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Abstract 12 

Accurately estimating global land surface radiation [including downward 13 

shortwave radiation (SWIN), downward longwave radiation (LWIN), upward shortwave 14 

radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation (Rn)] and heat 15 

fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is 16 

essential for quantifying the exchange of radiation, heat and water between the land and 17 

atmosphere under global climate change. This study presents the first data-driven 18 

energy-conservation datasets of global land surface radiation and heat fluxes from 2000 19 

to 2020, generated by our model of Coordinated estimates of land Surface Energy 20 

Balance components (CoSEB). The model integrates GLASS and MODIS remote 21 

sensing data, ERA5-Land reanalysis datasets, topographic data, CO2 concentration data 22 

as independent variables and in situ radiation and heat flux observations at 258 eddy 23 

covariance sites worldwide as dependent variables within a multivariate random forest 24 

technique to effectively learn the physics of energy conservation. The developed 25 

CoSEB-based datasets are strikingly advantageous in that [1] they are the first data-26 

driven global datasets that satisfy both surface radiation balance and heat balance 27 
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among the eight fluxes, as demonstrated by both the radiation imbalance ratio [RIR, 28 

defined as 100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn] and energy imbalance ratio 29 

[EIR, defined as 100% × (Rn - G - LE - H)/Rn] of 0, [2] the radiation and heat fluxes 30 

are characterized by high accuracies, where (1) the RMSEs (R2) for daily estimates of 31 

SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based datasets at 44 32 

independent test sites were 37.52 W/m2 (0.81), 14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 33 

13.78 W/m2 (0.95), 29.66 W/m2 (0.77), 30.87 W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 34 

W/m2 (0.44), respectively, (2) the CoSEB-based datasets, in comparison to the 35 

mainstream products/datasets (i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, 36 

MOD16A2, PML_V2 and ETMonitor) that generally separately estimated subsets of 37 

the eight flux components, better agreed with the in situ observations. Our developed 38 

datasets hold significant potential for application across diverse fields such as 39 

agriculture, forestry, hydrology, meteorology, ecology, and environmental science, 40 

which can facilitate comprehensive studies on the variability, impacts, responses, 41 

adaptation strategies, and mitigation measures of global and regional land surface 42 

radiation and heat fluxes under the influences of climate change and human activities. 43 

The CoSEB-based datasets are open access and available through the National Tibetan 44 

Plateau Data Center (TPDC) at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 45 

2025a) and through the Science Data Bank (ScienceDB) at 46 

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b). 47 

Key words: Surface energy balance; Surface radiation balance; Shortwave/Longwave 48 

radiation; Net radiation; Sensible/Latent heat flux; Evapotranspiration; CoSEB 49 

1 Introduction 50 

Land surface radiation balance and heat balance play important roles in Earth's 51 

climate system, representing the physical processes by which the surface-atmosphere 52 

absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al., 53 

1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the 54 

exchange of water, energy, carbon, and other agents essential to climatic and ecological 55 
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systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al., 56 

2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of 57 

global land surface radiation [including downward shortwave radiation (SWIN), 58 

downward longwave radiation (LWIN), upward shortwave radiation (SWOUT), upward 59 

longwave radiation (LWOUT) and net radiation (Rn)] and heat fluxes [including latent 60 

heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for 61 

quantifying the exchange of radiation, heat and water between the land and atmosphere 62 

under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy, 63 

2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization 64 

(Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild & 65 

Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management 66 

(De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS) 67 

technology, with its high spatial-temporal resolution and applicability over large areas, 68 

is considered to be the most effective and economical means for obtaining global land 69 

surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al., 70 

2010). 71 

In past decades, numerous RS-based products/datasets of global surface radiation 72 

and heat fluxes have significantly advanced, which were generally generated by 73 

physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao et 74 

al., 2023; Jung et al., 2019; Peng et al., 2020). However, two key limitations still exist 75 

in these products. Firstly, most available products provide only a single component of 76 

land surface radiation or heat fluxes, e.g. ETMonitor (Zheng et al., 2022) and 77 

MOD16A2 (Mu et al., 2011) only estimating LE, leading to the failure to satisfy surface 78 

radiation balance and heat balance when the single radiation or heat flux is utilized in 79 

conjunction with products containing other radiation and heat components (Wang et al., 80 

2025), and further posing significant uncertainties to understand the interactions and 81 

redistributions of surface radiation and energy in the Earth-atmosphere system. 82 

Secondly, a few products, e.g., FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al., 83 
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2015; Zhang et al., 2014), generated datasets for multiple components of surface 84 

radiation and heat fluxes by using separate estimates from the uncoordinated models, 85 

which make them difficult to abide by surface radiation and heat conservation. These 86 

energy-imbalanced and radiation-imbalanced estimates among multiple components 87 

from previous products/datasets severely limit their in-depth applications in analyzing 88 

the spatial and temporal trends, simulating the physical processes of radiation, heat and 89 

water cycles as well as revealing the attributions and mechanisms in Earth-surface 90 

system under global climate change. It was imperative to develop global datasets of 91 

land surface radiation and heat fluxes characterized by high accuracies, radiation 92 

balance as well as heat balance, to better meet the requirements in practical applications 93 

of various fields. 94 

Our proposed data-driven model/framework of Coordinated estimates of land 95 

Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively 96 

learns the underlying physical interrelations (i.e., surface energy conservation law) 97 

among multiple targeted variables, provides an unprecedented opportunity to develop 98 

global datasets of land surface radiation and heat fluxes that can not only 99 

simultaneously provide high-accuracy estimates of these components but also adhere 100 

to surface radiation- and heat-conservation laws. 101 

The objectives of this study are twofold: (1) to develop high-accuracy datasets of 102 

global land surface radiation and heat fluxes, which comply with the principles of 103 

radiation balance and heat balance, using our CoSEB model renewed based on in situ 104 

observations, remote sensing data and reanalysis datasets; (2) to validate the 105 

datasets/model estimates against data from in situ observations, mainstream products 106 

as well as estimates from uncoordinated random forest (RF) techniques. Section 2 107 

introduces the data resources used in this study. Section 3 briefly describes the method 108 

we used to estimate global surface radiation and heat fluxes. Section 4 presents the 109 

evaluation of the datasets/model estimates generated by our renewed CoSEB model. 110 

Section 5 discusses the superiority, potential applications and uncertainties of the 111 



5 

 

developed datasets. Data availability is given in Section 6, and a summary and 112 

conclusion is provided in Section 7. 113 

2 Data 114 

2.1 Ground-based observations 115 

In this study, the in situ observations of land surface radiation and heat fluxes at 116 

302 eddy covariance (EC) sites from the networks of AmeriFlux (174 sites, 2000–2020, 117 

https://AmeriFlux.lbl.gov/Data/, last access: 6 August 2024), EuroFlux (72 sites, 2000-118 

2020, http://www.europe-fluxdata.eu/, last access: 6 August 2024), OzFlux (5 sites, 119 

2007-2012, https://data.ozflux.org.au/, last access: 6 August 2024), FLUXNET (108 120 

sites, 2000–2014, https://FLUXNET.org/Data/download-Data/, last access: 6 August 121 

2024), JapanFlux (15 sites, 2001-2020, https://ads.nipr.ac.jp/japan-flux2024/, last 122 

access: 10 October 2025), ChinaFLUX (5 sites, 2005-2020, http://www.chinaflux.org/, 123 

last access: 6 August 2024) and National Tibetan Plateau/Third Pole Environment Data 124 

Center (TPDC, 13 sites, 2012–2020, https://Data.tpdc.ac.cn/en/Data, last access: 6 125 

August 2024) were used (Fig. 1), where 37, 48 and 5 sites in FLUXNET were also 126 

shared in AmeriFlux, EuroFlux and OzFlux, respectively. These 302 sites were filtered 127 

out from all collected 1098 sites by following the quality-assurance and quality-control 128 

steps, including: (1) any site with a missing component of any of the SWIN, SWOUT, LWIN, 129 

LWOUT, LE, H and G was excluded, reducing the 1098 sites to 472 sites for further 130 

analysis; (2) any half-hour period with missing data for any of these components was 131 

excluded; (3) the half-hourly ground-based observations with quality-control flag of 2 132 

or 3 (bad quality) were removed but quality-control flag of 0 and 1 (good quality) were 133 

maintained; (4) a daily average of the half-hour observations was calculated for each 134 

day with greater than 80% good-quality data, further reducing the 472 sites to 355 sites; 135 

(5) the aggregated daily LE and H were corrected for energy imbalance using the 136 

Bowen ratio method when the daily energy balance closure [defined as 137 

( ) / ( )LE H Rn G+ −  ] varied between 0.2 and 1.8 following Wang et al. (2025) to 138 

https://ameriflux.lbl.gov/Data/
https://data.ozflux.org.au/
https://ads.nipr.ac.jp/japan-flux2024/
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exclude physically implausible measurements; (6) extreme outliers in the daily 139 

evaporative fraction were further removed by excluding values outside the 1st–99th 140 

percentile range, a common practice in flux and remote sensing studies (Bartkowiak et 141 

al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites. Besides, the RS 142 

products/datasets involved in this study collocated at the sites should not be missing, 143 

finally reducing the 337 sites to 302 sites for analysis. Note that the Rn at these sites 144 

used in this study was calculated from the sum of net longwave radiation (LWIN minus 145 

LWOUT) and net shortwave radiation (SWIN minus SWOUT), rather than using the 146 

observed Rn directly, to ensure surface radiation balance in training datasets. 147 

These 302 sites used in this study cover a wide range of global climate regimes 148 

across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 55 sites); 149 

(2) evergreen broadleaf forests (EBF, 12 sites); (3) deciduous needleleaf forests (DNF, 150 

7 sites); (4) deciduous broadleaf forests (DBF, 40 sites); (5) mixed forests (MF, 8 sites); 151 

(6) closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 11 sites); (8) woody 152 

savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands (GRA, 62 sites); 153 

(11) permanent wetlands (WET, 22 sites); (12) croplands (CRO, 59 sites); (13) water 154 

bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics (CVM, 4 sites). Among 155 

them, 44 sites (~15% of the total, see Table S1) were isolated to serve as spatially 156 

independent sites to test the generated datasets and they did not participate in the 157 

development of the model/datasets. 158 
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 159 

Fig. 1 Spatial distribution of the 302 eddy covariance sites from AmeriFlux, FLUXNET, 160 

EuroFlux, OzFlux, JapanFlux, ChinaFLUX and TPDC, and nine radiation sites from 161 

SURFRAD involved for analysis in this study. 162 

Furthermore, ground-based radiation observations from nine sites that are located 163 

in large flat agricultural areas covered by crops and grasses from SURFRAD were also 164 

introduced to validate land surface radiation estimates. Similar to the preprocessing 165 

performed on the observations of the 302 EC sites, the SWIN, SWOUT, LWIN, LWOUT and 166 

Rn from the SURFRAD were also quality-controlled and aggregated to daily data. 167 

Spatial distribution of the 302 EC sites and nine radiation sites from SURFRAD are 168 

shown in Fig. 1, with site details (latitude, longitude, land cover types, digital elevation 169 

model and temporal coverage) provided in Supplementary Tables S1 and S2. 170 

2.2 Climate/meteorology and remote sensing data 171 

To generate global datasets of land surface radiation and heat fluxes from 2000 to 172 

2020, five types of climate/meteorology and remote sensing data were used in this study, 173 

including: 174 

(1) ERA5-Land reanalysis datasets (https://cds.climate.copernicus.eu/, last access: 6 175 

August 2024) with the spatial resolution of ~9 km from 1950 (Muñoz-Sabater et 176 

al., 2021). Following our previous work (Wang et al., 2025), this study used 177 

variables from the ERA5-Land datasets to drive the model, including near-surface 178 
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2 m air temperature ( aT ), soil temperature in layer 1 (0-7 cm, 1ST ), soil volumetric 179 

moisture content in layer 1 (0-7 cm, SM1), solar radiation reaching the surface of 180 

the earth (
5ERA

INSW ), net thermal radiation at the surface ( netLW ), pressure of the 181 

atmosphere (PA), 10 m wind speed (WS), precipitation (Pr) and the 2 m dewpoint 182 

temperature, daily minimum and maximum air temperature [for calculating 183 

relative air humidity (RH)]. 184 

(2) GLASS datasets (https://glass.bnu.edu.cn/, last access: 6 August 2024), which 185 

provide the 500 m 8-day leaf area index (LAI) and fractional vegetation cover 186 

(FVC) from February 2000 to December 2021. 187 

(3) MOD44B product (https://lpdaac.usgs.gov/, last access: 6 August 2024), which 188 

offers yearly 250 m percent tree cover (PTC) since 2000, representing the 189 

percentage (0~100%) of a pixel covered by tree canopy. 190 

(4) NOAA/GML atmospheric carbon dioxide (CO2) concentration data, providing 191 

monthly global marine surface mean data since 1958 192 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6 193 

August 2024). 194 

(5) GMTED2010 topographic data 195 

(https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php, last 196 

access: 6 August 2024), providing 500 m digital elevation model (DEM), slope, 197 

and aspect. 198 

The ~9 km ERA5-Land datasets were spatially interpolated to 500 m using the 199 

cubic convolution method, and the 250 m PTC was resampled to 500 m using the 200 

arithmetic averaging method. 201 

2.3 Mainstream datasets/products for inter-comparison 202 

Mainstream RS-based datasets/products of moderate-resolution global land 203 

surface radiation and heat fluxes were collected for inter-comparison (Table 1), 204 

including (1) the daily 0.05° GLASS SWIN, LWIN, LWOUT and Rn products from 2000 to 205 

https://glass.bnu.edu.cn/
https://lpdaac.usgs.gov/
https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php
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2018 (https://glass.bnu.edu.cn/, last access: 6 August 2024), (2) the daily 0.05° 206 

Breathing Earth System Simulator Radiation (BESS-Rad) SWIN products from 2000 to 207 

2020 (https://www.environment.snu.ac.kr/bess-rad), (3) the daily 0.05° BESS 208 

Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020 209 

(https://www.environment.snu.ac.kr/bessv2), (4) the 8-day 0.0833° FLUXCOM Rn, LE 210 

and H products from 2001 to 2020 (https://fluxcom.org/, last access: 6 August 2024), 211 

(5) the daily 1 km ETMonitor LE product from 2000 to 2020 (https://data.casearth.cn/, 212 

last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2 213 

(PML_V2, https://www.tpdc.ac.cn/, last access: 6 August 2024) LE product from 2000 214 

to 2020; and (7) the 8-day 500 m MOD16A2 (https://lpdaac.usgs.gov/, last access: 6 215 

August 2024) LE product from 2000 to 2020. 216 

The GLASS SWIN products are derived from a combination of the GLASS 217 

broadband albedo product and the surface shortwave net radiation estimates, where the 218 

surface shortwave net radiation is estimated using linear regression with MODIS top-219 

of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LWIN and 220 

LWOUT products are generated using densely connected convolutional neural networks, 221 

incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance 222 

and ERA5 near-surface meteorological data (Xu et al., 2022b). The GLASS Rn 223 

products are estimated from the meteorological variables from MERRA2 and surface 224 

variables from GLASS using the multivariate adaptive regression splines model (Jiang 225 

et al., 2015). The BESS-Rad and BESSV2.0 estimate SWIN and Rn using a radiative 226 

transfer model (i.e., Forest Light Environmental Simulator, FLiES) with an artificial 227 

neural network based on MODIS and MERRA2 reanalysis datasets, and using FLiES 228 

based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al., 229 

2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et 230 

al., 2011), PML_V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated 231 

global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor 232 

equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and 233 

https://www.tpdc.ac.cn/
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H datasets are obtained through multiple machine learning methods based on in situ 234 

observations from FLUXNET and remote sensing and meteorological data (Jung et al., 235 

2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected 236 

LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study. 237 

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study 238 

Products/ 

datasets 

Reso-

lution 

Time 

coverage 
Variables Algorithms References 

GLASS 
0.05°/ 

daily 

2000-

2018 

SWIN, 

LWIN, 

LWOUT, Rn 

Machine 

learning, direct 

estimation 

algorithm 

Wang et al. (2015); 

Xu et al. (2022b); 

Jiang et al. (2015) 

BESS-Rad 
0.05°/ 

daily 

2000-

2020 
SWIN 

BESS process 

model 
Ryu et al. (2018) 

BESSV2.0 
0.05°/ 

daily 

2000-

2020 
Rn, LE 

BESS process 

model 
Li et al. (2023) 

FLUXCOM 
0.0833°/ 

8-day 

2000-

2020 
Rn, LE, H 

Model tree 

ensembles 
Jung et al. (2019) 

MOD16A2 
500 m/ 

8-day 

2000-

2020 
LE 

Modified Penman-

Monteith equation 
Mu et al. (2011) 

PML_V2 
500 m/ 

8-day 

2002-

2020 
LE 

Penman Monteith-

Leuning model, 

Priestly Taylor 

equation and Gash 

model 

Zhang et al. (2019) 

ETMonitor 
1 km/ 

daily 

2000-

2020 
LE 

Shuttleworth-

Wallace two-

source scheme, 

Gash model and 

Penman equation 

Zheng et al. (2022) 

3 Methods 239 

The method used to generate global datasets of land surface radiation and heat 240 

fluxes is based on the CoSEB model/framework, which was developed by our 241 

previously published work (Wang et al., 2025), to coordinately estimate global land 242 

surface energy balance components (including Rn, LE, H and G) using the multivariate 243 

random forest technique, with a combination of MODIS and GLASS products, ERA5-244 
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Land reanalysis datasets, and in situ observations at 336 EC sites. The CoSEB model 245 

was demonstrated to be able to produce high-accuracy estimates of land surface energy 246 

components, with the RMSE of <17 W/m2 and R2 of > 0.83 for estimating 4-day Rn, 247 

LE and H, and the RMSE of <5 W/m2 and R2 of 0.55 for estimating 4-day G. The most 248 

praiseworthy superiority of the CoSEB model lies in its ability to balance the land 249 

surface energy components, with an energy imbalance ratio [EIR, defined as 100%×250 

(Rn - G - LE - H)/Rn] of 0. 251 

To coordinately estimate land surface radiation and heat fluxes that comply with 252 

both radiation balance and heat balance, one of the key procedures in the construction 253 

of the CoSEB model was to prepare training datasets that satisfy surface radiation and 254 

heat balance. For this purpose, the energy-imbalance corrections on daily in situ 255 

observed LE and H were conducted by the most widely applied Bowen ratio method 256 

[ ( )corr H
H Rn G

H LE
=  −

+
 , ( )corr LE

LE Rn G
H LE

=  −
+

 , where corrH   and corrLE  257 

represent the sensible heat flux and latent heat flux after energy-imbalance correction, 258 

respectively] with the aid of Rn and G observations, and the in situ Rn was calculated 259 

from the sum of in situ observed net longwave radiation (LWIN minus LWOUT) and net 260 

shortwave radiation (SWIN minus SWOUT). The input variables to renew the CoSEB 261 

model include: (1) climate/meteorology: aT , 
5ERA

INSW , netLW , WS , PA , rP , RH , 262 

CO2 concentration; (2) vegetation and soil: LAI, FVC, PTC, TS1, SM1; (3) topography 263 

data: DEM, Slope and Aspect, in addition to longitude (Lon), latitude (Lat), and inverse 264 

relative distance from the Earth to the Sun (dr), in which the dr was calculated as 265 

2
1 0.033 cos

365

DOY
dr

  
= +   

 
, where DOY represents the day of year. Considering 266 

that the footprint of the site-based measurements of turbulent heat fluxes is generally at 267 

a scale of hundreds of meters, to reduce the effect of differences of spatial scales 268 

between ground-based measurements (dependent variables) and remotely 269 

sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a 270 

spatial scale of 500 m for coordinately estimating global daily land surface radiation 271 
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and heat fluxes, which can be expressed as follows: 272 

 
5

1

2

, , , , , , , 1, , , , , ,

, , , , , , , , , , ,

ERA
IN OUT IN a S IN net r

OUT

SW SW LW Lon Lat T T SM SW LW PA WS P dr
f

LW Rn LE H G RH LAI FVC PTC DEM Slope Aspect CO

  
=   

   
(1)  273 

To enhance model generalization, the renewed CoSEB model was reoptimized 274 

using random and grid search methods, resulting in different hyperparameters of 281 275 

decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 from 276 

those of Wang et al. (2025). Site-based 10-fold cross-validation was employed to 277 

evaluate the transferability and generalization of the CoSEB model by randomly 278 

dividing all sites into ten folds, where the samples from each fold of sites in turn served 279 

as validation datasets while the remaining folds were used as training datasets, ensuring 280 

that the validation was conducted on sites spatially independent from the training data. 281 

Furthermore, to benchmark the coordinated estimates from the renewed CoSEB model, 282 

eight RF-based uncoordinated models were constructed, each separately estimating one 283 

of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H or G using the same inputs as those in the 284 

renewed CoSEB model. Fig. 2 illustrates the flowchart for generating global datasets 285 

of land surface radiation and heat fluxes by the CoSEB model.  286 
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 287 
Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation 288 

[including downward shortwave radiation (SWIN), downward longwave radiation (LWIN), 289 

upward shortwave radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation 290 

(Rn)] and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux 291 

(H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and 292 

collocated remote sensing and reanalysis datasets. 293 

4 Results 294 

4.1 Validation of the CoSEB model 295 

4.1.1 Site-based 10-fold cross-validations at 258 EC sites 296 

Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-297 

validation of daily SWIN, LWIN, SWOUT, LWOUT, Rn, LE, H and G estimated from the 298 

renewed CoSEB model and the RF-based uncoordinated models, respectively, by using 299 

the validation datasets collected at 258 EC sites worldwide. Results indicated that the 300 

estimates from both the CoSEB model and the RF-based uncoordinated models agreed 301 

well with the in situ observations, with the coefficient of determination (R2) varying 302 

between 0.80 and 0.95 for SWIN, LWIN, LWOUT and Rn, and between 0.59 and 0.67 for 303 

SWOUT, LE and H. The CoSEB model, with the root mean square error (RMSE) of 26.82 304 

to 34.25 W/m2 and mean absolute error (MAE) of 18.83 to 24.49 W/m2 for SWIN, Rn, 305 

LE and H, the RMSE of 12.24 to 17.75 W/m2 and the MAE of 8.39 to 13.70 W/m2 for 306 
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SWOUT, LWIN and LWOUT, demonstrated comparable accuracies to the RF-based models, 307 

with the RMSE of 27.07 to 33.34 W/m2 and MAE of 19.29 to 23.64 W/m2 for SWIN, 308 

Rn, LE and H, the RMSE of 12.12 to 16.93 W/m2 and the MAE of 8.68 to 12.99 W/m2 309 

for SWOUT, LWIN and LWOUT. In the validation of daily G, both the CoSEB and RF-based 310 

models yielded RMSEs below 7 W/m2. Comparisons with the corresponding training 311 

results (Table S3 in the Supplementary Material) indicated that although the CoSEB 312 

model performed better on the training datasets, its overall performance remained stable, 313 

suggesting that the CoSEB model was not affected by overfitting. 314 

Strikingly, the CoSEB model exhibited large superiority in balancing the surface 315 

radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% × 316 

(SWIN – SWOUT + LWIN - LWOUT)/Rn] and energy imbalance ratio [EIR, defined as 100% 317 

× (Rn - G - LE - H)/Rn] of 0, while the RF-based uncoordinated models showed 318 

substantial imbalances of the surface radiation and heat fluxes, with RIR and EIR that 319 

were approximately normally distributed, having absolute mean values of 38.84% and 320 

31.22%, respectively, and reaching as high as 50% in some cases. Furthermore, the RIR 321 

as well as EIR tended to be higher under lower solar radiation, air temperature, or FVC, 322 

with more frequent low values of these three variables leading to a broader and less 323 

peaked distribution of RIR and EIR (see Fig. S1 in the Supplementary Material). 324 
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 325 

Fig. 3 Scatter density plots of the site-based 10-fold cross-validation of daily downward 326 

shortwave and longwave radiation (SWIN and LWIN), upward shortwave and longwave 327 

radiation (SWOUT and LWOUT), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and 328 

sensible heat flux (H) derived by the CoSEB model against in situ observed SWIN, LWIN, SWOUT, 329 

LWOUT, Rn, G, and energy imbalance-corrected LE (
corr

dailyLE ) and H (
corr

dailyH ). The EIR and RIR 330 

in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which 331 

are defined as 100% × (Rn - G - LE - H)/Rn and 100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn, 332 

respectively. The colorbar represents the normalized density of data points. 333 
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 334 
Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models. 335 

4.1.2 Validation at nine radiation sites from SURFRAD 336 

To further illustrate the generality and transferability of the renewed CoSEB model, 337 

the validation of estimates of the five radiation components (including SWIN, SWOUT, 338 

LWIN, LWOUT, Rn) derived from both the CoSEB model and RF-based uncoordinated 339 

models against observations at nine radiation sites from SURFRAD was performed, as 340 

shown in Fig. 5. The results showed that both the CoSEB model and the RF-based 341 

models achieved high accuracy in estimating daily SWIN, SWOUT, LWIN, LWOUT and Rn, 342 

with the RMSE of ~30 W/m2 for SWIN, ~14 W/m2 for SWOUT and LWIN, ~12 W/m2 for 343 

LWOUT and ~24 W/m2 for Rn, with the R2 >0.9 for SWIN, LWIN and LWOUT, ~0.65 for 344 

SWOUT and ~0.85 for Rn. Compared to the results of the site-based 10-fold cross-345 

validation at 258 EC sites, the performances at nine radiation sites showed slight 346 
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improvements, with the RMSE decreasing by 0.74 to 4.54 W/m2 for SWIN, LWIN, LWOUT 347 

and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by 348 

~1.05 W/m2 for SWOUT, suggesting the robust performance of the CoSEB model. 349 

Furthermore, the CoSEB model demonstrated a large superiority in maintaining surface 350 

radiation balance among the five radiation components, with the RIR of 0, in contrast 351 

to the RF-based models, which failed to meet this balance, exhibiting significant RIR 352 

exceeding 50%. 353 

4.2 Validation and inter-comparisons of the CoSEB-based datasets 354 

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of 355 

500 m achieved comparable accuracies to the RF-based uncoordinated models but 356 

outperformed them in balancing surface radiation and heat fluxes. Evidenced by the 357 

validation for its superiority, the renewed CoSEB model was then applied to the 358 

spatially aggregated input datasets to generate our developed global daily datasets with 359 

a spatial resolution of 0.05°. To further assess the performance of the developed 360 

CoSEB-based datasets, in situ observations from another 44 spatially independent test 361 

sites (see Section 2.1), which were not involved in model construction and datasets 362 

generation, were used for validation. Mainstream products (i.e. GLASS, BESS-Rad, 363 

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for 364 

inter-comparison at the 44 test sites. 365 

Note that due to the lack of moderate-resolution global RS-based products/datasets 366 

of daily and/or 8-day SWOUT, H and G, the intercomparison between different 367 

products/datasets was impossible. Instead, we conducted a validation of these 368 

components from the CoSEB-based datasets against in situ observations at 44 test sites, 369 

as shown in Figs S2 and S3 in the Supplementary Material. Results indicated that the 370 

CoSEB-based datasets could provide good estimates of SWOUT, H and G, with the 371 

RMSEs (R2) of 14.20 W/m2 (0.42), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44) at daily 372 

scale, respectively, and the RMSE (R2) of 12.19 W/m2 (0.39) and 4.60 W/m2 (0.47) for 373 

8-day SWOUT and G, respectively. 374 
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 375 
Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave 376 

radiation (SWIN and LWIN), upward shortwave and longwave radiation (SWOUT and LWOUT) 377 

and net radiation (Rn) from the renewed CoSEB model (upper two rows) and RF-based 378 

uncoordinated models (lower two rows) against in situ observations at nine radiation sites 379 

from SURFRAD. The RIR represents the radiation imbalance ratio, defined as 100% × (SWIN 380 

– SWOUT + LWIN - LWOUT)/Rn. The colorbar represents the normalized density of data points. 381 

Fig. 6 and Fig. 7 present the comparison of daily SWIN, LWIN and LWOUT, as well 382 

as Rn and LE from the CoSEB-based datasets and mainstream products/datasets 383 

(including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations 384 

at 44 test sites, respectively. Overall, the estimates from the CoSEB-based datasets 385 
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exhibited a closer agreement with in situ observations than those from mainstream 386 

products/datasets, where the CoSEB-based datasets reduced the RMSE by 0.01 W/m2 387 

to 4.58 W/m2 and increased the R² by 0.01 to 0.09 compared to mainstream products. 388 

Specifically, the RMSE for the SWIN, LWIN, LWOUT increased from 37.52 W/m2, 22.47 389 

W/m2 and 13.78 W/m2 in the CoSEB-based datasets to 37.53 W/m2 ,23.37 W/m2 and 390 

16.46 W/m2 in the GLASS, respectively, and for SWIN from 37.52 W/m2 in the CoSEB-391 

based datasets to 40.87 W/m2 in the BESS-Rad. Likewise, the RMSEs for daily Rn and 392 

LE were 29.66 W/m2 and 30.87 W/m2 in the CoSEB-based datasets, which were lower 393 

than those of 34.24 W/m2 and 34.36 W/m2 in BESSV2.0, respectively, as well as those 394 

of 30.60 W/m2 for Rn in GLASS and 33.62 W/m2 for LE in ETMonitor. 395 

 396 

Fig. 6 Comparison of the daily downward shortwave radiation (SWIN, the first column), 397 

downward longwave radiation (LWIN, the second column) and upward longwave radiation 398 

(LWOUT, the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the 399 

in situ observed SWIN, LWIN and LWOUT at 44 test sites. The colorbar represents the normalized 400 

density of data points. 401 
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 402 

Fig. 7 Comparison of the daily net radiation (Rn, the upper row) and latent heat flux (LE, the 403 

lower row) from the CoSEB-based datasets, BESSV2.0, GLASS and ETMonitor with the in 404 

situ observed Rn, and energy imbalance-corrected LE (
corr

dailyLE ) at 44 test sites. The colorbar 405 

represents the normalized density of data points. 406 

Figs. 8, 9 and 10 compare the 8-day SWIN, LWIN and LWOUT, Rn and LE, as well as 407 

H from the CoSEB-based datasets and mainstream products, with in situ observations 408 

at 44 test sites, respectively. Overall, the CoSEB-based datasets outperformed the 409 

mainstream products/datasets for all surface radiation and heat fluxes, where the 410 

CoSEB-based datasets reduced the RMSE by 0.24 W/m2 to 10.48 W/m2 and increased 411 

the R² by 0.01 to 0.38 compared to mainstream products. Specifically, for SWIN, LWIN 412 

and LWOUT, the RMSE increased from 18.54 W/m2, 18.50 W/m2 and 9.41 W/m2 in the 413 

CoSEB-based datasets to 21.35 W/m2, 20.39 W/m2 and 14.48 W/m2 in the GLASS, 414 

respectively, and for SWIN from 18.54 W/m2 in the CoSEB-based datasets to 18.78 415 

W/m2 in the BESS-Rad. For Rn, the RMSE increased from 19.12 W/m2 in the CoSEB-416 

based datasets to ~23 W/m2 in the FLUXCOM and GLASS and to >27 W/m2 in the 417 

BESSV2.0, while the R2 decreased from 0.82 in the CoSEB-based datasets to 0.75 in 418 

the FLUXCOM and GLASS and to 0.62 in the BESSV2.0. Likewise, for LE, the RMSE 419 

increased from 22.31 W/m2 in the CoSEB-based datasets to ~25 W/m2 in the 420 
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FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and to >32 W/m2 in MOD16A2, 421 

while the R2 decreased from 0.67 in the CoSEB-based datasets to ~0.60 in the 422 

FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and to <0.3 in the MOD16A1. For 423 

H, the RMSE increased from 21.63 W/m2 in the CoSEB-based datasets to 22.64 W/m2 424 

in the FLUXCOM.  425 

The differences between the estimates from the CoSEB-based datasets and 426 

mainstream datasets are likely multifactorial, arising from the simplification and 427 

parameterization uncertainties in physics-based models, as well as the lack of physical 428 

constraints, limited training samples, and incomplete consideration of influencing 429 

factors in other machine-learning-based models. 430 

 431 

Fig. 8 Same as Fig. 6, but for the comparison at 8-day scale. 432 
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 433 
Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux 434 

(LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS, 435 

MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-436 

corrected LE ( 8

corr

dayLE − ) at 44 test sites. The colorbar represents the normalized density of data 437 

points. 438 
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 439 
Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and 440 

the FLUXCOM with the in situ energy imbalance-corrected H ( 8

corr

dayH − ) at 44 test sites. The 441 

colorbar represents the normalized density of data points. 442 

4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes 443 

In addition to the validation and inter-comparison of the CoSEB-based datasets at 444 

the site scale, we further inter-compared the estimates of land surface radiation and heat 445 

fluxes from the CoSEB-based datasets and the mainstream products/datasets, in terms 446 

of their global spatial and temporal patterns. 447 

Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic 448 

continent, deserts, water bodies and permanent snow) and latitudinal profiles of the 449 

global 0.05° mean annual SWIN, LWIN and LWOUT, Rn and LE, as well as H from 2001 450 

to 2018, respectively, as derived from the CoSEB-based datasets and mainstream 451 

products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, 452 

PML_V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or 453 

cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates 454 

from the CoSEB-based datasets aligned well with those observed in these mainstream 455 

products/datasets, though regional discrepancies were present. Specifically, the mean 456 

annual LWIN, LWOUT, Rn, and LE generally exhibited decreasing trends from the equator 457 

towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo 458 

Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SWIN and 459 

H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia, 460 

Sahel and Southern Africa, while the lower values were found in high-latitude regions 461 
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of >50°N. In the region with high values, the mean annual estimates of SWIN from the 462 

CoSEB-based datasets were higher than those from GLASS but lower than those from 463 

BESS-Rad, the estimates of LWIN and LWOUT from the CoSEB-based datasets were both 464 

higher than those from GLASS, the estimates of Rn from the CoSEB-based datasets 465 

were significantly higher than those from BESSV2.0, and comparable to or slightly 466 

higher than those from FLUXCOM and GLASS, the estimates of LE from the CoSEB-467 

based datasets were close to those from BESSV2.0 and PML_V2, but slightly lower 468 

than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates of H 469 

from the CoSEB-based datasets were higher than those from FLUXCOM in regions 470 

with high values, while lower than those from FLUXCOM in regions with low values.471 
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 472 
Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SWIN, the first 473 

row), downward longwave radiation (LWIN, the second row) and upward longwave radiation 474 

(LWOUT, the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad. 475 

The rightmost subfigure of each row represents the latitudinal profiles of mean annual SWIN, 476 

LWIN and LWOUT from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area 477 

represents the variation of standard deviation for each product. 478 

 479 

Fig.12 Spatial patterns of global mean annual net radiation (Rn, the first row) and latent heat 480 

flux (LE, the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM, 481 

BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third 482 

row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets 483 

and these mainstream products/datasets, where the shaded area represents the variation of 484 

standard deviation for each product. 485 
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 486 

Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by 487 

CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal 488 

profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded 489 

area represents the variation of standard deviation for each product. 490 

The temporal evolutions of the global (excluding Greenland, Antarctic continent, 491 

deserts, water bodies and permanent snow) land surface radiation and heat fluxes 492 

derived from the CoSEB-based datasets and mainstream products/datasets from 2001 493 

to 2018 were also investigated, as shown in Fig. 14. The results indicated that the 494 

temporal variation of each flux from the CoSEB-based datasets generally agreed well 495 

with those from mainstream products/datasets, exhibiting relatively stable trends. The 496 

global annual mean estimates using area weighting average by the CoSEB-based 497 

datasets from 2001 to 2018 varied between ~185.22 and ~189.50 W/m2 with the mean 498 

of ~187.23 W/m2 for SWIN, between ~32.67 and ~33.20 W/m2 with the mean of ~32.96 499 

W/m2 for SWOUT, between ~330.24 and ~334.14 W/m2 with the mean of ~331.50 W/m2 500 

for LWIN, between ~387.25 and ~390.82 W/m2 with the mean of ~388.81 W/m2 for 501 

LWOUT, between ~95.41 and ~99.39 W/m2 with the mean of 97.11 W/m2 for Rn, 502 

between ~53.24 and ~56.37 W/m2 with the mean of ~54.53 W/m2 for LE, between 503 

~40.44 and ~41.96 W/m2 with the mean of ~41.29 W/m2 for H, and between ~1.22 and 504 

~1.52 W/m2 with the mean of ~1.33 W/m2 for G. For each radiation or heat flux, the 505 

annual mean estimates from the CoSEB-based datasets were overall higher than those 506 

from the mainstream products/datasets. In particular, the annual mean Rn estimates 507 

from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and 508 

BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based 509 

datasets were marginally higher than those from FLUXCOM, but substantially 510 

exceeded those from ETMonitor, PML_V2, MOD16A2 and BESSV2.0 sequentially. 511 
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 512 

Fig. 14 Temporal variation of annual mean downward shortwave radiation (SWIN), upward 513 

shortwave radiation (SWOUT), downward longwave radiation (LWIN), upward longwave 514 

radiation (LWOUT), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat 515 

flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM, 516 

BESSV2.0, PML_V2, MOD16A2 and ETMonitor. The shaded area represents the variation of 517 

standard deviation for each product. 518 
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 519 
Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward 520 

shortwave radiation (SWIN, the first row), downward longwave radiation (LWIN, the second 521 

row) and upward longwave radiation (LWOUT, the third row) from 2001 to 2018 by the CoSEB-522 

based datasets, GLASS and BESS-Rad. 523 

Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic 524 

continent, deserts, water bodies and permanent snow) of interannual variability of SWIN, 525 

LWIN and LWOUT, Rn and LE, as well as H from 2001 to 2018, respectively, derived 526 

from the CoSEB-based datasets and mainstream products/datasets. In general, the 527 

estimates from the CoSEB-based datasets displayed similar interannual variability in 528 

space with those from the mainstream products/datasets. Specially, the estimates of 529 

SWIN from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant 530 

interannual variability mainly in northeastern Australia, eastern South America, 531 

Southeast China, and Southwest North America. The interannual variability of LWIN 532 

and LWOUT by the CoSEB-based datasets and GLASS displayed high values primarily 533 

at middle-to-high latitudes of the Northern Hemisphere and parts of Africa and 534 

Australia. The interannual variability of Rn observed by the CoSEB-based datasets was 535 

generally lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM. 536 

The CoSEB-based datasets missed the strong interannual variability of LE as observed 537 

in MOD16A2, PML_V2 and ETMonitor in parts of Africa, Australia and eastern South 538 
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America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE 539 

in almost all regions. The interannual variability of H derived from the CoSEB-based 540 

datasets was higher than that from FLUXCOM, with stronger interannual variabilities 541 

mainly observed in parts of eastern South America, southern Africa, and northeastern 542 

Australia. 543 

 544 
Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn, 545 

the first and second rows) and latent heat flux (LE, the third and fourth row) from 2001 to 546 

2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2, 547 

ETMonitor and GLASS. 548 

 549 

Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux 550 

(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM. 551 
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5 Discussion 552 

Accurately monitoring the spatial and temporal variations of global land surface 553 

radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and 554 

water between the land and atmosphere under global climate change (Chen et al., 2020; 555 

Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However, 556 

although numerous global RS-based products/datasets of land surface radiation and 557 

heat fluxes have been developed using physical and/or statistical methods, they 558 

typically provide either merely a single flux or multiple fluxes (see Table 1) that are 559 

estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019; 560 

Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or 561 

heat imbalance when these products are combined for practical applications. To address 562 

these limitations, we generated high-accuracy global datasets of land surface radiation 563 

and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation 564 

laws, using our proposed CoSEB model (Wang et al., 2025). 565 

Our CoSEB model, integrating underlying physical principles of training datasets 566 

into machine learning technique to effectively learn the interrelations among multiple 567 

targeted outputs, was originally designed for coordinating estimates of global land 568 

surface energy balance components (Rn, LE, H and G) to satisfy the energy 569 

conservation (Wang et al., 2025). Inspired by the idea of constructing the original 570 

CoSEB model, we further incorporated land surface radiation fluxes into our model to 571 

simultaneously consider the physical constraints of both surface radiation and heat 572 

conservation principles, by renewing the CoSEB using multiple remote sensing and 573 

reanalysis datasets, as well as in-situ observations of SWIN, SWOUT, LWIN, LWOUT, Rn, 574 

LE, H and G. In selecting the 19 input variables to accommodate the additional target 575 

variables, prior knowledge derived from previous studies was employed to identify 576 

factors that exert significant influence on surface radiation and heat flux while 577 

maintaining relative inter-independence as much as possible (Jung et al., 2019; Mohan 578 

et al., 2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted 579 
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in data-driven models for estimating land surface water, energy, and carbon fluxes (Bai 580 

et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance 581 

scores of the 19 different feature variables are exhibited in Table S4 in the 582 

Supplementary Material, and downward solar radiation, the primary source of the 583 

energy at the earth surface, is the most important input variable, consistent with the 584 

results from our previous study (Wang et al., 2025). Although some of the selected 585 

variables may exhibit a certain degree of multi-collinearity, each contributes unique and 586 

physically meaningful information, supporting the inclusion of all variables in model 587 

construction. Note that the variable importance, derived from the built-in method of the 588 

random forests and potentially affected by multicollinearity among the input variables, 589 

is presented only as a reference. Retaining all 19 feature variables ensures the model’s 590 

flexibility and generalization capability, enabling future incorporation of additional 591 

representative ground-based observations for further training and improvement. 592 

Besides, to investigate the impact of lagged effects of input variables on model 593 

performance, experiments were also conducted by adding lagged variables (e.g., the air 594 

temperature of the previous day) to the 19 input features. The results (Fig. S4 in the 595 

Supplementary Material) showed almost no improvement in model accuracy, 596 

suggesting that lagged effects on model performance were negligible within the CoSEB 597 

framework for estimates of daily surface radiation and heat fluxes. Furthermore, to 598 

better illustrate the effect of including additional radiation components (SWIN, SWOUT, 599 

LWIN and LWOUT) in the renewed CoSEB model compared with the original version by 600 

Wang et al. (2025), we have tested the performance of a reconstructed model that 601 

estimated only Rn, LE, H and G using the same independent variables and samples as 602 

those in the renewed CoSEB model. The results (Fig. S5 in the supplementary material) 603 

showed no significant differences in accuracy compared with those of the renewed 604 

CoSEB model, indicating the expansion of radiation components did not compromise 605 

model performance. 606 

The main advantages of our CoSEB-based datasets of land surface radiation and 607 
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heat fluxes lie in that [1] they are the first data-driven global datasets that satisfy both 608 

surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = Rn) and heat balance (LE + 609 

H + G = Rn) among the eight fluxes, as demonstrated by both the RIR and EIR of 0, [2] 610 

the radiation and heat fluxes are characterized by high accuracies when validated 611 

against in-situ measurements at 44 independent test sites (see the second paragraph in 612 

Section 2.1), where (1) the RMSEs for daily estimates of SWIN, SWOUT, LWIN, LWOUT, 613 

Rn, LE, H and G from the CoSEB-based datasets were 37.52 W/m2, 14.20 W/m2, 22.47 614 

W/m2, 13.78 W/m2, 29.66 W/m2, 30.87 W/m2, 29.75 W/m2 and 5.69 W/m2, respectively, 615 

as well as for 8-day estimates were 18.54 W/m2, 12.19 W/m2, 18.50 W/m2, 9.41 W/m2, 616 

19.12 W/m2, 22.31 W/m2, 21.63 W/m2 and 4.60 W/m2, respectively, (2) the CoSEB-617 

based datasets, in comparison to the mainstream RS-based products/datasets (i.e. 618 

GLASS, BESS-Rad, FLUXCOM, BESSV2.0, MOD16A2, PML_V2 and ETMonitor), 619 

better agreed with the in situ observations at the 44 test sites, showing the RMSE 620 

reductions ranging from 0.01 W/m2 to 4.58 W/m2 for SWIN, LWIN, LWOUT, Rn and LE 621 

at daily scale, and 0.24 W/m2 to 10.48 W/m2 for SWIN, LWIN, LWOUT, Rn, LE and H at 622 

8-day scale. Furthermore, the CoSEB-based datasets outperformed the ERA5-Land 623 

reanalysis datasets in estimating surface energy fluxes (where SWOUT, LWOUT, Rn and 624 

G for the ERA-Land were inferred from surface radiation balance and heat balance), 625 

particularly for SWOUT, H and G, with RMSE reductions of 0.13-8.15 W/m2 when 626 

validated against in situ observations at the 44 test sites (Figs. S6 and S7 in the 627 

Supplementary Material). Preliminary analysis indicates that the CoSEB-based datasets 628 

exhibit spatial patterns consistent with those of mainstream RS-based datasets and Earth 629 

system model outputs (see Fig. S8 in the supplementary material). More detailed 630 

analysis about their similarities and differences can be further conducted in future work. 631 

Our developed datasets could be potentially applied in many fields, including but 632 

not limited to (1) exploring the spatial-temporal patterns of global land surface radiation 633 

and heat flux (es) and their driving mechanisms over the past decades under global 634 

change (e.g., rising CO2 concentration, greening land surface and increasing air 635 
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temperature), (2) investigating the variability of land surface radiation and heat fluxes 636 

caused by extreme events and human activities, e.g. afforestation or deforestation, 637 

wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources 638 

of solar energy, geothermal energy, surface and ground water at regional and global 639 

scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry. 640 

The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2) 641 

the application of the CoSEB model across different spatial scales. Specifically, daily 642 

averages of surface radiation and heat fluxes for each day were obtained for analysis 643 

from good-quality half-hourly observations when the fraction of these good-quality 644 

half-hourly observations was greater than 80% in a day, due to the lack of consensus on 645 

the method for aggregating gapped half-hourly observations to daily data (Tang et al., 646 

2024a; Yao et al., 2017; Zheng et al., 2022). Simple temporal interpolation of half-647 

hourly in situ observations, which could therefore introduce substantial uncertainties, 648 

was not applied, because surface radiation and heat fluxes are sensitive to short-term 649 

variations in meteorological conditions and their intraday dynamics are often complex. 650 

Likewise, since there was no agreement on how to correct for the energy imbalance of 651 

turbulent heat fluxes, we adopted the most widely applied Bowen ratio method to 652 

enforce energy closure between Rn G−  and LE H+  (Castelli et al., 2018; Twine et 653 

al., 2000; Zhang et al., 2021). Another potential source of uncertainty arises from 654 

differences in meteorological reanalysis data caused by spatial downscaling, which, as 655 

demonstrated in our previous study (Wang et al., 2025, the last paragraph of Section 656 

5.1), has a relatively small impact on model estimates by the machine-learning-based 657 

CoSEB model combined with finer-resolution surface-related variables that partially 658 

compensate for the spatial heterogeneity and localized variations not captured by the 659 

coarse-resolution datasets. These data preprocessing had an effect on the construction 660 

of the renewed CoSEB model, which may further affect the global datasets. Moreover, 661 

the renewed CoSEB model was constructed at the spatial scale of 500 m to match the 662 

footprints of the in situ EC observations, but applied at the spatial resolution of 0.05° 663 
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to generate global datasets, mainly limited by the computing and storage capabilities of 664 

our personal computers. However, the CoSEB-based datasets have also been validated 665 

and inter-compared at 44 independent test sites to demonstrate that the difference in 666 

spatial scale would not much affect the performance of the datasets. Despite these 667 

uncertainties, it is worth emphasizing that our work was the first attempt to innovatively 668 

develop data-driven energy-conservation datasets of global land surface radiation and 669 

heat fluxes with high accuracies. 670 

6 Data availability 671 

The energy-conservation datasets of global land surface radiation and heat fluxes 672 

generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05° 673 

from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan 674 

Plateau Data Center at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) 675 

and through the Science Data Bank (ScienceDB) at 676 

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b). 677 

7 Summary and Conclusion 678 

This study for the first time developed data-driven energy-conservation datasets 679 

of global land surface radiation and heat fluxes using our CoSEB model renewed based 680 

on GLASS and MODIS products, ERA5-Land reanalysis datasets, topographic data, 681 

CO2 concentration data, and observations at 258 EC sites worldwide. 682 

The CoSEB-based datasets of land surface radiation and heat fluxes are the first 683 

data-driven global datasets that satisfy both surface radiation balance (SWIN - SWOUT + 684 

LWIN - LWOUT = Rn) and heat balance (LE + H + G = Rn) among the eight fluxes. 685 

Meanwhile, the CoSEB-based datasets outperformed the mainstream products/datasets 686 

in accuracy. Specifically, at 44 independent test sites, the RMSEs (R2) for daily 687 

estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based 688 

datasets were 37.52 W/m2 (0.81), 14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 13.78 W/m2 689 

(0.95), 29.66 W/m2 (0.77), 30.87 W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44), 690 

https://doi.org/10.57760/sciencedb.27228
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respectively, as well as for 8-day estimates were 18.54 W/m2 (0.87), 12.19 W/m2 (0.39), 691 

18.50 W/m2 (0.92), 9.41 W/m2 (0.97), 19.12 W/m2 (0.82), 22.31 W/m2 (0.67), 21.63 692 

W/m2 (0.39) and 4.60 W/m2 (0.47), respectively. Moreover, the estimates from the 693 

CoSEB-based datasets in comparison to those from the mainstream products/datasets 694 

reduced the RMSE by 0.01 W/m2 to 4.58 W/m2 and increased the R2 by 0.01 to 0.09 695 

for SWIN, LWIN, LWOUT, Rn and LE at daily scale, and reduced the RMSE by 0.24 W/m2 696 

to 10.48 W/m2 and increased the R2 by 0.01 to 0.38 for SWIN, LWIN, LWOUT, Rn, LE and 697 

H at 8-day scale, when these estimates were validated against in situ observations at 44 698 

independent test sites. Furthermore, the CoSEB-based datasets effectively captured the 699 

spatial-temporal variability of global land surface radiation and heat fluxes, aligning 700 

well with those from the mainstream products. 701 

Our developed datasets hold significant potential for application across diverse 702 

fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental 703 

science. They can facilitate comprehensive studies on the variability, impacts, responses, 704 

adaptation strategies, and mitigation measures of global and regional land surface 705 

radiation and heat fluxes under the influences of climate change and human activities. 706 

These datasets will provide valuable insights and data support for scientific research, 707 

policy-making, and environmental management, advancing global solutions to address 708 

climate change. 709 
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