strategy with depth constraints, which together enable faster training and better scalability, 175 

especially for large datasets with continuous features. Given its high accuracy and computational efficiency, LightGBM was 176 

chosen as the preferred model and trained individually for each of the 20 cities. 177 

 178 

The LightGBM validation performance is summarized in Table 3 using mean R², RMSE, and MAE across cities and road 179 

classes, while the full city-level validation results are reported in Table S2. 5-fold cross-validation results which aimed at 180 

evaluating the robustness of the model are presented in Table S3. Overall, the model demonstrates strong predictive 181 

performance across different vehicle types and target variables. For car count, performance is consistently high on major roads, 182 

with R2 values typically above 0.90 and reaching up to 0.97 (e.g., The Hague and Amsterdam). On middle and small roads, R2 183 

varies between 0.53 and 0.85, and lower values are often observed in cities with smaller datasets, such as Lyon and Nice, 184 

suggesting that data volume plays a critical role in model accuracy (Figure S2). For car speed, the model also performs well 185 

on major roads 𝑅2 (0.85-0.95) but shows greater variability on smaller roads, where R2 drops to as low as 0.39 in some cases 186 

(e.g., Paris or Lyon). The results of trucks are similar to those of cars, but with slightly lower overall performance. Shapley 187 

values, a concept from cooperative game theory, are widely used to explain feature importance in machine learning. This study 188 

used the Python package SHAP to estimate Shapley values applied to the model’s conditional expectation function (SHAP, 189 

2025), revealing that the daily mean count and hour of day are the most influential predictors, followed by day of week, road 190 

class, and month (Figure S3). High traffic volumes are associated with increased model output, while hourly effects vary by 191 

time of day. In contrast, features such as lane type and school holidays show limited influence.  192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 
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Table 3: Summary of LightGBM validation performance across cities and road classes. 207 

Vehicle Item Road class Mean R² Mean RMSE Mean MAE 

Car COUNT Major 0.93 16.34 9.08 

Car COUNT Middle 0.73 6.09 3.91 

Car COUNT Small 0.60 3.66 2.15 

Truck COUNT Major 0.78 3.31 2.00 

Truck COUNT Middle 0.57 1.88 1.29 

Truck COUNT Small 0.54 1.87 1.15 

Car SPEED Major 0.89 6.72 4.64 

Car SPEED Middle 0.67 6.71 4.87 

Car SPEED Small 0.58 7.85 5.63 

Truck SPEED Major 0.84 8.77 6.35 

Truck SPEED Middle 0.55 7.81 5.85 

Truck SPEED Small 0.56 7.70 5.65 

 208 

 209 

2.3 Obtain CO2 emission factors using COPERT 210 

To calculate the speed-dependent emission factors EFCO2 defined by CO2 emissions per km driven for each vehicle type, we 211 

applied the COPERT model, a widely used emissions calculator for vehicles in Europe (Ntziachristos et al., 2009). Monthly 212 

temperature and relative humidity data required as input for COPERT were obtained from ERA5 reanalysis (Hersbach, 2023) 213 

and interpolated to a 0.01° spatial resolution. City-level averages of maximum/minimum temperature and relative humidity 214 

were then calculated within administrative boundaries defined by Eurostat shapefiles to serve as inputs for COPERT. 215 

Considering the data scale and time cost, instead of running COPERT for each street segment each hour, this study developed 216 

fitting curves between speed and EFCO2 to obtain EFCO2. Except for L-Category vehicles running on diesel, where COPERT 217 

provides a fixed value, emission factors were simulated for various vehicle types at speeds of 20, 40, 60, 80, 100, 120, and 140 218 

km/h. Then, for each city, cubic functions were fitted to COPERT simulations, as given by: 219 

𝐸𝐹 = 𝑎 × 𝑠3 + 𝑏 × 𝑠2 + 𝑐 × 𝑠 + 𝑑 (2)  220 

Where s represents the average speed at hourly resolution, and 𝑎, 𝑏, 𝑐, and d are city-specific constants. Table S4 presents the 221 

parameters of the curve fitting results for all cities, showing a good fit quality with an R² value range from 0.882 to 0.998. In 222 

this way, the corresponding emission factor for any given speed can be determined. Note that we used EFCO2 of the EU6 223 

standard, since CO₂ emission factors are only marginally influenced by emission standards, and this approach was also adopted 224 

by TomTom (Index, 2024).  225 
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2.4 Estimate real traffic volume from sample count 226 

Road-specific hourly total traffic volume is the key parameter to estimate CO2 emissions. Since not all vehicles transmit GPS 227 

signals and our dataset only captures a subset of the real GPS data for all vehicles, the actual traffic volume is significantly 228 

higher than the sample counts from the FCD. To solve this problem, we established a relationship between real traffic volume 229 

data and GPS sample count using machine learning. Due to the availability of traffic volume data, only the Opendata from 230 

Paris (Parisopendata, 2024) and Traffic detection Berlin (Berlinopendata, 2024) were used for modelling. Opendata from Paris 231 

provides hourly total vehicle flow from permanent sensors with electromagnetic loops on 2278 roads in 2023, but does not 232 

differentiate between vehicle types for the traffic volume. Therefore, the numbers of cars and trucks are estimated based on 233 

the proportion of sample counts from each type in our FCD. Traffic detection in Berlin provides hourly total vehicle volumes 234 

on 231 roads, and only the volumes of cars were used for modelling. As shown in Figure 2, monitored road networks of public 235 

datasets and FCD are different. The overlap rate and angle are used as criteria to link the two datasets’ shapefiles (Figure S4). 236 

When the overlap rate > 0.7 and the angle <20°, a road is identified as being the same in Opendata and FCD. In this way, 237 

hourly open data from 2278 monitoring sites in Paris and 231 monitoring sites in Berlin were matched to the FCD, and we got 238 

the real volume and the number of FCD sample counts on the same road. A similar set of predictors as listed in Table 2, except 239 

for road-specific traffic counts and speeds, was used to build a LightGBM model to extrapolate FCD sample counts to total 240 

traffic volume. For cars in German cities, we used the LightGBM model trained on Berlin’s data, while for all other cities, we 241 

used the LightGBM trained on Paris’s data. The validation results (Table S5) show that the LightGBM model performs well 242 

on major roads in both Paris (R2 = 0.91 for cars and 0.88 for trucks) and Berlin (R2  =0.66 for cars). The accuracy decreases 243 

on middle and small roads in Paris (R2  range from 0.22 to 0.38), while the performance in Berlin remains comparatively good 244 

(R2  range from 0.86 to 0.88). 5-fold cross-validation results are presented in Table S6. 245 

 246 

In addition to Paris and Berlin that are used for model training, observed traffic-count-based annual average daily traffic flow 247 

(AADT, in number of vehicles per day) or annual average weekday traffic (AAWT, equivalent to AADT excluding weekends) 248 

datasets are available for six additional cities reported in a recent study(Bonnemaizon et al., 2025): Montpellier and Hamburg 249 

(AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT). The comparison which serves as independent external validation 250 

to assess our traffic volume estimates is shown in Figure 3. Paris, the most important reference city for model development, 251 

shows strong agreement between estimated and public AADT values (R² = 0.92, n = 2696), with data points across all road 252 

classes closely aligned with the 1:1 line. Berlin exhibits noticeably larger dispersion, with a moderate R² (0.55) derived from 253 

a relatively small sample size (n = 197), which likely contributes to the lower correlation.  254 

 255 

Lyon, Hamburg, Bordeaux and Montpellier all show moderate correlation (with R² around 0.6). However, while simulated and 256 

observed traffic volumes are generally well aligned for Bordeaux, public observations for Lyon, Hamburg and Montpellier 257 

tend to exceed the simulated values, especially for the major roads. Toulouse and Lille are characterized by low correlation 258 
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(R² around 0.3), exhibits the weakest consistency between estimated and public traffic volumes. Overall, the scatter plots reveal 259 

pronounced city-to-city heterogeneity in traffic volume agreement, providing important context for subsequent uncertainty 260 

propagation to city-scale emission estimates.  261 

 262 

 263 

Figure 3: Comparison of AADT/AAWT between this study and public datasets 264 

 265 

2.5 Fleet structure 266 

This study collected fleet structures data in 2023 for the 20 cities to further map cars and trucks to 5 categories (passenger cars, 267 

light commercial vehicles, buses, L-category and heavy-duty trucks), and 12 sub-categories, 10 fuels (petrol, diesel, CNG, 268 

diesel hybrid, biodiesel, diesel PHEV, CNG biofuel, petrol hybrid, battery electric), as shown in Table 4. The data that is 269 

reported annually was collected from the official statistical websites of France, Germany, and the Netherlands (Table S7). 270 

Only direct emissions from fossil fuels are considered, so the emission factor of battery electric cars is set to 0. 271 

 272 

 273 

 274 

 275 

 276 

 277 
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Table 4: Vehicle categories 278 

Big Category Category Fuel 

Car L-Category Petrol, Diesel 

Buses Petrol, Diesel, CNG, Diesel Hybrid, Biodiesel, Battery 

electric, Diesel PHEV 

Passenger Cars Petrol, Diesel, CNG, Petrol Hybrid, Petrol PHEV, Battery 

electric, Diesel PHEV 

Truck Heavy Duty Trucks Petrol, Diesel, Diesel PHEV, Battery electric, CNG 

Light Commercial Vehicles Diesel, Petrol, Diesel PHEV, Battery electric, CNG, Petrol 

Hybrid, Petrol PHEV 

 279 

2.6 Aggregation onto grids 280 

Python was used to map street network emissions data onto a 100 × 100 m grid. Starting from a shapefile containing road 281 

segments with associated emissions, a spatial join was performed using GeoPandas’ sjoin function to identify which road 282 

segments intersect each grid cell. Emissions were then allocated to the grid cells in a length-weighted manner, proportionally 283 

distributing each road segment’s emissions based on the length of its overlap with each cell. For the projections, cities in 284 

France use EPSG:2154, while most German cities use EPSG:25832; Berlin uses EPSG:25833 due to its location. Dutch cities 285 

are projected using EPSG:28992. 286 

 287 

2.7 Uncertainty analysis 288 

Monte Carlo method is widely used in emission studies to estimate uncertainties(Ramírez et al., 2008; Zhao et al., 2011; Super 289 

et al., 2020). To quantify the uncertainty in estimated annual emissions arising from uncertainty in traffic volume estimates, 290 

this study applied a Monte Carlo simulation framework that propagates the observed discrepancies between estimated traffic 291 

volumes and public AADT/AAWT datasets (Figure 3) to the city-scale emission. Because emissions are linearly proportional 292 

to traffic volume, uncertainty in traffic counts can be directly transferred to emission uncertainty. As standard parametric 293 

assumptions (e.g., lognormality) did not adequately describe the tails of the discrepancy distributions, this study adopted a 294 

fully empirical cumulative distribution function (ECDF) approach. Discrepancy ratios were grouped by functional road class 295 

(major, middle, and small). For the six cities with observed AADT/AAWT data(Paris, Berlin, Bordeaux, Lyon, Hamburg, 296 

Montpellier, Toulouse and Lille), discrepancy ratios were sampled directly from the city-specific ECDFs. For cities without 297 

observations, we used country-level pools: ratios for French cities were sampled from the pool formed by the observed French 298 
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cities, ratios for German cities from the observed German cities, and ratios for Dutch cities from a combined pool of the 299 

observed French and German cities. 300 

 301 

For each Monte Carlo iteration 𝑗, the set of ratio values corresponding to a given road class was selected. A random value 𝑢 ∼302 

𝑈(0,1)was drawn, and the corresponding correction factor was obtained via quantile sampling from the empirical distribution, 303 

𝐹𝑅
−1(𝑢). The total city-scale emissions for iteration 𝑗 were then computed as: 304 

𝑇𝑗 = ∑ 𝐸𝑖 × 𝐹𝑅
−1(𝑢)

𝑖

 308 

where 𝐸𝑖represents the baseline annual emissions of road link 𝑖, and the sampled correction factor was consistently applied to 305 

all links within the same road class. This process was repeated 10,000 times (𝑗 = 1, … ,10,000), yielding a full ensemble of 306 

possible emission totals. From the resulting Monte Carlo ensemble, 95% confidence interval was calculated.  307 

 309 

3 Results 310 

3.1 Annual emissions 311 

The total on-road CO2 emissions in 2023 among the 20 cities ranged from 0.4 Mt CO2/yr to 7.9 Mt CO2/yr. The top five 312 

emitting cities are Berlin (7.9 Mt), Hamburg (6.6 Mt), Cologne (4.1 Mt), Munich (3.5 Mt), and Rotterdam (3.0 Mt). Berlin’s 313 

CO₂ emissions are approximately 20 times higher than those of Lille, the city with the lowest emissions in the dataset (0.4 Mt). 314 

On average, the 20 cities emit 2.4 Mt CO₂ per year, with a coefficient of variation of 0.82 (Figure 4a). As shown in Figure 5, 315 

the linear regression analyses between on-road CO₂ emissions and both urban area and population indicate strong positive 316 

relationships. Specifically, CO₂ emissions increase significantly with larger urban areas and higher population sizes. The 317 

regression model yields a high coefficient of determination with an R² value of 0.98 when emissions are regressed against area, 318 

suggesting that urban land extent is a dominant factor influencing total emissions. A similarly positive but weaker correlation 319 

is observed between emissions and population, with an R² value of 0.74, indicating that population size also plays a substantial 320 

role in shaping emission levels. This distinction is further illustrated by a comparison between Paris and Hamburg. While their 321 

populations are relatively similar, Hamburg covers an urban area nearly seven times larger than that of central Paris. 322 

Furthermore, Hamburg’s road network is more than three times as long. As a result, Hamburg exhibits substantially higher on-323 

road CO₂ emissions, reinforcing the observation that urban spatial extent and infrastructure scale are critical determinants of 324 

total emissions, potentially more so than population alone. 325 

 326 

Table S8 compares the annual emissions estimated in this study with those reported by Carbon Monitor and other available 327 

data sources. Carbon Monitor provides 0.1°× 0.1°daily gridded maps named GRACED (Dou et al., 2023). City boundaries 328 

were applied to clip GRACED grids, and area-weighted daily emissions were aggregated to annual city-level totals. Available 329 
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data of several cities from Climate Trace (Kott et al., 2024), local statistical websites (Bilanz des Statistikamtes Nord, 2024), 330 

and previous studies (Kühbacher et al., 2023; Ulrich et al., 2023; Anjos and Meier, 2025) was also collected. Overall, estimates 331 

of other datasets are much lower than this study, with differences ranging from −94.2% (Nice, Carbon Monitor) to −8.1% 332 

(Berlin, Ulrich et al.’s estimates from Opendata) relative to our estimates. These discrepancies can be explained by the methods 333 

of different datasets. Compared with local statistical reports, our estimates tend to be higher because we include emissions 334 

from vehicles traveling across city boundaries, whereas local statistics typically estimate emissions based only on oil 335 

consumption within administrative limits. GRACED allocates emissions based on EDGARv5 using OpenStreetMap data 336 

without actual traffic volume data, this method likely underestimates emissions in large cities with high-volume roads. Climate 337 

Trace estimates average annual daily traffic (AADT) by integrating Sentinel-2 satellite imagery with AADT data from the U.S. 338 

Department of Transportation’s Federal Highway Administration (FHWA), applying Convolutional Neural Network and 339 

Graph Neural Network models. This U.S.-centric training may limit the models’ applicability in the European context. Finally, 340 

although our approach benefits from a more comprehensive road network, the relatively low accuracy on middle and small 341 

roads may contribute to overestimation of traffic volumes in certain areas, as mentioned in Section 2.4. 342 

 343 

Per capita emissions show a mean of 2.8 tons/person with a coefficient of variation of 0.4, and the ranking is quite different 344 

from total emissions (Figure 4b). Some of the cities with high total emissions also have high per capita emissions, such as 345 

Cologne (3.8 t/person), Rotterdam (4.6 tons/person) and Frankfurt (3.6 tons/person). Other cities like Berlin (2.1 t/person) and 346 

Paris (0.9 t/person) exhibit low per capita values despite their large total emissions. Notably, cities such as Toulouse (3.4 347 

tons/person) and Marseille (3.2 tons/person) have high per capita emissions, highlighting differences in cities' boundaries e.g., 348 

including or not satellite towns commuting with each ‘city’, transportation infrastructure, commuting patterns, and vehicle 349 

efficiency across the regions. Figure 4c illustrates the emissions per unit area, revealing a contrasting pattern to total emissions. 350 

Paris exhibits the highest emissions per unit area (0.02 Mt/km2), despite having one of the lowest per capita values, which is 351 

indicative of its dense urban environment and intensive transportation activities within a compact city layout and a very dense 352 

street network. Similarly, Toulouse ranks second in per-area emissions, despite being only seventh in total emissions. This 353 

result shows that urban density and mobility intensity significantly influence emission distribution at the local scale.   354 
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 355 

 356 

Figure 4: Annual CO2 emission and emission intensities per capita and per unit area of 20 cities in 2023. Grey, light blue and orange 357 
represent cities in Germany, France and the Netherlands, respectively. 358 

 359 

 360 
Figure 5: Linear relationships between on-road CO₂ emissions, area, and population. Each point represents one city. 361 

 362 
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3.2 Spatial patterns 363 

Figure 6 presents the annual emission maps for 20 major European cities, highlighting the diversity in emission spatial patterns. 364 

In addition, two cities from each country were selected to plot cumulative emission curves, as shown in Figure S5. In cities 365 

such as Paris, Amsterdam, The Hague and Dusseldorf, a few major roadways stand out significantly in bright yellow. In Paris, 366 

the top 5% of the highest-emitting 100 m grids contribute 33.1% of total emissions. The ring road known as le Périphérique 367 

emerges as a major hotspot, accounting for 26.9% of the city’s total on-road emissions and having a mean emission level that 368 

is 953.3% higher than the city-wide average. This is primarily attributable to its high traffic density and heavy vehicle usage 369 

driven by significant commuter flows. A similar concentration of emissions is observed in Amsterdam, where the top 5% of 370 

the highest-emitting 100 m grids contribute 30.3% of total emissions, respectively, underscoring the spatially skewed 371 

distribution of traffic-related CO₂. The top 5% of high-emission grids in The Hague and Dusseldorf show a lower contribution 372 

of total emissions (24.5% and 21.9% respectively), but these are still concentrated along major highways such as the A4 and 373 

A12 in the Hague and B8 and A44 in Dusseldorf. The steep curvatures at the start of the cumulative emissions distribution 374 

curves for these two cities suggest that only a few key segments are disproportionately responsible for emissions, albeit to a 375 

lesser extent than in Paris or Amsterdam. 376 

 377 

Cities like Berlin and Bordeaux exhibit a more diffuse emission pattern, with relatively less pronounced hotspots, where the 378 

top 5% of the highest-emitting 100 m grids contribute ~19.0% of total emissions. Their cumulative emission curves 379 

demonstrate gentler slopes, indicating a more uniform spread of emissions across the road network. This suggests that no 380 

single road or corridor dominates in terms of emission contributions and that urban transport emissions are more evenly 381 

distributed. Other cities, including Lyon, Marseille, Frankfurt, and Rotterdam, fall between these two extremes, exhibiting 382 

varying degrees of emission concentration. For instance, Frankfurt shows notable linear patterns corresponding to high-383 

emission highways intersecting the urban core. In contrast, Rotterdam reveals both concentrated and dispersed emission zones 384 

due to its mixed land use and logistic traffic. Overall, these spatial variations emphasize the importance of city-specific 385 

mitigation strategies. While targeted interventions on a few high-emitting corridors may yield significant benefits in cities with 386 

highly skewed distributions (e.g., Paris or Dusseldorf), broader, network-wide policies may be necessary in more evenly 387 

distributed urban contexts like Berlin or Bordeaux. 388 
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 389 
Figure 6: Annual CO2 emission map of 20 cities at 100m × 100m resolution in 2023.  390 

 391 
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3.3 Temporal patterns 392 

Figure 7 presents the normalized daily CO₂ emissions ratios for Paris, Berlin, Munich, Amsterdam, Lyon, Marseille, and Nice 393 

in 2023. The y-axis represents each day’s CO₂ emissions divided by the city’s total emissions in 2023. These cities were 394 

selected due to the availability of corresponding Carbon Monitor Cities data (hereafter CM-Cities data, shown as green dashed 395 

lines), which enables direct comparison with the results of this study (blue lines). The time series data reveals distinct seasonal 396 

and weekly variations. The summer months (July and August) show a significant decline in emissions in Paris, Amsterdam, 397 

and Lyon, while emissions in all seven cities decline around Christmas, due to business closures and decreased commuting. 398 

For weekly patterns, there is a slight upward trend from Monday to Friday, a noticeable drop on Saturday, and a further decline 399 

on Sunday (Figure S6). The magnitude of the weekend drop varies across cities. In Berlin and Marseille, the median emissions 400 

on Sunday drop by approximately 31.1% and 27.7% compared to Friday in 2023, respectively, representing the most 401 

pronounced Sunday reduction among the six cities. In contrast, Amsterdam exhibits a much smaller Sunday drop compared to 402 

Friday (10.1%).  403 

 404 

In all cities, the median emissions of public holidays (marked in grey shades) and school holidays (marked in light blue shades) 405 

are lower than those of weekdays in 2023. Across all six cities, the median emissions on public holidays and school holidays 406 

were consistently lower than weekday levels in 2023, indicating a general reduction in traffic-related CO₂ emissions during 407 

holiday periods. In Paris, public holiday emissions were exceptionally low, even lower than Sunday levels by 5.2%. The pattern 408 

is different in Marseille, Berlin, and Nice, as the median emissions on public holidays exceeded those on Saturdays by 24.4%, 409 

11.0%, and 6.4%, respectively. The medians of school holidays are generally higher than those of public holidays because a 410 

more limited segment of the population is affected, and the distributions are notably wider. An exception is Amsterdam, where 411 

public holiday emissions slightly surpassed those during school holidays, suggesting a different urban rhythm or school break 412 

dynamics compared to other cities. Also, the day of the week on which a holiday falls also influences emission levels. As 413 

shown in Figure S7, holidays that coincide with weekends tend to show similar emission levels to regular weekend days. When 414 

holidays fall on a Monday, their emission levels are comparable to those of regular Mondays in cities like Berlin, Marseille, 415 

and Nice. 416 

 417 

 418 
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 419 

 420 

Figure 7: Normalized daily CO2 emission of seven cities in 2023. Y-axis represents each day’s CO₂ emissions divided by the city’s total 421 
emissions in 2023. The light blue and grey shades represent school holidays and public holidays, respectively. The y-axis represents each 422 
day’s CO₂ emissions divided by the city’s total emissions in 2023. 423 

Although the general emission temporal variability estimated in this study align reasonably with those reported by Carbon 424 

Monitor Cities, as evidenced by the R correlation coefficients ranging from 0.58 to 0.84 across the six selected cities, notable 425 

differences remain. In Paris, CM-cities tends to underestimate both the troughs and peaks of emissions (Huo et al., 2022). In 426 

Lyon, the consistency is relatively high, but the sharp weekend emission drops observed in Carbon Monitor estimates are not 427 

reproduced in this study. In Amsterdam, this study does not show the pronounced weekend decreases during holidays that are 428 



21 

 

present in Carbon Monitor data. CM-cities estimated traffic volumes using a sigmoid regression based on TomTom live 429 

congestion indices, which lack spatial granularity (only one value per city), and the model parameters were calibrated using 430 

real-time data from approximately 60 roads in Paris. In addition, CM-cities adopts the Functional Urban Area (FUA) definition 431 

used by the OECD and the European Union, which includes high-density urban centers along with their surrounding 432 

commuting zones, whereas our analysis relies on administrative boundaries. For cities not covered by CM-cities, we compared 433 

daily emissions clipped from GRACED (Figure S8). Without calibration at the city level as CM-cities did, GRACED daily 434 

emissions fail to show a consistent weekday–weekend pattern, and some anomalous peaks occurred (e.g., elevated emissions 435 

in Hamburg in April 2023 and in Frankfurt and Montpellier in late May 2023). Except for The Hague, Rotterdam, and Bordeaux, 436 

the resulting daily profiles showed very poor agreement (R<0.4). These findings suggest that coarse-resolution data are not 437 

suitable for city-level temporal analyses, highlighting the advantage of our city-scale dataset in more accurately representing 438 

actual urban emissions. 439 

 440 

Figure 8 presents the average hourly CO₂ emission patterns for cars across the 20 cities in 2023. The y-axis represents the 441 

average proportion of daily CO₂ emissions for each hour, categorized by day types: holidays (blue), weekdays (orange), and 442 

weekends (green). The hourly patterns for cars in French cities and Dutch cities are similar. On weekdays, there are two 443 

emission peaks at 9:00~10:00 and 18:00~19:00 due to commuting, and the emissions stabilize at relatively high levels between 444 

these two peaks. After the second emission peak, the emissions decline continuously and reach their lowest point at 4:00 ~ 445 

5:00. The differences between weekdays and holidays are relatively small, but with no or a less pronounced morning peak due 446 

to reduced commuting activity. On weekends, the sum of average emission share in French cities and Dutch cities during 447 

evening and early morning (22:00 to 6:00) reach 22.9% to 29.1%%, significantly higher than that for weekdays (17.4 to 21.7%), 448 

and the first peak is lagged to around 12:00. German cities on weekdays, except for Dusseldorf, the CO2 emission exhibit 449 

earlier morning peaks at 8:00 and a much higher peak around 15:00 ~16:00. On average, evening peak emissions in French 450 

and Dutch cities are only around 15% higher than morning peak levels, but for German cities specifically, the difference ranges 451 

from 9.3% to 60.0%. After the peak, the CO2 emissions in German cities decrease sharply, which is consistent with the trends 452 

reported by the Berlin datasets (Max et al). On weekends, there is only one peak around 13:00. 453 
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 454 
Figure 8: Hourly emission patterns of cars in 20 cities.  455 

 456 

The hourly patterns for trucks are relatively consistent across all 20 European cities but are notably different from those of 457 

passenger cars (Figure 9). On weekdays, truck-related CO₂ emissions show a peak around 9:00 in nearly all cities, suggesting 458 

synchronized delivery and logistics activity. This peak accounts for 5.4%–6.5% of daily truck emissions in French and Dutch 459 

cities, and up to 9% in German cities such as Berlin and Hamburg. Truck emissions on weekends and holidays are considerably 460 

reduced, with no discernible peaks in most cities. In some German cities (e.g., Stuttgart and Dusseldorf), truck emissions 461 

remain below 3% of daily total at any hour during holidays, reflecting stricter weekend freight regulations. In contrast,  462 

emissions levels of trucks remain relatively high on weekends, especially in southern cities like Marseille and Nice, where 463 

midday peaks surpass 0.06 of daily emissions and are comparable to weekday levels. 464 
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 465 

Figure 9: Hourly emission patterns of trucks in 20 cities.  466 

 467 

3.4 Uncertainty analysis 468 

Figure 10 shows the uncertainties in annual emissions arising from uncertainty in traffic volume estimates. Overall, the Monte 469 

Carlo–derived mean emission estimates are close to the original deterministic estimates for most cities, with the Monte Carlo 470 

means being on average 13.1% lower across the 20 cities. the differences between the Monte Carlo mean and the deterministic 471 

estimate for Paris (−7.0%), Lyon (+7.3%), and Bordeaux (−13.4%) remain within ±15%, indicating relatively stable estimates 472 

despite uncertainty propagation. Noticeable differences are observed for Berlin (−41.4%), Hamburg (+61.4%), Marseille 473 

(−41.2%), and Toulouse (−46.5%), where the differences between the Monte Carlo mean and the deterministic estimate exceed 474 

40%. 475 

 476 
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Figure S9 further shows the road-class-specific uncertainties. Across cities uncertainty in annual totals is primarily driven by 477 

emissions associated with small roads, which exhibit the greatest relative variability across all functional classes. We quantify 478 

road-class-specific relative uncertainty using the relative 95% interval width defined as (P97.5−P2.5)/mean of the 10,000 479 

Monte Carlo realizations. Using this metric, small roads show the largest relative uncertainty, with a median value of 2.67 480 

(266.7%), compared with 1.74 (174.1%) for middle roads and 1.26 (125.8%) for major roads. In Berlin, the Monte Carlo 481 

estimate is 4.65 Mt CO2 (95% CI: [1.89,6.04]) , closer to values reported by Anjos et al (2.70 Mt)(Anjos and Meier, 2025) and 482 

Climate Trace(1.99 Mt)(Kott et al., 2024), suggesting that the original deterministic estimate may have overestimated 483 

emissions from small roads. The situation in Hamburg is different. The Monte Carlo mean emission estimate of approximately 484 

10.57 Mt CO₂ (95% CI: [5.64, 15.60]) exceeds that of Berlin, which is unreasonable given Hamburg’s smaller urban scale and 485 

lower overall road lengths. This outcome suggests that limited and heterogeneous observational data can bias an upward bias 486 

in the sampled correction factors for small roads, resulting in an overestimation of emissions for this road class and, 487 

consequently, at the city scale. 488 

 489 

Overall, these contrasting behaviours highlight that city-scale uncertainty is highly sensitive to the treatment of small roads, 490 

particularly in data-scarce contexts. While the Monte Carlo framework provides a robust characterization of uncertainty, its 491 

outcomes for low-traffic road classes should be interpreted with caution and ideally complemented by additional constraints 492 

or external benchmarks. 493 

 494 

Figure 10: Emission uncertainties in 20 cities. Filled circles are the original deterministic estimates. Hollow circles indicate Monte 495 

Carlo mean estimates, and vertical bars represent the 95% uncertainty interval (P2.5–P97.5). 496 
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4 Discussion 497 

4.1 Key contributions and implications 498 

This study demonstrates that integrating new GPS-based traffic data for individual vehicles covering all street segments with 499 

the COPERT model enables the estimation of hourly on-road CO₂ emissions at street level, which were further aggregated into 500 

100 × 100 m grids for visualization, to generate high-resolution emission maps across 20 European cities. This approach 501 

overcomes the limitations of traditional top-down downscaling methods (e.g., population-based or road-network density 502 

proxies) by applying machine learning to impute the actual traffic volumes from FCD, which only samples the traffic of 503 

vehicles equipped with GPS. Compared to existing CO2 emission inventories such as CAMS-TEMPO, Carbon Monitor, or 504 

localized platforms, our dataset represents a significant advancement by simultaneously achieving high spatial granularity and 505 

temporal resolution. It captures intra-urban variability that is often missed in coarser-resolution datasets or those relying solely 506 

on major road segments. This work highlights the value of integrating GPS-based mobility data with machine learning and 507 

emission modelling to enhance the monitoring of urban transportation emissions and to inform the design of effective, location-508 

specific mitigation policies. Most common low-carbon transport measures in cities include modal shift to public transport, 509 

low-carbon zones control, and low-emission vehicle development, but each strategy may vary according to development stages 510 

and types of urban land-use transport systems (Creutzig et al., 2012; Nakamura and Hayashi, 2013; Croci et al., 2021). While 511 

low-density cities become more compact in the long term but often lack sufficient population density to support rapid transit 512 

systems in the short term, promoting the adoption of electric vehicles, particularly in regions with low-carbon electricity, may 513 

be a more practical approach (Kennedy et al., 2014). This study may support the design of such strategies by enabling street-514 

level scenarios to quantitatively assess their potential emission reductions. 515 

 516 

Our hourly CO2 emission maps reveal striking spatial heterogeneity within cities. For example, concentrated emission hotspots 517 

along Paris’ ring road, versus more dispersed patterns in Berlin, reflect differences in urban structure, transport systems, and 518 

commuting behaviours. Temporally, we observed national variations in traffic-related emissions during holiday and summer 519 

periods, likely due to country-specific vacation schedules. Our new emission maps can support planning of low-emission zones, 520 

help identify high-flux corridors for targeted energy efficiency measures and provide a basis for congestion-related studies. 521 

Given that traffic congestion is a major driver of both fuel consumption and emissions, our maps offer valuable insights for 522 

designing and evaluating emission reduction strategies.  523 

 524 

4.2 Limitations 525 

Several sources of uncertainty remain in our approach. Because the GPS-to-volume conversion models were calibrated using 526 

in-situ sensor data from Paris and Berlin only and extrapolated to the remaining 18 cities, the results may be better suited for 527 

analysing spatial patterns, temporal dynamics, and relative differences across cities, rather than for precise reporting of absolute 528 
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emission magnitudes. To move beyond qualitative statements, we quantify activity-data uncertainty using independent annual 529 

AADT/AAWT validation (Section 2.4; Figure 3) and Monte Carlo uncertainty propagation (Section 3.4; Figure 10 and Figure 530 

S9). The external validation reveals pronounced inter-city heterogeneity in traffic-volume agreement (with R² ranging from 531 

approximately 0.3 to 0.92 across cities; Figure 3), which provides the empirical basis for the subsequent uncertainty ranges. 532 

 533 

First, significant uncertainty may be introduced during the conversion from GPS trajectories to actual traffic volume. The flux-534 

to-volume machine learning models were calibrated using sensor data from Paris and Berlin only, because comparable high-535 

resolution traffic counts are either unavailable or not publicly accessible for most other cities. In addition, GPS penetration 536 

rates may vary across cities and vehicle types, and the vehicle population captured by FCD may differ from that represented 537 

in local monitoring stations, which can affect calibration, particularly for trucks. As discussed in Sections 2.4 and 3.4, model 538 

performance is weaker on middle and small roads, and emissions from small roads exhibit the largest uncertainty and potential 539 

overestimation. Consistent with this, Monte Carlo mean emission estimates are on average 13.1% lower than the deterministic 540 

totals across the 20 cities, and most cities remain within ±15%. However, several cities show substantially larger deviations 541 

exceeding 40% (e.g., Berlin, Hamburg, Marseille, and Toulouse), indicating that absolute totals are more uncertain where 542 

traffic-volume discrepancies are large and observational constraints are limited. For example, Berlin’s Monte Carlo estimate 543 

is 4.65 Mt CO₂ (95% CI: [1.89, 6.04]), whereas Hamburg shows a much wider and higher range of 10.57 Mt CO₂ (95% CI: 544 

[5.64, 15.60]), highlighting the sensitivity of city totals to correction factors on small roads in data-scarce contexts. This 545 

reinforces the need for more comprehensive and standardized traffic monitoring networks. Incorporating additional top-down 546 

constraints, such as city-level fuel consumption statistics in transportation sector, could further improve the accuracy of traffic 547 

volume inference. 548 

 549 

Second, uncertainties also arise from fleet structures. Due to the lack of detailed vehicle-type distribution at the road segment 550 

level, we can only perform fleet correction for roads where heavy-duty vehicle traffic is explicitly restricted. For other roads, 551 

we currently apply city-wide average fleet compositions, which may not reflect local variations. Although urban fleet structure 552 

evolves continuously, available data are reported at coarse temporal resolution; disaggregation to finer temporal scales would 553 

introduce substantial uncertainty, and an annual fleet update is therefore adopted to maintain consistency with the data and the 554 

emission modelling framework.  555 

 556 

Finally, emissions in this study are estimated using the COPERT, which is based on an average-speed framework and does not 557 

explicitly represent microscopic stop-and-go driving behaviours. In contrast, microscopic emission models such as 558 

MOVES(USEPA, 2024) explicitly account for such dynamics but require high-frequency trajectory data, which are not 559 

available in this study. Moreover, COPERT characterizes vehicle technologies primarily by vehicle category and Euro 560 

emission standard, and does not explicitly parameterize changes in emission performance associated with vehicle ageing. As 561 

a result, city-specific fleet age structures and local real-world driving conditions may lead to deviations from the standard 562 



27 

 

emission factors used in the model, especially where detailed fleet data are unavailable to further refine the parameterization. 563 

Access to locally measured emission factors from in situ studies or the literature would help reduce this source of uncertainty 564 

and improve the accuracy of the emission estimates. 565 

4.3 Future work 566 

Current work only covers the year 2023, but the underlying GPS-based FCD is typically available with a delay of only about 567 

one week. This creates a clear opportunity to automate the processing pipeline and update the emission estimates on a rolling 568 

basis. Incorporating this capability into Carbon Monitor Cities would allow near-real-time, high-resolution emission 569 

monitoring at the street level, significantly enhancing the system’s responsiveness and value for both research and policy 570 

applications. In addition, further feature engineering could improve model performance. As part of ongoing work, we plan to 571 

incorporate high-resolution urban context information, such as building-type data, to better capture heterogeneity across 572 

different road classes. The proposed framework is flexible and allows additional features to be integrated as new data become 573 

available. Also, future work could extend the methodology to include major air pollutants beyond CO₂ and scale the approach 574 

to cover broader regions. Through incorporating more sensor-based traffic measurements across cities, data representativeness 575 

and model validation can be further improved. Such efforts will strengthen the robustness, applicability, and policy relevance 576 

of street-level emission mapping, particularly in supporting timely decision-making and climate or clean air action monitoring. 577 

5 Data availability 578 

The high-resolution hourly CO₂ emission dataset for 20 cities in 2023 is available in NetCDF format, on Zenodo 579 

https://doi.org/10.5281/zenodo.16600210 (Shi et al., 2025). Each city has an individual NetCDF file that provides gridded 580 

hourly emissions over the entire year of 2023. Their central x and y coordinates define the grid cells, and each file includes the 581 

variable CO2_g, representing emissions in grams per hour in the grid. Every grid’s size is 100 m × 100 m.  582 

Supplement 583 

This dataset is accompanied by Supplementary Information, including a detailed methodology document (SI_document.docx) 584 

and additional data tables (SI_tables.xlsx). 585 

Author contributions 586 

QS processed and generated the dataset and drafted the initial manuscript. PC designed the study and provided scientific 587 

supervision. NM collected the raw data and contributed to the structuring of the dataset. XB and RTM assisted with COPERT 588 

data handling, data matching, and emission calculations. RE reviewed the emission estimates and provided constructive 589 

https://doi.org/10.5281/zenodo.16600210


28 

 

feedback on the manuscript. CZ contributed extensively to the machine learning modelling and provided valuable suggestions 590 

on the manuscript structure and visualization. All authors reviewed and approved the final manuscript. 591 

Competing interests 592 

The authors declare that they have no conflict of interest. 593 

Acknowledgement 594 

This study is funded by the Copernicus Atmosphere Monitoring Service (under the CAMS2_51a contract), which is 595 

implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Commission. 596 

References 597 

Albarus, I., Lauvaux, T., Utard, H., Ciais, P., Crifo, P., and Gros, V.: Unraveling climate targets across the Paris conurbation 598 

as a gauge of city ambitions, npj Urban Sustainability, 5, 27, 10.1038/s42949-025-00206-y, 2025. 599 

Amsterdam, T. C. o.: Roadmap Amsterdam Climate Neutral 2050, 2024. 600 

Anjos, M. and Meier, F.: Zooming into Berlin: tracking street-scale CO2 emissions based on high-resolution traffic modeling 601 

using machine learning, Frontiers in Environmental Science, 12, 10.3389/fenvs.2024.1461656, 2025. 602 

Verkehrsdetektion Berlin: https://daten.berlin.de/datensaetze/verkehrsdetektion-berlin, last access: 28/07/2025. 603 

Erneut deutliche CO2-Minderung in Hamburg: https://www.hamburg.de/politik-und-604 

verwaltung/behoerden/bukea/themen/klima/klimaschutz-klimaplan/co2-bilanz-hh-2023-169240, last access: 28/07/2025. 605 

Bonnemaizon, X., Ciais, P., Zhou, C., Shi, Q., Mittakola, R. T., Goldmann, C., Ben Arous, S., Megel, N., and Davis, S. J.: 606 

Harmonized Annual Averaged Traffic Data at Street Segment Level for European Cities, Scientific Data, 12, 1365, 607 

10.1038/s41597-025-05698-y, 2025. 608 

E-Mobility revolution in Amsterdam: https://cinea.ec.europa.eu/news-events/news/e-mobility-revolution-amsterdam-2025-609 

04-23_en?utm_source=chatgpt.com, last access: 28/07/2025. 610 

Creutzig, F., Mühlhoff, R., and Römer, J.: Decarbonizing urban transport in European cities: four cases show possibly high 611 

co-benefits, Environmental research letters, 7, 044042, 2012. 612 

Croci, E., Lucchitta, B., and Molteni, T.: Low carbon urban strategies: An investigation of 124 European cities, Urban Climate, 613 

40, 101022, https://doi.org/10.1016/j.uclim.2021.101022, 2021. 614 

De Gennaro, M., Paffumi, E., and Martini, G.: Big Data for Supporting Low-Carbon Road Transport Policies in Europe: 615 

Applications, Challenges and Opportunities, Big Data Research, 6, 11-25, https://doi.org/10.1016/j.bdr.2016.04.003, 2016. 616 

Field of Action: Transport: https://dibek.berlin.de/?lang=en#caption_c2c12, last access: 28/07/2025. 617 

Dou, X., Hong, J., Ciais, P., Chevallier, F., Yan, F., Yu, Y., Hu, Y., Huo, D., Sun, Y., Wang, Y., Davis, S. J., Crippa, M., 618 

Janssens-Maenhout, G., Guizzardi, D., Solazzo, E., Lin, X., Song, X., Zhu, B., Cui, D., Ke, P., Wang, H., Zhou, W., Huang, 619 

X., Deng, Z., and Liu, Z.: Near-real-time global gridded daily CO2 emissions 2021, Scientific Data, 10, 69, 10.1038/s41597-620 

023-01963-0, 2023. 621 

EEA greenhouse gases — data viewer: https://www.eea.europa.eu/en/analysis/maps-and-charts/greenhouse-gases-viewer-622 

data-viewers?activeTab=570bee2d-1316-48cf-adde-4b640f92119b, last access: 28/07/2025. 623 

Greenhouse gas emissions from transport in Europe: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-624 

emissions-from-transport?activeAccordion=309c5ef9-de09-4759-bc02-802370dfa366, last access: 28/07/2025. 625 

Gately, C. K., Hutyra, L. R., and Sue Wing, I.: Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and 626 

scaling relationships, Proc Natl Acad Sci U S A, 112, 4999-5004, 10.1073/pnas.1421723112, 2015. 627 

https://daten.berlin.de/datensaetze/verkehrsdetektion-berlin
https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/klima/klimaschutz-klimaplan/co2-bilanz-hh-2023-169240
https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/klima/klimaschutz-klimaplan/co2-bilanz-hh-2023-169240
https://cinea.ec.europa.eu/news-events/news/e-mobility-revolution-amsterdam-2025-04-23_en?utm_source=chatgpt.com
https://cinea.ec.europa.eu/news-events/news/e-mobility-revolution-amsterdam-2025-04-23_en?utm_source=chatgpt.com
https://doi.org/10.1016/j.uclim.2021.101022
https://doi.org/10.1016/j.bdr.2016.04.003
https://dibek.berlin.de/?lang=en#caption_c2c12
https://www.eea.europa.eu/en/analysis/maps-and-charts/greenhouse-gases-viewer-data-viewers?activeTab=570bee2d-1316-48cf-adde-4b640f92119b
https://www.eea.europa.eu/en/analysis/maps-and-charts/greenhouse-gases-viewer-data-viewers?activeTab=570bee2d-1316-48cf-adde-4b640f92119b
https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-transport?activeAccordion=309c5ef9-de09-4759-bc02-802370dfa366
https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-transport?activeAccordion=309c5ef9-de09-4759-bc02-802370dfa366


29 

 

Guevara, M., Jorba, O., Tena, C., Denier van der Gon, H., Kuenen, J., Elguindi, N., Darras, S., Granier, C., and Pérez García-628 

Pando, C.: Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission 629 

temporal profile maps for atmospheric chemistry modelling, Earth Syst. Sci. Data, 13, 367-404, 10.5194/essd-13-367-2021, 630 

2021. 631 

Huo, D., Huang, X., Dou, X., Ciais, P., Li, Y., Deng, Z., Wang, Y., Cui, D., Benkhelifa, F., Sun, T., Zhu, B., Roest, G., Gurney, 632 

K. R., Ke, P., Guo, R., Lu, C., Lin, X., Lovell, A., Appleby, K., DeCola, P. L., Davis, S. J., and Liu, Z.: Carbon Monitor Cities 633 

near-real-time daily estimates of CO2 emissions from 1500 cities worldwide, Scientific Data, 9, 533, 10.1038/s41597-022-634 

01657-z, 2022. 635 

Tomtom traffic index: https://www.tomtom.com/traffic-index/about/, last access: 28/07/2025. 636 

Kennedy, C. A., Ibrahim, N., and Hoornweg, D.: Low-carbon infrastructure strategies for cities, Nature Climate Change, 4, 637 

343-346, 10.1038/nclimate2160, 2014. 638 

Transportation Sector - Global Road Emissions,Climate TRACE Emissions Inventory: https://unfccc.int/climate-action/un-639 

global-climate-action-awards/climate-leaders/city-of-paris, last access: 28/07/2025. 640 

Kühbacher, D., Aigner, P., Super, I., Droste, A., Denier van der Gon, H., Ilic, M., and Chen, J.: Bottom-up estimation of traffic 641 

emissions in Munich based on macroscopic traffic simulation and counting data, EGU General Assembly 2023, Vienna, 642 

Austria, https://doi.org/10.5194/egusphere-egu23-12997, 2023. 643 

Naiudomthum, S., Winijkul, E., and Sirisubtawee, S.: Near Real-Time Spatial and Temporal Distribution of Traffic Emissions 644 

in Bangkok Using Google Maps Application Program Interface, 10.3390/atmos13111803,  2022. 645 

Nakamura, K. and Hayashi, Y.: Strategies and instruments for low-carbon urban transport: An international review on trends 646 

and effects, Transport Policy, 29, 264-274, https://doi.org/10.1016/j.tranpol.2012.07.003, 2013. 647 

Ntziachristos, L., Gkatzoflias, D., Kouridis, C., and Samaras, Z.: COPERT: a European road transport emission inventory 648 

model, Information Technologies in Environmental Engineering: Proceedings of the 4th International ICSC Symposium 649 

Thessaloniki, Greece, May 28-29, 2009, 491-504,  650 

Comptage routier - Données trafic issues des capteurs permanents: https://opendata.paris.fr/explore/dataset/comptages-651 

routiers-652 

permanents/information/?disjunctive.libelle&disjunctive.libelle_nd_amont&disjunctive.libelle_nd_aval&disjunctive.etat_tra653 

fic, last access: 28/07/2025. 654 

Ramírez, A., de Keizer, C., Van der Sluijs, J. P., Olivier, J., and Brandes, L.: Monte Carlo analysis of uncertainties in the 655 

Netherlands greenhouse gas emission inventory for 1990–2004, Atmospheric Environment, 42, 8263-8272, 656 

https://doi.org/10.1016/j.atmosenv.2008.07.059, 2008. 657 

An introduction to explainable AI with Shapley values: 658 

https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20wi659 

th%20Shapley%20values.html, last access: 28/07/2025. 660 

Shi, Q., Ciais, P., Megel, N., Bonnemaizon, X., Mittakola, R. T., Engelen, R., and Zhou, C.: High spatiotemporal resolution 661 

traffic CO₂ emission maps derived from Floating Car Data (FCD) for 20 European cities (2023), Zenodo [dataset], 662 

10.5281/zenodo.16600210, 2025. 663 

Super, I., Dellaert, S. N. C., Visschedijk, A. J. H., and Denier van der Gon, H. A. C.: Uncertainty analysis of a European high-664 

resolution emission inventory of CO2 and CO to support inverse modelling and network design, Atmos. Chem. Phys., 20, 665 

1795-1816, 10.5194/acp-20-1795-2020, 2020. 666 

Ulrich, V., Brückner, J., Schultz, M., Vardag, S. N., Ludwig, C., Fürle, J., Zia, M., Lautenbach, S., and Zipf, A.: Private 667 

Vehicles Greenhouse Gas Emission Estimation at Street Level for Berlin Based on Open Data, ISPRS International Journal of 668 

Geo-Information, 12, 138, 2023. 669 

USEPA: Motor Vehicle Emission Simulator: MOVES5,  2024. 670 

Wen, Y., Wu, R., Zhou, Z., Zhang, S., Yang, S., Wallington, T. J., Shen, W., Tan, Q., Deng, Y., and Wu, Y.: A data-driven 671 

method of traffic emissions mapping with land use random forest models, Applied Energy, 305, 672 

10.1016/j.apenergy.2021.117916, 2022. 673 

Xavier Bonnemaizon , P. C., Chuanlong Zhou, Simon Ben-Arous, Steven J Davis, Nicolas Megel: Scaling traffic variables 674 

from sensors sample to the entire city at high spatiotemporal resolution with machine learning: applications to the Paris 675 

megacity, https://eartharxiv.org/repository/view/6948/, 2024. 676 

https://www.tomtom.com/traffic-index/about/
https://unfccc.int/climate-action/un-global-climate-action-awards/climate-leaders/city-of-paris
https://unfccc.int/climate-action/un-global-climate-action-awards/climate-leaders/city-of-paris
https://doi.org/10.5194/egusphere-egu23-12997
https://doi.org/10.1016/j.tranpol.2012.07.003
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents/information/?disjunctive.libelle&disjunctive.libelle_nd_amont&disjunctive.libelle_nd_aval&disjunctive.etat_trafic
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents/information/?disjunctive.libelle&disjunctive.libelle_nd_amont&disjunctive.libelle_nd_aval&disjunctive.etat_trafic
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents/information/?disjunctive.libelle&disjunctive.libelle_nd_amont&disjunctive.libelle_nd_aval&disjunctive.etat_trafic
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents/information/?disjunctive.libelle&disjunctive.libelle_nd_amont&disjunctive.libelle_nd_aval&disjunctive.etat_trafic
https://doi.org/10.1016/j.atmosenv.2008.07.059
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://eartharxiv.org/repository/view/6948/


30 

 

Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory 677 

of anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295-2308, 10.5194/acp-11-2295-2011, 2011. 678 

 679 


	1 Introduction
	2 Data and Method
	2.1 Overview of the Methodology
	2.2 Description and preparation of FCD
	2.3 Obtain CO2 emission factors using COPERT
	2.4 Estimate real traffic volume from sample count
	2.5 Fleet structure
	2.6 Aggregation onto grids
	2.7 Uncertainty analysis

	3 Results
	3.1 Annual emissions
	3.2 Spatial patterns
	3.3 Temporal patterns
	3.4 Uncertainty analysis

	4 Discussion
	4.1 Key contributions and implications
	4.2 Limitations
	4.3 Future work

	5 Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgement
	References

