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Abstract. On-road transportation is a major contributor to CO2 emissions in cities, and high-resolution CO2 traffic emission 11 

maps are essential for analyzing emission patterns and characteristics. In this study, we developed new hourly on-road CO₂ 12 

emission maps with aat 100 × 100 m resolution for 20 major cities in France, Germany, and the Netherlands in 2023.  We used 13 

commercial Floating Car Data (FCD) based on anonymized GPS signals periodically reported by individual vehicles, 14 

providing hourly information on mean speed and on the number of GPS sample counts per street. Machine learning models 15 

were developed to fill FCD data gaps and convert sample counts into actual traffic volumes, and the COPERT model was used 16 

to estimate speed- and vehicle- type- dependent emission factors. These models were calibrated using independent traffic 17 

observations available for Paris and Berlin, and subsequently applied to the remaining 18 cities in an extrapolated manner due 18 

to data availability constraints. Hourly emissions, initially estimated at the street level, were aggregated to 100 × 100 m grid 19 

cells. Annual on-road CO₂ emissions across the 20 European cities in 2023 ranged from 0.4 to 7.9 Mt CO2, with emissions 20 

strongly correlated with urban area (R² = 0.98) and, to a lesser extent, population size (R² = 0.74). Spatially, emissions are 21 

either highly concentrated along major highways in cities such as Paris and Amsterdam or more evenly distributed in cities 22 

such as Berlin and Bordeaux, highlighting the need for context-specific mitigation strategies. Temporally, this study shows the 23 

CO2 emission fluctuations due to holiday periods, weekly activity cycles, and distinct usage profiles of different vehicle types. 24 

Due to the low latency of FCD, this approach could support near-real-time traffic emission mapping in the future. Our approach 25 

enhances the spatial and temporal characterization of CO2 emissions in on-road transportation compared to the conventional 26 

method used in gridded inventories, indicating the potential of FCD data for near-real-time urban emission monitoring and 27 

timely policy- making. The datasets generated by this study are available on Zenodo 28 

https://doi.org/10.5281/zenodo.16600210(Shi et al., 2025). 29 
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1 Introduction 33 

The road transport sector is one of the largest sources of greenhouse gas (GHG) emissions in the European Union and the only 34 

major economic sector where carbon dioxide (CO2) emissions have risen since 1990, primarily due to the widespread use of 35 

fossil fuel-powered passenger cars and freight vehicles. In 2023, it accounts for approximately 26.0% of total EU GHG 36 

emissions (EEA, 2024a). In response to the dual challenge of reducing emissions and developing cleaner mobility 37 

infrastructures, the European Strategy for Low-Emission Mobility outlines three elements: (1) Increasing the efficiency of the 38 

transport system, including the optimization of logistics and intelligent transport systems; (2) Accelerating the deployment of 39 

low-emission alternative energy sources, such as biofuels, renewable electricity, and hydrogen; and (3) Speeding up the 40 

transition to zero-emission vehicles, through regulatory incentives, infrastructure investment, and innovation support 41 

(European Commission, 2016). This transition is not only critical for achieving the EU’s climate neutrality goal , which 42 

involves reducing net CO2 emissions to zero by 2050 (EEA, 2024b), but also for improving air quality, reducing energy 43 

dependence on fossil fuel imports, and enhancing the competitiveness of European industry.  44 

 45 

Emission reduction targets in the transportation sector  are being translated into concrete actions at the city level. For instance, 46 

the transportation sector is responsible for approximately 20% of Paris' local greenhouse gas emissions (Albarus et al., 2025), 47 

and Paris plans to reduce its direct emissions by 50% by 2030 and 100% by 2050, compared to 2004. The transport sector, 48 

responsible for approximately 20% of Paris' local greenhouse gas emissions(Albarus et al., 2025). Paris has set itself the target 49 

of phasing out diesel-powered mobility by 2024 and petrol-powered mobility by 2030, aligning with the EU-wide ban on the 50 

sale of internal combustion engine vehicles by 2035. In addition, the city is developing financial incentives and support 51 

measures for low-carbon mobility. It is also preparing a low-carbon urban logistics plan for the Paris region between now and 52 

2030(UNFCCC, 2023). Amsterdam aims to achieve zero-emission transport by 2030, phasing out all fossil-fuel vehicles within 53 

city limits (Amsterdam, 2024). The city is rapidly expanding its electric vehicle infrastructure, as all newly registered vehicles 54 

are required to have zero-emission engines in 2025 (CINEA, 2025). Over 70% of trips are already made by walking, cycling, 55 

or public transport, making Amsterdam a leader in sustainable urban mobility. Similarly, to achieve climate neutrality in 2050, 56 

Berlin will require a long-term reduction in CO2 emissions in the transport sector to around 1.17 million tonnes of CO2 per 57 

year, a reduction of around 77 % compared with 1990 emissions (diBEK, 2025).  58 

 59 

High-resolution emission maps are crucial for monitoring emission changes and providing insights into the effectiveness of 60 

traffic mitigation policies in cities. For example, a high-resolution (1 km²) CO₂ emissions inventory for U.S. road transportation 61 

named DARTE enables detailed analysis at the city scale between 1980 to 2012 (Gately et al., 2015), revealing that urban 62 
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areas drive most of the emission growth and that traditional population-based downscaling methods substantially misrepresent 63 

city-level spatial patterns. Over the past decade, several efforts have been made to improve either the temporal or the spatial 64 

resolution of traffic emission inventories, primarily by incorporating real-world traffic data generated from sensors or GPS 65 

signals. From a temporal resolution perspective, annual aggregated statistics make it impossible to capture short-term 66 

variations due to weather, policy changes, or special events. Therefore, daily or hourly data were increasingly applied to 67 

improve the accuracy. For example, TomTom collects all the travel times and compares them with the lowest travel times to 68 

calculate congestion indexes based on FCD (index, 2024). Tomtom congestion indexes were used by Carbon Monitor Cities 69 

(Huo et al., 2022) to estimate daily CO2 emissions for 1500 cities. CAMS-TEMPO is a dataset of European emission temporal 70 

profiles that provides gridded monthly, daily, weekly, and hourly weight factors for atmospheric chemistry modelling, and the 71 

European part used hourly traffic data collected from over 20 European cities via open-data portals or personal communications 72 

(Guevara et al., 2021). One-month GPS-based datasets covering 52,834 conventional fuel vehicles registered in the province 73 

of Modena and 40,459 vehicles registered in the province of Firenze were used to generate high-resolution emission maps (De 74 

Gennaro et al., 2016). A near-real-time on-road traffic emission product on 2860 km of the main roads in Bangkok was 75 

automatically generated by retrieving the traffic data from the Google Maps API service and the Python code every 15 min 76 

(Naiudomthum et al., 2022). In recent years, machine learning-based bottom-up approaches have supported the development 77 

of high-resolution emission maps. For instance, an hourly street-level emission map of Chengdu was developed using data 78 

from 1,454 camera-based sensors and 34 highway monitoring sites, employing land-use random forest models (Wen et al., 79 

2022). Similarly, a platform tracking hourly CO₂ emissions at a 30×30 m resolution was designed for Berlin based on local 80 

traffic data, using machine learning methods (Anjos and Meier, 2025).  81 

 82 

Despite recent advancements, most city-level emission datasets still suffer from limitations in either temporal or spatial 83 

resolution, with few achieving both simultaneously. CAMS-TEMPO (Guevara et al., 2021) and Carbon Monitor (Huo et al., 84 

2022) lack road-specific information and provide only outputs at 0.1° resolution and the city level, respectively. The hourly 85 

street-level emission datasets for Chengdu (Wen et al., 2022) and Bangkok (Naiudomthum et al., 2022) only cover one to two 86 

months. The Berlin platform offers high spatial and temporal resolution from 2015 to 2022, but may miss data from smaller 87 

roads, as counting stations are usually located on major roads.  88 

 89 

As part of the Copernicus Atmosphere Monitoring Service (CAMS), this study estimates for the first time hourly street-level 90 

on-road transportation CO₂ emissions, aggregated into 100 m resolution hourly maps for 20 European cities in 2023. Hourly 91 

GPS-based data, reporting traffic counts and speeds of individual vehicles across different road classes, were upscaled using 92 

machine learning to reconstruct complete traffic volumes and speeds across the road networks. Then, CO2 emissions were 93 

estimated using the COPERT model, and emission maps were developed. This approach enhances the spatial and temporal 94 

characterization of CO2 emissions in on-road transportation compared to the downscaling method used in other inventories, 95 
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indicating the potential of GPS-based data for supporting future efforts in emission monitoring and developing emission 96 

reduction policies. 97 

2 Data and Method  98 

2.1 Overview of the Methodology 99 

Figure 1 describes the workflow methodology of this study. The GPS-based high-resolution ‘Floating Car Data’ (FCD) on 100 

individual vehicle flow (GPS vehicles counts per street each hour) and speed covering every street was obtained from a data 101 

aggregation provider that collects GPS position data from cars (passenger cars) and trucks (light commercial vehicles and 102 

heavy duty trucks), providing road-specific information on hourly average speed and sample counts (i.e., the number of cars 103 

recorded in each street for each hour). Those GPS data are linked with precise cities’ road network datasets, providing detai led 104 

information on road length, road functional class, and truck access authorization. All data is anonymized by the data provider 105 

to prevent compromising any individual or organizational data privacy issues.  After raw data processing and cleaning, a 106 

machine learning model was used to fill in missing values in FCD, as well as to transform FCD sample counts limited to 107 

vehicles equipped with GPS into traffic volumes for all vehicles. Then, the COPERT model (Ntziachristos et al., 2009), the 108 

EU standard vehicle emissions calculator, was applied for estimating specific CO₂ emission factors based on individual vehicle 109 

hourly average speed and type. Combined with the road lengths obtained from geographical databases and with fleet structures, 110 

we finally estimate street-level road-specific emissions using the following equation: 111 

𝐸𝑚𝑖𝑠𝑡,𝑣,𝑟 =  𝑁𝑡,𝑟 × 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑣 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑟 × 𝐸𝐹𝑣,𝑠  (1) 112 

Where 𝐸𝑚𝑖𝑠𝑡,𝑣,𝑟  represents CO2 emission at the hour tt, for the vehicle type v v, on road rr. 𝑁𝑡,𝑟 represents the total traffic 113 

volume at hour t, on road r (counts/hour). 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑣 represents the proportion of vehicle type v in the vehicle fleet (%). 114 

𝐿𝑒𝑛𝑔𝑡ℎ𝑟  represents the road length (km) of the road r, and 𝐸𝐹𝑣,𝑠 (g CO2/km) represents the CO2 emission factors for the vehicle 115 

type v v, at the hourly average speed ss (km/h). 116 

 117 

Our FCD source covers France, Germany, and the Netherlands. Therefore, the 20 most populous cities within these three 118 

countries were selected to develop high-resolution emission maps. Table 1 shows the basic information (population, area, street 119 

length, street density) of the 20 cities in 2023. Note that here Paris is the administrative city jurisdiction (Ville de Paris) 120 

covering the central 20 arrondissements, so its area is much smaller than Berlin, which is both a city and a federal state. 121 

 122 

 123 
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Figure 1: Workflow of this study 125 
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Table 1: Information of 20 selected cities in 2023. 141 

Country City Population 

(Thousand) 

Area  

(km2) 

Street length  

(km) 

Street density 

(km/km2) 

France Paris 2,103 105.4 2412.9 22.9 

Marseille 862 240.6 3301.7 13.7 

Lyon 513 47.9 985.3 20.6 

Lille 233 39.5 679.8 17.2 

Toulouse 472 118.3 2311.2 19.5 

Nice 343 71.9 1228.0 17.1 

Nantes 303 65.2 1249.4 19.2 

Strasbourg 277 78.3 1252.4 16.0 

Montpellier 278 56.9 1260.1 22.1 

Bordeaux 250 49.4 967.9 19.6 

Germany 

 

Berlin 3,782 891.3 12073.4 13.5 

Hamburg 1,910 755.2 8725.2 11.6 

Munich 1,510 310.7 5220.0 16.8 

Cologne 1,087 405.2 5508.8 13.6 

Frankfurt 776 248.3 3648.5 14.7 

Stuttgart 633 207.3 3660.8 17.7 

Dusseldorf 631 217.4 2741.5 12.6 

Netherland 

 

Amsterdam 883 219.4 3203.8 14.6 

Rotterdam 656 324.1 3555.7 11.0 

The Hague 553 98.1 1796.8 18.3 

 142 
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2.2 Description and preparation of FCD 143 

FCD provides hourly average speed and sample counts for each street, with separate data for cars and trucks reporting GPS 144 

data.  The FCD is linked with high-resolution road network datasets that feature information such as road length, speed category, 145 

road functional class, lane category, on more detailed and complete road networks than public traffic datasets based on sensors. 146 

As shown in Figure 2, public datasets used by previous studies are only available for a few cities and provide hourly traffic 147 

data for 3,739 road segments in Paris (Xavier Bonnemaizon 2024) and 19,808 segments in Berlin (Anjos and Meier, 2025), 148 

respectively. In contrast, FCD gives vehicle count samples and speed information for 36,716 roads in Paris and 122,759 roads 149 

in Berlin, dividing long roads into more segments and encompassing a much greater number of small roads than the city-level 150 

public datasets. All road segments were categorized into major, middle, and small according to the functional class defined by 151 

the FCD. Major roads represent roads connecting major metropolitan areas, middle roads represent roads connecting 152 

neighbourhoods, and small roads represent low-volume roads. 153 

 154 

Figure 2: Monitored road networks in this study and other public datasets in Paris and Berlin. N represents the number of road 155 
segments. (a) and (c) represent road networks from FCD for Paris and Berlin, respectively; (b) and (d) represent networks from Open Data 156 
in Paris and Traffic Detection Systems in Berlin. 157 

 158 

Missing values exist in the FCD due to unstable GPS signals, especially for small roads. The average data coverage of GPS 159 

cars on major, middle, and small roads ranges from 67.0% - 97.7%, 40.4% - 93.8%, and 6.1% - 37.7%, respectively (Figure 160 
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S1a). The average data coverage of trucks is lower, ranging from 32.2% - 75.8%, 32.1% - 85.3%, and 1.8% - 32.2%, 161 

respectively (Figure S1b). Machine learning was used here to fill data gaps, as the use of machine learning techniques has 162 

shown great potential for both temporal and spatial imputation of missing data to reconstruct the full volume of traffic(Wen et 163 

al., 2022). Eight features were chosen as predictors (Table 2) to train models. Temporal features (hour, day of the week, and 164 

month) were used to capture diurnal and seasonal patterns in traffic behaviour. Observed road-specific daily mean traffic 165 

counts and speeds derived from hourly averages were also used as indicators of baseline traffic intensity. Holiday indicators, 166 

including school and public holidays, were included to account for potential shifts in travel demand. Finally, road 167 

characteristics including speed category, functional class, and lane category were used to describe the physical and functional 168 

attributes of each road segment.  169 

 170 

Table 2: Spatial-temporal features used as predictors of traffic variables 171 

Category Features Usage 

Time Hour, Day of week, Month Diel and seasonal pattern 

Road-specific traffic counts/speed Daily mean derived from hourly averages Baseline traffic intensity 

Holiday School holiday, 

Public holiday 

Potential shifts in travel demand 

Road characteristics Speed category, Functional class, Lane category Road capacity and flow 

characteristics 

 172 

The full-year dataset was partitioned into two temporally isolated subsets: January-June (H1) and July-December (H2) due to 173 

the large-scale dataset. Separate machine learning models were developed for each six-month interval, both incorporating 174 

consistent feature engineering protocols for vehicle type differentiation (Cars and Trucks) and road classification. Model 175 

training was conducted on 80% of the available data, with the remaining 20% held out as an independent test set to evaluate 176 
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generalization performance. Random forest (RF) and lightGBM models were tested for Paris to compare their performances. 177 

As shown in Table S1, Random Forest (RF) and LightGBM exhibited comparable predictive performance across different 178 

vehicle types, road types, and target variables (i.e., vehicle count and speed) but LightGBM required significantly less 179 

computational time. In some cases, the efficiency gain is more than 10-fold e.g., to fill gaps of car count on major roads takes 180 

6.25 s for LightGBM vs. 122.53 s for RF.  This efficiency gains stems from LightGBM’s histogram-based decision tree 181 

learning and its leaf-wise tree growth strategy with depth constraints, which together enable faster training and better scalability, 182 

especially for large datasets with continuous features. Given its high accuracy and computational efficiency, we selected 183 

LightGBM was chosen as the preferred model and trained individually for each of the 20 cities. 184 

 185 

The LightGBM validation performance is summarized in Table 3 using mean R², RMSE, and MAE across cities and road 186 

classes, while the full city-level validation results are reported in Table S2.The LightGBM validation results are shown in 187 

Table S2. 5-fold cross-validation results which aimed at evaluating the robustness of the model are presented in Table S3. 188 

Overall, the model demonstrates strong predictive performance across different vehicle types and target variables. For car 189 

count, performance is consistently high on major roads, with R2 values typically above 0.90 and reaching up to 0.97 (e.g., The 190 

Hague and Amsterdam). On middle and small roads, R2 varies between 0.53 and 0.85, and lower values are often observed in 191 

cities with smaller datasets, such as Lyon and Nice, suggesting that data volume plays a critical role in model accuracy (Figure 192 

S2). For car speed, the model also performs well on major roads 𝑅2 (0.85-0.95) but shows greater variability on smaller roads, 193 

where R2 drops to as low as 0.39 in some cases (e.g., Paris or Lyon). The results of trucks are similar to those of cars, but with 194 

slightly lower overall performance. Shapley values, a concept from cooperative game theory, are widely used to explain feature 195 

importance in machine learning. This study used the Python package SHAP to estimate Shapley values applied to the model’s 196 

conditional expectation function (SHAP, 2025), revealing that the daily mean count and hour of day are the most influential 197 

predictors, followed by day of week, road class, and month (Figure S3). High traffic volumes are associated with increased 198 

model output, while hourly effects vary by time of day. In contrast, features such as lane type and school holidays show limited 199 

influence.  200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 
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 212 

 213 

 214 

Table 3: Summary of LightGBM validation performance across cities and road classes. 215 

Vehicle Item Road class Mean R² Mean RMSE Mean MAE 

Car COUNT Major 0.93 16.34 9.08 

Car COUNT Middle 0.73 6.09 3.91 

Car COUNT Small 0.60 3.66 2.15 

Truck COUNT Major 0.78 3.31 2.00 

Truck COUNT Middle 0.57 1.88 1.29 

Truck COUNT Small 0.54 1.87 1.15 

Car SPEED Major 0.89 6.72 4.64 

Car SPEED Middle 0.67 6.71 4.87 

Car SPEED Small 0.58 7.85 5.63 

Truck SPEED Major 0.84 8.77 6.35 

Truck SPEED Middle 0.55 7.81 5.85 

Truck SPEED Small 0.56 7.70 5.65 

 216 

 217 

2.32 Obtain CO2 emission factors using COPERT 218 

To calculate the speed-dependent emission factors EFCO2 defined by CO2 emissions per km driven for each vehicle type, we 219 

applied the COPERT model, a widely used emissions calculator for vehicles in Europe (Ntziachristos et al., 2009). Monthly 220 

temperature and relative humidity data required as input for COPERT were obtained from ERA5 reanalysis (Hersbach, 2023) 221 

and interpolated to a 0.01° spatial resolution. City-level averages of maximum/minimum temperature and relative humidity 222 

were then calculated within administrative boundaries defined by Eurostat shapefiles to serve as inputs for COPERT. 5 223 

Considering the data scale and time cost, instead of running COPERT for each street segment each hour, this study developed 224 

fitting curves between speed and EFCO2 to obtain EFCO2. Except for L-Category vehicles running on diesel, where COPERT 225 

provides a fixed value, emission factors were simulated for various vehicle types at speeds of 20, 40, 60, 80, 100, 120, and 140 226 

km/h. Then, for each city, cubic functions were fitted to COPERT simulations, as given by: 227 

𝐸𝐹 = 𝑎 × 𝑠3 + 𝑏 × 𝑠2 + 𝑐 × 𝑠 + 𝑑 (2)  228 
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Where s represents the average speed at hourly resolution, and 𝑎a, 𝑏b, 𝑐c, and d are city-specific constants. Table S43 presents 229 

the parameters of the curve fitting results for all cities, showing a good fit quality with an R² value range from 0.882 to 0.998. 230 

In this way, the corresponding emission factor for any given speed can be determined. Note that we used EF CO2 of the EU6 231 

standard, since CO₂ emission factors are only marginally influenced by emission standards, and this approach was also adopted  232 

by TomTom (Index, 2024).  233 

 234 

2.3 4 Estimate real traffic volume from sample count 235 

Road-specific hourly total traffic volume is the key parameter to estimate CO2 emissions. Since not all vehicles transmit GPS 236 

signals and our dataset only captures a subset of the real GPS data for all vehicles, the actual traffic volume is significan tly 237 

higher than the sample counts from the FCD. To solve this problem, we established a relationship between real traffic volume 238 

data and GPS sample count using machine learning. Due to the availability of traffic volume data, only the Opendata from 239 

Paris (Parisopendata, 2024) and Traffic detection Berlin (Berlinopendata, 2024) were used for modelling. Opendata from Paris 240 

provides hourly total vehicle flow from permanent sensors with electromagnetic loops on 2086 2278 roads in 2023, but does 241 

not differentiate between vehicle types for the traffic volume. Therefore, the numbers of cars and trucks are estimated based 242 

on the proportion of sample counts from each type in our FCD. Traffic detection in Berlin provides hourly total vehicle volumes 243 

on 231 roads, and only the volumes of cars were used for modelling. As shown in Figure 2, monitored road networks of public 244 

datasets and FCD are different. The overlap rate and angle are used as criteria to link the two datasets’ shapefiles (Figure S4). 245 

When the overlap rate > 0.7 and the angle <20°, a road is identified as being the same in Opendata and FCD. In this way, 246 

hourly open data from 2278 monitoring sites in Paris and 231 monitoring sites in Berlin were matched to the FCD, and we got 247 

the real volume and the number of FCD sample counts on the same road. A similar set of predictors as listed in Table 2, except 248 

for road-specific traffic counts and speeds, was used to build a LightGBM model to extrapolate FCD sample counts to total 249 

traffic volume. For cars in German cities, we used the LightGBM model trained on Berlin’s data, while for all other cities, we 250 

used the LightGBM trained on Paris’s data. The results of validation are shown in Table S4. The validation results (Table 251 

S4S5) show that the LightGBM model performs well on major roads in both Paris (R2 = 0.91 for cars and 0.88 for trucks) and 252 

Berlin (R2  =0.66 for cars). The accuracy decreases on middle and small roads in Paris (R2  range from 0.22 to 0.38), while the 253 

performance in Berlin remains comparatively good (R2  range from 0.86 to 0.88). 5-fold cross-validation results are presented 254 

in Table S6. 255 

 256 

(Bonnemaizon et al., 2025)In addition to Paris and Berlin that are used for model training, observed traffic-count-based annual 257 

average daily traffic flow (AADT, in number of vehicles per day) or annual average weekday traffic (AAWT, equivalent to 258 

AADT excluding weekends) datasets are available for six additional cities reported in a recent study(Bonnemaizon et al., 2025): 259 

Montpellier and Hamburg (AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT). The comparison which serves as 260 

independent external validation to assess our traffic volume estimates is shown in Figure 3. Paris, the most important reference 261 
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city for model development, shows strong agreement between estimated and public AADT values (R² = 0.92, n = 2696), with 262 

data points across all road classes closely aligned with the 1:1 line. Berlin exhibits noticeably larger dispersion, with a moderate 263 

R² (0.55) derived from a relatively small sample size (n = 197), which likely contributes to the lower correlation.  264 

 265 

Lyon, Hamburg, Bordeaux and Montpellier all show moderate correlation (with R² around 0.6). However, while simulated and 266 

observed traffic volumes are generally well aligned for Bordeaux, public observations for Lyon, Hamburg and Montpellier 267 

tend to exceed the simulated values, especially for the major roads. Toulouse and Lille are characterized by low correlation 268 

(R² around 0.3), exhibits the weakest consistency between estimated and public traffic volumes. Overall, the scatter plots reveal 269 

pronounced city-to-city heterogeneity in traffic volume agreement, providing important context for subsequent uncertainty 270 

propagation to city-scale emission estimates.  271 

 272 

 273 

Figure 3: Comparison of AADT/AAWT between this study and public datasets 274 

 275 

2.4 5 Fleet structure 276 

This study collected fleet structures data in 2023 for the 20 cities to further map cars and trucks to 5 categories (passenger cars, 277 

light commercial vehicles, buses, L-category and heavy-duty trucks), and 12 sub-categories, 10 fuels (petrol, diesel, CNG, 278 

diesel hybrid, biodiesel, diesel PHEV, CNG biofuel, petrol hybrid, battery electric) , as shown in Table 4(Table S5). The data 279 
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that is reported annually was collected from the official statistical websites of France, Germany, and the Netherlands (Table 280 

S76). Only direct emissions from fossil fuels are considered, so the emission factor of battery electric cars is set to 0. 281 

 282 

 283 

 284 

 285 

 286 

 287 

Table 4: Vehicle categories 288 

Big Category Category Fuel 

Car L-Category Petrol, Diesel 

Buses Petrol, Diesel, CNG, Diesel Hybrid, Biodiesel, Battery 

electric, Diesel PHEV 

Passenger Cars Petrol, Diesel, CNG, Petrol Hybrid, Petrol PHEV, Battery 

electric, Diesel PHEV 

Truck Heavy Duty Trucks Petrol, Diesel, Diesel PHEV, Battery electric, CNG 

Light Commercial Vehicles Diesel, Petrol, Diesel PHEV, Battery electric, CNG, Petrol 

Hybrid, Petrol PHEV 

 289 

 290 

2.5 6 Aggregation onto grids 291 

Python was used to map street network emissions data onto a 100 × 100 m grid. Starting from a shapefile containing road 292 

segments with associated emissions, a spatial join was performed using GeoPandas’ sjoin function to identify which road 293 

segments intersect each grid cell. Emissions were then allocated to the grid cells in a length-weighted manner, proportionally 294 

distributing each road segment’s emissions based on the length of its overlap with each cell. For the projections, cities in 295 

France use EPSG:2154, while most German cities use EPSG:25832; Berlin uses EPSG:25833 due to its location. Dutch cities 296 

are projected using EPSG:28992. 297 

 298 
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2.7 Uncertainty analysis 299 

Monte Carlo method is widely used in emission studies to estimate uncertainties(Ramírez et al., 2008; Zhao et al., 2011; Super 300 

et al., 2020). To quantify the uncertainty in estimated annual emissions arising from uncertainty in traffic volume estimates, 301 

this study applied a Monte Carlo simulation framework that propagates the observed discrepancies between estimated traffic 302 

volumes and public AADT/AAWT datasets (Figure 3) to the city-scale emission. Because emissions are linearly proportional 303 

to traffic volume, uncertainty in traffic counts can be directly transferred to emission uncertainty. As standard parametric 304 

assumptions (e.g., lognormality) did not adequately describe the tails of the discrepancy distributions, this study adopted a 305 

fully empirical cumulative distribution function (ECDF) approach. Discrepancy ratios were grouped by functional road class 306 

(major, middle, and small). For the six cities with observed AADT/AAWT data(Paris, Berlin, Bordeaux, Lyon, Hamburg, 307 

Montpellier, Toulouse and Lille), discrepancy ratios were sampled directly from the city-specific ECDFs. For cities without 308 

observations, we used country-level pools: ratios for French cities were sampled from the pool formed by the observed French 309 

cities, ratios for German cities from the observed German cities, and ratios for Dutch cities from a combined pool of the 310 

observed French and German cities. 311 

 312 

For each Monte Carlo iteration 𝑗, the set of ratio values corresponding to a given road class was selected. A random value 𝑢 ∼313 

𝑈(0,1)was drawn, and the corresponding correction factor was obtained via quantile sampling from the empirical distribution, 314 

𝐹𝑅
−1(𝑢). The total city-scale emissions for iteration 𝑗 were then computed as: 315 

𝑇𝑗 = ∑ 𝐸𝑖 × 𝐹𝑅
−1(𝑢)

𝑖

 319 

where 𝐸𝑖represents the baseline annual emissions of road link 𝑖, and the sampled correction factor was consistently applied to 316 

all links within the same road class. This process was repeated 10,000 times (𝑗 = 1, … ,10,000), yielding a full ensemble of 317 

possible emission totals. From the resulting Monte Carlo ensemble, 95% confidence interval was calculated.  318 

 320 

3 Results 321 

3.1 Annual emissions 322 

The total on-road CO2 emissions in 2023 among the 20 cities ranged from 0.4 Mt CO2/yr to 7.9 Mt CO2/yr. The top five 323 

emitting cities are Berlin (7.9 Mt), Hamburg (6.6 Mt), Cologne (4.1 Mt), Munich (3.5 Mt), and Rotterdam (3.0 Mt). Berlin’s 324 

CO₂ emissions are approximately 20 times higher than those of Lille, the city with the lowest emissions in the dataset (0.4 Mt). 325 

On average, the 20 cities emit 2.4 Mt CO₂ per year, with a coefficient of variation of 0.82 (Figure 43a). As shown in Figure 326 

54, the linear regression analyses between on-road CO₂ emissions and both urban area and population indicate strong positive 327 

relationships. Specifically, CO₂ emissions increase significantly with larger urban areas and higher population sizes. The 328 
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regression model yields a high coefficient of determination with an R² value of 0.98 when emissions are regressed against area, 329 

suggesting that urban land extent is a dominant factor influencing total emissions. A similarly positive but weaker correlation 330 

is observed between emissions and population, with an R² value of 0.74, indicating that population size also plays a substantial 331 

role in shaping emission levels. This distinction is further illustrated by a comparison between Paris and Hamburg. While their 332 

populations are relatively similar, Hamburg covers an urban area nearly seven times larger than that of central Paris. 333 

Furthermore, Hamburg’s road network is more than three times as long. As a result, Hamburg exhibits substantially higher on-334 

road CO₂ emissions, reinforcing the observation that urban spatial extent and infrastructure scale are critical determinants of 335 

total emissions, potentially more so than population alone. 336 

 337 

Table S8 compares the annual emissions estimated in this study with those reported by Carbon Monitor and other available 338 

data sources. Carbon Monitor provides 0.1°× 0.1°daily gridded maps named GRACED (Dou et al., 2023). City boundaries 339 

were applied to clip GRACED grids, and area-weighted daily emissions were aggregated to annual city-level totals. Available 340 

data of several cities from Climate Trace (Kott et al., 2024), local statistical websites (Bilanz des Statistikamtes Nord, 2024), 341 

and previous studies (Kühbacher et al., 2023; Ulrich et al., 2023; Anjos and Meier, 2025) was also collected. Overall, estimates 342 

of other datasets are much lower than this study, with differences ranging from −94.2% (Nice, Carbon Monitor) to −8.1% 343 

(Berlin, Ulrich et al.’s estimates from Opendata) relative to our estimates. These discrepancies can be explained by the methods 344 

of different datasets. Compared with local statistical reports, our estimates tend to be higher because we include emissions 345 

from vehicles traveling across city boundaries, whereas local statistics typically estimate emissions based only on oil 346 

consumption within administrative limits. GRACED allocates emissions based on EDGARv5 using OpenStreetMap data 347 

without actual traffic volume data, this method likely underestimates emissions in large cities with high-volume roads. Climate 348 

Trace estimates average annual daily traffic (AADT) by integrating Sentinel-2 satellite imagery with AADT data from the U.S. 349 

Department of Transportation’s Federal Highway Administration (FHWA), applying Convolutional Neural Network and 350 

Graph Neural Network models. This U.S.-centric training may limit the models’ applicability in the European context. Finally, 351 

although our approach benefits from a more comprehensive road network, the relatively low accuracy on middle and small 352 

roads may contribute to overestimation of traffic volumes in certain areas, as mentioned in Section 2.4. 353 

 354 

 355 

Per capita emissions show a mean of 2.8 tons/person with a coefficient of variation of 0.4, and the ranking is quite different 356 

from total emissions (Figure 3b4b). Some of the cities with high total emissions also have high per capita emissions, such as 357 

Cologne (3.8 t/person), Rotterdam (4.6 tons/person) and Frankfurt (3.6 tons/person). Other cities like Berlin (2.1 t/person) and 358 

Paris (0.9 t/person) exhibit low per capita values despite their large total emissions. Notably, cities such as Toulouse (3.4 359 

tons/person) and Marseille (3.2 tons/person) have high per capita emissions, highlighting differences in cities' boundaries e.g., 360 

including or not satellite towns commuting with each ‘city’, transportation infrastructure, commuting patterns, and vehicle 361 

efficiency across the regions. Figure 3c 4c illustrates the emissions per unit area, revealing a contrasting pattern to total 362 
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emissions. Paris exhibits the highest emissions per unit area (0.02 Mt/km2), despite having one of the lowest per capita values, 363 

which is indicative of its dense urban environment and intensive transportation activities within a compact city layout and a 364 

very dense street network. Similarly, Toulouse ranks second in per-area emissions, despite being only seventh in total 365 

emissions. This result shows that urban density and mobility intensity significantly influence emission distribution at the local 366 

scale.   367 

 368 

 369 

Figure 34: Annual CO2 emission and emission intensities per capita and per unit area of 20 cities in 2023. Grey, light blue and orange 370 
represent cities in Germany, France and the Netherlands, respectively. 371 

 372 
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 373 
Figure 45: Linear relationships between on-road CO₂ emissions, area, and population. Each point represents one city. 374 

 375 

3.2 Spatial patterns 376 

Figure 5 6 presents the annual emission maps for 20 major European cities, highlighting the diversity in emission spatial 377 

patterns. In addition, two cities from each country were selected to plot cumulative emission curves, as shown in Figure S5. In 378 

cities such as Paris, Amsterdam, The Hague and Dusseldorf, a few major roadways stand out significantly in bright yellow. In 379 

Paris, the top 5% of the highest-emitting 100 m grids contribute 33.1% of total emissions. The ring road known as le 380 

Périphérique emerges as a major hotspot, accounting for 26.9% of the city’s total on-road emissions and having a mean 381 

emission level that is 953.3% higher than the city-wide average. This is primarily attributable to its high traffic density and 382 

heavy vehicle usage driven by significant commuter flows. A similar concentration of emissions is observed in Amsterdam, 383 

where the top 5% of the highest-emitting 100 m grids contribute 30.3% of total emissions, respectively, underscoring the 384 

spatially skewed distribution of traffic-related CO₂. The top 5% of high-emission grids in The Hague and Dusseldorf show a 385 

lower contribution of total emissions (24.5% and 21.9% respectively), but these are still concentrated along major highways 386 

such as the A4 and A12 in the Hague and B8 and A44 in Dusseldorf. The steep curvatures at the start of the cumulative 387 

emissions distribution curves for these two cities suggest that only a few key segments are disproportionately responsible for 388 

emissions, albeit to a lesser extent than in Paris or Amsterdam. 389 

 390 

Cities like Berlin and Bordeaux exhibit a more diffuse emission pattern, with relatively less pronounced hotspots, where the 391 

top 5% of the highest-emitting 100 m grids contribute ~19.0% of total emissions. Their cumulative emission curves 392 

demonstrate gentler slopes, indicating a more uniform spread of emissions across the road network. This suggests that no 393 

single road or corridor dominates in terms of emission contributions and that urban transport emissions are more evenly 394 

distributed. Other cities, including Lyon, Marseille, Frankfurt, and Rotterdam, fall between these two extremes, exhibiting 395 
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varying degrees of emission concentration. For instance, Frankfurt shows notable linear patterns corresponding to high-396 

emission highways intersecting the urban core. In contrast, Rotterdam reveals both concentrated and dispersed emission zones 397 

due to its mixed land use and logistic traffic. Overall, these spatial variations emphasize the importance of city-specific 398 

mitigation strategies. While targeted interventions on a few high-emitting corridors may yield significant benefits in cities with 399 

highly skewed distributions (e.g., Paris or Dusseldorf), broader, network-wide policies may be necessary in more evenly 400 

distributed urban contexts like Berlin or Bordeaux. 401 



19 

 

 402 
Figure 65: Annual CO2 emission map of 20 cities at 100m × 100m resolution in 2023.  403 

 404 
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3.3 Temporal patterns 405 

Figure 6 7 presents the normalized daily CO₂ emissions ratios for Paris, Berlin, Munich, Amsterdam, Lyon, Marseille, and 406 

Nice in 2023. The y-axis represents each day’s CO₂ emissions divided by the city’s total emissions in 2023. These cities were 407 

selected due to the availability of corresponding Carbon Monitor Cities data (hereafter CM-Cities data, shown as green dashed 408 

lines), which enables direct comparison with the results of this study (blue lines). The time series data reveals distinct seasonal 409 

and weekly variations. The summer months (July and August) show a significant decline in emissions in Paris, Amsterdam, 410 

and Lyon, while emissions in all seven cities decline around Christmas, due to business closures and decreased commuting. 411 

For weekly patterns, there is a slight upward trend from Monday to Friday, a noticeable drop on Saturday, and a further decline 412 

on Sunday (Figure S6). The magnitude of the weekend drop varies across cities. In Berlin and Marseille, the median emissions 413 

on Sunday drop by approximately 31.1% and 27.7% compared to Friday in 2023, respectively, representing the most 414 

pronounced Sunday reduction among the six cities. In contrast, Amsterdam exhibits a much smaller Sunday drop compared to 415 

Friday (10.1%).  416 

 417 

In all cities, the median emissions of public holidays (marked in grey shades) and school holidays (marked in light blue shades) 418 

are lower than those of weekdays in 2023. Across all six cities, the median emissions on public holidays and school holidays 419 

were consistently lower than weekday levels in 2023, indicating a general reduction in traffic-related CO₂ emissions during 420 

holiday periods. In Paris, public holiday emissions were exceptionally low, even lower than Sunday levels by 5.2%. The pattern 421 

is different in Marseille, Berlin, and Nice, as the median emissions on public holidays exceeded those on Saturdays by 24.4%, 422 

11.0%, and 6.4%, respectively. The medians of school holidays are generally higher than those of public holidays because a 423 

more limited segment of the population is affected, and the distributions are notably wider. An exception is Amsterdam, where 424 

public holiday emissions slightly surpassed those during school holidays, suggesting a different urban rhythm or school break 425 

dynamics compared to other cities. Also, the day of the week on which a holiday falls also influences emission levels. As 426 

shown in Figure S7, holidays that coincide with weekends tend to show similar emission levels to regular weekend days. When 427 

holidays fall on a Monday, their emission levels are comparable to those of regular Mondays in cities like Berlin, Marseille,  428 

and Nice. 429 

 430 

 431 

 432 
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 433 

 434 

Figure 7: N 6: Normalized daily CO2 emission of seven cities in 2023. Y-axis represents each day’s CO₂ emissions divided by the city’s 435 
total emissions in 2023. The light blue and grey shades represent school holidays and public holidays, respectively. The y-axis represents 436 
each day’s CO₂ emissions divided by the city’s total emissions in 2023. 437 

Although the general emission temporal variability estimated in this study align reasonably with those reported by Carbon 438 

Monitor Cities, as evidenced by the R correlation coefficients ranging from 0.58 to 0.84 across the six selected cities, notable 439 

differences remain. In Paris, CM-cities tends to underestimate both the troughs and peaks of emissions (Huo et al., 2022). In 440 

Lyon, the consistency is relatively high, but the sharp weekend emission drops observed in Carbon Monitor estimates are not 441 

reproduced in this study. In Amsterdam, this study does not show the pronounced weekend decreases during holidays that are 442 
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present in Carbon Monitor data. CM-cities estimated traffic volumes using a sigmoid regression based on TomTom live 443 

congestion indices, which lack spatial granularity (only one value per city), and the model parameters were calibrated using 444 

real-time data from approximately 60 roads in Paris. In addition, CM-cities adopts the Functional Urban Area (FUA) definition 445 

used by the OECD and the European Union, which includes high-density urban centers along with their surrounding 446 

commuting zones, whereas our analysis relies on administrative boundaries. For cities not covered by CM-cities, we compared 447 

daily emissions clipped from GRACED (Figure S8). Without calibration at the city level as CM-cities did, GRACED daily 448 

emissions fail to show a consistent weekday–weekend pattern, and some anomalous peaks occurred (e.g., elevated emissions 449 

in Hamburg in April 2023 and in Frankfurt and Montpellier in late May 2023). Except for The Hague, Rotterdam, and Bordeaux, 450 

the resulting daily profiles showed very poor agreement (R<0.4). These findings suggest that coarse-resolution data are not 451 

suitable for city-level temporal analyses, highlighting the advantage of our city-scale dataset in more accurately representing 452 

actual urban emissions. 453 

 454 

Figure 7 8 presents the average hourly CO₂ emission patterns for cars across the 20 cities in 2023. The y-axis represents the 455 

average proportion of daily CO₂ emissions for each hour, categorized by day types: holidays (blue), weekdays (orange), and 456 

weekends (green). The hourly patterns for cars in French cities and Dutch cities are similar. On weekdays, there are two 457 

emission peaks at 9:00~10:00 and 18:00~19:00 due to commuting, and the emissions stabilize at relatively high levels between 458 

these two peaks. After the second emission peak, the emissions decline continuously and reach their lowest point at 4:00 ~ 459 

5:00. The differences between weekdays and holidays are relatively small, but with no or a less pronounced morning peak due 460 

to reduced commuting activity. On weekends, the sum of average emission share in French cities and Dutch cities during 461 

evening and early morning (22:00 to 6:00) reach 22.9% to 29.1%%, significantly higher than that for weekdays (17.4 to 21.7%), 462 

and the first peak is lagged to around 12:00. German cities on weekdays, except for Dusseldorf, the CO2 emission exhibit 463 

earlier morning peaks at 8:00 and a much higher peak around 15:00 ~16:00. On average, evening peak emissions in French 464 

and Dutch cities are only around 15% higher than morning peak levels, but for German cities specifically, the difference ranges 465 

from 9.3% to 60.0%. After the peak, the CO2 emissions in German cities decrease sharply, which is consistent with the trends 466 

reported by the Berlin datasets (Max et al). On weekends, there is only one peak around 13:00. 467 
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 468 
Figure 78: Hourly emission patterns of cars in 20 cities.  469 

 470 

The hourly patterns for trucks are relatively consistent across all 20 European cities but are notably different from those of 471 

passenger cars (Figure 98). On weekdays, truck-related CO₂ emissions show a peak around 9:00 in nearly all cities, suggesting 472 

synchronized delivery and logistics activity. This peak accounts for 5.4%–6.5% of daily truck emissions in French and Dutch 473 

cities, and up to 9% in German cities such as Berlin and Hamburg. Truck emissions on weekends and holidays are considerably 474 

reduced, with no discernible peaks in most cities. In some German cities (e.g., Stuttgart and Duüsseldorf), truck emissions 475 

remain below 3% of daily total at any hour during holidays, reflecting stricter weekend freight regulations. In contrast,  476 

emissions levels of trucks remain relatively high on weekends, especially in southern cities like Marseille and Nice, where 477 

midday peaks surpass 0.06 of daily emissions and are comparable to weekday levels. 478 
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 479 

Figure 98: Hourly emission patterns of trucks in 20 cities.  480 

 481 

3.4 Validation 482 

Table S7 compares the annual emissions estimated in this study with those reported by Carbon Monitor and other available 483 

data sources. Carbon Monitor provides 0.1°× 0.1°daily gridded maps named GRACED(Dou et al., 2023). City boundaries 484 

were applied to clip GRACED grids, and area-weighted daily emissions were aggregated to annual city-level totals. Available 485 

data of several cities from Climate Trace(Kott et al., 2024), local statistical websites(Bilanz des Statistikamtes Nord, 2024), 486 

and previous studies(Kühbacher et al., 2023; Ulrich et al., 2023; Anjos and Meier, 2025) was also collected. Overall, estimates 487 

of other datasets are much lower than this study, with differences ranging from −94.2% (Nice, Carbon Monitor) to −8.1% 488 

(Berlin, Ulrich et al.’s estimates from Opendata) relative to our estimates. These discrepancies can be explained by the methods 489 

of different datasets. Compared with local statistical reports, our estimates tend to be higher because we include emissions 490 
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from vehicles traveling across city boundaries, whereas local statistics typically estimate emissions based only on oil 491 

consumption within administrative limits. GRACED allocates emissions based on EDGARv5 using OpenStreetMap data 492 

without actual traffic volume data, this method likely underestimates emissions in large cities with high-volume roads. Climate 493 

Trace estimates average annual daily traffic (AADT) by integrating Sentinel-2 satellite imagery with AADT data from the U.S. 494 

Department of Transportation’s Federal Highway Administration (FHWA), applying Convolutional Neural Network and 495 

Graph Neural Network models. This U.S.-centric training may limit the models’ applicability in the European context. Finally, 496 

although our approach benefits from a more comprehensive road network, the relatively low accuracy on middle and small 497 

roads may contribute to overestimation of traffic volumes in certain areas, as mentioned in Section 2.3. 498 

 499 

For daily profiles, we have discussed the general consistencies and the notable differences between our estimates and those 500 

from CM-cities (Figure 6, Section 3.3). CM-cities estimated traffic volumes using a sigmoid regression based on TomTom 501 

live congestion indices, which lack spatial granularity (only one value per city), and the model parameters were calibrated 502 

using real-time data from approximately 60 roads in Paris. In addition, CM-cities adopts the Functional Urban Area (FUA) 503 

definition used by the OECD and the European Union, which includes high-density urban centers along with their surrounding 504 

commuting zones, whereas our analysis relies on administrative boundaries. For cities not covered by CM-cities, we compared 505 

daily emissions clipped from GRACED (Figure S8). Without calibration at the city level as CM-cities did, GRACED daily 506 

emissions fail to show a consistent weekday–weekend pattern, and some anomalous peaks occurred (e.g., elevated emissions 507 

in Hamburg in April 2023 and in Frankfurt and Montpellier in late May 2023). Except for The Hague, Rotterdam, and Bordeaux, 508 

the resulting daily profiles showed very poor agreement (R<0.4). These findings suggest that coarse-resolution data are not 509 

suitable for city-level temporal analyses, highlighting the advantage of our city-scale dataset in more accurately representing 510 

actual urban emissions. 511 

 512 

3.4 Uncertainty analysis 513 

Figure 10 shows the uncertainties in annual emissions arising from uncertainty in traffic volume estimates. Overall, the Monte 514 

Carlo–derived mean emission estimates are close to the original deterministic estimates for most cities, with the Monte Carlo 515 

means being on average 13.1% lower across the 20 cities. the differences between the Monte Carlo mean and the deterministic 516 

estimate for Paris (−7.0%), Lyon (+7.3%), and Bordeaux (−13.4%) remain within ±15%, indicating relatively stable estimates 517 

despite uncertainty propagation. Noticeable differences are observed for Berlin (−41.4%), Hamburg (+61.4%), Marseille 518 

(−41.2%), and Toulouse (−46.5%), where the differences between the Monte Carlo mean and the deterministic estimate exceed 519 

40%. 520 

 521 

Figure S9 further shows the road-class-specific uncertainties. Across cities uncertainty in annual totals is primarily driven by 522 

emissions associated with small roads, which exhibit the greatest relative variability across all functional classes. We quantify 523 
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road-class-specific relative uncertainty using the relative 95% interval width defined as (P97.5−P2.5)/mean of the 10,000 524 

Monte Carlo realizations. Using this metric, small roads show the largest relative uncertainty, with a median value of 2.67 525 

(266.7%), compared with 1.74 (174.1%) for middle roads and 1.26 (125.8%) for major roads. In Berlin, the Monte Carlo 526 

estimate is 4.65 Mt CO2 (95% CI: [1.89,6.04]) , closer to values reported by Anjos et al (2.70 Mt)(Anjos and Meier, 2025) and 527 

Climate Trace(1.99 Mt)(Kott et al., 2024), suggesting that the original deterministic estimate may have overestimated 528 

emissions from small roads. The situation in Hamburg is different. The Monte Carlo mean emission estimate of approximately 529 

10.57 Mt CO₂ (95% CI: [5.64, 15.60]) exceeds that of Berlin, which is unreasonable given Hamburg’s smaller urban scale and 530 

lower overall road lengths. This outcome suggests that limited and heterogeneous observational data can bias an upward bias 531 

in the sampled correction factors for small roads, resulting in an overestimation of emissions for this road class and, 532 

consequently, at the city scale. 533 

 534 

Overall, these contrasting behaviours highlight that city-scale uncertainty is highly sensitive to the treatment of small roads, 535 

particularly in data-scarce contexts. While the Monte Carlo framework provides a robust characterization of uncertainty, its 536 

outcomes for low-traffic road classes should be interpreted with caution and ideally complemented by additional constraints 537 

or external benchmarks. 538 

 539 

Figure 10: Emission uncertainties in 20 cities. Filled circles are the original deterministic estimates. Hollow circles indicate Monte 540 

Carlo mean estimates, and vertical bars represent the 95% uncertainty interval (P2.5–P97.5). 541 

4 Discussion 542 

4.1 Key contributions and implications 543 

This study demonstrates that integrating new GPS-based traffic data for individual vehicles covering all street segments with 544 

the COPERT model enables the estimation of hourly on-road CO₂ emissions at street level, which were further aggregated into 545 

100 × 100 m grids for  visualizationdisplay purposes, to generate high-resolution emission maps across 20 European cities. 546 
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This approach overcomes the limitations of traditional top-down downscaling methods (e.g., population-based or road-network 547 

density proxies) by applying machine learning to impute the actual traffic volumes from FCD, which only samples the traffic 548 

of vehicles equipped with GPS. Compared to existing CO2 emission inventories such as CAMS-TEMPO, Carbon Monitor, or 549 

localized platforms in Asian or German cities, our dataset represents a significant advancement by simultaneously achieving 550 

high spatial granularity and temporal resolution. It captures intra-urban variability that is often missed in coarser-resolution 551 

datasets or those relying solely on major road segments. This work highlights the value of integrating GPS-based mobility data 552 

with machine learning and emission modelling to enhance the monitoring of urban transportation emissions and to inform the 553 

design of effective, location-specific mitigation policies. Most commonrecurrent low-carbon transport measures in cities 554 

include modal shift to public transport, low-carbon zones control, and low-emission vehicle development, but each strategy 555 

may vary according to development stages and types of urban land-use transport systems (Creutzig et al., 2012; Nakamura and 556 

Hayashi, 2013; Croci et al., 2021). While low-density cities become more compact in the long term but often lack sufficient 557 

population density to support rapid transit systems in the short term, promoting the adoption of electric vehicles, particularly 558 

in regions with low-carbon electricity, may be a more practical approach (Kennedy et al., 2014). This study may support the 559 

design of such strategies by enabling street-level scenarios to quantitatively assess their potential emission reductions. 560 

 561 

Our CO2 hourly CO2 emission maps reveal striking spatial heterogeneity within cities. For example, concentrated emission 562 

hotspots along Paris’ ring road, versus more dispersed patterns in Berlin, reflect differences in urban structure, transport 563 

systems, and commuting behaviours. Temporally, we observed national variations in traffic-related emissions during holiday 564 

and summer periods, likely due to country-specific vacation schedules. Our new emission maps can support planning of low-565 

emission zones, help identify high-flux corridors for targeted energy efficiency measures and provide a basis for congestion-566 

related studies. Given that traffic congestion is a major driver of both fuel consumption and emissions, our maps offer valuable 567 

insights for designing and evaluating emission reduction strategies.  568 

 569 

4.2 Limitations 570 

Several sources of uncertainty remain in our approach. Because the GPS-to-volume conversion models were calibrated using 571 

in-situ sensor data from Paris and Berlin only and extrapolated to the remaining 18 cities, the results may be better suited for 572 

analysing spatial patterns, temporal dynamics, and relative differences across cities, rather than for precise reporting of absolute 573 

emission magnitudes. To move beyond qualitative statements, we quantify activity-data uncertainty using independent annual 574 

AADT/AAWT validation (Section 2.4; Figure 3) and Monte Carlo uncertainty propagation (Section 3.4; Figure 10 and Figure 575 

S9). The external validation reveals pronounced inter-city heterogeneity in traffic-volume agreement (with R² ranging from 576 

approximately 0.3 to 0.92 across cities; Figure 3), which provides the empirical basis for the subsequent uncertainty ranges. 577 

 578 
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First, significant uncertainty may be introduced during the conversion from GPS trajectories to actual traffic volume. The flux-579 

to-volume machine learning models were calibrated using sensor data from Paris and Berlin only, because comparable high-580 

resolution traffic counts are either unavailable or not publicly accessible for most other cities. In addition, GPS penetration 581 

rates may vary across cities and vehicle types, and the vehicle population captured by FCD may differ from that represented 582 

in local monitoring stations, which can affect calibration, particularly for trucks. As discussed in Sections 2.4 and 3.4, model 583 

performance is weaker on middle and small roads, and emissions from small roads exhibit the largest uncertainty and potential 584 

overestimation. Consistent with this, Monte Carlo mean emission estimates are on average 13.1% lower than the deterministic 585 

totals across the 20 cities, and most cities remain within ±15%. However, several cities show substantially larger deviations 586 

exceeding 40% (e.g., Berlin, Hamburg, Marseille, and Toulouse), indicating that absolute totals are more uncertain where 587 

traffic-volume discrepancies are large and observational constraints are limited. For example, Berlin’s Monte Carlo estimate 588 

is 4.65 Mt CO₂ (95% CI: [1.89, 6.04]), whereas Hamburg shows a much wider and higher range of 10.57 Mt CO₂ (95% CI: 589 

[5.64, 15.60]), highlighting the sensitivity of city totals to correction factors on small roads in data-scarce contexts. This 590 

reinforces the need for more comprehensive and standardized traffic monitoring networks. Incorporating additional top-down 591 

constraints, such as city-level fuel consumption statistics in transportation sector, could further improve the accuracy of traffic 592 

volume inference.However, several sources of uncertainty remain in our approach, primarily stemming from the FCD. First, 593 

although we conducted extensive data cleaning, anomalies occasionally persist due to the instability and noise inherent in the 594 

raw data. Second, there are uncertainties related to the GPS penetration rate. The proportion of vehicles equipped with GPS 595 

devices may vary across vehicle types and cities. For instance, commercial vehicles are more likely to be tracked. This 596 

discrepancy may lead to bias in estimating traffic volume from floating car data (FCD), particularly if the raw data or sensor-597 

based counts do not distinguish between vehicle categories. This study assumes that other cities have the same penetration 598 

rates as Paris or Berlin, but if the other cities have lower penetrations, then their traffic volumes are underestimated. In such 599 

cases, trucks may be overrepresented in the dataset, potentially leading to overestimation of freight-related emissions.  600 

 601 

SecondThird, uncertainties also arise from fleet structures. Due to the lack of detailed vehicle-type distribution at the road 602 

segment level, we can only perform fleet correction for roads where heavy-duty vehicle traffic is explicitly restricted. For other 603 

roads, we currently apply city-wide average fleet compositions, which may not reflect local variations. Although urban fleet 604 

structure evolves continuously, available data are reported at coarse temporal resolution; disaggregation to finer temporal 605 

scales would introduce substantial uncertainty, and an annual fleet update is therefore adopted to maintain consistency with 606 

the data and the emission modelling framework.  607 

 608 

Finally, emissions in this study are estimated using the COPERT, which is based on an average-speed framework and does not 609 

explicitly represent microscopic stop-and-go driving behaviours. In contrast, microscopic emission models such as 610 

MOVES(USEPA, 2024) explicitly account for such dynamics but require high-frequency trajectory data, which are not 611 

available in this study. Moreover, COPERT characterizes vehicle technologies primarily by vehicle category and Euro 612 
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emission standard, and does not explicitly parameterize changes in emission performance associated with vehicle ageing. As 613 

a result, city-specific fleet age structures and local real-world driving conditions may lead to deviations from the standard 614 

emission factors used in the model, especially where detailed fleet data are unavailable to further refine the parameterization. 615 

Access to locally measured emission factors from in situ studies or the literature would help reduce this source of uncertainty 616 

and improve the accuracy of the emission estimates.  617 

4.3 Future work 618 

Finally, significant errors may be introduced during the conversion from GPS trajectories to actual traffic volume. Our 619 

flux-to-volume machine learning models were calibrated using sensor data from Paris and Berlin only, as high-quality 620 

in-situ traffic observations are either unavailable or not publicly accessible for other cities. As discussed in Section 3.4, 621 

the models for middle and small roads in Paris still require further refinement for better performance. This limits the 622 

models’ generalizability and highlights the need for more comprehensive, standardized traffic monitoring networks. 623 

Some traffic data from other cities are available at daily or annual resolutions(Bonnemaizon et al., 2025), and 624 

integrating these in future work could support broader validation and model refinement.  Also, the fleet captured by 625 

FCD and local monitoring stations can be different. For example, utility vehicles are captured by FCD but not by the 626 

Berlin Open Data traffic counts, which could be the reason for the bad performance when we try to transform signals 627 

to the real volumes for trucks. Incorporating additional top-down constraints, such as detailed fuel consumption data 628 

could potentially improve the accuracy of this step. 629 

 630 

Current work only covers the year 2023, but the underlying GPS-based FCD is typically available with a delay of only about 631 

one week. This creates a clear opportunity to automate the processing pipeline and update the emission estimates on a rolling 632 

basis. Incorporating this capability into Carbon Monitor Cities would allow near-real-time, high-resolution emission 633 

monitoring at the street level, significantly enhancing the system’s responsiveness and value for both research and policy 634 

applications. In addition, further feature engineering could improve model performance. As part of ongoing work, we plan to 635 

incorporate high-resolution urban context information, such as building-type data, to better capture heterogeneity across 636 

different road classes. The proposed framework is flexible and allows additional features to be integrated as new data become 637 

available. Also, future work could extend the methodology to include major air pollutants beyond CO₂, and₂ and scale the 638 

approach to cover broader regions. Through incorporating more sensor-based traffic measurements across cities, data 639 

representativeness and model validation can be further improved. Such efforts will strengthen the robustness, applicability, 640 

and policy relevance of street-level emission mapping, particularly in supporting timely decision-making and climate or clean 641 

air action monitoring. 642 

5 Data availability 643 

The high-resolution hourly CO₂ emission dataset for 20 cities in 2023 is available in NetCDF format, on Zenodo 644 

https://doi.org/10.5281/zenodo.16600210 (Shi et al., 2025). Each city has an individual NetCDF file that provides gridded 645 
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hourly emissions over the entire year of 2023. Their central x and y coordinates define the grid cells, and each file includes the 646 

variable CO2_g, representing emissions in grams per hour in the grid. Every grid’s size is 100 m × 100 m.   647 

Supplement 648 

This dataset is accompanied by Supplementary Information, including a detailed methodology document (SI_document.docx) 649 

and additional data tables (SI_tables.xlsx). 650 
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