#Reviewer 1

The paper clearly presents the resource described in the title.

Probably the authors have already planned this, but updating the fleet data at regular intervals is
crucial for model accuracy given the fairly rapid pace of vehicle electrification in Europe.

I was curious about fuel usage with start/stop driving, e.g. in heavy freeway traffic and urban cores.
The fuel consumption for start/stop can be very different than the hourly mean assuming a constant
pace over a given distance.

I suggest the authors add a table in the manuscript listing the vehicle types considered. For example,
in some cities policies differentiate light truck and delivery traffic from passenger traffic. And one
could imagine policies to promote mopeds. But without reading the SI, as a reader I don't know
whether your data can differentiate these vehicle types.

Author’s response:
We thank the reviewer for this insightful comment and fully agree that fleet composition and driving
dynamics ideally should be updated at the highest possible temporal resolution.

In this study, fleet data are compiled from publicly available municipal and statistical sources, which
are typically updated annually. Attempting to extrapolate annual fleet statistics to a higher temporal
resolution would introduce substantial uncertainty. We therefore update fleet composition annually,
which ensures consistency with the available data and the overall modeling framework. We added
the discussion in L552 — LL555: Although urban fleet structure evolves continuously, available data
are reported at coarse temporal resolution; disaggregation to finer temporal scales would introduce
substantial uncertainty, and an annual fleet update is therefore adopted to maintain consistency with

the data and the emission modelling framework.

Regarding start—stop driving behavior, we fully agree that it can substantially affect real-world fuel
consumption and emissions under congested conditions. However, emissions in this study are
estimated using the COPERT model, which is based on an average-speed framework and does not
explicitly resolve microscopic stop-and-go dynamics. Vehicle models such as MOVES can realize
that but require high-frequency trajectory data, which are not available here. We added the
clarification of this limitation in the revised manuscript and note that more detailed data and
microscopic models would be required for a robust quantification (L557 — L560):

Finally, emissions in this study are estimated using the COPERT, which is based on an average-
speed framework and does not explicitly represent microscopic stop-and-go driving behaviours. In
contrast, microscopic emission models such as MOVES(USEPA, 2024) explicitly account for such

dynamics but require high-frequency trajectory data, which are not available in this study.

Also as suggested, the vehicle types considered are added in Table 4.



Table 4: Vehicle categories

Big Category Category

Fuel

Car L-Category

Petrol, Diesel

Buses

Petrol, Diesel, CNG, Diesel Hybrid, Biodiesel,

Battery electric, Diesel PHEV

Passenger Cars

Petrol, Diesel, CNG, Petrol Hybrid, Petrol PHEV,

Battery electric, Diesel PHEV

Truck Heavy Duty Trucks

Petrol, Diesel, Diesel PHEV, Battery electric,

CNG

Light Commercial Vehicles

Diesel, Petrol, Diesel PHEV, Battery electric,

CNG, Petrol Hybrid, Petrol PHEV




#Reviewer 2

This work developed a new approach for hourly CO2 emission mapping at high resolution from on-
road traffics for 20 cities in France, Germany, and the Netherlands in 2023, with the FCD data
created from GPS information, the traffic volume data based on machine leaning models, and speed-
and vehicle type-specific emission factors. The new CO2 emissions from on-road transportation
were validated and the spatial and temporal variation characteristics were presented and discussed.
The manuscript is generally well written. There are some comments which are required to be
addressed before it can be accepted.

Author’s response: We thank the reviewer for the detailed comments. Point-by-point response is

followed, and the added text are highlighted in the annotated PDF provided as an attachment.

1. Pay attention to the blank before the bracket particularly in the Introduction Section.

Revised.

2. Line 13, point out the CO, emission from on-road traffic or transportation.
Revised.
L12: In this study, we developed new hourly on-road CO: emission maps with a 100 x 100 m

resolution for 20 major cities in France, Germany, and the Netherlands in 2023.

3. Line 44-55, the details of this paragraph are not so necessary. Simplify the sentences and link
them more to the major contents of this study.

This paragraph aims to describe the carbon emission reduction actions in cities, then propose the

importance of high-resolution emission maps in the next paragraph. As suggested, we simplified it.

L44 — L52: Emission reduction targets are being translated into concrete actions at the city level.
For instance, the transport sector is responsible for approximately 20% of Paris' local greenhouse
gas emissions (Albarus et al., 2025), and Paris plans to reduce its direct emissions by 50% by 2030
and 100% by 2050, compared to 2004. Paris has set itself the target of phasing out diesel-powered
mobility by 2024 and petrol-powered mobility by 2030, aligning with the EU-wide ban on the sale
of internal combustion engine vehicles by 2035. Amsterdam aims to achieve zero-emission transport
by 2030, phasing out all fossil-fuel vehicles within city limits (Amsterdam, 2024). The city is rapidly
expanding its electric vehicle infrastructure, as all newly registered vehicles are required to have
zero-emission engines in 2025 (CINEA, 2025). Similarly, to achieve climate neutrality in 2050,
Berlin will require a long-term reduction in CO, emissions in the transport sector to around 1.17
million tonnes of CO; per year, a reduction of around 77 % compared with 1990 emissions (diBEK,
2025).

4. Line 121, The title of Figure 1 is not correct.
Revised as: Figure 1: Workflow of this study.

5. Line 165, in Table 2, for the road-specific traffic count data, are they daily or hourly? Only
hourly traffic volume can be used to produce hourly emissions.



The road-specific traffic count data is hourly. Revised as “Daily mean derived from hourly averages”

to make it clearer.

6. Line 195-196, why use monthly average instead of hourly or daily average meteorological data
to calculate the emission factors?
This is because COPERT only supports monthly meteorological data as input.

7. Line 206-207, clarify the potential uncertainty caused by using a standard EFcop, instead of a
measured EFcos from literature.
We extend the discussion part.

L560—L565 : Moreover, COPERT characterizes vehicle technologies primarily by vehicle category
and Euro emission standard and does not explicitly parameterize changes in emission performance
associated with vehicle ageing. As a result, city-specific fleet age structures and local real-world
driving conditions may lead to deviations from the standard emission factors used in the model,
especially where detailed fleet data are unavailable to further refine the parameterization. Access to
locally measured emission factors from in situ studies or the literature would help reduce this source

of uncertainty and improve the accuracy of the emission estimates.

8.  Line 345-346, this sentence is repeated.
Deleted 1.345 — 346.

9. Line 389-390, Is there any difference in the emission factors used for calculations which could

cause the discrepancies?

Differences in emission factors across models can indeed contribute to discrepancies, especially
when external inventories rely on different EF frameworks or updated calibrations. In this study we
apply a consistent COPERT-based EF set across all cities, so the discrepancies highlighted here
mainly stem from uncertainties in traffic activity (GPS-derived volumes) rather than EF differences
within our calculations. We discuss the activity data uncertainty in more detail in our response to

Reviewer 3.



#Reviewer 3

This paper is interesting and necessary for quantifying urban carbon emissions. I'm impressed by
the authors' effort to present a high-resolution approach for road traffic CO2 emissions. This kind
of information is very important for urban planning, both now and in the future. In fact, this work
tackles a necessary issue in urban emission monitoring: representing the emissions of individual
roads across an entire city scale. The study has many strengths: the claim of providing the first
hourly, street-level emissions for 20 European cities is a major achievement, even if the "first time"
assertion might be too strong (other studies have done similar work, though not with this many
cities).

Furthermore, the methodology is well-structured and transferable, with solid documentation of the
data processing steps. The applied use of ML and the choice of the algorithm are, in my view, well-
justified. Finally, it covers a considerable spatial extent, including small roads ( e.g., residential
classe) that are often omitted from many inventories and even high-definition urban traffic emission
studies.

Although I acknowledge the study's importance, several methodological concerns and uncertainties
must be addressed by the authors before publication. My review is divided into the following points.
Author’s response: We thank the reviewer for the detailed comments. Point-by-point response is

followed.

1

The most critical weakness of this study based on the extrapolation/generalization of the GPS-to-

volume conversion and the resulting CO2 emissions, since this decision uses a ML model trained
exclusively on data from Paris and Berlin and applies it to the remaining 18 cities. While the authors
justify this by stating that "high-quality in-situ traffic observations are either unavailable or not
publicly accessible for other cities," this extrapolation represents a major source of uncertainty that
needs better justification and thorough discussion.

The main issue is the assumption that factors, such as GPS penetration rates, fleet compositions,
and traffic behavior, in cities like Munich, Amsterdam, and Lyon will match those in Paris or Berlin.
This assumption may hold true for some roads but is unlikely to be valid across the board. This
simplified idea has strong impacts on the results and their applicability in urban contexts.

Have look at this: the ML model validation showed poor performance on middle and small roads in
Paris (car R2 0.33, truck 0.23) and major in Berlin (car 0.66, no truck). I suppose, applying this
model to other cities with potentially different GPS penetration rates and urban structures introduces
unquantified errors, particularly on those less-traveled routes. Importantly, no sensitivity analysis is
provided by authors to quantify how variations in GPS penetration (and, consequently, traffic
volume estimates) affect the final emission estimates. To do so, I recommend to perform a sensitivity
analysis demonstrating how hypothetical variations in GPS penetration (e.g., £10%, £20%, £30% )
affect the total estimated emissions for the extrapolated cities; provide explicit uncertainty bounds
for each extrapolated city, reflecting the potential error introduced by model transferability. This
also leads me to second point.



2

I am not convinced that validation strategy, limited to 2 cities- Paris and Berlin, is sufficient for
main claim made about all 20 cities. Note that no independent validation for ~90% of the cities
analysed.

I am not sure it if is possible, but I would suggest an external validation to compare the model’s
volume estimates with any available traffic statistics (even if only annual or from limited sites) from

the 18 extrapolated cities.

We thank the reviewer for this detailed and constructive comment. The external validation is
conducted at the annual scale by comparing our estimated traffic volumes with independent,
publicly available traffic count data from a newly developed dataset (Bonnemaizon et al., 2025).
Based on the discrepancies observed in this annual-scale comparison, we then perform a Monte
Carlo uncertainty analysis to quantify how uncertainties in traffic volume estimates propagate into
the final CO2 emission estimates. We therefore address Comments 1 and 2 together below, as the

external validation directly underpins the uncertainty analysis related to model transferability.

We recognized the importance of validating the transferability of the GPS-to-volume conversion
model. While, unfortunately, hourly or daily traffic sensor data remain unavailable for cities beyond
Paris and Berlin, our colleagues have made a concerted effort to address this limitation by compiling
an independent dataset (Bonnemaizon et al., 2025). This dataset was developed by collecting and
harmonizing available Annual Average Daily Traffic (AADT, in number of vehicles per day) and
Annual Average Weekday Traffic (AAWT, equivalent to AADT excluding weekends) data for
European cities. Besides Paris and Berlin, we also obtained another 6 cities’s AAWT/AADT in 2023:
Montpellier and Hamburg (AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT). We then use
this newly developed dataset to validate our traffic volume estimates, and the results of this
comparison are now included in Section 2.4(Figure 3). This additional validation provides further
evidence on the robustness of the extrapolated results and informs the uncertainty assessment

presented in the revised manuscript.

The result was added in Section 2.4, .247 — 1.261: In addition to Paris and Berlin that are used for
model training, observed traffic-count-based annual average daily traffic flow (AADT, in number
of vehicles per day) or annual average weekday traffic (AAWT, equivalent to AADT excluding
weekends) datasets are available for six additional cities reported in a recent study(Bonnemaizon et
al., 2025): Montpellier and Hamburg (AADT), and Bordeaux, Lyon, Toulouse and Lille (AAWT).
The comparison which serves as independent external validation to assess our traffic volume
estimates is shown in Figure 3. Paris, the most important reference city for model development,
shows strong agreement between estimated and public AADT values (R? = 0.92, n = 2696), with
data points across all road classes closely aligned with the 1:1 line. Berlin exhibits noticeably larger
dispersion, with a moderate R? (0.55) derived from a relatively small sample size (n = 197), which

likely contributes to the lower correlation.

Lyon, Hamburg, Bordeaux and Montpellier all show moderate correlation (with R? around 0.6).
However, while simulated and observed traffic volumes are generally well aligned for Bordeaux,

public observations for Lyon, Hamburg and Montpellier tend to exceed the simulated values,



especially for the major roads. Toulouse and Lille are characterized by low correlation (R? around
0.3), exhibits the weakest consistency between estimated and public traffic volumes. Overall, the
scatter plots reveal pronounced city-to-city heterogeneity in traffic volume agreement, providing
important context for subsequent uncertainty propagation to city-scale emission estimates.
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Figure 3: Comparison of AADT/AAWT between this study and public datasets

Monte Carlo method is widely used in emission studies to estimate uncertainties. Rather than relying
on hypothetical perturbations of GPS penetration rates (e.g., £10%, +20%, £30%) as initially
suggested, we adopted a Monte Carlo approach that propagates empirically observed discrepancies
between estimated traffic volumes and independent public AADT/AAWT datasets into city-scale

emission estimates.

Since CO2 emissions scale linearly with traffic volume, uncertainty in traffic counts can be directly
translated into uncertainty in emissions. Instead of assuming a predefined distribution (e.g., normal
or lognormal), we adopt a non-parametric approach using empirical cumulative distribution
functions (ECDFs) derived from the observed discrepancy ratios. These ratios are grouped by road
class (major, middle, small), and for each Monte Carlo iteration, random correction factors are
sampled from the ECDF and applied to all road links of the corresponding class. This process is
repeated 10,000 times, generating an ensemble of possible emission totals for each city. From this
ensemble, we derive the 95% confidence intervals that reflect the propagated uncertainty due to
volume estimation errors. This method allows for data-driven uncertainty quantification without
relying on strong parametric assumptions, and directly addresses the reviewer’s concern regarding

unquantified errors in extrapolated cities.

The method is described in Section 2.7(L289-1.307): Monte Carlo method is widely used in
emission studies to estimate uncertainties(Ramirez et al., 2008; Zhao et al., 2011; Super et al., 2020).
To quantify the uncertainty in estimated annual emissions arising from uncertainty in traffic volume
estimates, this study applied a Monte Carlo simulation framework that propagates the observed
discrepancies between estimated traffic volumes and public AADT/AAWT datasets (Figure 3) to

the city-scale emission. Because emissions are linearly proportional to traffic volume, uncertainty



in traffic counts can be directly transferred to emission uncertainty. As standard parametric
assumptions (e.g., lognormality) did not adequately describe the tails of the discrepancy
distributions, this study adopted a fully empirical cumulative distribution function (ECDF) approach.
Discrepancy ratios were grouped by functional road class (major, middle, and small). For the six
cities with observed AADT/AAWT data(Paris, Berlin, Bordeaux, Lyon, Hamburg, Montpellier,
Toulouse and Lille), discrepancy ratios were sampled directly from the city-specific ECDFs. For
cities without observations, we used country-level pools: ratios for French cities were sampled from
the pool formed by the observed French cities, ratios for German cities from the observed German
cities, and ratios for Dutch cities from a combined pool of the observed French and German cities.

For each Monte Carlo iteration j, the set of ratio values corresponding to a given road class was
selected. A random value u ~ U(0,1)was drawn, and the corresponding correction factor was
obtained via quantile sampling from the empirical distribution, Fz!(u). The total city-scale
emissions for iteration j were then computed as:

T, = EEi X Frl(w)
i

where E;represents the baseline annual emissions of road link i, and the sampled correction factor
was consistently applied to all links within the same road class. This process was repeated 10,000
times (j = 1,...,10,000), yielding a full ensemble of possible emission totals. From the resulting
Monte Carlo ensemble, 95% confidence interval was calculated.

We added Section 3.4 to discuss the result (L469 — 1.493): Figure 10 shows the uncertainties in
annual emissions arising from uncertainty in traffic volume estimates. Overall, the Monte Carlo—
derived mean emission estimates are close to the original deterministic estimates for most cities,
with the Monte Carlo means being on average 13.1% lower across the 20 cities. the differences
between the Monte Carlo mean and the deterministic estimate for Paris (=7.0%), Lyon (+7.3%), and
Bordeaux (—13.4%) remain within +15%, indicating relatively stable estimates despite uncertainty
propagation. Noticeable differences are observed for Berlin (—41.4%), Hamburg (+61.4%),
Marseille (—41.2%), and Toulouse (—46.5%), where the differences between the Monte Carlo mean
and the deterministic estimate exceed 40%.

Figure S9 further shows the road-class-specific uncertainties. Across cities uncertainty in annual
totals is primarily driven by emissions associated with small roads, which exhibit the greatest
relative variability across all functional classes. We quantify road-class-specific relative uncertainty
using the relative 95% interval width defined as (P97.5—P2.5)/mean of the 10,000 Monte Carlo
realizations. Using this metric, small roads show the largest relative uncertainty, with a median value
0f2.67 (266.7%), compared with 1.74 (174.1%) for middle roads and 1.26 (125.8%) for major roads.
In Berlin, the Monte Carlo estimate is 4.65 Mt CO2 (95% CI: [1.89,6.04]), closer to values reported
by Anjos et al (2.70 Mt)(Anjos and Meier, 2025) and Climate Trace(1.99 Mt)(Kott et al., 2024),
suggesting that the original deterministic estimate may have overestimated emissions from small
roads. The situation in Hamburg is different. The Monte Carlo mean emission estimate of
approximately 10.57 Mt CO:z (95% CI: [5.64, 15.60]) exceeds that of Berlin, which is unreasonable
given Hamburg’s smaller urban scale and lower overall road lengths. This outcome suggests that

limited and heterogeneous observational data can bias an upward bias in the sampled correction



factors for small roads, resulting in an overestimation of emissions for this road class and,
consequently, at the city scale.

Overall, these contrasting behaviours highlight that city-scale uncertainty is highly sensitive to the
treatment of small roads, particularly in data-scarce contexts. While the Monte Carlo framework
provides a robust characterization of uncertainty, its outcomes for low-traffic road classes should be
interpreted with caution and ideally complemented by additional constraints or external benchmarks.
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Figure 10: Emission uncertainties in 20 cities. Filled circles are the original deterministic estimates. Hollow

circles indicate Monte Carlo mean estimates, and vertical bars represent the 95% uncertainty interval (P2.5—
P97.5).
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Figure S9: Road-class-specific CO: emission uncertainty across 20 cities. Points denote Monte Carlo mean

estimates, and error bars show the 95% uncertainty interval (P2.5-P97.5).

Please, clarify the state of calibration in the abstract and conclusions, explicating the emission
models for 18 of the 20 cities utilize uncalibrated, extrapolated models.

Added as suggested.

L17 — L19: These models were calibrated using independent traffic observations available for Paris

and Berlin, and subsequently applied to the remaining 18 cities in an extrapolated manner due to
data availability constraints.

L.526 — L.529 Several sources of uncertainty remain in our approach. Because the GPS-to-volume



conversion models were calibrated using in-situ sensor data from Paris and Berlin only and
extrapolated to the remaining 18 cities, the results may be better suited for analysing spatial patterns,
temporal dynamics, and relative differences across cities, rather than for precise reporting of

absolute emission magnitudes.

There are also other related-concerns:

Comparison with Carbon Monitor (Figure 6) shows moderate correlations (R = 0.58-0.84)
but systematic differences are not adequately explained. It is important to note that CM-city
estimates are also based, in part, on consumer-driven mobility data like TomTom GPS. While
Floating Car Data (FCD), such as that from TomTom, is valuable, it introduces significant
discrepancies when compared against local traffic flow, as noted in previous literature
(e.g.,doi:10.1002/ess0ar.10504783.1, doi:10.5194/egusphere-egu21-5419). The large discrepancies
observed here warrant a much deeper investigation than a simple attribution to general
"methodological differences.

The large discrepancies when comparing annual estimates with other high-resolution studies and
city-specific inventories (ranging from —94% to —8%, and showing a ~80% difference in Table S7)
are concerning and must be better explained. The authors need to explain the major differences
compared to the following studies: Ulrich et al., 2023 (-8.1% - low difference), Anjos et al., 2025 (-
66 %) and Kiihbacher et al.,2023 (-74.2%). It is important to note that the studies by Kiihbacher et
al. (which uses a bottom-up traftfic model like VISUM) and Anjos et al. (which uses an ML-based
bottom-up approach) both rely on local traffic counts from monitoring stations for their volume
inputs.

My question is: What factor (s) is (are) limiting the CO2 emission estimates derived from the FCD-
based ML model? Given the inherent discrepancies in FCD when estimating actual traffic volume,
is there a systematic bias in the GPS to volume conversion that consistently leads to the
underestimation of emissions compared to inventories and studies that are anchored to local traffic
counts?

As the difference is defined as (Other datasets / this study -1) * 100%, the negative differences

indicate that our estimates are generally higher, not lower, than those of several reference studies.

At a conceptual level, total emissions inferred from fuel consumption statistics are often considered
among the most accurate estimates at aggregated scales. However, city-level fuel consumption data
are difficult to obtain and top-down spatial allocation (typically based on population or similar
proxies) can introduce substantial uncertainty in attributing emissions to individual cities. These
limitations partly explain the discrepancies observed among different city-scale emission datasets.
Against this background, the relatively higher estimates obtained in this study mainly arise from
two factors. First, our framework includes a more comprehensive set of road segments, particularly
middle and small roads that are often partially or entirely excluded from other city-scale inventories
(Figure 2). Second, as shown in our uncertainty analysis, emissions associated with small roads

exhibit the largest variability and may be overestimated in data-scarce contexts.

Due to the lack of independent traffic counts for middle and small roads in most cities, it is hard to

conclusively attribute the observed differences to systematic overestimation in our model. In our



framework, emission factors are comparatively well constrained, while the dominant source of
uncertainty arises from GPS-based traffic volume estimation. Addressing this source of uncertainty
therefore represents a key priority for future work. We have clarified these points in the revised

Section 3.4 and Discussion.

3

The choice to simply adopt an 80% training and 20% testing split can be quite simple in the context
of ML. This "naive" splitting method can not be fully minimize overfitting or ensure the model is
robust and generalizable to new, unseen data (data outside this study's scope). Why didn't you
consider the validation techniques such as k-fold cross-validation, chronological splitting for time
series data, or bootstrapping? These techniques are widely used to evaluate both the gap-filling
model and the GPS-to-volume conversion ML model.

As suggested, we used k-fold cross-validation for both the gap-filling model and the GPS-to-volume
conversion model. The detailed results are listed in Table S3 and S6. Because Table S3 is too long,

here we put Table S6 as an example:

Table S6 Five-fold cross-validation performance of LightGBM for converting FCD sample counts

to traffic volumes

Road  Vehicle R2 mean R2 std RMSE_mean RMSE std MAE _mean MAE_std

City

Paris  major  Car 0.908 0.000 382.838 0.175 212.712 0.147
Paris  middle Car 0.339 0.005 160.337 1.555 80.005 0.158
Paris  small  Car 0.344 0.010 122.352 2.638 67.067 0.196
Paris  major  Truck  0.882 0.000 127.949 0.100 70.726 0.061
Paris  middle Truck  0.388 0.007 75.867 1.130 38.768 0.102
Paris  small  Truck  0.244 0.006 85.220 0.896 39.062 0.109
Berlin  major  Car 0.665 0.003 202.961 1.215 123.296 0.603
Berlin middle Car 0.856 0.002 137.126 1.162 89.794 0.603
Berlin small  Car 0.880 0.002 143.225 1.106 83.985 0.940

Furthermore, while R2 is a good metric for assessing fit, it doesn't measure the error magnitude
itself. To provide a complete picture of model performance, you should include RMSE and MAE
from Table S2 directly in the main text.

We agree that R? alone does not fully characterize model performance and that error-based metrics
such as RMSE and MAE are necessary to quantify the magnitude of prediction errors, but Table S2
is too long to put in the main text. To address this, we have added a concise summary of RMSE and
MAE values to the main text (Table 3), reporting representative ranges (and mean values) across
cities and road classes. The full city-level RMSE and MAE results remain provided in Table S2 for

completeness.



Table 3. Summary of LightGBM validation performance across cities and road classes.

Vehicle item Road class Mean R2  Mean RMSE Mean MAE
Car COUNT Major 0.93 16.34 9.08
Car COUNT Middle 0.73 6.09 3.91
Car COUNT Small 0.60 3.66 2.15

Truck COUNT Major 0.78 3.31 2.00
Truck COUNT Middle 0.57 1.88 1.29
Truck COUNT Small 0.54 1.87 1.15
Car SPEED Major 0.89 6.72 4.64
Car SPEED Middle 0.67 6.71 4.87
Car SPEED Small 0.58 7.85 5.63
Truck SPEED Major 0.84 8.77 6.35
Truck SPEED Middle 0.55 7.81 5.85
Truck SPEED Small 0.56 7.70 5.65

Table 2 lists eight features, but the justification for choosing these specific features is limited. Please
provide a clearer explanation, including a literature basis, for why these predictors were selected
over others. Since more potential predictors can often improve ML model performance, testing
different feature engineering approaches for different road classes could be addressed for future

research.

We thank the reviewer for this helpful comment. Our feature selection follows the framework of
Xavier et al., who showed that road attributes and traffic activity variables are effective predictors
for high-resolution emission estimation. Given our goal to develop a scalable approach applicable
across multiple European cities, we deliberately used a compact set of predictors that are

consistently available and computationally efficient.

High-resolution data availability also constrained the choice of features. Many potentially useful
variables—such as traffic signals, fleet composition, or detailed built-environment metrics—are not
uniformly accessible at the spatial resolution required. Since low-resolution predictors contribute
little at a 100-m grid scale, we focused on variables with reliable, high-resolution coverage.

We agree that additional feature engineering could further improve model performance. As part of
our ongoing work, we are considering incorporating high-resolution building-type information to
enhance predictions, especially across different road classes. Our framework allows us to add more

features easily for updating the dataset.

We Added L.571-L574: As part of ongoing work, we plan to incorporate high-resolution urban
context information, such as building-type data, to better capture heterogeneity across different road
classes. The proposed framework is flexible and allows additional features to be integrated as new

data becomes available.



4

It's great that the data is available on Zenodo. But, the code is not mentioned. Since the Python code

is integral to your entire methodology—covering all steps, from pre-processing and spatial
operations to training, prediction, and CO2 emission calculation—I strongly recommend depositing
it on GitHub and Zenodo. Providing well-documented code and samples is necessary for
transparency and reproducibility.

We thank the reviewer for emphasizing the importance of code availability and fully agree that
sharing code is essential for transparency and reproducibility. However, the Python code used in
this study cannot be publicly released because it is tightly coupled with proprietary and confidential
input data, and releasing it would risk exposing sensitive data structures. We have clarified this
limitation in the Data and Code Availability section and provide a detailed methodological
description in the manuscript, while all derived emission datasets are made openly available on

Zenodo.

5

The paper states "we used EFCO: of the EU6 standard" because "CO: emission factors are only

marginally influenced by emission standards" (p.10). I think is imprecise due to Euro standards
primarily target air pollutants, but CO- varies also significantly by vehicle age/technology, for
instance.

We agree that Euro emission standards primarily regulate air pollutants (e.g., NOx, CO, PM), while
CO: emissions are more strongly linked to engine efficiency, vehicle size, and age. However, we
followed the COPERT methodology, where CO2 emission factors are parameterized by vehicle
category and technology classes that are defined consistently with Euro standards; these technology
classes implicitly reflect typical age and efficiency characteristics of the fleet (E1-E6, etc.).
Therefore, using EFCO: corresponding to Euro 6 effectively incorporates the assumed
age/technology structure embedded in COPERT.

To clarify and empirically assess the potential impact of accounting for Euro standards on CO:
emission factors, we conducted an additional sensitivity analysis comparing EFco, values derived
with and without explicitly accounting for Euro standards. The results are presented in the following
figure. As shown in the figure, the differences in EFCO- at 50 km/h between the two approaches are
relatively small across the examined cities and remain within a typical uncertainty range of £7%.
This indicates that, at the aggregated level considered in this study, explicitly accounting for Euro
standards leads to only marginal changes in CO2 emission factors compared to other dominant

sources of uncertainty.
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Figure: Comparison of CO: emission factors with and without accounting for Euro emission

standards

The final urban CO2 emissions are currently based on 100x100 meter grid cells. For better
comparability and utility in urban modeling, the emissions data, in general, are calculated and
expressed as a density per unit area within those grid cells. Please, check if it is more suitable
reporting the CO2 emissions in units of mass per area per time (e.g., CO2 m2 ) rather than in units
derived from line-segment meters.

The line-based emissions are only used as an intermediate step before aggregating to grid cells.
The final dataset is already provided as emissions per 100 x 100 m grid cell per hour, so the unit are

already expressed as mass per area per time: g CO» / per grid(10000 m?).

6

While uncertainties are discussed qualitatively, no quantitative uncertainty estimates are provided
for the emission maps. Note that: ML models have associated R? values, but these are not propagated
to final emission uncertainties; GPS data coverage varies dramatically depending on road class, but
impact on final emissions is not quantified. All of these limitations lead to a cumulative effect of
multiple uncertainty sources that is unknown and unreported in the text.

It will be useful, at least, provide uncertainty ranges for annual city emissions (e.g., Berlin: 7.9 £ X
MtCO., Paris: 1,94+ X Mt COx). Please, be carful to clearly distinguish between precision (model

R?) and accuracy (comparison with true emissions)

As explained in our response to the first comment, quantitative uncertainty ranges for annual city-
scale CO2 emissions are now provided using a Monte Carlo—based uncertainty propagation
framework. This approach explicitly accounts for traffic volume uncertainties across road classes
and varying GPS data coverage, and yields 95% confidence intervals for each city (Figure 10 and
Figure S9).



7

The limitations are well-discussed in Section 4 but should be elevated, in my opinion. Maybe adding
brief limitations statement to abstract, creating a "Limitations" subsection in discussion, and
quantifying limitations wherever possible (don't just say "may lead to bias”).

As suggested, we re-divided the discussion and updated “Limitations” part(LL526 — L565):

Several sources of uncertainty remain in our approach. Because the GPS-to-volume conversion
models were calibrated using in-situ sensor data from Paris and Berlin only and extrapolated to the
remaining 18 cities, the results may be better suited for analysing spatial patterns, temporal
dynamics, and relative differences across cities, rather than for precise reporting of absolute
emission magnitudes. To move beyond qualitative statements, we quantify activity-data uncertainty
using independent annual AADT/AAWT validation (Section 2.4; Figure 3) and Monte Carlo
uncertainty propagation (Section 3.4; Figure 10 and Figure S9). The external validation reveals
pronounced inter-city heterogeneity in traffic-volume agreement (with R? ranging from
approximately 0.3 to 0.92 across cities; Figure 3), which provides the empirical basis for the

subsequent uncertainty ranges.

First, significant uncertainty may be introduced during the conversion from GPS trajectories to
actual traffic volume. The flux-to-volume machine learning models were calibrated using sensor
data from Paris and Berlin only, because comparable high-resolution traffic counts are either
unavailable or not publicly accessible for most other cities. In addition, GPS penetration rates may
vary across cities and vehicle types, and the vehicle population captured by FCD may differ from
that represented in local monitoring stations, which can affect calibration, particularly for trucks. As
discussed in Sections 2.4 and 3.4, model performance is weaker on middle and small roads, and
emissions from small roads exhibit the largest uncertainty and potential overestimation. Consistent
with this, Monte Carlo mean emission estimates are on average 13.1% lower than the deterministic
totals across the 20 cities, and most cities remain within £15%. However, several cities show
substantially larger deviations exceeding 40% (e.g., Berlin, Hamburg, Marseille, and Toulouse),
indicating that absolute totals are more uncertain where traffic-volume discrepancies are large and
observational constraints are limited. For example, Berlin’s Monte Carlo estimate is 4.65 Mt CO:
(95% CI: [1.89, 6.04]), whereas Hamburg shows a much wider and higher range of 10.57 Mt CO-
(95% CI: [5.64, 15.60]), highlighting the sensitivity of city totals to correction factors on small roads
in data-scarce contexts. This reinforces the need for more comprehensive and standardized traffic
monitoring networks. Incorporating additional top-down constraints, such as city-level fuel
consumption statistics in transportation sector, could further improve the accuracy of traffic volume

inference.

Second, uncertainties also arise from fleet structures. Due to the lack of detailed vehicle-type
distribution at the road segment level, we can only perform fleet correction for roads where heavy-
duty vehicle traffic is explicitly restricted. For other roads, we currently apply city-wide average
fleet compositions, which may not reflect local variations. Although urban fleet structure evolves
continuously, available data are reported at coarse temporal resolution; disaggregation to finer
temporal scales would introduce substantial uncertainty, and an annual fleet update is therefore

adopted to maintain consistency with the data and the emission modelling framework.



Finally, emissions in this study are estimated using the COPERT, which is based on an average-
speed framework and does not explicitly represent microscopic stop-and-go driving behaviours. In
contrast, microscopic emission models such as MOVES(USEPA, 2024) explicitly account for such
dynamics but require high-frequency trajectory data, which are not available in this study. Moreover,
COPERT characterizes vehicle technologies primarily by vehicle category and Euro emission
standard, and does not explicitly parameterize changes in emission performance associated with
vehicle ageing. As a result, city-specific fleet age structures and local real-world driving conditions
may lead to deviations from the standard emission factors used in the model, especially where
detailed fleet data are unavailable to further refine the parameterization. Access to locally measured
emission factors from in situ studies or the literature would help reduce this source of uncertainty
and improve the accuracy of the emission estimates.
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