
#Reviewer 1 

The paper clearly presents the resource described in the title. 

Probably the authors have already planned this, but updating the fleet data at regular intervals is 

crucial for model accuracy given the fairly rapid pace of vehicle electrification in Europe. 

I was curious about fuel usage with start/stop driving, e.g. in heavy freeway traffic and urban cores. 

The fuel consumption for start/stop can be very different than the hourly mean assuming a constant 

pace over a given distance. 

I suggest the authors add a table in the manuscript listing the vehicle types considered. For example, 

in some cities policies differentiate light truck and delivery traffic from passenger traffic. And one 

could imagine policies to promote mopeds. But without reading the SI, as a reader I don't know 

whether your data can differentiate these vehicle types. 

 

Author’s response： 

We thank the reviewer for this insightful comment and fully agree that fleet composition and driving 

dynamics ideally should be updated at the highest possible temporal resolution. 

 

In this study, fleet data are compiled from publicly available municipal and statistical sources, which 

are typically updated annually. Attempting to extrapolate annual fleet statistics to a higher temporal 

resolution would introduce substantial uncertainty. We therefore update fleet composition annually, 

which ensures consistency with the available data and the overall modeling framework. We added 

the discussion in L552 – L555: Although urban fleet structure evolves continuously, available data 

are reported at coarse temporal resolution; disaggregation to finer temporal scales would introduce 

substantial uncertainty, and an annual fleet update is therefore adopted to maintain consistency with 

the data and the emission modelling framework.  

 

Regarding start–stop driving behavior, we fully agree that it can substantially affect real-world fuel 

consumption and emissions under congested conditions. However, emissions in this study are 

estimated using the COPERT model, which is based on an average-speed framework and does not 

explicitly resolve microscopic stop-and-go dynamics. Vehicle models such as MOVES can realize 

that but require high-frequency trajectory data, which are not available here. We added the 

clarification of this limitation in the revised manuscript and note that more detailed data and 

microscopic models would be required for a robust quantification (L557 – L560): 

Finally, emissions in this study are estimated using the COPERT, which is based on an average-

speed framework and does not explicitly represent microscopic stop-and-go driving behaviours. In 

contrast, microscopic emission models such as MOVES(USEPA, 2024) explicitly account for such 

dynamics but require high-frequency trajectory data, which are not available in this study. 

 

Also as suggested, the vehicle types considered are added in Table 4. 

 

 

 

 

 

 



Table 4: Vehicle categories 

Big Category Category Fuel 

Car L-Category Petrol, Diesel 

Buses Petrol, Diesel, CNG, Diesel Hybrid, Biodiesel, 

Battery electric, Diesel PHEV 

Passenger Cars Petrol, Diesel, CNG, Petrol Hybrid, Petrol PHEV, 

Battery electric, Diesel PHEV 

Truck Heavy Duty Trucks Petrol, Diesel, Diesel PHEV, Battery electric, 

CNG 

Light Commercial Vehicles Diesel, Petrol, Diesel PHEV, Battery electric, 

CNG, Petrol Hybrid, Petrol PHEV 

  

 

 

 

 

 

 

 

 



#Reviewer 2 

This work developed a new approach for hourly CO2 emission mapping at high resolution from on-

road traffics for 20 cities in France, Germany, and the Netherlands in 2023, with the FCD data 

created from GPS information, the traffic volume data based on machine leaning models, and speed- 

and vehicle type-specific emission factors. The new CO2 emissions from on-road transportation 

were validated and the spatial and temporal variation characteristics were presented and discussed. 

The manuscript is generally well written. There are some comments which are required to be 

addressed before it can be accepted. 

 

Author’s response: We thank the reviewer for the detailed comments. Point-by-point response is 

followed, and the added text are highlighted in the annotated PDF provided as an attachment. 

 

1. Pay attention to the blank before the bracket particularly in the Introduction Section. 

Revised. 

 

2. Line 13, point out the CO2 emission from on-road traffic or transportation. 

Revised. 

L12: In this study, we developed new hourly on-road CO₂ emission maps with a 100 × 100 m 

resolution for 20 major cities in France, Germany, and the Netherlands in 2023. 

 

3. Line 44-55, the details of this paragraph are not so necessary. Simplify the sentences and link 

them more to the major contents of this study. 

 

This paragraph aims to describe the carbon emission reduction actions in cities, then propose the 

importance of high-resolution emission maps in the next paragraph. As suggested, we simplified it. 

 

L44 – L52: Emission reduction targets are being translated into concrete actions at the city level. 

For instance, the transport sector is responsible for approximately 20% of Paris' local greenhouse 

gas emissions (Albarus et al., 2025), and Paris plans to reduce its direct emissions by 50% by 2030 

and 100% by 2050, compared to 2004. Paris has set itself the target of phasing out diesel-powered 

mobility by 2024 and petrol-powered mobility by 2030, aligning with the EU-wide ban on the sale 

of internal combustion engine vehicles by 2035. Amsterdam aims to achieve zero-emission transport 

by 2030, phasing out all fossil-fuel vehicles within city limits (Amsterdam, 2024). The city is rapidly 

expanding its electric vehicle infrastructure, as all newly registered vehicles are required to have 

zero-emission engines in 2025 (CINEA, 2025). Similarly, to achieve climate neutrality in 2050, 

Berlin will require a long-term reduction in CO2 emissions in the transport sector to around 1.17 

million tonnes of CO2 per year, a reduction of around 77 % compared with 1990 emissions (diBEK, 

2025). 

 

4. Line 121, The title of Figure 1 is not correct. 

Revised as: Figure 1: Workflow of this study. 

 

5. Line 165, in Table 2, for the road-specific traffic count data, are they daily or hourly? Only 

hourly traffic volume can be used to produce hourly emissions. 



The road-specific traffic count data is hourly. Revised as “Daily mean derived from hourly averages” 

to make it clearer. 

 

6. Line 195-196, why use monthly average instead of hourly or daily average meteorological data 

to calculate the emission factors? 

This is because COPERT only supports monthly meteorological data as input.  

 

7. Line 206-207, clarify the potential uncertainty caused by using a standard EFCO2, instead of a 

measured EFCO2 from literature. 

We extend the discussion part. 

 

L560 – L565 : Moreover, COPERT characterizes vehicle technologies primarily by vehicle category 

and Euro emission standard and does not explicitly parameterize changes in emission performance 

associated with vehicle ageing. As a result, city-specific fleet age structures and local real-world 

driving conditions may lead to deviations from the standard emission factors used in the model, 

especially where detailed fleet data are unavailable to further refine the parameterization. Access to 

locally measured emission factors from in situ studies or the literature would help reduce this source 

of uncertainty and improve the accuracy of the emission estimates. 

 

8. Line 345-346, this sentence is repeated. 

Deleted L345 – 346. 

 

9. Line 389-390, Is there any difference in the emission factors used for calculations which could 

cause the discrepancies? 

 

Differences in emission factors across models can indeed contribute to discrepancies, especially 

when external inventories rely on different EF frameworks or updated calibrations. In this study we 

apply a consistent COPERT-based EF set across all cities, so the discrepancies highlighted here 

mainly stem from uncertainties in traffic activity (GPS-derived volumes) rather than EF differences 

within our calculations. We discuss the activity data uncertainty in more detail in our response to 

Reviewer 3. 



#Reviewer 3 

This paper is interesting and necessary for quantifying urban carbon emissions. I'm impressed by 

the authors' effort to present a high-resolution approach for road traffic CO2 emissions. This kind 

of information is very important for urban planning, both now and in the future. In fact, this work 

tackles a necessary issue in urban emission monitoring: representing the emissions of individual 

roads across an entire city scale. The study has many strengths: the claim of providing the first 

hourly, street-level emissions for 20 European cities is a major achievement, even if the "first time" 

assertion might be too strong (other studies have done similar work, though not with this many 

cities).  

Furthermore, the methodology is well-structured and transferable, with solid documentation of the 

data processing steps. The applied use of ML and the choice of the algorithm are, in my view, well-

justified. Finally, it covers a considerable spatial extent, including small roads ( e.g., residential 

classe) that are often omitted from many inventories and even high-definition urban traffic emission 

studies.  

Although I acknowledge the study's importance, several methodological concerns and uncertainties 

must be addressed by the authors before publication. My review is divided into the following points. 

Author’s response: We thank the reviewer for the detailed comments. Point-by-point response is 

followed. 

 

1 _____ 

The most critical weakness of this study based on the extrapolation/generalization of the GPS-to-

volume conversion and the resulting CO2 emissions, since this decision uses a ML model trained 

exclusively on data from Paris and Berlin and applies it to the remaining 18 cities. While the authors 

justify this by stating that "high-quality in-situ traffic observations are either unavailable or not 

publicly accessible for other cities," this extrapolation represents a major source of uncertainty that 

needs better justification and thorough discussion. 

 

The main issue is the assumption that factors, such as GPS penetration rates, fleet compositions, 

and traffic behavior, in cities like Munich, Amsterdam, and Lyon will match those in Paris or Berlin. 

This assumption may hold true for some roads but is unlikely to be valid across the board. This 

simplified idea has strong impacts on the results and their applicability in urban contexts. 

 

Have look at this: the ML model validation showed poor performance on middle and small roads in 

Paris (car R2 0.33, truck 0.23) and major in Berlin (car 0.66, no truck). I suppose, applying this 

model to other cities with potentially different GPS penetration rates and urban structures introduces 

unquantified errors, particularly on those less-traveled routes. Importantly, no sensitivity analysis is 

provided by authors to quantify how variations in GPS penetration (and, consequently, traffic 

volume estimates) affect the final emission estimates. To do so, I recommend to perform a sensitivity 

analysis demonstrating how hypothetical variations in GPS penetration (e.g., ±10%, ±20%, ±30% ) 

affect the total estimated emissions for the extrapolated cities; provide explicit uncertainty bounds 

for each extrapolated city, reflecting the potential error introduced by model transferability. This 

also leads me to second point. 

 

 



2___ 

I am not convinced that validation strategy, limited to 2 cities- Paris and Berlin, is sufficient for 

main claim made about all 20 cities. Note that no independent validation for ~90% of the cities 

analysed.  

I am not sure it if is possible, but I would suggest an external validation to compare the model’s 

volume estimates with any available traffic statistics (even if only annual or from limited sites) from 

the 18 extrapolated cities.  

 

We thank the reviewer for this detailed and constructive comment. The external validation is 

conducted at the annual scale by comparing our estimated traffic volumes with independent, 

publicly available traffic count data from a newly developed dataset (Bonnemaizon et al., 2025). 

Based on the discrepancies observed in this annual-scale comparison, we then perform a Monte 

Carlo uncertainty analysis to quantify how uncertainties in traffic volume estimates propagate into 

the final CO₂ emission estimates. We therefore address Comments 1 and 2 together below, as the 

external validation directly underpins the uncertainty analysis related to model transferability. 

 

We recognized the importance of validating the transferability of the GPS-to-volume conversion 

model. While, unfortunately, hourly or daily traffic sensor data remain unavailable for cities beyond 

Paris and Berlin, our colleagues have made a concerted effort to address this limitation by compiling 

an independent dataset (Bonnemaizon et al., 2025). This dataset was developed by collecting and 

harmonizing available Annual Average Daily Traffic (AADT, in number of vehicles per day) and 

Annual Average Weekday Traffic (AAWT, equivalent to AADT excluding weekends) data for 

European cities. Besides Paris and Berlin, we also obtained another 6 cities’s AAWT/AADT in 2023: 

Montpellier and Hamburg (AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT). We then use 

this newly developed dataset to validate our traffic volume estimates, and the results of this 

comparison are now included in Section 2.4(Figure 3). This additional validation provides further 

evidence on the robustness of the extrapolated results and informs the uncertainty assessment 

presented in the revised manuscript.  

 

The result was added in Section 2.4, L247 – L261: In addition to Paris and Berlin that are used for 

model training, observed traffic-count-based annual average daily traffic flow (AADT, in number 

of vehicles per day) or annual average weekday traffic (AAWT, equivalent to AADT excluding 

weekends) datasets are available for six additional cities reported in a recent study(Bonnemaizon et 

al., 2025): Montpellier and Hamburg (AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT). 

The comparison which serves as independent external validation to assess our traffic volume 

estimates is shown in Figure 3. Paris, the most important reference city for model development, 

shows strong agreement between estimated and public AADT values (R² = 0.92, n = 2696), with 

data points across all road classes closely aligned with the 1:1 line. Berlin exhibits noticeably larger 

dispersion, with a moderate R² (0.55) derived from a relatively small sample size (n = 197), which 

likely contributes to the lower correlation.  

 

Lyon, Hamburg, Bordeaux and Montpellier all show moderate correlation (with R² around 0.6). 

However, while simulated and observed traffic volumes are generally well aligned for Bordeaux, 

public observations for Lyon, Hamburg and Montpellier tend to exceed the simulated values, 



especially for the major roads. Toulouse and Lille are characterized by low correlation (R² around 

0.3), exhibits the weakest consistency between estimated and public traffic volumes. Overall, the 

scatter plots reveal pronounced city-to-city heterogeneity in traffic volume agreement, providing 

important context for subsequent uncertainty propagation to city-scale emission estimates.  

 

Figure 3: Comparison of AADT/AAWT between this study and public datasets 

 

Monte Carlo method is widely used in emission studies to estimate uncertainties. Rather than relying 

on hypothetical perturbations of GPS penetration rates (e.g., ±10%, ±20%, ±30%) as initially 

suggested, we adopted a Monte Carlo approach that propagates empirically observed discrepancies 

between estimated traffic volumes and independent public AADT/AAWT datasets into city-scale 

emission estimates.  

 

Since CO₂ emissions scale linearly with traffic volume, uncertainty in traffic counts can be directly 

translated into uncertainty in emissions. Instead of assuming a predefined distribution (e.g., normal 

or lognormal), we adopt a non-parametric approach using empirical cumulative distribution 

functions (ECDFs) derived from the observed discrepancy ratios. These ratios are grouped by road 

class (major, middle, small), and for each Monte Carlo iteration, random correction factors are 

sampled from the ECDF and applied to all road links of the corresponding class. This process is 

repeated 10,000 times, generating an ensemble of possible emission totals for each city. From this 

ensemble, we derive the 95% confidence intervals that reflect the propagated uncertainty due to 

volume estimation errors. This method allows for data-driven uncertainty quantification without 

relying on strong parametric assumptions, and directly addresses the reviewer’s concern regarding 

unquantified errors in extrapolated cities.  

 

The method is described in Section 2.7(L289-L307): Monte Carlo method is widely used in 

emission studies to estimate uncertainties(Ramírez et al., 2008; Zhao et al., 2011; Super et al., 2020). 

To quantify the uncertainty in estimated annual emissions arising from uncertainty in traffic volume 

estimates, this study applied a Monte Carlo simulation framework that propagates the observed 

discrepancies between estimated traffic volumes and public AADT/AAWT datasets (Figure 3) to 

the city-scale emission. Because emissions are linearly proportional to traffic volume, uncertainty 



in traffic counts can be directly transferred to emission uncertainty. As standard parametric 

assumptions (e.g., lognormality) did not adequately describe the tails of the discrepancy 

distributions, this study adopted a fully empirical cumulative distribution function (ECDF) approach. 

Discrepancy ratios were grouped by functional road class (major, middle, and small). For the six 

cities with observed AADT/AAWT data(Paris, Berlin, Bordeaux, Lyon, Hamburg, Montpellier, 

Toulouse and Lille), discrepancy ratios were sampled directly from the city-specific ECDFs. For 

cities without observations, we used country-level pools: ratios for French cities were sampled from 

the pool formed by the observed French cities, ratios for German cities from the observed German 

cities, and ratios for Dutch cities from a combined pool of the observed French and German cities. 

 

For each Monte Carlo iteration 𝑗, the set of ratio values corresponding to a given road class was 

selected. A random value 𝑢 ∼ 𝑈(0,1) was drawn, and the corresponding correction factor was 

obtained via quantile sampling from the empirical distribution, 𝐹𝑅
−1(𝑢) . The total city-scale 

emissions for iteration 𝑗 were then computed as: 

𝑇𝑗 =∑𝐸𝑖 × 𝐹𝑅
−1(𝑢)

𝑖

 

where 𝐸𝑖represents the baseline annual emissions of road link 𝑖, and the sampled correction factor 

was consistently applied to all links within the same road class. This process was repeated 10,000 

times (𝑗 = 1,… ,10,000), yielding a full ensemble of possible emission totals. From the resulting 

Monte Carlo ensemble, 95% confidence interval was calculated.  

 

We added Section 3.4 to discuss the result (L469 – L493): Figure 10 shows the uncertainties in 

annual emissions arising from uncertainty in traffic volume estimates. Overall, the Monte Carlo–

derived mean emission estimates are close to the original deterministic estimates for most cities, 

with the Monte Carlo means being on average 13.1% lower across the 20 cities. the differences 

between the Monte Carlo mean and the deterministic estimate for Paris (−7.0%), Lyon (+7.3%), and 

Bordeaux (−13.4%) remain within ±15%, indicating relatively stable estimates despite uncertainty 

propagation. Noticeable differences are observed for Berlin (−41.4%), Hamburg (+61.4%), 

Marseille (−41.2%), and Toulouse (−46.5%), where the differences between the Monte Carlo mean 

and the deterministic estimate exceed 40%. 

 

Figure S9 further shows the road-class-specific uncertainties. Across cities uncertainty in annual 

totals is primarily driven by emissions associated with small roads, which exhibit the greatest 

relative variability across all functional classes. We quantify road-class-specific relative uncertainty 

using the relative 95% interval width defined as (P97.5−P2.5)/mean of the 10,000 Monte Carlo 

realizations. Using this metric, small roads show the largest relative uncertainty, with a median value 

of 2.67 (266.7%), compared with 1.74 (174.1%) for middle roads and 1.26 (125.8%) for major roads. 

In Berlin, the Monte Carlo estimate is 4.65 Mt CO2 (95% CI: [1.89,6.04]) , closer to values reported 

by Anjos et al (2.70 Mt)(Anjos and Meier, 2025) and Climate Trace(1.99 Mt)(Kott et al., 2024), 

suggesting that the original deterministic estimate may have overestimated emissions from small 

roads. The situation in Hamburg is different. The Monte Carlo mean emission estimate of 

approximately 10.57 Mt CO₂ (95% CI: [5.64, 15.60]) exceeds that of Berlin, which is unreasonable 

given Hamburg’s smaller urban scale and lower overall road lengths. This outcome suggests that 

limited and heterogeneous observational data can bias an upward bias in the sampled correction 



factors for small roads, resulting in an overestimation of emissions for this road class and, 

consequently, at the city scale. 

 

Overall, these contrasting behaviours highlight that city-scale uncertainty is highly sensitive to the 

treatment of small roads, particularly in data-scarce contexts. While the Monte Carlo framework 

provides a robust characterization of uncertainty, its outcomes for low-traffic road classes should be 

interpreted with caution and ideally complemented by additional constraints or external benchmarks. 

 

 

Figure 10: Emission uncertainties in 20 cities. Filled circles are the original deterministic estimates. Hollow 

circles indicate Monte Carlo mean estimates, and vertical bars represent the 95% uncertainty interval (P2.5–

P97.5). 

 

 

Figure S9: Road-class-specific CO₂ emission uncertainty across 20 cities. Points denote Monte Carlo mean 

estimates, and error bars show the 95% uncertainty interval (P2.5–P97.5). 

 

Please, clarify the state of calibration in the abstract and conclusions, explicating the emission 

models for 18 of the 20 cities utilize uncalibrated, extrapolated models.  

Added as suggested. 

L17 – L19: These models were calibrated using independent traffic observations available for Paris 

and Berlin, and subsequently applied to the remaining 18 cities in an extrapolated manner due to 

data availability constraints. 

 

L526 – L529 Several sources of uncertainty remain in our approach. Because the GPS-to-volume 



conversion models were calibrated using in-situ sensor data from Paris and Berlin only and 

extrapolated to the remaining 18 cities, the results may be better suited for analysing spatial patterns, 

temporal dynamics, and relative differences across cities, rather than for precise reporting of 

absolute emission magnitudes. 

 

There are also other related-concerns: 

Comparison with Carbon Monitor (Figure 6) shows moderate correlations (R = 0.58-0.84) 

but systematic differences are not adequately explained.  It is important to note that CM-city 

estimates are also based, in part, on consumer-driven mobility data like TomTom GPS. While 

Floating Car Data (FCD), such as that from TomTom, is valuable, it introduces significant 

discrepancies when compared against local traffic flow, as noted in previous literature 

(e.g.,doi:10.1002/essoar.10504783.1, doi:10.5194/egusphere-egu21-5419). The large discrepancies 

observed here warrant a much deeper investigation than a simple attribution to general 

"methodological differences.  

The large discrepancies when comparing annual estimates with other high-resolution studies and 

city-specific inventories (ranging from −94% to −8%, and showing a ∼80% difference in Table S7) 

are concerning and must be better explained. The authors need to explain the major differences 

compared to the following studies: Ulrich et al., 2023 (-8.1% - low difference), Anjos et al., 2025 (-

66 %) and Kühbacher et al.,2023 (-74.2%). It is important to note that the studies by Kühbacher et 

al. (which uses a bottom-up traffic model like VISUM) and Anjos et al. (which uses an ML-based 

bottom-up approach) both rely on local traffic counts from monitoring stations for their volume 

inputs. 

My question is: What factor (s) is (are) limiting the CO2 emission estimates derived from the FCD-

based ML model? Given the inherent discrepancies in FCD when estimating actual traffic volume, 

is there a systematic bias in the GPS to volume conversion that consistently leads to the 

underestimation of emissions compared to inventories and studies that are anchored to local traffic 

counts? 

 

As the difference is defined as (Other datasets / this study -1) * 100%, the negative differences 

indicate that our estimates are generally higher, not lower, than those of several reference studies.  

 

At a conceptual level, total emissions inferred from fuel consumption statistics are often considered 

among the most accurate estimates at aggregated scales. However, city-level fuel consumption data 

are difficult to obtain and top-down spatial allocation (typically based on population or similar 

proxies) can introduce substantial uncertainty in attributing emissions to individual cities. These 

limitations partly explain the discrepancies observed among different city-scale emission datasets. 

Against this background, the relatively higher estimates obtained in this study mainly arise from 

two factors. First, our framework includes a more comprehensive set of road segments, particularly 

middle and small roads that are often partially or entirely excluded from other city-scale inventories 

(Figure 2). Second, as shown in our uncertainty analysis, emissions associated with small roads 

exhibit the largest variability and may be overestimated in data-scarce contexts. 

 

Due to the lack of independent traffic counts for middle and small roads in most cities, it is hard to 

conclusively attribute the observed differences to systematic overestimation in our model. In our 



framework, emission factors are comparatively well constrained, while the dominant source of 

uncertainty arises from GPS-based traffic volume estimation. Addressing this source of uncertainty 

therefore represents a key priority for future work. We have clarified these points in the revised 

Section 3.4 and Discussion. 

 

3____ 

The choice to simply adopt an 80% training and 20% testing split can be quite simple in the context 

of ML. This "naive" splitting method can not be fully minimize overfitting or ensure the model is 

robust and generalizable to new, unseen data (data outside this study's scope). Why didn't you 

consider the validation techniques such as k-fold cross-validation, chronological splitting for time 

series data, or bootstrapping? These techniques are widely used to evaluate both the gap-filling 

model and the GPS-to-volume conversion ML model. 

As suggested, we used k-fold cross-validation for both the gap-filling model and the GPS-to-volume 

conversion model. The detailed results are listed in Table S3 and S6. Because Table S3 is too long, 

here we put Table S6 as an example: 

 

Table S6 Five-fold cross-validation performance of LightGBM for converting FCD sample counts 

to traffic volumes  

 

City 
Road Vehicle R2_mean R2_std RMSE_mean RMSE_std MAE_mean MAE_std 

Paris major Car 0.908 0.000 382.838 0.175 212.712 0.147 

Paris middle Car 0.339 0.005 160.337 1.555 80.005 0.158 

Paris small Car 0.344 0.010 122.352 2.638 67.067 0.196 

Paris major Truck 0.882 0.000 127.949 0.100 70.726 0.061 

Paris middle Truck 0.388 0.007 75.867 1.130 38.768 0.102 

Paris small Truck 0.244 0.006 85.220 0.896 39.062 0.109 

Berlin major Car 0.665 0.003 202.961 1.215 123.296 0.603 

Berlin middle Car 0.856 0.002 137.126 1.162 89.794 0.603 

Berlin small Car 0.880 0.002 143.225 1.106 83.985 0.940 

 

Furthermore, while R2 is a good metric for assessing fit, it doesn't measure the error magnitude 

itself. To provide a complete picture of model performance, you should include RMSE and MAE 

from Table S2 directly in the main text. 

 

We agree that R² alone does not fully characterize model performance and that error-based metrics 

such as RMSE and MAE are necessary to quantify the magnitude of prediction errors, but Table S2 

is too long to put in the main text. To address this, we have added a concise summary of RMSE and 

MAE values to the main text (Table 3), reporting representative ranges (and mean values) across 

cities and road classes. The full city-level RMSE and MAE results remain provided in Table S2 for 

completeness. 

 

 

 

 



 

 

Table 3. Summary of LightGBM validation performance across cities and road classes. 

Vehicle item Road class Mean R² Mean RMSE Mean MAE 

Car COUNT Major 0.93 16.34 9.08 

Car COUNT Middle 0.73 6.09 3.91 

Car COUNT Small 0.60 3.66 2.15 

Truck COUNT Major 0.78 3.31 2.00 

Truck COUNT Middle 0.57 1.88 1.29 

Truck COUNT Small 0.54 1.87 1.15 

Car SPEED Major 0.89 6.72 4.64 

Car SPEED Middle 0.67 6.71 4.87 

Car SPEED Small 0.58 7.85 5.63 

Truck SPEED Major 0.84 8.77 6.35 

Truck SPEED Middle 0.55 7.81 5.85 

Truck SPEED Small 0.56 7.70 5.65 

 

Table 2 lists eight features, but the justification for choosing these specific features is limited. Please 

provide a clearer explanation, including a literature basis, for why these predictors were selected 

over others. Since more potential predictors can often improve ML model performance, testing 

different feature engineering approaches for different road classes could be addressed for future 

research. 

 

We thank the reviewer for this helpful comment. Our feature selection follows the framework of 

Xavier et al., who showed that road attributes and traffic activity variables are effective predictors 

for high-resolution emission estimation. Given our goal to develop a scalable approach applicable 

across multiple European cities, we deliberately used a compact set of predictors that are 

consistently available and computationally efficient. 

 

High-resolution data availability also constrained the choice of features. Many potentially useful 

variables—such as traffic signals, fleet composition, or detailed built-environment metrics—are not 

uniformly accessible at the spatial resolution required. Since low-resolution predictors contribute 

little at a 100-m grid scale, we focused on variables with reliable, high-resolution coverage. 

We agree that additional feature engineering could further improve model performance. As part of 

our ongoing work, we are considering incorporating high-resolution building-type information to 

enhance predictions, especially across different road classes. Our framework allows us to add more 

features easily for updating the dataset. 

 

We Added L571-L574: As part of ongoing work, we plan to incorporate high-resolution urban 

context information, such as building-type data, to better capture heterogeneity across different road 

classes. The proposed framework is flexible and allows additional features to be integrated as new 

data becomes available. 

 



 

 

4___ 

It's great that the data is available on Zenodo. But, the code is not mentioned. Since the Python code 

is integral to your entire methodology—covering all steps, from pre-processing and spatial 

operations to training, prediction, and CO2 emission calculation—I strongly recommend depositing 

it on GitHub and Zenodo. Providing well-documented code and samples is necessary for 

transparency and reproducibility. 

 

We thank the reviewer for emphasizing the importance of code availability and fully agree that 

sharing code is essential for transparency and reproducibility. However, the Python code used in 

this study cannot be publicly released because it is tightly coupled with proprietary and confidential 

input data, and releasing it would risk exposing sensitive data structures. We have clarified this 

limitation in the Data and Code Availability section and provide a detailed methodological 

description in the manuscript, while all derived emission datasets are made openly available on 

Zenodo. 

 

 

5____ 

The paper states "we used EFCO₂ of the EU6 standard" because "CO₂ emission factors are only 

marginally influenced by emission standards" (p.10). I think is imprecise due to Euro standards 

primarily target air pollutants, but CO₂ varies also significantly by vehicle age/technology, for 

instance.  

 

We agree that Euro emission standards primarily regulate air pollutants (e.g., NOx, CO, PM), while 

CO₂ emissions are more strongly linked to engine efficiency, vehicle size, and age. However, we 

followed the COPERT methodology, where CO₂ emission factors are parameterized by vehicle 

category and technology classes that are defined consistently with Euro standards; these technology 

classes implicitly reflect typical age and efficiency characteristics of the fleet (E1–E6, etc.). 

Therefore, using EFCO₂ corresponding to Euro 6 effectively incorporates the assumed 

age/technology structure embedded in COPERT. 

 

To clarify and empirically assess the potential impact of accounting for Euro standards on CO₂ 

emission factors, we conducted an additional sensitivity analysis comparing EFCO₂ values derived 

with and without explicitly accounting for Euro standards. The results are presented in the following 

figure. As shown in the figure, the differences in EFCO₂ at 50 km/h between the two approaches are 

relatively small across the examined cities and remain within a typical uncertainty range of ±7%. 

This indicates that, at the aggregated level considered in this study, explicitly accounting for Euro 

standards leads to only marginal changes in CO₂ emission factors compared to other dominant 

sources of uncertainty. 



 

Figure: Comparison of CO₂ emission factors with and without accounting for Euro emission 

standards 

 

The final urban CO2 emissions are currently based on 100x100 meter grid cells. For better 

comparability and utility in urban modeling, the emissions data, in general, are calculated and 

expressed as a density per unit area within those grid cells. Please, check if it is more suitable 

reporting the CO2 emissions in units of mass per area per time (e.g., CO2 m2 ) rather than in units 

derived from line-segment meters. 

 

The line-based emissions are only used as an intermediate step before aggregating to grid cells.  

The final dataset is already provided as emissions per 100 × 100 m grid cell per hour, so the unit are 

already expressed as mass per area per time: g CO2 / per grid(10000 m2).  

 

6__ 

While uncertainties are discussed qualitatively, no quantitative uncertainty estimates are provided 

for the emission maps. Note that: ML models have associated R² values, but these are not propagated 

to final emission uncertainties; GPS data coverage varies dramatically depending on road class, but 

impact on final emissions is not quantified. All of these limitations lead to a cumulative effect of 

multiple uncertainty sources that is unknown and unreported in the text.   

It will be useful, at least, provide uncertainty ranges for annual city emissions (e.g., Berlin: 7.9 ± X 

Mt CO₂,  Paris: 1,94 ± X Mt CO₂). Please, be carful to clearly distinguish between precision (model 

R²) and accuracy (comparison with true emissions) 

 

As explained in our response to the first comment, quantitative uncertainty ranges for annual city-

scale CO₂ emissions are now provided using a Monte Carlo–based uncertainty propagation 

framework. This approach explicitly accounts for traffic volume uncertainties across road classes 

and varying GPS data coverage, and yields 95% confidence intervals for each city (Figure 10 and 

Figure S9).  

 



7__ 

The limitations are well-discussed in Section 4 but should be elevated, in my opinion. Maybe adding 

brief limitations statement to abstract, creating a "Limitations" subsection in discussion, and 

quantifying limitations wherever possible (don't just say "may lead to bias”). 

As suggested, we re-divided the discussion and updated “Limitations” part(L526 – L565): 

 

Several sources of uncertainty remain in our approach. Because the GPS-to-volume conversion 

models were calibrated using in-situ sensor data from Paris and Berlin only and extrapolated to the 

remaining 18 cities, the results may be better suited for analysing spatial patterns, temporal 

dynamics, and relative differences across cities, rather than for precise reporting of absolute 

emission magnitudes. To move beyond qualitative statements, we quantify activity-data uncertainty 

using independent annual AADT/AAWT validation (Section 2.4; Figure 3) and Monte Carlo 

uncertainty propagation (Section 3.4; Figure 10 and Figure S9). The external validation reveals 

pronounced inter-city heterogeneity in traffic-volume agreement (with R² ranging from 

approximately 0.3 to 0.92 across cities; Figure 3), which provides the empirical basis for the 

subsequent uncertainty ranges. 

 

First, significant uncertainty may be introduced during the conversion from GPS trajectories to 

actual traffic volume. The flux-to-volume machine learning models were calibrated using sensor 

data from Paris and Berlin only, because comparable high-resolution traffic counts are either 

unavailable or not publicly accessible for most other cities. In addition, GPS penetration rates may 

vary across cities and vehicle types, and the vehicle population captured by FCD may differ from 

that represented in local monitoring stations, which can affect calibration, particularly for trucks. As 

discussed in Sections 2.4 and 3.4, model performance is weaker on middle and small roads, and 

emissions from small roads exhibit the largest uncertainty and potential overestimation. Consistent 

with this, Monte Carlo mean emission estimates are on average 13.1% lower than the deterministic 

totals across the 20 cities, and most cities remain within ±15%. However, several cities show 

substantially larger deviations exceeding 40% (e.g., Berlin, Hamburg, Marseille, and Toulouse), 

indicating that absolute totals are more uncertain where traffic-volume discrepancies are large and 

observational constraints are limited. For example, Berlin’s Monte Carlo estimate is 4.65 Mt CO₂ 

(95% CI: [1.89, 6.04]), whereas Hamburg shows a much wider and higher range of 10.57 Mt CO₂ 

(95% CI: [5.64, 15.60]), highlighting the sensitivity of city totals to correction factors on small roads 

in data-scarce contexts. This reinforces the need for more comprehensive and standardized traffic 

monitoring networks. Incorporating additional top-down constraints, such as city-level fuel 

consumption statistics in transportation sector, could further improve the accuracy of traffic volume 

inference. 

 

Second, uncertainties also arise from fleet structures. Due to the lack of detailed vehicle-type 

distribution at the road segment level, we can only perform fleet correction for roads where heavy-

duty vehicle traffic is explicitly restricted. For other roads, we currently apply city-wide average 

fleet compositions, which may not reflect local variations. Although urban fleet structure evolves 

continuously, available data are reported at coarse temporal resolution; disaggregation to finer 

temporal scales would introduce substantial uncertainty, and an annual fleet update is therefore 

adopted to maintain consistency with the data and the emission modelling framework.  



Finally, emissions in this study are estimated using the COPERT, which is based on an average-

speed framework and does not explicitly represent microscopic stop-and-go driving behaviours. In 

contrast, microscopic emission models such as MOVES(USEPA, 2024) explicitly account for such 

dynamics but require high-frequency trajectory data, which are not available in this study. Moreover, 

COPERT characterizes vehicle technologies primarily by vehicle category and Euro emission 

standard, and does not explicitly parameterize changes in emission performance associated with 

vehicle ageing. As a result, city-specific fleet age structures and local real-world driving conditions 

may lead to deviations from the standard emission factors used in the model, especially where 

detailed fleet data are unavailable to further refine the parameterization. Access to locally measured 

emission factors from in situ studies or the literature would help reduce this source of uncertainty 

and improve the accuracy of the emission estimates. 
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