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Abstract. On-road transportation is a major contributor to CO, emissions in cities, and high-resolution CO; traffic emission
maps are essential for analyzing emission patterns and characteristics. In this study, we developed new hourly on-road CO-

emission maps with aat 100 x 100 m resolution for 20 major cities in France, Germany, and the Netherlands in 2023. We used

commercial Floating Car Data (FCD) based on anonymized GPS signals periodically reported by individual vehicles,
providing hourly information on mean speed and en-the number of GPS sample counts per street. Machine learning models
were developed to fill FCD data gaps and convert sample counts into actual traffic volumes, and the COPERT model was used

to estimate speed- and vehicle--type--dependent emission factors. These models were calibrated using independent traffic

observations available for Paris and Berlin, and subsequently applied to the remaining 18 cities in an extrapolated manner due

to data availability constraints. Hourly emissions, initially estimated at the street level, were aggregated to 100 x 100 m grid
cells. Annual on-road CO: emissions across the 20 European cities in 2023 ranged from 0.4 to 7.9 Mt CO,, with emissions
strongly correlated with urban area (R? = 0.98) and, to a lesser extent, population size (R?> = 0.74). Spatially, emissions are
either highly concentrated along major highways in cities such as Paris and Amsterdam or more evenly distributed in cities
such as Berlin and Bordeaux, highlighting the need for context-specific mitigation strategies. Temporally, this study shows the
CO; emission fluctuations due to holiday periods, weekly activity cycles, and distinct usage profiles of different vehicle types.
Due to the low latency of FCD, this approach could support near-real-time traffic emission mapping in the future. Our approach
enhances the spatial and temporal characterization of CO» emissions in on-road transportation compared to the conventional
method used in gridded inventories, indicating the potential of FCD data for near-real-time urban emission monitoring and
timely  policy-——making.  The  datasets generated by this study are available on  Zenodo
https://doi.org/10.5281/zenodo.16600210(Shi et al., 2025),
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1 Introduction

The road transport sector is one of the largest sources of greenhouse gas (GHG) emissions in the European Union and the only
major economic sector where carbon dioxide (CO) emissions have risen since 1990, primarily due to the widespread use of
fossil fuel-powered passenger cars and freight vehicles. In 2023, it accounts for approximately 26.0% of total EU GHG
emissions (EEA, 2024a). In response to the dual challenge of reducing emissions and developing cleaner mobility
infrastructures, the European Strategy for Low-Emission Mobility outlines three elements: (1) Increasing the efficiency of the
transport system, including the optimization of logistics and intelligent transport systems; (2) Accelerating the deployment of
low-emission alternative energy sources, such as biofuels, renewable electricity, and hydrogen; and (3) Speeding up the
transition to zero-emission vehicles, through regulatory incentives, infrastructure investment, and innovation support
(European Commission, 2016). This transition is not only critical for achieving the EU’s climate neutrality goal, which
involves reducing net CO, emissions to zero by 2050 (EEA, 2024b), but also for improving air quality, reducing energy

dependence on fossil fuel imports, and enhancing the competitiveness of European industry.

Emission reduction targets_jin the transportation sector -are being translated into concrete actions at the city level. For instance,

the transportation sector is responsible for approximately 20% of Paris' local greenhouse gas emissions (Albarus et al., 2025),
and Paris plans to reduce its direct emissions by 50% by 2030 and 100% by 2050, compared to 2004. The-transport-seetor;
~Paris has set itself the target

of phasing out diesel-powered mobility by 2024 and petrol-powered moblhty by 2030, ahgnmg with the EU-wide ban on the

sale of internal combustion engine vehicles by 2035-

2030(UNECCCE;2023). Amsterdam aims to achieve zero-emission transport by 2030, phasing out all fossil-fuel vehicles within

city limits (Amsterdam, 2024). The city is rapidly expanding its electric vehicle infrastructure, as all newly registered vehicles

are requlred to have zero-emission engines in 2025 (CINEA 2025). Over 70% of trips arc already made by walking, eveling.

~Similarly, to achieve climate neutrality in 2050,

Berlin will require a long-term reduction in CO, emissions in the transport sector to around 1.17 million tonnes of CO, per

year, a reduction of around 77 % compared with 1990 emissions (diBEK, 2025).

High-resolution emission maps are crucial for monitoring emission changes and providing insights into the effectiveness of
traffic mitigation policies in cities. For example, a high-resolution (1 km?) CO: emissions inventory for U.S. road transportation

named DARTE enables detailed analysis at the city scale between 1980 to 2012 _(Gately et al., 2015), revealing that urban
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areas drive most of the emission growth and that traditional population-based downscaling methods substantially misrepresent
city-level spatial patterns. Over the past decade, several efforts have been made to improve either the temporal or the spatial
resolution of traffic emission inventories, primarily by incorporating real-world traffic data generated from sensors or GPS
signals. From a temporal resolution perspective, annual aggregated statistics make it impossible to capture short-term
variations due to weather, policy changes, or special events. Therefore, daily or hourly data were increasingly applied to
improve the accuracy. For example, TomTom collects all the travel times and compares them with the lowest travel times to
calculate congestion indexes based on FCD _(index, 2024). Tomtom congestion indexes were used by Carbon Monitor Cities
(Huo et al., 2022) to estimate daily CO» emissions for 1500 cities. CAMS-TEMPO is a dataset of European emission temporal
profiles that provides gridded monthly, daily, weekly, and hourly weight factors for atmospheric chemistry modelling, and the
European part used hourly traffic data collected from over 20 European cities via open-data portals or personal communications
(Guevara et al., 2021). One-month GPS-based datasets covering 52,834 conventional fuel vehicles registered in the province
of Modena and 40,459 vehicles registered in the province of Firenze were used to generate high-resolution emission maps (De
Gennaro et al., 2016). A near-real-time on-road traffic emission product on 2860 km of the main roads in Bangkok was
automatically generated by retrieving the traffic data from the Google Maps API service and the Python code every 15 min
(Naiudomthum et al., 2022). In recent years, machine learning-based bottom-up approaches have supported the development
of high-resolution emission maps. For instance, an hourly street-level emission map of Chengdu was developed using data
from 1,454 camera-based sensors and 34 highway monitoring sites, employing land-use random forest models (Wen et al.,
2022). Similarly, a platform tracking hourly CO: emissions at a 30x30 m resolution was designed for Berlin based on local

traffic data, using machine learning methods (Anjos and Meier, 2025).

Despite recent advancements, most city-level emission datasets still suffer from limitations in either temporal or spatial
resolution, with few achieving both simultaneously. CAMS-TEMPO (Guevara et al., 2021) and Carbon Monitor (Huo et al.,
2022) lack road-specific information and provide only outputs at 0.1° resolution and the city level, respectively. The hourly
street-level emission datasets for Chengdu (Wen et al., 2022) and Bangkok (Naiudomthum et al., 2022) only cover one to two
months. The Berlin platform offers high spatial and temporal resolution from 2015 to 2022, but may miss data from smaller

roads, as counting stations are usually located on major roads.

As part of the Copernicus Atmosphere Monitoring Service (CAMS), this study estimates for the first time hourly street-level
on-road transportation COz emissions, aggregated into 100 m resolution hourly maps for 20 European cities in 2023. Hourly
GPS-based data, reporting traffic counts and speeds of individual vehicles across different road classes, were upscaled using
machine learning to reconstruct complete traffic volumes and speeds across the road networks. Then, CO, emissions were
estimated using the COPERT model, and emission maps were developed. This approach enhances the spatial and temporal

characterization of CO, emissions in on-road transportation compared to the downscaling method used in other inventories,
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indicating the potential of GPS-based data for supporting future efforts in emission monitoring and developing emission

reduction policies.

2 Data and Method
2.1 Overview of the Methodology

Figure 1 describes the workflow-methodelogy of this study. The GPS-based high-resolution ‘Floating Car Data’ (FCD) on
individual vehicle flow (GPS vehicles counts per street each hour) and speed covering every street was obtained from a data
aggregation provider that collects GPS position data from cars (passenger cars) and trucks (light commercial vehicles and
heavy duty trucks), providing road-specific information on hourly average speed and sample counts (i.e., the number of cars
recorded in each street for each hour). Those GPS data are linked with precise cities’ road network datasets, providing detailed
information on road length, road functional class, and truck access authorization. All data is anonymized by the data provider
to prevent compromising any individual or organizational data privacy issues. After raw data processing and cleaning, a
machine learning model was used to fill in missing values in FCD, as well as to transform FCD sample counts limited to
vehicles equipped with GPS into traffic volumes for all vehicles. Then, the COPERT model (Ntziachristos et al., 2009), the
EU standard vehicle emissions calculator, was applied for estimating specific CO- emission factors based on individual vehicle
hourly average speed and type. Combined with the road lengths obtained from geographical databases and with fleet structures,
we finally estimate street-level road-specific emissions using the following equation:

Emis,,, = N, X Structure, X Length, X EF, @
Where Emis, ,,, represents CO, emission at the hour #, for the vehicle type v ¥, on road r+. N, , represents the total traffic
volume at hour t, on road r (counts/hour). Structure, represents the proportion of vehicle type v in the vehicle fleet (%).
Length,. represents the road length (km) of the road r, and EF, s (g CO2/km) represents the CO, emission factors for the vehicle

type v ¥, at the hourly average speed ss (km/h).

Our FCD source covers France, Germany, and the Netherlands. Therefore, the 20 most populous cities within these three
countries were selected to develop high-resolution emission maps. Table 1 shows the basic information (population, area, street
length, street density) of the 20 cities in 2023. Note that here Paris is the administrative city jurisdiction (Ville de Paris)

covering the central 20 arrondissements, so its area is much smaller than Berlin, which is both a city and a federal state.
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Figure 1: Workflow of this study
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Table 1: Information of 20 selected cities in 2023.

Country City Population Area Street length Street density « [ Formatted Table
(Thousand) (km?) (km) (km/km?)
France Paris 2,103 105.4 24129 22.9
Marseille 862 240.6 3301.7 13.7
Lyon 513 479 985.3 20.6
Lille 233 395 679.8 17.2
Toulouse 472 118.3 2311.2 19.5
Nice 343 71.9 1228.0 17.1
Nantes 303 65.2 1249.4 19.2
Strasbourg 277 78.3 1252.4 16.0
Montpellier 278 56.9 1260.1 22.1
Bordeaux 250 49.4 967.9 19.6
Germany Berlin 3,782 891.3 12073.4 13.5
Hamburg 1,910 755.2 8725.2 11.6
Munich 1,510 310.7 5220.0 16.8
Cologne 1,087 405.2 5508.8 13.6
Frankfurt 776 248.3 3648.5 14.7
Stuttgart 633 207.3 3660.8 17.7
Dusseldorf 631 217.4 2741.5 12.6
Netherland ~ Amsterdam 883 219.4 3203.8 14.6
Rotterdam 656 324.1 3555.7 11.0
The Hague 553 98.1 1796.8 18.3
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2.2 Description and preparation of FCD

FCD provides hourly average speed and sample counts for each street, with separate data for cars and trucks reporting GPS
data. The FCD is linked with high-resolution road network datasets that feature information such as road length, speed category,
road functional class, lane category, on more detailed and complete road networks than public traffic datasets based on sensors.
As shown in Figure 2, public datasets used by previous studies are only available for a few cities and provide hourly traffic
data for 3,739 road segments in Paris (Xavier Bonnemaizon 2024) and 19,808 segments in Berlin (Anjos and Meier, 2025),
respectively. In contrast, FCD gives vehicle count samples and speed information for 36,716 roads in Paris and 122,759 roads
in Berlin, dividing long roads into more segments and encompassing a much greater number of small roads than the city-level
public datasets. All road segments were categorized into major, middle, and small according to the functional class defined by
the FCD. Major roads represent roads connecting major metropolitan areas, middle roads represent roads connecting
neighbourhoods, and small roads represent low-volume roads.

(a) FCD network in Paris (b) Opendata network in Paris

N = 36716
Length = 1819 km

(c) FCD network in Berlin

N = 122759
Length = 8196 km & Length = 2075 km

Figure 2: Monitored road networks in this study and other public datasets in Paris and Berlin. N represents the number of road
segments. (a) and (c) represent road networks from FCD for Paris and Berlin, respectively; (b) and (d) represent networks from Open Data
in Paris and Traffic Detection Systems in Berlin.

Missing values exist in the FCD due to unstable GPS signals, especially for small roads. The average data coverage of GPS

cars on major, middle, and small roads ranges from 67.0% - 97.7%, 40.4% - 93.8%, and 6.1% - 37.7%, respectively (Figure



161 Sla). The average data coverage of trucks is lower, ranging from 32.2% - 75.8%, 32.1% - 85.3%, and 1.8% - 32.2%,
162 respectively (Figure S1b). Machine learning was used here to fill data gaps, as the use of machine learning techniques has
163 shown great potential for both temporal and spatial imputation of missing data to reconstruct the full volume of traffic(Wen et
164 al., 2022). Eight features were chosen as predictors (Table 2) to train models. Temporal features (hour, day of the week, and
165  month) were used to capture diurnal and seasonal patterns in traffic behaviour. Observed road-specific daily mean traffic

166 counts and speeds derived from hourly averages were also used as indicators of baseline traffic intensity. Holiday indicators,

167 including school and public holidays, were included to account for potential shifts in travel demand. Finally, road
168 characteristics including speed category, functional class, and lane category were used to describe the physical and functional

169 attributes of each road segment.

170
171 Table 2: Spatial-temporal features used as predictors of traffic variables b [ Formatted: Font: /N1, Font color: Black
Formatted: Space After: 10 pt, Line spacing: single, Border: Top:
(No border), Bottom: (No border), Left: (No border), Right: (No
B (N
Category Features Usage border), Between : (No border)
[ Formatted Table
Time Hour, Day of week, Month Diel and seasonal pattern
Road-specific traffic counts/speed Daily mean derived from hourly averages Baseline traffic intensity
Holiday School holiday, Potential shifts in travel demand
Public holiday
Road characteristics Speed category, Functional class, Lane category Road capacity and flow
characteristics
172

173 The full-year dataset was partitioned into two temporally isolated subsets: January-June (H1) and July-December (H2) due to
174 the large-scale dataset. Separate machine learning models were developed for each six-month interval, both incorporating
175 consistent feature engineering protocols for vehicle type differentiation (Cars and Trucks) and road classification. Model

176 training was conducted on 80% of the available data, with the remaining 20% held out as an independent test set to evaluate

8
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generalization performance. Random forest (RF) and lightGBM models were tested for Paris to compare their performances.
As shown in Table S1, Random Forest (RF) and LightGBM exhibited comparable predictive performance across different
vehicle types, road types, and target variables (i.e., vehicle count and speed) but LightGBM required significantly less
computational time. In some cases, the efficiency gain is more than 10-fold e.g., to fill gaps of car count on major roads takes
6.25 s for LightGBM vs. 122.53 s for RF. This efficiency gains stems from LightGBM’s histogram-based decision tree
learning and its leaf-wise tree growth strategy with depth constraints, which together enable faster training and better scalability,
especially for large datasets with continuous features. Given its high accuracy and computational efficiency, we-seleeted

LightGBM was chosen as the preferred model and trained individually for each of the 20 cities.

The LightGBM validation performance is summarized in Table 3 using mean R2, RMSE, and MAE across cities and road

classes, while the full city-level validation results are reported in Table S2.

TFable-S2: 5-fold cross-validation results which aimed at evaluating the robustness of the model are presented in Table S3.

Overall, the model demonstrates strong predictive performance across different vehicle types and target variables. For car
count, performance is consistently high on major roads, with R? values typically above 0.90 and reaching up to 0.97 (e.g., The
Hague and Amsterdam). On middle and small roads, R? varies between 0.53 and 0.85, and lower values are often observed in
cities with smaller datasets, such as Lyon and Nice, suggesting that data volume plays a critical role in model accuracy (Figure
S2). For car speed, the model also performs well on major roads R? (0.85-0.95) but shows greater variability on smaller roads,
where R? drops to as low as 0.39 in some cases (e.g., Paris or Lyon). The results of trucks are similar to those of cars, but with
slightly lower overall performance. Shapley values, a concept from cooperative game theory, are widely used to explain feature
importance in machine learning. This study used the Python package SHAP to estimate Shapley values applied to the model’s
conditional expectation function (SHAP, 2025), revealing that the daily mean count and hour of day are the most influential
predictors, followed by day of week, road class, and month_(Figure S3). High traffic volumes are associated with increased
model output, while hourly effects vary by time of day. In contrast, features such as lane type and school holidays show limited

influence.
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JTable 3; Summary of LightGBM validation performance across cities and road classes, <
Vehicle Item Road class Mean R2 Mean RMSE Mean MAE «
Car COUNT Major 0.93 16.34 9.08 -
Car COUNT Middle 0.73 6.09 3.91 «
Car COUNT Small 0.60 3.66 2.15 <
Truck COUNT Major 0.78 331 2.00 <
Truck COUNT Middle 0.57 1.88 1.29 -
Truck COUNT Small 0.54 1.87 1.15 <
Car SPEED Major 0.89 6.72 4.64 «
Car SPEED Middle 0.67 6.71 4.87 <
Car SPEED Small 0.58 785 5.63 “
Truck SPEED Major 0.84 8.77 6.35 «
Truck SPEED Middle 0.55 7.81 5.85 <
Truck SPEED Small 0.56 7.70 5.65 <
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2.32 Obtain CO: emission factors using COPERT

To calculate the speed-dependent emission factors EFco, defined by CO, emissions per km driven for each vehicle type, we
applied the COPERT model, a widely used emissions calculator for vehicles in Europe (Ntziachristos et al., 2009). Monthly
temperature and relative humidity data required as input for COPERT were obtained from ERAS reanalysis (Hersbach, 2023)
and interpolated to a 0.01° spatial resolution. City-level averages of maximum/minimum temperature and relative humidity
were then calculated within administrative boundaries defined by Eurostat shapefiles to serve as inputs for COPERT. *
Considering the data scale and time cost, instead of running COPERT for each street segment each hour, this study developed
fitting curves between speed and EFcos to obtain EFcoa. Except for L-Category vehicles running on diesel, where COPERT
provides a fixed value, emission factors were simulated for various vehicle types at speeds of 20, 40, 60, 80, 100, 120, and 140
km/h. Then, for each city, cubic functions were fitted to COPERT simulations, as given by:

EF =axs®+bxs?+cxs+d 2)
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Where s represents the average speed at hourly resolution, and aa, bb, ce, and d are city-specific constants. Table S43 presents
the parameters of the curve fitting results for all cities, showing a good fit quality with an R? value range from 0.882 to 0.998.
In this way, the corresponding emission factor for any given speed can be determined. Note that we used EF coz of the EU6
standard, since CO: emission factors are only marginally influenced by emission standards, and this approach was also adopted

by TomTom (Index, 2024).

2.3-4 Estimate real traffic volume from sample count

Road-specific hourly total traffic volume is the key parameter to estimate CO, emissions. Since not all vehicles transmit GPS
signals and our dataset only captures a subset of the real GPS data for all vehicles, the actual traffic volume is significantly
higher than the sample counts from the FCD. To solve this problem, we established a relationship between real traffic volume
data and GPS sample count using machine learning. Due to the availability of traffic volume data, only the Opendata from
Paris (Parisopendata, 2024) and Traffic detection Berlin (Berlinopendata, 2024) were used for modelling. Opendata from Paris

provides hourly total vehicle flow from permanent sensors with electromagnetic loops on 2086-2278 roads in 2023, but does

not differentiate between vehicle types for the traffic volume. Therefore, the numbers of cars and trucks are estimated based
on the proportion of sample counts from each type in our FCD. Traffic detection in Berlin provides hourly total vehicle volumes
on 231 roads, and only the volumes of cars were used for modelling. As shown in Figure 2, monitored road networks of public
datasets and FCD are different. The overlap rate and angle are used as criteria to link the two datasets’ shapefiles (Figure S4).
When the overlap rate > 0.7 and the angle <20°, a road is identified as being the same in Opendata and FCD. In this way,
hourly open data from 2278 monitoring sites in Paris and 231 monitoring sites in Berlin were matched to the FCD, and we got
the real volume and the number of FCD sample counts on the same road. A similar set of predictors as listed in Table 2, except
for road-specific traffic counts and speeds, was used to build a LightGBM model to extrapolate FCD sample counts to total
traffic volume. For cars in German cities, we used the LightGBM model trained on Berlin’s data, while for all other cities, we

used the LightGBM trained on Paris’s data.

—~The validation results (Table
$4S5) show that the LightGBM model performs well on major roads in both Paris (R>= 0.91 for cars and 0.88 for trucks) and
Berlin (R? =0.66 for cars). The accuracy decreases on middle and small roads in Paris (R? range from 0.22 to 0.38), while the
performance in Berlin remains comparatively good (R?> range from 0.86 to 0.88). 5-fold cross-validation results are presented

in Table S6.

(Bonnemaizon-et-al52025)In addition to Paris and Berlin that are used for model training, observed traffic-count-based annual

average daily traffic flow (AADT, in number of vehicles per day) or annual average weekday traffic (AAWT, equivalent to

AADT excluding weekends) datasets are available for six additional cities reported in a recent study(Bonnemaizon et al., 2025):

Montpellier and Hamburg (AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT). The comparison which serves as

independent external validation to assess our traffic volume estimates is shown in Figure 3. Paris, the most important reference
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city for model development, shows strong agreement between estimated and public AADT values (R? = 0.92, n = 2696), with

data points across all road classes closely aligned with the 1:1 line. Berlin exhibits noticeably larger dispersion, with a moderate

R2(0.55) derived from a relatively small sample size (n = 197), which likely contributes to the lower correlation.

Lyon, Hamburg, Bordeaux and Montpellier all show moderate correlation (with R? around 0.6). However, while simulated and
observed traffic volumes are generally well aligned for Bordeaux, public observations for Lyon, Hamburg and Montpellier
tend to exceed the simulated values, especially for the major roads. Toulouse and Lille are characterized by low correlation
(R?around 0.3), exhibits the weakest consistency between estimated and public traffic volumes. Overall, the scatter plots reveal

pronounced city-to-city heterogeneity in traffic volume agreement, providing important context for subsequent uncertainty

propagation to city-scale emission estimates.
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Figure 3: Comparison of AADT/AAWT between this study and public datasets

2.4-5 Fleet structure

This study collected fleet structures data in 2023 for the 20 cities to further map cars and trucks to 5 categories (passenger cars,
light commercial vehicles, buses, L-category and heavy-duty trucks), and 12 sub-categories, 10 fuels (petrol, diesel, CNG,

diesel hybrid, biodiesel, diesel PHEV, CNG biofuel, petrol hybrid, battery electric)-, as shown in Table 4(Fable-S5). The data
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that is reported annually was collected from the official statistical websites of France, Germany, and the Netherlands (Table

S76). Only direct emissions from fossil fuels are considered, so the emission factor of battery electric cars is set to 0.
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electric, Diesel PHEV

Truck Heavy Duty Trucks

Petrol, Diesel, Diesel PHEV, Battery electric, CNG

Light Commercial Vehicles

Diesel, Petrol, Diesel PHEV, Battery electric, CNG, Petrol

Hybrid, Petrol PHEV

2.5-6 Aggregation onto grids

Python was used to map street network emissions data onto a 100 x 100 m grid. Starting from a shapefile containing road

segments with associated emissions, a spatial join was performed using GeoPandas’ sjoin function to identify which road

segments intersect each grid cell. Emissions were then allocated to the grid cells in a length-weighted manner, proportionally

distributing each road segment’s emissions based on the length of its overlap with each cell. For the projections, cities in

France use EPSG:2154, while most German cities use EPSG:25832; Berlin uses EPSG:25833 due to its location. Dutch cities

are projected using EPSG:28992.
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2.7 Uncertainty analysis,

Monte Carlo method is widely used in emission studies to estimate uncertainties(Ramirez et al., 2008; Zhao et al., 2011; Super

et al., 2020). To quantify the uncertainty in estimated annual emissions arising from uncertainty in traffic volume estimates

this study applied a Monte Carlo simulation framework that propagates the observed discrepancies between estimated traffic

volumes and public AADT/AAWT datasets (Figure 3) to the city-scale emission. Because emissions are linearly proportional

to traffic volume, uncertainty in traffic counts can be directly transferred to emission uncertainty. As standard parametric

assumptions (e.g., lognormality) did not adequately describe the tails of the discrepancy distributions, this study adopted a

fully empirical cumulative distribution function (ECDF) approach. Discrepancy ratios were grouped by functional road class
(major, middle, and small). For the six cities with observed AADT/AAWT data(Paris, Berlin, Bordeaux, Lyon, Hamburg

Montpellier, Toulouse and Lille), discrepancy ratios were sampled directly from the city-specific ECDFs. For cities without

observations, we used country-level pools: ratios for French cities were sampled from the pool formed by the observed French

cities, ratios for German cities from the observed German cities, and ratios for Dutch cities from a combined pool of the

observed French and German cities.

For each Monte Carlo iteration j, the set of ratio values corresponding to a given road class was selected. A random value u ~

U(0,1)was drawn, and the corresponding correction factor was obtained via quantile sampling from the empirical distribution

Fz ' (u). The total city-scale emissions for iteration j were then computed as:

T, = ZE[ x Fyl ()
i

where E;represents the baseline annual emissions of road link i, and the sampled correction factor was consistently applied to

all links within the same road class. This process was repeated 10,000 times (j = 1, ...,10,000), yielding a full ensemble of

possible emission totals. From the resulting Monte Carlo ensemble, 95% confidence interval was calculated.

A

3 Results
3.1 Annual emissions

The total on-road CO, emissions in 2023 among the 20 cities ranged from 0.4 Mt COx/yr to 7.9 Mt COy/yr. The top five
emitting cities are Berlin (7.9 Mt), Hamburg (6.6 Mt), Cologne (4.1 Mt), Munich (3.5 Mt), and Rotterdam (3.0 Mt). Berlin’s
CO: emissions are approximately 20 times higher than those of Lille, the city with the lowest emissions in the dataset (0.4 Mt).
On average, the 20 cities emit 2.4 Mt CO: per year, with a coefficient of variation of 0.82 (Figure 43a). As shown in Figure
54, the linear regression analyses between on-road CO: emissions and both urban area and population indicate strong positive

relationships. Specifically, CO: emissions increase significantly with larger urban areas and higher population sizes. The
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regression model yields a high coefficient of determination with an R? value of 0.98 when emissions are regressed against area,
suggesting that urban land extent is a dominant factor influencing total emissions. A similarly positive but weaker correlation
is observed between emissions and population, with an R? value of 0.74, indicating that population size also plays a substantial
role in shaping emission levels. This distinction is further illustrated by a comparison between Paris and Hamburg. While their
populations are relatively similar, Hamburg covers an urban area nearly seven times larger than that of central Paris.
Furthermore, Hamburg’s road network is more than three times as long. As a result, Hamburg exhibits substantially higher on-
road CO: emissions, reinforcing the observation that urban spatial extent and infrastructure scale are critical determinants of

total emissions, potentially more so than population alone.

Table S8 compares the annual emissions estimated in this study with those reported by Carbon Monitor and other available

data sources. Carbon Monitor provides 0.1° x 0.1° daily gridded maps named GRACED (Dou et al., 2023). City boundaries

were applied to clip GRACED grids, and area-weighted daily emissions were aggregated to annual city-level totals. Available

data of several cities from Climate Trace (Kott et al., 2024), local statistical websites (Bilanz des Statistikamtes Nord., 2024)

and previous studies (Kiihbacher et al., 2023 Ulrich et al., 2023; Anjos and Meier, 2025) was also collected. Overall, estimates

of other datasets are much lower than this study. with differences ranging from —94.2% (Nice, Carbon Monitor) to —8.1%

(Berlin, Ulrich et al.’s estimates from Opendata) relative to our estimates. These discrepancies can be explained by the methods

of different datasets. Compared with local statistical reports, our estimates tend to be higher because we include emissions

from vehicles traveling across city boundaries, whereas local statistics typically estimate emissions based only on oil

consumption within administrative limits. GRACED allocates emissions based on EDGARvS using OpenStreetMap data

without actual traffic volume data, this method likely underestimates emissions in large cities with high-volume roads. Climate

Trace estimates average annual daily traffic (AADT) by integrating Sentinel-2 satellite imagery with AADT data from the U.S.

Department of Transportation’s Federal Highway Administration (FHWA), applying Convolutional Neural Network and

Graph Neural Network models. This U.S.-centric training may limit the models’ applicability in the European context. Finally

although our approach benefits from a more comprehensive road network, the relatively low accuracy on middle and small

roads may contribute to overestimation of traffic volumes in certain areas, as mentioned in Section 2.4.

A

Per capita emissions show a mean of 2.8 tons/person with a coefficient of variation of 0.4, and the ranking is quite different
from total emissions (Figure 3b4b). Some of the cities with high total emissions also have high per capita emissions, such as
Cologne (3.8 t/person), Rotterdam (4.6 tons/person) and Frankfurt (3.6 tons/person). Other cities like Berlin (2.1 t/person) and
Paris (0.9 t/person) exhibit low per capita values despite their large total emissions. Notably, cities such as Toulouse (3.4
tons/person) and Marseille (3.2 tons/person) have high per capita emissions, highlighting differences in cities' boundaries e.g.,
including or not satellite towns commuting with each ‘city’, transportation infrastructure, commuting patterns, and vehicle

efficiency across the regions. Figure 3e-4c illustrates the emissions per unit area, revealing a contrasting pattern to total
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emissions. Paris exhibits the highest emissions per unit area (0.02 Mt/km?), despite having one of the lowest per capita values,
which is indicative of its dense urban environment and intensive transportation activities within a compact city layout and a
very dense street network. Similarly, Toulouse ranks second in per-area emissions, despite being only seventh in total

emissions. This result shows that urban density and mobility intensity significantly influence emission distribution at the local

scale.
(a) Emissions (b) Per capita emissions (c) Per area emissions
Berlin 4 7.9 Rotterdam - 4.6 Paris - 18.4
Hamburg 4 6.6 Stuttgart 42 The Hague 14.7
Cologne 4 4.1 Cologne 3.8 Nice 14.3
Munich q 3.5 Frankfurt q 3.6 Toulouse - 13.4
Rotterdam 3.0 Hamburg 3.4 Stuttgart 12.8
Frankfurt 2.8 Toulouse 3.4 Montpellier 4 11.7
Marseille 4 2.8 Marseille 3.2 Lyon 11.7
Stuttgart - 2.7 Dusseldorf 31 Marseille 11.6
Amsterdam | 2.4 Strasbourg - 3.0 Frankfurt - 11.4
Dusseldorf - 19 Nice 3.0 Munich - 11.2
Paris 19 Amsterdam - 2.7 Bordeaux 10.9
Toulouse - 16 The Hague 2.6 Lille q 10.8
The Hague - 14 Montpellier 4 2.4 Amsterdam - 10.7
Nice 1.0 Munich 2.3 Strasbourg 10.7
Strasbourg 4 0.8 Nantes 2.2 Cologne - 10.1
Montpellier 4 0.7 Bordeaux 2.2 Nantes 10.1
Nantes 0.7 Berlin 2.1 Rotterdam - 9.3
lyon - 0.6 Lille 18 Dusseldorf 4 9.0
Bordeaux 4 0.5 Lyon 11 Berlin - 8.9
Lille {_ 0.4 Paris 0.9 Hamburg 4 8.7
o 2 4 6 8 0 2 2 o 5 1 15 20
COz emission (ME) Per capita emissions (t COz/person) Per unit area emissions (kt COz/km?2)
France Germany Netherland
Figure 34: Annual CO: and ities per capita and per unit area of 20 cities in 2023. Grey, light blue and orange

represent cities in Germany, France and the Netherlands, respectively.
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Figure 45: Linear relationships between on-road CO: emissions, area, and population. Each point represents one city.

3.2 Spatial patterns

Figure 5-6 presents the annual emission maps for 20 major European cities, highlighting the diversity in emission spatial
patterns. In addition, two cities from each country were selected to plot cumulative emission curves, as shown in Figure S5. In
cities such as Paris, Amsterdam, The Hague and Dusseldorf, a few major roadways stand out significantly in bright yellow. In
Paris, the top 5% of the highest-emitting 100 m grids contribute 33.1% of total emissions. The ring road known as le
Périphérique emerges as a major hotspot, accounting for 26.9% of the city’s total on-road emissions and having a mean
emission level that is 953.3% higher than the city-wide average. This is primarily attributable to its high traffic density and
heavy vehicle usage driven by significant commuter flows. A similar concentration of emissions is observed in Amsterdam,
where the top 5% of the highest-emitting 100 m grids contribute 30.3% of total emissions, respectively, underscoring the
spatially skewed distribution of traffic-related CO.. The top 5% of high-emission grids in The Hague and Dusseldorf show a
lower contribution of total emissions (24.5% and 21.9% respectively), but these are still concentrated along major highways
such as the A4 and A12 in the Hague and B8 and A44 in Dusseldorf. The steep curvatures at the start of the cumulative
emissions distribution curves for these two cities suggest that only a few key segments are disproportionately responsible for

emissions, albeit to a lesser extent than in Paris or Amsterdam.

Cities like Berlin and Bordeaux exhibit a more diffuse emission pattern, with relatively less pronounced hotspots, where the
top 5% of the highest-emitting 100 m grids contribute ~19.0% of total emissions. Their cumulative emission curves
demonstrate gentler slopes, indicating a more uniform spread of emissions across the road network. This suggests that no
single road or corridor dominates in terms of emission contributions and that urban transport emissions are more evenly

distributed. Other cities, including Lyon, Marseille, Frankfurt, and Rotterdam, fall between these two extremes, exhibiting
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varying degrees of emission concentration. For instance, Frankfurt shows notable linear patterns corresponding to high-
emission highways intersecting the urban core. In contrast, Rotterdam reveals both concentrated and dispersed emission zones
due to its mixed land use and logistic traffic. Overall, these spatial variations emphasize the importance of city-specific
mitigation strategies. While targeted interventions on a few high-emitting corridors may yield significant benefits in cities with
highly skewed distributions (e.g., Paris or Dusseldorf), broader, network-wide policies may be necessary in more evenly

distributed urban contexts like Berlin or Bordeaux.
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'403 Figure 65: Annual CO2 emission map of 20 cities at 100m x 100m resolution in 2023.
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3.3 Temporal patterns

Figure 6-7 presents the normalized daily CO: emissions ratios for Paris, Berlin, Munich, Amsterdam, Lyon, Marseille, and
Nice in 2023. The y-axis represents each day’s CO: emissions divided by the city’s total emissions in 2023. These cities were
selected due to the availability of corresponding Carbon Monitor Cities data (hereafter CM-Cities data, shown as green dashed
lines), which enables direct comparison with the results of this study (blue lines). The time series data reveals distinct seasonal
and weekly variations. The summer months (July and August) show a significant decline in emissions in Paris, Amsterdam,
and Lyon, while emissions in all seven cities decline around Christmas, due to business closures and decreased commuting.
For weekly patterns, there is a slight upward trend from Monday to Friday, a noticeable drop on Saturday, and a further decline
on Sunday (Figure S6). The magnitude of the weekend drop varies across cities. In Berlin and Marseille, the median emissions
on Sunday drop by approximately 31.1% and 27.7% compared to Friday in 2023, respectively, representing the most
pronounced Sunday reduction among the six cities. In contrast, Amsterdam exhibits a much smaller Sunday drop compared to
Friday (10.1%).,

In all cities, the median emissions of public holidays (marked in grey shades) and school holidays (marked in light blue shades)
are lower than those of weekdays in 2023. Across all six cities, the median emissions on public holidays and school holidays
were consistently lower than weekday levels in 2023, indicating a general reduction in traffic-related CO- emissions during
holiday periods. In Paris, public holiday emissions were exceptionally low, even lower than Sunday levels by 5.2%. The pattern
is different in Marseille, Berlin, and Nice, as the median emissions on public holidays exceeded those on Saturdays by 24.4%,
11.0%, and 6.4%, respectively. The medians of school holidays are generally higher than those of public holidays because a
more limited segment of the population is affected, and the distributions are notably wider. An exception is Amsterdam, where
public holiday emissions slightly surpassed those during school holidays, suggesting a different urban rhythm or school break
dynamics compared to other cities. Also, the day of the week on which a holiday falls also influences emission levels. As
shown in Figure S7, holidays that coincide with weekends tend to show similar emission levels to regular weekend days. When
holidays fall on a Monday, their emission levels are comparable to those of regular Mondays in cities like Berlin, Marseille,

and Nice.
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Figure 7: N-6:Normalized daily CO: emission of seven cities in 2023. Y-axis represents each day’s CO: emissions divided by the city’s

total emissions in 2023. The light blue and grey shades represent school holidays and public holidays, respectively. The y-axis represents
each day’s CO: emissions divided by the city’s total emissions in 2023.

Although the general emission temporal variability estimated in this study align reasonably with those reported by Carbon

Monitor Cities, as evidenced by the R correlation coefficients ranging from 0.58 to 0.84 across the six selected cities, notable

differences remain. In Paris, CM-cities tends to underestimate both the troughs and peaks of emissions (Huo et al., 2022). In

Lyon, the consistency is relatively high, but the sharp weekend emission drops observed in Carbon Monitor estimates are not

reproduced in this study. In Amsterdam, this study does not show the pronounced weekend decreases during holidays that are
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present in Carbon Monitor data. CM-cities estimated traffic volumes using a sigmoid regression based on TomTom live

congestion indices, which lack spatial granularity (only one value per city), and the model parameters were calibrated using

real-time data from approximately 60 roads in Paris. In addition, CM-cities adopts the Functional Urban Area (FUA) definition

used by the OECD and the European Union, which includes high-density urban centers along with their surrounding
commuting zones, whereas our analysis relies on administrative boundaries. For cities not covered by CM-cities, we compared

daily emissions clipped from GRACED (Figure S8). Without calibration at the city level as CM-cities did, GRACED daily

emissions fail to show a consistent weekday—weekend pattern, and some anomalous peaks occurred (e.g., elevated emissions

in Hamburg in April 2023 and in Frankfurt and Montpellier in late May 2023). Except for The Hague, Rotterdam, and Bordeaux,

the resulting daily profiles showed very poor agreement (R<0.4). These findings suggest that coarse-resolution data are not

suitable for city-level temporal analyses, highlighting the advantage of our city-scale dataset in more accurately representing

actual urban emissions.

N

Figure 7-8 presents the average hourly CO: emission patterns for cars across the 20 cities in 2023. The y-axis represents the
average proportion of daily CO. emissions for each hour, categorized by day types: holidays (blue), weekdays (orange), and
weekends (green). The hourly patterns for cars in French cities and Dutch cities are similar. On weekdays, there are two
emission peaks at 9:00~10:00 and 18:00~19:00 due to commuting, and the emissions stabilize at relatively high levels between
these two peaks. After the second emission peak, the emissions decline continuously and reach their lowest point at 4:00 ~
5:00. The differences between weekdays and holidays are relatively small, but with no or a less pronounced morning peak due
to reduced commuting activity. On weekends, the sum of average emission share in French cities and Dutch cities during
evening and early morning (22:00 to 6:00) reach 22.9% to 29.1%%, significantly higher than that for weekdays (17.4 to 21.7%),
and the first peak is lagged to around 12:00. German cities on weekdays, except for Dusseldorf, the CO, emission exhibit
earlier morning peaks at 8:00 and a much higher peak around 15:00 ~16:00. On average, evening peak emissions in French
and Dutch cities are only around 15% higher than morning peak levels, but for German cities specifically, the difference ranges
from 9.3% to 60.0%. After the peak, the CO; emissions in German cities decrease sharply, which is consistent with the trends

reported by the Berlin datasets (Max et al). On weekends, there is only one peak around 13:00.
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Figure 78: Hourly emission patterns of cars in 20 cities.

The hourly patterns for trucks are relatively consistent across all 20 European cities but are notably different from those of
passenger cars (Figure 9%). On weekdays, truck-related CO: emissions show a peak around 9:00 in nearly all cities, suggesting
synchronized delivery and logistics activity. This peak accounts for 5.4%—6.5% of daily truck emissions in French and Dutch
cities, and up to 9% in German cities such as Berlin and Hamburg. Truck emissions on weekends and holidays are considerably
reduced, with no discernible peaks in most cities. In some German cities (e.g., Stuttgart and Duiisseldorf), truck emissions
remain below 3% of daily total at any hour during holidays, reflecting stricter weekend freight regulations. In contrast,
emissions levels of trucks remain relatively high on weekends, especially in southern cities like Marseille and Nice, where

midday peaks surpass 0.06 of daily emissions and are comparable to weekday levels.
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Figure 98: Hourly emission patterns of trucks in 20 cities.

Tiiintunkhan
Hour of the day

P

IRERET]

Hour of the day

T 16w 20 2

00
IEREEEET]

L]
Hour of the day

24



194

04

p10
b1l
512

p13

p14
p15
p16
p17
p18
B19
520
521
522
523

3.4 Uncertainty analysis

Figure 10 shows the uncertainties in annual emissions arising from uncertainty in traffic volume estimates. Overall, the Monte

Carlo—derived mean emission estimates are close to the original deterministic estimates for most cities, with the Monte Carlo

means being on average 13.1% lower across the 20 cities. the differences between the Monte Carlo mean and the deterministic

estimate for Paris (=7.0%), Lyon (+7.3%), and Bordeaux (—13.4%) remain within +15%, indicating relatively stable estimates

despite uncertainty propagation. Noticeable differences are observed for Berlin (—41.4%), Hamburg (+61.4%). Marseille

(=41.2%). and Toulouse (=46.5%), where the differences between the Monte Carlo mean and the deterministic estimate exceed
40%.

Figure S9 further shows the road-class-specific uncertainties. Across cities uncertainty in annual totals is primarily driven by

emissions associated with small roads, which exhibit the greatest relative variability across all functional classes. We quantify
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road-class-specific relative uncertainty using the relative 95% interval width defined as (P97.5—P2.5)/mean of the 10,000

Monte Carlo realizations. Using this metric, small roads show the largest relative uncertainty, with a median value of 2.67

(266.7%), compared with 1.74 (174.1%) for middle roads and 1.26 (125.8%) for major roads. In Berlin, the Monte Carlo
estimate is 4.65 Mt COp (95% CI: [1.89,6.04]) , closer to values reported by Anjos et al (2.70 Mt)(Anjos and Meier, 2025) and

Climate Trace(1.99 Mt)(Kott et al., 2024), suggesting that the original deterministic estimate may have overestimated

emissions from small roads. The situation in Hamburg is different. The Monte Carlo mean emission estimate of approximately

10.57 Mt CO> (95% CI: [5.64, 15.60]) exceeds that of Berlin, which is unreasonable given Hamburg’s smaller urban scale and

lower overall road lengths. This outcome suggests that limited and heterogeneous observational data can bias an upward bias

in the sampled correction factors for small roads, resulting in an overestimation of emissions for this road class and,

consequently, at the city scale.

Overall, these contrasting behaviours highlight that city-scale uncertainty is highly sensitive to the treatment of small roads

particularly in data-scarce contexts. While the Monte Carlo framework provides a robust characterization of uncertainty, its

outcomes for low-traffic road classes should be interpreted with caution and ideally complemented by additional constraints

or external benchmarks.

15.0 4 ® Baseline
o MCmean
- 1251 I MC uncertainty (P2.5-P97.5)
=
Z 1001
S
7
2 754 ©
£
o
3 5.0 A
[}
Pl
ool $ 84434 s
& O & & o & & o S N R S S S .
5 ‘O‘\;\ 5 o’i‘\{' "o& ‘{-\6 r,2>\ & q‘-@& \bo @\\ \0‘;1 'be’s \‘\L 0‘§ tz'>\\‘b “@ \'r'\o 000 \>\\
F W & T o F & ¥ &
® PO < L}?g,\"’ o <& P & <

Figure 10: Emission uncertainties in 20 cities. Filled circles are the original deterministic estimates. Hollow circles indicate Monte <«

Carlo mean estimates, and vertical bars represent the 95% uncertainty interval (P2.5-P97.5),

4 Discussion

4.1 Key contributions and implications, -~

This study demonstrates that integrating new GPS-based traffic data for individual vehicles covering all street segments with
the COPERT model enables the estimation of hourly on-road CO: emissions at street level, which were further aggregated into

100 x 100 m grids for-_visualizationdisplay—purpeses, to generate high-resolution emission maps across 20 European cities.
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547 This approach overcomes the limitations of traditional top-down downscaling methods (e.g., population-based or road-network
548 density proxies) by applying machine learning to impute the actual traffic volumes from FCD, which only samples the traffic
549 of vehicles equipped with GPS. Compared to existing CO; emission inventories such as CAMS-TEMPO, Carbon Monitor, or
|550 localized platforms-in-Asian-er-German-eities, our dataset represents a significant advancement by simultaneously achieving
551 high spatial granularity and temporal resolution. It captures intra-urban variability that is often missed in coarser-resolution
552 datasets or those relying solely on major road segments. This work highlights the value of integrating GPS-based mobility data
553 with machine learning and emission modelling to enhance the monitoring of urban transportation emissions and to inform the
|554 design of effective, location-specific mitigation policies. Most commonreeusrent low-carbon transport measures in cities
555 include modal shift to public transport, low-carbon zones control, and low-emission vehicle development, but each strategy
|556 may vary according to development stages and types of urban land-use transport systems (Creutzig et al., 2012; Nakamura and
557 Hayashi, 2013; Croci et al., 2021). While low-density cities become more compact in the long term but often lack sufficient
558 population density to support rapid transit systems in the short term, promoting the adoption of electric vehicles, particularly
|559 in regions with low-carbon electricity, may be a more practical approach (Kennedy et al., 2014). This study may support the
560 design of such strategies by enabling street-level scenarios to quantitatively assess their potential emission reductions.

561

|562 Our €6>-hourly CO, emission maps reveal striking spatial heterogeneity within cities. For example, concentrated emission
563 hotspots along Paris’ ring road, versus more dispersed patterns in Berlin, reflect differences in urban structure, transport
564 systems, and commuting behaviours. Temporally, we observed national variations in traffic-related emissions during holiday
565 and summer periods, likely due to country-specific vacation schedules. Our new emission maps can support planning of low-
566  emission zones, help identify high-flux corridors for targeted energy efficiency measures and provide a basis for congestion-
567 related studies. Given that traffic congestion is a major driver of both fuel consumption and emissions, our maps offer valuable

568 insights for designing and evaluating emission reduction strategies.

569

570 4.2 Limitations, - Formatted: Font: (Asian) +Body Asian (f£), (Asian) Chinese
(Simplified, Mainland China)

571 Several sources of uncertainty remain in our approach. Because the GPS-to-volume conversion models were calibrated using [Formatted: Heading 2

572 in-situ sensor data from Paris and Berlin only and extrapolated to the remaining 18 cities, the results may be better suited for

573 analysing spatial patterns, temporal dynamics, and relative differences across cities, rather than for precise reporting of absolute

574 emission magnitudes. To move beyond qualitative statements, we quantify activity-data uncertainty using independent annual

575 AADT/AAWT validation (Section 2.4; Figure 3) and Monte Carlo uncertainty propagation (Section 3.4; Figure 10 and Figure
576

S9). The external validation reveals pronounced inter-city heterogeneity in traffic-volume agreement (with R? ranging from

577 approximately 0.3 to 0.92 across cities; Figure 3), which provides the empirical basis for the subsequent uncertainty ranges.
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First, significant uncertainty may be introduced during the conversion from GPS trajectories to actual traffic volume. The flux-

to-volume machine learning models were calibrated using sensor data from Paris and Berlin only, because comparable high-

resolution traffic counts are either unavailable or not publicly accessible for most other cities. In addition, GPS penetration

rates may vary across cities and vehicle types, and the vehicle population captured by FCD may differ from that represented

in local monitoring stations, which can affect calibration, particularly for trucks. As discussed in Sections 2.4 and 3.4, model

performance is weaker on middle and small roads, and emissions from small roads exhibit the largest uncertainty and potential

overestimation. Consistent with this, Monte Carlo mean emission estimates are on average 13.1% lower than the deterministic

totals across the 20 cities, and most cities remain within +15%. However, several cities show substantially larger deviations

exceeding 40% (e.g.. Berlin, Hamburg, Marseille, and Toulouse), indicating that absolute totals are more uncertain where

traffic-volume discrepancies are large and observational constraints are limited. For example, Berlin’s Monte Carlo estimate

is 4.65 Mt CO: (95% CI: [1.89, 6.04]), whereas Hamburg shows a much wider and higher range of 10.57 Mt CO» (95% CI:

[5.64, 15.60]), highlighting the sensitivity of city totals to correction factors on small roads in data-scarce contexts. This

reinforces the need for more comprehensive and standardized traffic monitoring networks. Incorporating additional top-down

constraints, such as city-level fuel consumption statistics in transportation sector, could further improve the accuracy of traffic

volume inference.Hev

SecondFhird, uncertainties also arise from fleet structures. Due to the lack of detailed vehicle-type distribution at the road

segment level, we can only perform fleet correction for roads where heavy-duty vehicle traffic is explicitly restricted. For other
roads, we currently apply city-wide average fleet compositions, which may not reflect local variations. Although urban fleet

structure evolves continuously, available data are reported at coarse temporal resolution; disaggregation to finer temporal

scales would introduce substantial uncertainty, and an annual fleet update is therefore adopted to maintain consistency with

the data and the emission modelling framework.

Finally, emissions in this study are estimated using the COPERT, which is based on an average-speed framework and does not

explicitly represent microscopic stop-and-go driving behaviours. In contrast, microscopic emission models such as

MOVES(USEPA, 2024)_explicitly account for such dynamics but require high-frequency trajectory data, which are not

available in this study. Moreover, COPERT characterizes vehicle technologies primarily by vehicle category and Euro
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emission standard, and does not explicitly parameterize changes in emission performance associated with vehicle ageing. As

a result, city-specific fleet age structures and local real-world driving conditions may lead to deviations from the standard

emission factors used in the model, especially where detailed fleet data are unavailable to further refine the parameterization.

Access to locally measured emission factors from in situ studies or the literature would help reduce this source of uncertainty

and improve the accuracy of the emission estimates.

4.3 Future work

PN H ro aiectories-to-actualtraffi
e-conversionHom ajectoriesto trathe

Current work only covers the year 2023, but the underlying GPS-based FCD is typically available with a delay of only about

one week. This creates a clear opportunity to automate the processing pipeline and update the emission estimates on a rolling
basis. Incorporating this capability into Carbon Monitor Cities would allow near-real-time, high-resolution emission
monitoring at the street level, significantly enhancing the system’s responsiveness and value for both research and policy

applications. In addition, further feature engineering could improve model performance. As part of ongoing work, we plan to

incorporate high-resolution urban context information, such as building-type data, to better capture heterogeneity across

different road classes. The proposed framework is flexible and allows additional features to be integrated as new data become

available. Also, future work could extend the methodology to include major air pollutants beyond CO=-and. and scale the
approach to cover broader regions. Through incorporating more sensor-based traffic measurements across cities, data
representativeness and model validation can be further improved. Such efforts will strengthen the robustness, applicability,
and policy relevance of street-level emission mapping, particularly in supporting timely decision-making and climate or clean

air action monitoring.

5 Data availability

The high-resolution hourly CO. emission dataset for 20 cities in 2023 is available in NetCDF format, on Zenodo

https://doi.org/10.5281/zenodo.16600210 (Shi et al., 2025). Each city has an individual NetCDF file that provides gridded
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hourly emissions over the entire year of 2023. Their central x and y coordinates define the grid cells, and each file includes the

variable CO2_g, representing emissions in grams per hour in the grid. Every grid’s size is 100 m x 100 m.

Supplement

This dataset is accompanied by Supplementary Information, including a detailed methodology document (SI_document.docx)

and additional data tables (SI_tables.xlsx).
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