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Abstract 12 

Accurately estimating global land surface radiation [including downward 13 

shortwave radiation (SWIN), downward longwave radiation (LWIN), upward shortwave 14 

radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation (Rn)] and heat 15 

fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is 16 

essential for quantifying the exchange of radiation, heat and water between the land and 17 

atmosphere under global climate change. This study presents the first energy-18 

conservation datasets of global land surface radiation and heat fluxes from 2000 to 2020, 19 

generated by our model of Coordinated estimates of land Surface Energy Balance 20 

components (CoSEB) that was renewed with a combination of GLASS and MODIS 21 

remote sensing data, ERA5-Land reanalysis datasets, topographic data, CO2 22 

concentration data, and observations at 258 eddy covariance sites worldwide from the 23 

AmeriFlux, FLUXNET, EuroFlux, OzFlux, ChinaFLUX and TPDC. The developed 24 

CoSEB-based datasets are strikingly advantageous in that [1] they are the first RS-based 25 

global datasets that satisfy both surface radiation balance (SWIN - SWOUT + LWIN - 26 

LWOUT = Rn) and heat balance (LE + H + G = Rn) among the eight fluxes, as 27 
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demonstrated by both the radiation imbalance ratio [RIR, defined as 100% × (SWIN – 28 

SWOUT + LWIN - LWOUT)/Rn] and energy imbalance ratio [EIR, defined as 100% × (Rn 29 

- G - LE - H)/Rn] of 0, [2] the radiation and heat fluxes are characterized by high 30 

accuracies, where (1) the RMSEs for daily estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, 31 

LE, H and G from the CoSEB-based datasets were 28.51 W/m2, 10.39 W/m2, 14.29 32 

W/m2, 10.62 W/m2, 22.40 W/m2, 24.38 W/m2, 22.67 W/m2 and 6.77 W/m2, respectively, 33 

as well as for 8-day estimates were 12.81 W/m2, 7.08 W/m2, 9.22 W/m2, 8.34 W/m2, 34 

13.38 W/m2, 19.99 W/m2, 17.44 W/m2 and 4.25 W/m2, respectively, (2) the CoSEB-35 

based datasets, in comparison to the mainstream products/datasets (i.e. GLASS, BESS-36 

Rad, BESSV2.0, FLUXCOM, MOD16A2, PML_V2 and ETMonitor) that generally 37 

separately estimated subsets of the eight flux components, better agreed with the in situ 38 

observations. Our developed datasets hold significant potential for application across 39 

diverse fields such as agriculture, forestry, hydrology, meteorology, ecology, and 40 

environmental science, which can facilitate comprehensive studies on the variability, 41 

impacts, responses, adaptation strategies, and mitigation measures of global and 42 

regional land surface radiation and heat fluxes under the influences of climate change 43 

and human activities. The CoSEB-based datasets are open access and available through 44 

the National Tibetan Plateau Data Center (TPDC) at 45 

https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) and through the Science 46 

Data Bank (ScienceDB) at https://doi.org/10.57760/sciencedb.27228 (Tang et al., 47 

2025b). 48 

Key words: Surface energy balance; Surface radiation balance; Shortwave/Longwave 49 

radiation; Net radiation; Sensible/Latent heat flux; Evapotranspiration; CoSEB 50 

1 Introduction 51 

Land surface radiation balance and heat balance play important roles in Earth's 52 

climate system, representing the physical processes by which the surface-atmosphere 53 

absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al., 54 

1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the 55 
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exchange of water, energy, carbon, and other agents essential to climatic and ecological 56 

systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al., 57 

2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of 58 

global land surface radiation [including downward shortwave radiation (SWIN), 59 

downward longwave radiation (LWIN), upward shortwave radiation (SWOUT), upward 60 

longwave radiation (LWOUT) and net radiation (Rn)] and heat fluxes [including latent 61 

heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for 62 

quantifying the exchange of radiation, heat and water between the land and atmosphere 63 

under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy, 64 

2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization 65 

(Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild & 66 

Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management 67 

(De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS) 68 

technology, with its high spatial-temporal resolution and applicability over large areas, 69 

is considered to be the most effective and economical means for obtaining global land 70 

surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al., 71 

2010). 72 

In past decades, numerous RS-based products/datasets of global surface radiation 73 

and heat fluxes have significantly advanced, which were generally generated by 74 

physical or statistical methods (Jiao et al., 2023; Jung et al., 2019; Martens et al., 2017; 75 

Yu et al., 2022). However, two key limitations still exist in these products. Firstly, most 76 

available products provide only a single component of land surface radiation or heat 77 

fluxes, e.g. ETMonitor (Zheng et al., 2022) and MOD16A2 (Mu et al., 2011) only 78 

estimating LE, leading to the failure to satisfy surface radiation balance and heat 79 

balance when the single radiation or heat flux is utilized in conjunction with products 80 

containing other radiation and heat components (Wang et al., 2025), and further posing 81 

significant uncertainties to understand the interactions and redistributions of surface 82 

radiation and energy in the Earth-atmosphere system. Secondly, a few products, e.g. 83 
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FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al., 2015; Zhang et al., 2014), 84 

generated datasets for multiple components of surface radiation and heat fluxes by using 85 

independent estimates from the uncoordinated models, which make them difficult to 86 

abide by surface radiation and heat conservation. These energy-imbalanced and 87 

radiation-imbalanced estimates among multiple components from previous 88 

products/datasets severely limit their in-depth applications in analyzing the spatial and 89 

temporal trends, simulating the physical process of radiation, heat and water cycles as 90 

well as revealing the attributions and mechanisms in Earth-surface system under global 91 

climate change. It was impending and imperative to develop global datasets of land 92 

surface radiation and heat fluxes characterized by high accuracies, radiation balance as 93 

well as heat balance, to better meet the requirements in practical applications of various 94 

fields. 95 

Our proposed data-driven model/framework of Coordinated estimates of land 96 

Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively 97 

learns the underlying physical interrelations (i.e. surface energy conservation law) 98 

among multiple targeted variables, provides an unprecedented opportunity to develop 99 

global datasets of land surface radiation and heat fluxes that can not only 100 

simultaneously provide high-accuracy estimates of these components but also adhere 101 

to surface radiation- and heat-conservation laws. 102 

The objectives of this study are twofold: (1) to develop high-accuracy datasets of 103 

global land surface radiation and heat fluxes, which comply with the principles of 104 

radiation balance and heat balance, using our CoSEB model renewed based on in situ 105 

observations, remote sensing data and reanalysis datasets; (2) to validate the 106 

datasets/model estimates against data from in situ observations, mainstream products 107 

as well as estimates from uncoordinated random forest (RF) techniques. Section 2 108 

introduces the data resources used in this study. Section 3 briefly describes the method 109 

we used to estimate global surface radiation and heat fluxes. Section 4 presents the 110 

evaluation of the datasets/model estimates generated by our renewed CoSEB model. 111 
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Section 5 discusses the superiority, potential applications and uncertainties of the 112 

developed datasets. Data availability is given in Section 6, and a summary and 113 

conclusion is provided in Section 7. 114 

2 Data 115 

2.1 Ground-based observations 116 

In this study, the in situ observations of land surface radiation and heat fluxes at 117 

258 eddy covariance (EC) sites from the networks of AmeriFlux (145 sites, 2000–2020, 118 

https://AmeriFlux.lbl.gov/Data/, last access: 6 August 2024), EuroFlux (72 sites, 2000-119 

2020, http://www.europe-fluxdata.eu/, last access: 6 August 2024), OzFlux (5 sites, 120 

2007-2012, https://data.ozflux.org.au/, last access: 6 August 2024), FLUXNET (108 121 

sites, 2000–2014, https://FLUXNET.org/Data/download-Data/, last access: 6 August 122 

2024), ChinaFLUX (5 sites, 2005-2020, http://www.chinaflux.org/, last access: 6 123 

August 2024) and National Tibetan Plateau/Third Pole Environment Data Center 124 

(TPDC, 13 sites, 2012–2020, https://Data.tpdc.ac.cn/en/Data, last access: 6 August 125 

2024) were used (Fig. 1), where 37, 48 and 5 sites in FLUXNET were also shared in 126 

AmeriFlux, EuroFlux and OzFlux, respectively. These 258 sites were filtered out from 127 

all collected 1008 sites by following the quality-assurance and quality-control steps, 128 

including: (1) any site with a missing component of any of the SWIN, SWOUT, LWIN, 129 

LWOUT, LE, H and G was excluded, reducing the 1008 sites to 388 sites for further 130 

analysis; (2) any half-hour period with missing data for any of these components was 131 

excluded; (3) the half-hourly ground-based observations with quality-control flag of 2 132 

or 3 (bad quality) were removed but quality-control flag of 0 and 1 (good quality) were 133 

maintained; (4) a daily average of the half-hour observations was calculated for each 134 

day with greater than 80% good-quality data, further reducing the 388 sites to 286 sites; 135 

(5) the aggregated daily LE and H were corrected for energy imbalance using the 136 

Bowen ratio method when the daily energy balance closure [defined as 137 

( ) / ( )LE H Rn G+ −  ] varied between 0.2 and 1.8; (5) outliers were discarded, 138 
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corresponding to the 1 and 99 quantiles of the daily evaporation fraction, further 139 

reducing the 286 sites to 268 sites. Besides, the RS data involved in this study collocated 140 

at the sites should not be missing, finally reducing the 268 sites to 258 sites for analysis. 141 

Note that the Rn at these sites used in this study was calculated from the sum of net 142 

longwave radiation (LWIN minus LWOUT) and net shortwave radiation (SWIN minus 143 

SWOUT), rather than using the observed Rn directly, to ensure surface radiation balance 144 

in training datasets. 145 

These 258 sites used in this study cover a wide range of global climate regimes 146 

across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 54 sites); 147 

(2) evergreen broadleaf forests (EBF, 11 sites); (3) deciduous needleleaf forests (DNF, 148 

1 sites); (4) deciduous broadleaf forests (39 sites); (5) mixed forests (MF, 8 sites); (6) 149 

closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 9 sites); (8) woody 150 

savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands (GRA, 54 sites); 151 

(11) permanent wetlands (WET, 16 sites); (12) croplands (CRO, 43 sites); (13) water 152 

bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics (CVM, 1 sites). 153 

 154 

Fig. 1 Spatial distribution of the 258 eddy covariance sites from AmeriFlux, FLUXNET, 155 

EuroFlux, OzFlux, ChinaFLUX and TPDC, and nine radiation sites from SURFRAD involved 156 

for analysis in this study. 157 

Furthermore, ground-based radiation observations from nine sites that are located 158 

in large flat agricultural areas covered by crops and grasses from SURFRAD were also 159 
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introduced to validate land surface radiation estimates. Similar to the preprocessing 160 

performed on the observations of the 258 EC sites, the SWIN, SWOUT, LWIN, LWOUT and 161 

Rn from the SURFRAD were also quality-controlled and aggregated to daily data. 162 

Spatial distribution of the 258 EC sites and nine radiation sites from SURFRAD are 163 

shown in Fig. 1, with site details (latitude, longitude, land cover types, digital elevation 164 

model and temporal coverage) provided in Supplementary Tables S1 and S2. 165 

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study 166 

Products/ 

datasets 

Reso-

lution 

Time 

coverage 
Variables Algorithms References 

GLASS 
0.05°/ 

daily 

2000-

2018 

SWIN, 

LWIN, 

LWOUT, Rn 

Machine 

learning, direct 

estimation 

algorithm 

Wang et al. (2015); 

Xu et al. (2022b); 

Jiang et al. (2015) 

BESS-Rad 
0.05°/ 

daily 

2000-

2020 
SWIN 

BESS process 

model 
Ryu et al. (2018) 

BESSV2.0 
0.05°/ 

daily 

2000-

2020 
Rn, LE 

BESS process 

model 
Li et al. (2023) 

FLUXCOM 
0.0833°/ 

8-day 

2000-

2020 
Rn, LE, H 

Model tree 

ensembles 
Jung et al. (2019) 

MOD16A2 
500 m/ 

8-day 

2000-

2020 
Rn, LE 

Modified Penman-

Monteith equation 
Mu et al. (2011) 

PML_V2 
500 m/ 

8-day 

2002-

2020 
LE 

Penman Monteith-

Leuning model, 

Priestly Taylor 

equation and Gash 

model 

Zhang et al. (2019) 

ETMonitor 
1 km/ 

daily 

2000-

2020 
LE 

Shuttleworth-

Wallace two-

source scheme, 

Gash model and 

Penman equation 

Zheng et al. (2022) 

2.2 Climate/meteorology and remote sensing data 167 

To generate global datasets of land surface radiation and heat fluxes from 2000 to 168 

2020, five types of climate/meteorology and remote sensing data were used in this study, 169 

including: 170 
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(1) ERA5-Land reanalysis datasets (https://cds.climate.copernicus.eu/, last access: 6 171 

August 2024) with the spatial resolution of ~9 km from 1950 (Muñoz-Sabater et 172 

al., 2021). Following our previous work (Wang et al., 2025), this study used 173 

variables from the ERA5-Land datasets to drive the model, including near-surface 174 

2 m air temperature ( aT ), soil temperature in layer 1 (0-7 cm, 1ST ), soil volumetric 175 

moisture content in layer 1 (0-7 cm, 1SM ), solar radiation reaching the surface 176 

of the earth (
5ERA

INSW ), net thermal radiation at the surface ( netLW ), pressure of the 177 

atmosphere ( PA  ), 10 m wind speed ( WS  ), precipitation ( rP  ) and the 2 m 178 

dewpoint temperature, daily minimum and maximum air temperature [for 179 

calculating relative air humidity ( RH )]. 180 

(2) GLASS datasets (https://glass.bnu.edu.cn/, last access: 6 August 2024), which 181 

provide the 500 m 8-day leaf area index (LAI) and fractional vegetation cover 182 

(FVC) from February 2000 to December 2021. 183 

(3) MOD44B product (https://lpdaac.usgs.gov/, last access: 6 August 2024), which 184 

offers yearly 250 m percent tree cover (PTC) since 2000, representing the 185 

percentage (0~100%) of a pixel covered by tree canopy. 186 

(4) NOAA/GML atmospheric carbon dioxide (CO2) concentration data, providing 187 

monthly global marine surface mean data since 1958 188 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6 189 

August 2024).  190 

(5) GMTED2010 topographic data 191 

(https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php, last 192 

access: 6 August 2024), providing 500 m digital elevation model (DEM), slope, 193 

and aspect. 194 

The ~9 km ERA5-Land datasets were spatially interpolated to 500 m using the 195 

cubic convolution method, and the 250 m PTC was resampled to 500 m using the 196 

arithmetic averaging method. 197 
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2.3 Mainstream datasets/products for inter-comparison 198 

Mainstream RS-based datasets/products of moderate-resolution global land 199 

surface radiation and heat fluxes were collected for inter-comparison (Table 1), 200 

including (1) the daily 0.05° GLASS SWIN, LWIN, LWOUT and Rn products from 2000 to 201 

2018 (https://glass.bnu.edu.cn/, last access: 6 August 2024), (2) the daily 0.05° 202 

Breathing Earth System Simulator Radiation (BESS-Rad) SWIN products from 2000 to 203 

2020 (https://www.environment.snu.ac.kr/bess-rad), (3) the daily 0.05° BESS 204 

Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020 205 

(https://www.environment.snu.ac.kr/bessv2), (4) the 8-day 0.0833° FLUXCOM Rn, LE 206 

and H products from 2001 to 2020 (https://fluxcom.org/, last access: 6 August 2024), 207 

(5) the daily 1 km ETMonitor LE product from 2000 to 2020 (https://data.casearth.cn/, 208 

last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2 209 

(PML_V2, https://www.tpdc.ac.cn/, last access: 6 August 2024) LE product from 2000 210 

to 2020; and (7) the 8-day 500 m MOD16A2 (https://lpdaac.usgs.gov/, last access: 6 211 

August 2024) LE product from 2000 to 2020. 212 

The GLASS SWIN products are derived from a combination of the GLASS 213 

broadband albedo product and the surface shortwave net radiation estimates, where the 214 

surface shortwave net radiation is estimated using linear regression with MODIS top-215 

of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LWIN and 216 

LWOUT products are generated using densely connected convolutional neural networks, 217 

incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance 218 

and ERA5 near-surface meteorological data (Xu et al., 2022b). The GLASS Rn 219 

products are estimated from the meteorological variables from MERRA2 and surface 220 

variables from GLASS using the multivariate adaptive regression splines model (Jiang 221 

et al., 2015). The BESS-Rad and BESSV2.0 estimate SWIN and Rn using a radiative 222 

transfer model (i.e. Forest Light Environmental Simulator, FLiES) with an artificial 223 

neural network based on MODIS and MERRA2 reanalysis datasets, and using FLiES 224 

based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al., 225 
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2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et 226 

al., 2011), PML_V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated 227 

global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor 228 

equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and 229 

H datasets are obtained through multiple machine learning methods based on in situ 230 

observations from FLUXNET and remote sensing and meteorological data (Jung et al., 231 

2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected 232 

LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study. 233 

3 Methods 234 

The method used to generate global datasets of land surface radiation and heat 235 

fluxes is based on the CoSEB model/framework, which was developed by our recently 236 

published work (Wang et al., 2025) to coordinately estimate global land surface energy 237 

balance components (including Rn, LE, H and G) using the multivariate random forest 238 

technique, with a combination of MODIS and GLASS products, ERA5-Land reanalysis 239 

datasets, and in situ observations at 336 EC sites from the FLUXNET, AmeriFlux, 240 

ChinaFLUX, EuroFlux, OzFlux and Heihe River Basin flux network. The CoSEB 241 

model was demonstrated to be able to produce high-accuracy estimates of land surface 242 

energy components, with the RMSE of <17 W/m2 for estimating 4-day Rn, LE and H, 243 

and the RMSE of <5 W/m2 for estimating 4-day G. The most praiseworthy superiority 244 

of the CoSEB model lies in its ability to balance the land surface energy components, 245 

with an energy imbalance ratio [EIR, defined as ( )100% /Rn G LE H Rn − − − ] of 0. 246 

To coordinately estimate land surface radiation and heat fluxes that comply with 247 

both radiation balance and heat balance, one of the key procedures in the construction 248 

of the CoSEB model was to prepare training datasets that satisfy surface radiation and 249 

heat balance. For this purpose, the energy-imbalance corrections on daily in situ 250 

observed LE and H were conducted by the most widely applied Bowen ratio method 251 

[ ( )corr H
H Rn G

H LE
=  −

+
 , ( )corr LE

LE Rn G
H LE

=  −
+

 , where corrH   and corrLE  252 
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represent the sensible heat flux and latent heat flux after energy-imbalance correction, 253 

respectively] with the aid of Rn and G observations, and the in situ Rn was calculated 254 

from the sum of in situ observed net longwave radiation (LWIN minus LWOUT) and net 255 

shortwave radiation (SWIN minus SWOUT). The input variables to renew the CoSEB 256 

model include: (1) climate/meteorology: aT , 
5ERA

INSW , netLW , WS , PA , rP , RH , 257 

CO2 concentration; (2) vegetation and soil: LAI, FVC, PTC, 1ST , 1SM ; (3) topography 258 

data: DEM, Slope and Aspect, in addition to longitude (Lon), latitude (Lat), and inverse 259 

relative distance from the Earth to the Sun (dr), in which the dr was calculated as 260 

2
1 0.033 cos

365

DOY
dr

  
= +   

 
, where DOY represents the day of year. Considering 261 

that the footprint of the site-based measurements of turbulent heat fluxes is generally at 262 

a scale of hundreds of meters, to reduce the effect of differences of spatial scales 263 

between ground-based measurements (dependent variables) and remotely 264 

sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a 265 

spatial scale of 500 m for coordinately estimating global daily land surface radiation 266 

and heat fluxes, which can be expressed as follows: 267 

 
5

1

2

, , , , , , , 1, , , , , ,

, , , , , , , , , , ,

ERA
IN OUT IN a S IN net r

OUT

SW SW LW Lon Lat T T SM SW LW PA WS P dr
f

LW Rn LE H G RH LAI FVC PTC DEM Slope Aspect CO

  
=   

   
(1)  268 

For comparison, eight RF-based uncoordinated models for separate estimates of 269 

SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G were also constructed using the same 270 

inputs as those in the renewed CoSEB model. Site-based 10-fold cross-validation was 271 

employed to assess the transferability and generalization of the CoSEB model by 272 

randomly dividing all sites into ten folds, where each fold in turn serves as validation 273 

datasets while the other folds as the training datasets, ensuring the validation of the 274 

estimates of the CoSEB was conducted at sites that are spatially independent from those 275 

selected for the training datasets. Fig. 2 illustrates the flowchart for generating global 276 

datasets of land surface radiation and heat fluxes by the CoSEB model. 277 
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 278 

Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation 279 

[including downward shortwave radiation (SWIN), downward longwave radiation (LWIN), 280 

upward shortwave radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation 281 

(Rn)] and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux 282 

(H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and 283 

collocated remote sensing and reanalysis datasets. 284 

4 Results 285 

4.1 Validation of the CoSEB model 286 

4.1.1 Site-based 10-fold cross-validations at 258 EC sites 287 

Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-288 

validation of daily SWIN, LWIN, SWOUT, LWOUT, Rn, LE, H and G estimated from the 289 

renewed CoSEB model and the RF-based uncoordinated models, respectively, by using 290 

the validation datasets collected at 258 EC sites worldwide. Results indicated that the 291 

estimates from both the CoSEB model and the RF-based uncoordinated models agreed 292 

well with the in situ observations, with the coefficient of determination (R2) varying 293 

between 0.80 and 0.95 for SWIN, LWIN, LWOUT and Rn, and between 0.59 and 0.67 for 294 

SWOUT, LE and H. The CoSEB model, with the root mean square error (RMSE) of 26.82 295 

to 34.25 W/m2 and mean absolute error (MAE) of 18.83 to 24.49 W/m2 for SWIN, Rn, 296 

LE and H, the RMSE of 12.24 to 17.75 W/m2 and the MAE of 8.39 to 13.70 W/m2 for 297 
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SWOUT, LWIN and LWOUT, demonstrated comparable accuracies to the RF-based models, 298 

with the RMSE of 27.07 to 33.34 W/m2 and MAE of 19.29 to 23.64 W/m2 for SWIN, 299 

Rn, LE and H, the RMSE of 12.12 to 16.93 W/m2 and the MAE of 8.68 to 12.99 W/m2 300 

for SWOUT, LWIN and LWOUT. In the validation of daily G, both the CoSEB and RF-based 301 

models yielded RMSEs below 7 W/m2. Strikingly, the CoSEB model exhibited large 302 

superiority in balancing the surface radiation and heat fluxes, with the radiation 303 

imbalance ratio [RIR, defined as ( )100% /IN IN OUT OUT RnSW LW SW LW Rn− −− +  ] 304 

and energy imbalance ratio [EIR, defined as ( )100% /Rn G LE H Rn − − −  ] of 0, 305 

while the RF-based uncoordinated models showed substantial imbalances of the surface 306 

radiation and heat fluxes, with RIR and EIR that were approximately normally 307 

distributed, having absolute mean values of 38.84% and 31.22%, respectively, and 308 

reaching as high as 50% in some cases. 309 

It should be pointed out that the performances of both the renewed CoSEB model 310 

and the RF-based models could be further improved if the site-based 10-fold cross-311 

validation was replaced with the sample-based 10-fold cross-validation (Figs. S1 and 312 

S2 in the Supplementary Material). Specifically, for the CoSEB model, using the 313 

sample-based 10-fold cross-validation decreased the RMSE by 0.61 to 3.92 W/m2 for 314 

five radiation components and G, and by 6.25 W/m2 and 5.50 W/m2 for LE and H, 315 

respectively, in comparison to using the site-based 10-fold cross-validation. Likewise, 316 

for the RF-based models, the RMSE decreased by 1.41 to 5.25 W/m2 for five radiation 317 

components and G, and by 9.63 W/m2 and 7.43 W/m2 for LE and H, respectively. The 318 

R2 of both the CoSEB model and the RF-based models using the sample-based 10-fold 319 

cross-validation increased by 0.02 to 0.28 compared to the R2 using the site-based 10-320 

fold cross-validation. 321 
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 322 

Fig. 3 Scatter density plots of the site-based 10-fold cross-validation of daily downward 323 

shortwave and longwave radiation (SWIN and LWIN), upward shortwave and longwave 324 

radiation (SWOUT and LWOUT), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and 325 

sensible heat flux (H) derived by the CoSEB model against in situ observed SWIN, LWIN, SWOUT, 326 

LWOUT, Rn, G, and energy imbalance-corrected LE (
corr

dailyLE ) and H (
corr

dailyH ). The EIR and RIR 327 

in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which 328 

are defined as ( )100% /Rn G LE H Rn− − −  and 329 

100% ( /)IN IN OUT OUTSW LW SW LW Rn Rn+ − − −  , respectively. The colorbar represents the 330 

normalized density of data points. 331 
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 332 
Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models. 333 

4.1.2 Validation at nine radiation sites from SURFRAD 334 

To further illustrate the generality and transferability of the renewed CoSEB model, 335 

the validation of estimates of the five radiation components (including SWIN, SWOUT, 336 

LWIN, LWOUT, Rn) derived from both the CoSEB model and RF-based uncoordinated 337 

models against observations at nine radiation sites from SURFRAD was performed, as 338 

shown in Fig. 5. The results showed that both the CoSEB model and the RF-based 339 

models achieved high accuracy in estimating daily SWIN, SWOUT, LWIN, LWOUT and Rn, 340 

with the RMSE of ~30 W/m2 for SWIN, ~14 W/m2 for SWOUT and LWIN, ~12 W/m2 for 341 

LWOUT and ~24 W/m2 for Rn, with the R2 >0.9 for SWIN, LWIN and LWOUT, ~0.65 for 342 

SWOUT and ~0.85 for Rn. Compared to the results of the site-based 10-fold cross-343 

validation at 258 EC sites, the performances at nine radiation sites showed slight 344 
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improvements, with the RMSE decreasing by 0.74 to 4.54 W/m2 for SWIN, LWIN, LWOUT 345 

and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by 346 

~1.05 W/m2 for SWOUT, suggesting the robust performance of the CoSEB model. 347 

Furthermore, the CoSEB model demonstrated a large superiority in maintaining surface 348 

radiation balance among the five radiation components, with the RIR of 0, in contrast 349 

to the RF-based models, which failed to meet this balance, exhibiting significant RIR 350 

exceeding 50%. 351 

  352 
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 353 

Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave 354 

radiation (SWIN and LWIN), upward shortwave and longwave radiation (SWOUT and LWOUT) 355 

and net radiation (Rn) from the CoSEB-based datasets against in situ observations at nine 356 

radiation sites from SURFRAD. The RIR represents the radiation imbalance ratio, defined as 357 

( )100% /IN IN OUT OUTSW LW SW LW Rn Rn+ − − −  . The colorbar represents the normalized 358 

density of data points. 359 

4.2 Validation and inter-comparisons of the CoSEB-based datasets 360 

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of 361 

500 m achieved comparable accuracies to the RF-based uncoordinated models but 362 
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outperformed them in balancing surface radiation and heat fluxes. Evidenced by the 363 

validation for its superiority, the renewed CoSEB model was then applied to the 364 

spatially aggregated input datasets to generate our developed global daily datasets with 365 

a spatial resolution of 0.05°. To further assess the performance of the developed datasets, 366 

in situ observations at 134 sites out of the 258 EC sites were further used to test the 367 

performance of the CoSEB-based datasets, where the 134 sites were selected based on 368 

the commonly applied criterion (Salazar-Martínez et al., 2022; Tang et al., 2024a) that 369 

the fraction of the dominant land cover types (from the 500 m MCD12Q1 product) 370 

exceeded 80% within the 0.05° grid, ensuring surface homogeneity and spatial 371 

representativeness of the observations. Mainstream products (i.e. GLASS, BESS-Rad, 372 

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for 373 

inter-comparison at the 134 EC sites. 374 

Note that due to the lack of moderate-resolution global RS-based products/datasets 375 

of daily and/or 8-day SWOUT, H and G, the intercomparison between different 376 

products/datasets was impossible. Instead, we conducted a validation of these 377 

components from the CoSEB-based datasets against in situ observations at 134 EC sites, 378 

as shown in Figs S3 and S4 in the Supplementary Material. Results indicated that the 379 

CoSEB-based datasets could provide good estimates of SWOUT, H and G, with the 380 

RMSE of 10.39 W/m2, 22.67 W/m2 and 6.77 W/m2 at daily scale, respectively, and the 381 

RMSE of 7.08 W/m2 and 4.25 W/m2 for 8-day SWOUT and G, respectively. 382 

Fig. 6 and Fig. 7 present the comparison of daily SWIN, LWIN and LWOUT, as well 383 

as Rn and LE from the CoSEB-based datasets and mainstream products/datasets 384 

(including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations 385 

at 134 EC sites, respectively. Overall, the estimates from the CoSEB-based datasets 386 

exhibited a closer agreement with in situ observations than those from mainstream 387 

products/datasets, where the CoSEB-based datasets reduced the RMSE by 4.35 W/m2 388 

to 11.46 W/m2 and increased the R² by 0.04 to 0.3 compared to mainstream products. 389 

Specifically, the RMSE for the SWIN, LWIN, LWOUT increased from 28.51 W/m2, 14.29 390 
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W/m2 and 10.62 W/m2 in the CoSEB-based datasets to 35.44 W/m2 ,18.64 W/m2 and 391 

15.29 W/m2 in the GLASS, respectively, and for SWIN from 28.51 W/m2 in the CoSEB-392 

based datasets to 36.23 W/m2 in the BESS-Rad. Likewise, the RMSEs for daily Rn and 393 

LE were 22.40 W/m2 and 24.38 W/m2 in the CoSEB-based datasets, which were lower 394 

than those of 29.80 W/m2 and 35.75 W/m2 in BESSV2.0, respectively, as well as those 395 

of 27.11 W/m2 for Rn in GLASS and 35.84 W/m2 for LE in ETMonitor. 396 

 397 

Fig. 6 Comparison of the daily downward shortwave radiation (SWIN, the first column), 398 

downward longwave radiation (LWIN, the second column) and upward longwave radiation 399 

(LWOUT, the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the 400 

in situ observed SWIN, LWIN and LWOUT at 134 eddy covariance sites. The colorbar represents 401 

the normalized density of data points. 402 
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 403 
Fig. 7 Comparison of the daily net radiation (Rn, the upper row) and latent heat flux (LE, the 404 

lower row) from the CoSEB-based datasets, BESSV2.0, GLASS and ETMonitor with the in 405 

situ observed Rn, and energy imbalance-corrected LE (
corr

dailyLE ) at 134 eddy covariance sites. 406 

The colorbar represents the normalized density of data points. 407 

Figs. 8, 9 and 10 compare the 8-day SWIN, LWIN and LWOUT, Rn and LE, as well as 408 

H from the CoSEB-based datasets and mainstream products, with in situ observations 409 

at 134 EC sites, respectively. Overall, the CoSEB-based datasets outperformed the 410 

mainstream products/datasets for all surface radiation and heat fluxes, where the 411 

CoSEB-based datasets reduced the RMSE by 4.62 W/m2 to 14.64 W/m2 and increased 412 

the R² by 0.04 to 0.41 compared to mainstream products. Specifically, for SWIN, LWIN 413 

and LWOUT, the RMSE increased from 12.81 W/m2, 9.22 W/m2 and 8.34 W/m2 in the 414 

CoSEB-based datasets to 21.23 W/m2, 15.37 W/m2 and 14.70 W/m2 in the GLASS, 415 

respectively, and for SWIN from 12.81 W/m2 in the CoSEB-based datasets to 17.43 416 

W/m2 in the BESS-Rad. For Rn, the RMSE increased from 13.38 W/m2 in the CoSEB-417 

based datasets to 18.64 W/m2 in the GLASS and to >23 W/m2 in the FLUXCOM and 418 

BESSV2.0, while the R2 decreased from 0.91 in the CoSEB to 0.82 in the GLASS and 419 

to <0.72 in the FLUXCOM and BESSV2.0. Likewise, for LE, the RMSE increased 420 

from 19.99 W/m2 in the CoSEB-based datasets to 26.16 W/m2 in the FLUXCOM, and 421 
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to >28.17 W/m2 in BESSV2.0, MOD16A2, PML_V2 and ETMonitor, while the R2 422 

decreased from 0.8 in the CoSEB-based datasets to 0.65 in the FLUXCOM, and to <0.6 423 

in the remaining products. For H, the RMSE increased from 17.44 W/m2 in the CoSEB-424 

based datasets to 23.96 W/m2 in the FLUXCOM. 425 

 426 

Fig. 8 Same as Fig. 6, but for the comparison at 8-day scale. 427 
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 428 
Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux 429 

(LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS, 430 

MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-431 

corrected LE ( 8

corr

dayLE − ) at 134 eddy covariance sites. The colorbar represents the normalized 432 

density of data points. 433 

 434 
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 435 

Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and 436 

the FLUXCOM with the in situ energy imbalance-corrected H ( 8

corr

dayH − ) at 134 eddy covariance 437 

sites. The colorbar represents the normalized density of data points. 438 

4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes 439 

In addition to the validation and inter-comparison of the CoSEB-based datasets at 440 

global sites, we further inter-compared the estimates of land surface radiation and heat 441 

fluxes from the CoSEB-based datasets and the mainstream products/datasets, in terms 442 

of their spatial and temporal patterns. 443 

Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic 444 

continent, deserts, water bodies and permanent snow) and latitudinal profiles of the 445 

global 0.05° mean annual SWIN, LWIN and LWOUT, Rn and LE, as well as H from 2001 446 

to 2018, respectively, as derived from the CoSEB-based datasets and mainstream 447 

products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, 448 

PML_V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or 449 

cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates 450 

from the CoSEB-based datasets aligned well with those observed in these mainstream 451 

products/datasets, though regional discrepancies were present. Specifically, the mean 452 

annual LWIN, LWOUT, Rn, and LE generally exhibited decreasing trends from the equator 453 

towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo 454 

Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SWIN and 455 

H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia, 456 

Sahel and Southern Africa, while the lower values were found in high-latitude regions 457 
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of >50°N. In the region of high values, the mean annual estimates of SWIN from the 458 

CoSEB-based datasets were higher than those from GLASS but lower than those from 459 

BESS-Rad, the estimates of LWIN and LWOUT from the CoSEB-based datasets were both 460 

higher than those from GLASS, the estimates of Rn from the CoSEB-based datasets 461 

were significantly higher than those from BESSV2.0, and comparable to or slightly 462 

higher than those from FLUXCOM and GLASS, the estimates of LE from the CoSEB-463 

based datasets were close to those from BESSV2.0 and PML_V2, but slightly lower 464 

than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates of H 465 

from the CoSEB-based datasets were higher than those from FLUXCOM in regions 466 

with high values, while lower than those from FLUXCOM in regions with low values.467 
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 468 
Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SWIN, the first 469 

row), downward longwave radiation (LWIN, the second row) and upward longwave radiation 470 

(LWOUT, the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad. 471 

The rightmost subfigure of each row represents the latitudinal profiles of mean annual SWIN, 472 

LWIN and LWOUT from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area 473 

represents the variation of standard deviation for each product. 474 

 475 

Fig.12 Spatial patterns of global mean annual net radiation (Rn, the first row) and latent heat 476 

flux (LE, the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM, 477 

BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third 478 

row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets 479 

and these mainstream products/datasets, where the shaded area represents the variation of 480 

standard deviation for each product. 481 
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 482 

Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by 483 

CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal 484 

profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded 485 

area represents the variation of standard deviation for each product. 486 

The temporal evolutions of the global (excluding Greenland, Antarctic continent, 487 

deserts, water bodies and permanent snow) land surface radiation and heat fluxes 488 

derived from the CoSEB-based datasets and mainstream products/datasets from 2001 489 

to 2018 were also investigated, as shown in Fig. 14. The results indicated that the 490 

temporal variation of each flux from the CoSEB-based datasets generally agreed well 491 

with those from mainstream products/datasets, exhibiting relatively stable trends. The 492 

global annual mean estimates using area weighting average by the CoSEB-based 493 

datasets from 2001 to 2018 varied between ~185.22 and ~189.50 W/m2 with the mean 494 

of ~187.23 W/m2 for SWIN, between ~32.67 and ~33.20 W/m2 with the mean of ~32.96 495 

W/m2 for SWOUT, between ~330.24 and ~334.14 W/m2 with the mean of ~331.50 W/m2 496 

for LWIN, between ~387.25 and ~390.82 W/m2 with the mean of ~388.81 W/m2 for 497 

LWOUT, between ~95.41 and ~99.39 W/m2 with the mean of 97.11 W/m2 for Rn, 498 

between ~53.24 and ~56.37 W/m2 with the mean of ~54.53 W/m2 for LE, between 499 

~40.44 and ~41.96 W/m2 with the mean of ~41.29 W/m2 for H, and between ~1.22 and 500 

~1.52 W/m2 with the mean of ~1.33 W/m2 for G. For each radiation or heat flux, the 501 

annual mean estimates from the CoSEB-based datasets were overall higher than those 502 

from the mainstream products/datasets. In particular, the annual mean Rn estimates 503 

from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and 504 

BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based 505 

datasets were marginally higher than those from FLUXCOM, but substantially 506 

exceeded those from ETMonitor, PML_V2, MOD16A2 and BESSV2.0 sequentially. 507 
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 508 

Fig. 14 Temporal variation of annual mean downward shortwave radiation (SWIN), upward 509 

shortwave radiation (SWOUT), downward longwave radiation (LWIN), upward longwave 510 

radiation (LWOUT), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat 511 

flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM, 512 

BESSV2.0, PML_V2, MOD16A2 and ETMonitor. The shaded area represents the variation of 513 

standard deviation for each product. 514 
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 515 
Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward 516 

shortwave radiation (SWIN, the first row), downward longwave radiation (LWIN, the second 517 

row) and upward longwave radiation (LWOUT, the third row) from 2001 to 2018 by the CoSEB-518 

based datasets, GLASS and BESS-Rad. 519 

Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic 520 

continent, deserts, water bodies and permanent snow) of interannual variability of SWIN, 521 

LWIN and LWOUT, Rn and LE, as well as H from 2001 to 2018, respectively, derived 522 

from the CoSEB-based datasets and mainstream products/datasets. In general, the 523 

estimates from the CoSEB-based datasets displayed similar interannual variability in 524 

space with those from the mainstream products/datasets. Specially, the estimates of 525 

SWIN from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant 526 

interannual variability mainly in northeastern Australia, eastern South America, 527 

Southeast China, and Southwest North America. The interannual variability of LWIN 528 

and LWOUT by the CoSEB-based datasets and GLASS displayed high values primarily 529 

at middle-to-high latitudes of the North Hemisphere and parts of Africa and Australia. 530 

The interannual variability of Rn observed by the CoSEB-based datasets was generally 531 

lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM. The 532 

CoSEB-based datasets missed the strong interannual variability of LE as observed in 533 

MOD16A2, PML_V2 and ETMonitor in parts of Africa, Australia and eastern South 534 
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America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE 535 

in almost all regions. The interannual variability of H derived from the CoSEB-based 536 

datasets was higher than those from FLUXCOM, with stronger interannual variabilities 537 

mainly observed in parts of eastern South America, southern Africa, and northeastern 538 

Australia. 539 

 540 
Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn, 541 

the first and second rows) and latent heat flux (LE, the third and fourth row) from 2001 to 542 

2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2, 543 

ETMonitor and GLASS. 544 

 545 

Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux 546 

(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM. 547 
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5 Discussion 548 

Accurately monitoring the spatial and temporal variations of global land surface 549 

radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and 550 

water between the land and atmosphere under global climate change (Chen et al., 2020; 551 

Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However, 552 

although numerous global RS-based products/datasets of land surface radiation and 553 

heat fluxes have been developed using physical and/or statistical methods, they 554 

typically provide either merely a single flux or multiple fluxes (see Table 1) that are 555 

estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019; 556 

Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or 557 

heat imbalance when these products are combined for practical applications. To address 558 

these limitations, we generated high-accuracy global datasets of land surface radiation 559 

and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation 560 

laws, using our proposed CoSEB model (Wang et al., 2025). 561 

Our CoSEB model, integrating underlying physical principles of training datasets 562 

into machine learning technique to effectively learn the interrelations among multiple 563 

targeted outputs, was originally designed for coordinating estimates of global land 564 

surface energy balance components (Rn, LE, H and G) to satisfy the energy 565 

conservation (Wang et al., 2025). Inspired by the idea of constructing the CoSEB model, 566 

we further incorporated land surface radiation fluxes into our model to simultaneously 567 

consider the physical constraints of both surface radiation and heat conservation 568 

principles, by renewing the CoSEB using remote sensing products, reanalysis datasets, 569 

as well as in situ observations of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G. To 570 

comprehensively account for the main factors influencing surface radiation and heat 571 

fluxes (Amani & Shafizadeh-Moghadam, 2023; Mohan et al., 2020; Wang et al., 2021), 572 

the renewed CoSEB model utilized 19 easily accessible parameters/variables from 573 

ERA5-Land reanalysis datasets, GLASS products, MODIS products, GMTED2010 and 574 

NOAA/GML as input, which were readily available to generate datasets of global land 575 
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surface radiation and heat fluxes in a practical and operational manner. 576 

The main advantages of our CoSEB-based datasets of land surface radiation and 577 

heat fluxes lie in that [1] they are the first RS-based global datasets that satisfy both 578 

surface radiation balance ( IN OUT IN OUTSW SW LW LW Rn− + − =  ) and heat balance 579 

( LE H G Rn+ + = ) among the eight fluxes, as demonstrated by both the RIR and EIR 580 

of 0, [2] the radiation and heat fluxes are characterized by high accuracies when 581 

validated against in situ measurements at 134 “homogeneous” sites (see the first 582 

paragraph in Section 4.2), where (1) the RMSEs for daily estimates of SWIN, SWOUT, 583 

LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based datasets were 28.51 W/m2, 10.39 584 

W/m2, 14.29 W/m2, 10.62 W/m2, 22.40 W/m2, 24.38 W/m2, 22.67 W/m2 and 6.77 W/m2, 585 

respectively, as well as for 8-day estimates were 12.81 W/m2, 7.08 W/m2, 9.22 W/m2, 586 

8.34 W/m2, 13.38 W/m2, 19.99 W/m2, 17.44 W/m2 and 4.25 W/m2, respectively, (2) the 587 

CoSEB-based datasets, in comparison to the mainstream products/datasets (i.e. GLASS, 588 

BESS-Rad, FLUXCOM, BESSV2.0, MOD16A2, PML_V2 and ETMonitor), better 589 

agreed with the in situ observations at 134 EC sites, showing the RMSE reductions 590 

ranging from 4.35 W/m2 to 11.46 W/m2 for SWIN, LWIN, LWOUT, Rn and LE at daily 591 

scale, and 4.62 W/m2 to 14.64 W/m2 for SWIN, LWIN, LWOUT, Rn, LE and H at 8-day 592 

scale. 593 

Our developed datasets could be potentially applied in many fields, including but 594 

not limited to (1) exploring the spatial-temporal patterns of global land surface radiation 595 

and heat flux (es) and their driving mechanisms over the past decades under global 596 

change (e.g., rising CO2 concentration, greening land surface and increasing air 597 

temperature), (2) investigating the variability of land surface radiation and heat fluxes 598 

caused by extreme events and human activities, e.g. afforestation or deforestation, 599 

wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources 600 

of solar energy, geothermal energy, surface and ground water at regional and global 601 

scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry. 602 

The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2) 603 
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the application of the CoSEB at different spatial scales. Specifically, the daily average 604 

of surface radiation and heat fluxes for each day was obtained for analysis from good-605 

quality half-hourly observations when the fraction of these good-quality half-hourly 606 

observations was greater than 80% in a day, due to the lack of consensus on the method 607 

for aggregating gapped half-hourly observations to daily data (Tang et al., 2024a; Yao 608 

et al., 2017; Zheng et al., 2022). Likewise, since there was no agreement on how to 609 

correct for the energy imbalance of turbulent heat fluxes, we adopted the most widely 610 

applied Bowen ratio method to enforce energy closure between Rn G−  and LE H+  611 

(Castelli et al., 2018; Twine et al., 2000; Zhang et al., 2021). These data preprocessing 612 

had an effect on the construction of the renewed CoSEB model, which may further 613 

affect the global datasets. Moreover, the renewed CoSEB model was constructed at the 614 

spatial scale of 500 m to match the footprints of the in situ EC observations, but applied 615 

at the spatial resolution of 0.05° to generate global datasets, mainly limited by the 616 

computing and storage capabilities in our personal computers. However, the CoSEB-617 

based datasets have also been validated and inter-compared at 134 EC sites to 618 

demonstrate that the difference in spatial scale would not much affect the performance 619 

of the datasets. Despite these uncertainties, it is worth emphasizing that our work was 620 

the first attempt to innovatively develop energy-conservation datasets of global land 621 

surface radiation and heat fluxes with high accuracies. 622 

6 Data availability 623 

The energy-conservation datasets of global land surface radiation and heat fluxes 624 

generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05° 625 

from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan 626 

Plateau Data Center at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) 627 

and through the Science Data Bank (ScienceDB) at 628 

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b).  629 
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7 Summary and Conclusion 630 

This study for the first time developed energy-conservation datasets of global land 631 

surface radiation and heat fluxes using our CoSEB model renewed based on GLASS 632 

and MODIS products, ERA5-Land reanalysis datasets, topographic data, CO2 633 

concentration data, and observations at 258 EC sites worldwide from the FLUXNET, 634 

AmeriFlux, EuroFlux, OzFlux, ChinaFLUX and TPDC. 635 

The CoSEB-based datasets of land surface radiation and heat fluxes are the first 636 

RS-based global datasets that satisfy both surface radiation balance 637 

( IN OUT IN OUTSW SW LW LW Rn− + − = ) and heat balance ( LE H G Rn+ + = ) among the 638 

eight fluxes. Meanwhile, the CoSEB-based datasets outperformed the mainstream 639 

products/datasets in accuracy. Specifically, at 134 EC sites, the RMSEs for daily 640 

estimates of SWIN, SWIN, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based datasets 641 

were 28.51 W/m2, 10.39 W/m2, 14.29 W/m2, 10.62 W/m2, 22.40 W/m2, 24.38 W/m2, 642 

22.67 W/m2 and 6.77 W/m2, respectively, as well as for 8-day estimates were 12.81 643 

W/m2, 7.08 W/m2, 9.22 W/m2, 8.34 W/m2, 13.38 W/m2, 19.99 W/m2, 17.44 W/m2 and 644 

4.25 W/m2, respectively. Moreover, the estimates from the CoSEB-based datasets in 645 

comparison to those from the mainstream products/datasets reduced the RMSE by 4.35 646 

W/m2 to 11.46 W/m2 and increased the R2 by 0.04 to 0.3 for SWIN, LWIN, LWOUT, Rn 647 

and LE at daily scale, and reduced the RMSE by 4.62 W/m2 to 14.64 W/m2 and 648 

increased the R2 by 0.04 to 0.41 for SWIN, LWIN, LWOUT, Rn, LE and H at 8-day scale, 649 

when these estimates were validated against in situ observations at 134 EC sites. 650 

Furthermore, the CoSEB-based datasets effectively captured the spatial-temporal 651 

variability of global land surface radiation and heat fluxes, aligning well with those 652 

from the mainstream products. 653 

Our developed datasets hold significant potential for application across diverse 654 

fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental 655 

science. They can facilitate comprehensive studies on the variability, impacts, responses, 656 

adaptation strategies, and mitigation measures of global and regional land surface 657 
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radiation and heat fluxes under the influences of climate change and human activities. 658 

These datasets will provide valuable insights and data support for scientific research, 659 

policy-making, and environmental management, advancing global solutions to address 660 

climate change. 661 

Author contribution 662 

JW: Writing – original draft, Visualization, Software, Formal analysis, Data 663 

curation. RT: Writing – original draft, Validation, Supervision, Methodology, Funding 664 

acquisition, Formal analysis, Conceptualization. ML: Writing – review & editing, 665 

Validation. ZL: Writing – review & editing. 666 

Competing interests 667 

The authors declare that they have no conflict of interest. 668 

Acknowledgment 669 

We thank the work from the AmeriFlux, FLUXNET, EuroFlux, OzFlux, 670 

ChinaFLUX, the National Tibetan Plateau/Third Pole Environment Data Center and 671 

SURFRAD for providing in situ measurements. We would also like to thank Dr. Martin 672 

Jung and Dr. Ulrich Weber for providing the FLUXCOM Bowen ratio-corrected 673 

products. This work is supported by the National Natural Science Foundation of China 674 

[42271378], and the Strategic Priority Research Program of the Chinese Academy of 675 

Sciences (Grant No. XDB0740202). 676 

  677 

https://doi.org/10.5194/essd-2025-456
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.



35 

 

References 678 

Amani, S. and Shafizadeh-Moghadam, H.: A review of machine learning models and 679 

influential factors for estimating evapotranspiration using remote sensing and 680 

ground-based data, Agric. Water Manage., 284, 108324. 681 

10.1016/j.agwat.2023.108324, 2023. 682 

Berbery, E. H., Mitchell, K. E., Benjamin, S., Smirnova, T., Ritchie, H., Hogue, R. and 683 

Radeva, E.: Assessment of land‐surface energy budgets from regional and 684 

global models, J. Geophys. Res.-Atmos., 104, 19329-19348. 685 

10.1029/1999jd900128, 1999. 686 

Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J. and Viterbo, P. A.: The land 687 

surface‐atmosphere interaction: A review based on observational and global 688 

modeling perspectives, J. Geophys. Res.-Atmos., 101, 7209-7225. 689 

10.1029/95jd02135, 1996. 690 

Castelli, M., Anderson, M. C., Yang, Y., Wohlfahrt, G., Bertoldi, G., Niedrist, G., 691 

Hammerle, A., Zhao, P., Zebisch, M. and Notarnicola, C.: Two-source energy 692 

balance modeling of evapotranspiration in Alpine grasslands, Remote Sens. 693 

Environ., 209, 327-342. 10.1016/j.rse.2018.02.062, 2018. 694 

Chen, J., He, T., Jiang, B. and Liang, S.: Estimation of all-sky all-wave daily net 695 

radiation at high latitudes from MODIS data, Remote Sens. Environ., 245, 696 

111842. 10.1016/j.rse.2020.111842, 2020. 697 

de Wit, A. J. W., Boogaard, H. L. and van Diepen, C. A.: Spatial resolution of 698 

precipitation and radiation: The effect on regional crop yield forecasts, Agric. 699 

For. Meteorol., 135, 156-168. 10.1016/j.agrformet.2005.11.012, 2005. 700 

Du, Y., Wang, T., Zhou, Y., Letu, H., Li, D. and Xian, Y.: Towards user-friendly all-sky 701 

surface longwave downward radiation from space: General scheme and product, 702 

Bull. Amer. Meteorol. Soc., 105, E1303–E1319. 10.1175/bams-d-23-0126.1, 703 

2024. 704 

Ersi, C., Sudu, B., Song, Z., Bao, Y., Wei, S., Zhang, J., Tong, Z., Liu, X., Le, W. and 705 

Rina, S.: The potential of NIRvP in estimating evapotranspiration, Remote Sens. 706 

Environ., 315, 114405. 10.1016/j.rse.2024.114405, 2024. 707 

Huang, J., Yu, H., Guan, X., Wang, G. and Guo, R.: Accelerated dryland expansion 708 

under climate change, Nat. Clim. Chang., 6, 166-171. 10.1038/nclimate2837, 709 

2015. 710 

Huang, L., Luo, Y., Chen, J. M., Tang, Q., Steenhuis, T., Cheng, W. and Shi, W.: 711 

Satellite-based near-real-time global daily terrestrial evapotranspiration 712 

estimates, Earth Syst. Sci. Data, 16, 3993-4019. 10.5194/essd-16-3993-2024, 713 

2024. 714 

Jia, B., Xie, Z., Dai, A., Shi, C. and Chen, F.: Evaluation of satellite and reanalysis 715 

products of downward surface solar radiation over East Asia: Spatial and 716 

seasonal variations, J. Geophys. Res.-Atmos., 118, 3431-3446. 717 

10.1002/jgrd.50353, 2013. 718 

https://doi.org/10.5194/essd-2025-456
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.



36 

 

Jiang, B., Zhang, Y., Liang, S., Wohlfahrt, G., Arain, A., Cescatti, A., Georgiadis, T., Jia, 719 

K., Kiely, G., Lund, M., Montagnani, L., Magliulo, V., Ortiz, P. S., Oechel, W., 720 

Vaccari, F. P., Yao, Y. and Zhang, X.: Empirical estimation of daytime net 721 

radiation from shortwave radiation and ancillary information, Agric. For. 722 

Meteorol., 211-212, 23-36. 10.1016/j.agrformet.2015.05.003, 2015. 723 

Jiao, B., Su, Y., Li, Q., Manara, V. and Wild, M.: An integrated and homogenized global 724 

surface solar radiation dataset and its reconstruction based on a convolutional 725 

neural network approach, Earth Syst. Sci. Data, 15, 4519-4535. 10.5194/essd-726 

15-4519-2023, 2023. 727 

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., 728 

Schwalm, C., Tramontana, G. and Reichstein, M.: The FLUXCOM ensemble of 729 

global land-atmosphere energy fluxes, Sci. Data, 6, 74. 10.1038/s41597-019-730 

0076-8, 2019. 731 

Kim, Y., Park, H., Kimball, J. S., Colliander, A. and McCabe, M. F.: Global estimates 732 

of daily evapotranspiration using SMAP surface and root-zone soil moisture, 733 

Remote Sens. Environ., 298, 113803. 10.1016/j.rse.2023.113803, 2023. 734 

Li, B., Ryu, Y., Jiang, C., Dechant, B., Liu, J., Yan, Y. and Li, X.: BESSv2.0: A satellite-735 

based and coupled-process model for quantifying long-term global land–736 

atmosphere fluxes, Remote Sens. Environ., 295, 113696. 737 

10.1016/j.rse.2023.113696, 2023. 738 

Liang, S., Wang, D., He, T. and Yu, Y.: Remote sensing of earth’s energy budget: 739 

synthesis and review, Int. J. Digit. Earth, 12, 737-780. 740 

10.1080/17538947.2019.1597189, 2019. 741 

Liang, S., Zheng, T., Liu, R., Fang, H., Tsay, S. C. and Running, S.: Estimation of 742 

incident photosynthetically active radiation from Moderate Resolution Imaging 743 

Spectrometer data, J. Geophys. Res.-Atmos., 111. 10.1029/2005jd006730, 2006. 744 

Liu, S., Xu, Z., Song, L., Zhao, Q., Ge, Y., Xu, T., Ma, Y., Zhu, Z., Jia, Z. and Zhang, 745 

F.: Upscaling evapotranspiration measurements from multi-site to the satellite 746 

pixel scale over heterogeneous land surfaces, Agric. For. Meteorol., 230, 97-113. 747 

10.1016/j.agrformet.2016.04.008, 2016. 748 

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., 749 

Fernández-Prieto, D., Beck, H. E., Dorigo, W. A. and Verhoest, N. E. C.: 750 

GLEAM v3: satellite-based land evaporation and root-zone soil moisture, 751 

Geosci. Model Dev., 10, 1903-1925. 10.5194/gmd-10-1903-2017, 2017. 752 

Mohan, M. M. P., Kanchirapuzha, R. and Varma, M. R. R.: Review of approaches for 753 

the estimation of sensible heat flux in remote sensing-based evapotranspiration 754 

models, J. Appl. Remote Sens., 14, 041501-041501. 10.1117/1.Jrs.14.041501, 755 

2020. 756 

Mu, Q., Zhao, M. and Running, S. W.: Improvements to a MODIS global terrestrial 757 

evapotranspiration algorithm, Remote Sens. Environ., 115, 1781-1800. 758 

10.1016/j.rse.2011.02.019, 2011. 759 

Mueller, R. W., Matsoukas, C., Gratzki, A., Behr, H. D. and Hollmann, R.: The CM-760 

https://doi.org/10.5194/essd-2025-456
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.



37 

 

SAF operational scheme for the satellite based retrieval of solar surface 761 

irradiance — A LUT based eigenvector hybrid approach, Remote Sens. Environ., 762 

113, 1012-1024. 10.1016/j.rse.2009.01.012, 2009. 763 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, 764 

G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., 765 

Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, 766 

C. and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset 767 

for land applications, Earth Syst. Sci. Data, 13, 4349-4383. 10.5194/essd-13-768 

4349-2021, 2021. 769 

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., 770 

Myneni, R. B. and Running, S. W.: Climate-driven increases in global terrestrial 771 

net primary production from 1982 to 1999, Science, 300, 1560-1563. 772 

10.1126/science.1082750, 2003. 773 

Rios, G. and Ramamurthy, P.: A novel model to estimate sensible heat fluxes in urban 774 

areas using satellite-derived data, Remote Sens. Environ., 270, 112880. 775 

10.1016/j.rse.2021.112880, 2022. 776 

Ryu, Y., Jiang, C., Kobayashi, H. and Detto, M.: MODIS-derived global land products 777 

of shortwave radiation and diffuse and total photosynthetically active radiation 778 

at 5 km resolution from 2000, Remote Sens. Environ., 204, 812-825. 779 

10.1016/j.rse.2017.09.021, 2018. 780 

Salazar-Martínez, D., Holwerda, F., Holmes, T. R. H., Yépez, E. A., Hain, C. R., 781 

Alvarado-Barrientos, S., Ángeles-Pérez, G., Arredondo-Moreno, T., Delgado-782 

Balbuena, J., Figueroa-Espinoza, B., Garatuza-Payán, J., González del Castillo, 783 

E., Rodríguez, J. C., Rojas-Robles, N. E., Uuh-Sonda, J. M. and Vivoni, E. R.: 784 

Evaluation of remote sensing-based evapotranspiration products at low-latitude 785 

eddy covariance sites, J. Hydrol., 610, 127786. 10.1016/j.jhydrol.2022.127786, 786 

2022. 787 

Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., 788 

Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. 789 

B. and Henderson-Sellers, A.: Modeling the Exchanges of Energy, Water, and 790 

Carbon Between Continents and the Atmosphere, Science, 275, 502-509. 791 

10.1126/science.275.5299.502, 1997. 792 

Sun, S., Bi, Z., Xiao, J., Liu, Y., Sun, G., Ju, W., Liu, C., Mu, M., Li, J., Zhou, Y., Li, 793 

X., Liu, Y. and Chen, H.: A global 5 km monthly potential evapotranspiration 794 

dataset (1982–2015) estimated by the Shuttleworth–Wallace model, Earth Syst. 795 

Sci. Data, 15, 4849-4876. 10.5194/essd-15-4849-2023, 2023. 796 

Tang, R., Peng, Z., Liu, M., Li, Z.-L., Jiang, Y., Hu, Y., Huang, L., Wang, Y., Wang, J., 797 

Jia, L., Zheng, C., Zhang, Y., Zhang, K., Yao, Y., Chen, X., Xiong, Y., Zeng, Z. 798 

and Fisher, J. B.: Spatial-temporal patterns of land surface evapotranspiration 799 

from global products, Remote Sens. Environ., 304, 114066. 800 

10.1016/j.rse.2024.114066, 2024a. 801 

Tang, R., Wang, J., Liu, M. and Li, Z.-L.: Energy-conservation datasets of global land 802 

https://doi.org/10.5194/essd-2025-456
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.



38 

 

surface radiation and heat fluxes from 2000-2020 generated by CoSEB, 803 

National Tibetan Plateau / Third Pole Environment Data Center. [data set], 804 

https://doi.org/10.11888/Terre.tpdc.302559, 2025a. 805 

Tang, R., Wang, J., Liu, M. and Li, Z.-L.: Energy-conservation datasets of global land 806 

surface radiation and heat fluxes from 2000-2020 generated by CoSEB, Science 807 

Data Bank: Science Data Bank. [data set], 808 

https://doi.org/10.57760/sciencedb.27228, 2025b. 809 

Tang, W., He, J., Qi, J. and Yang, K.: A dense station-based, long-term and high-810 

accuracy dataset of daily surface solar radiation in China, Earth Syst. Sci. Data, 811 

15, 4537-4551. 10.5194/essd-15-4537-2023, 2023. 812 

Tang, W., He, J., Shao, C., Song, J., Yuan, Z. and Yan, B.: Constructing a long-term 813 

global dataset of direct and diffuse radiation (10 km, 3 h, 1983–2018) separating 814 

from the satellite-based estimates of global radiation, Remote Sens. Environ., 815 

311, 114292. 10.1016/j.rse.2024.114292, 2024b. 816 

Tang, W., Yang, K., Qin, J., Li, X. and Niu, X.: A 16-year dataset (2000–2015) of high-817 

resolution (3 h, 10 km) global surface solar radiation, Earth Syst. Sci. Data, 11, 818 

1905-1915. 10.5194/essd-11-1905-2019, 2019. 819 

Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., 820 

Prueger, J. H., Starks, P. J. and Wesely, M. L.: Correcting eddy-covariance flux 821 

underestimates over a grassland, Agric. For. Meteorol., 103, 279-300. 822 

10.1016/S0168-1923(00)00123-4, 2000. 823 

van der Tol, C.: Validation of remote sensing of bare soil ground heat flux, Remote Sens. 824 

Environ., 121, 275-286. 10.1016/j.rse.2012.02.009, 2012. 825 

Wang, D., Liang, S., He, T. and Shi, Q.: Estimation of Daily Surface Shortwave Net 826 

Radiation From the Combined MODIS Data, IEEE Trans. Geosci. Remote 827 

Sensing, 53, 5519-5529. 10.1109/tgrs.2015.2424716, 2015. 828 

Wang, D., Liang, S., Li, R. and Jia, A.: A synergic study on estimating surface 829 

downward shortwave radiation from satellite data, Remote Sens. Environ., 264, 830 

112639. 10.1016/j.rse.2021.112639, 2021. 831 

Wang, J., Tang, R., Liu, M., Jiang, Y., Huang, L. and Li, Z.-L.: Coordinated estimates 832 

of 4-day 500 m global land surface energy balance components, Remote Sens. 833 

Environ., 326, 114795. 10.1016/j.rse.2025.114795, 2025. 834 

Wang, K. C., Dickinson, R. E., Wild, M. and Liang, S.: Atmospheric impacts on climatic 835 

variability of surface incident solar radiation, Atmos. Chem. Phys., 12, 9581-836 

9592. 10.5194/acp-12-9581-2012, 2012. 837 

Wang, T., Shi, J., Ma, Y., Letu, H. and Li, X.: All-sky longwave downward radiation 838 

from satellite measurements: General parameterizations based on LST, column 839 

water vapor and cloud top temperature, ISPRS-J. Photogramm. Remote Sens., 840 

161, 52-60. 10.1016/j.isprsjprs.2020.01.011, 2020. 841 

Wild, M.: Global dimming and brightening: A review, J. Geophys. Res.-Atmos., 114. 842 

10.1029/2008jd011470, 2009. 843 

Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G. and König-Langlo, G.: The 844 

https://doi.org/10.5194/essd-2025-456
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.



39 

 

global energy balance from a surface perspective, Clim. Dyn., 40, 3107-3134. 845 

10.1007/s00382-012-1569-8, 2012. 846 

Wild, M. and Liepert, B.: The Earth radiation balance as driver of the global 847 

hydrological cycle, Environ. Res. Lett., 0, 025203. 10.1088/1748-848 

9326/5/2/025003, 2010. 849 

Xia, X. A., Wang, P. C., Chen, H. B. and Liang, F.: Analysis of downwelling surface 850 

solar radiation in China from National Centers for Environmental Prediction 851 

reanalysis, satellite estimates, and surface observations, J. Geophys. Res.-852 

Atmos., 111. 10.1029/2005jd006405, 2006. 853 

Xu, J., Liang, S. and Jiang, B.: A global long-term (1981–2019) daily land surface 854 

radiation budget product from AVHRR satellite data using a residual 855 

convolutional neural network, Earth Syst. Sci. Data, 14, 2315-2341. 856 

10.5194/essd-14-2315-2022, 2022a. 857 

Xu, J., Liang, S., Ma, H. and He, T.: Generating 5 km resolution 1981–2018 daily global 858 

land surface longwave radiation products from AVHRR shortwave and 859 

longwave observations using densely connected convolutional neural networks, 860 

Remote Sens. Environ., 280, 113223. 10.1016/j.rse.2022.113223, 2022b. 861 

Yao, Y., Liang, S., Li, X., Chen, J., Liu, S., Jia, K., Zhang, X., Xiao, Z., Fisher, J. B., 862 

Mu, Q., Pan, M., Liu, M., Cheng, J., Jiang, B., Xie, X., Grünwald, T., Bernhofer, 863 

C. and Roupsard, O.: Improving global terrestrial evapotranspiration estimation 864 

using support vector machine by integrating three process-based algorithms, 865 

Agric. For. Meteorol., 242, 55-74. 10.1016/j.agrformet.2017.04.011, 2017. 866 

Yu, L., Qiu, G. Y., Yan, C., Zhao, W., Zou, Z., Ding, J., Qin, L. and Xiong, Y.: A global 867 

terrestrial evapotranspiration product based on the three-temperature model 868 

with fewer input parameters and no calibration requirement, Earth Syst. Sci. 869 

Data, 14, 3673-3693. 10.5194/essd-14-3673-2022, 2022. 870 

Zhang, C., Long, D., Zhang, Y., Anderson, M. C., Kustas, W. P. and Yang, Y.: A decadal 871 

(2008–2017) daily evapotranspiration data set of 1 km spatial resolution and 872 

spatial completeness across the North China Plain using TSEB and data fusion, 873 

Remote Sens. Environ., 262, 112519. 10.1016/j.rse.2021.112519, 2021. 874 

Zhang, J., Zhao, L., Deng, S., Xu, W. and Zhang, Y.: A critical review of the models 875 

used to estimate solar radiation, Renew. Sust. Energ. Rev., 70, 314-329. 876 

10.1016/j.rser.2016.11.124, 2017. 877 

Zhang, K., Kimball, J. S., Nemani, R. R. and Running, S. W.: A continuous satellite‐878 

derived global record of land surface evapotranspiration from 1983 to 2006, 879 

Water Resour. Res., 46, W09522. 10.1029/2009wr008800, 2010. 880 

Zhang, X., Liang, S., Zhou, G., Wu, H. and Zhao, X.: Generating Global LAnd Surface 881 

Satellite incident shortwave radiation and photosynthetically active radiation 882 

products from multiple satellite data, Remote Sens. Environ., 152, 318-332. 883 

10.1016/j.rse.2014.07.003, 2014. 884 

Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q. and Yang, Y.: 885 

Coupled estimation of 500 m and 8-day resolution global evapotranspiration 886 

https://doi.org/10.5194/essd-2025-456
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.



40 

 

and gross primary production in 2002–2017, Remote Sens. Environ., 222, 165-887 

182. 10.1016/j.rse.2018.12.031, 2019. 888 

Zheng, C., Jia, L. and Hu, G.: Global land surface evapotranspiration monitoring by 889 

ETMonitor model driven by multi-source satellite earth observations, J. Hydrol., 890 

613, 128444. 10.1016/j.jhydrol.2022.128444, 2022. 891 

 892 

https://doi.org/10.5194/essd-2025-456
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.


