

1 **Energy-conservation datasets of global land surface radiation**
2 **and heat fluxes from 2000-2020 generated by CoSEB**

3 Junrui Wang^{a, b}, Ronglin Tang^{a, b, *}, Meng Liu^c, Zhao-Liang Li^{a, b, c}

4 ^a State Key Laboratory of Resources and Environment Information System, Institute of
5 Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
6 Beijing 100101, China

7 ^b University of Chinese Academy of Sciences, Beijing 100049, China

8 ^c State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of
9 Agricultural Resources and Regional Planning, Chinese Academy of Agricultural
10 Sciences, Beijing 100081, China

11 * Authors to whom correspondence should be addressed: tangrl@lreis.ac.cn

12 **Abstract**

13 Accurately estimating global land surface radiation [including downward
14 shortwave radiation (SW_{IN}), downward longwave radiation (LW_{IN}), upward shortwave
15 radiation (SW_{OUT}), upward longwave radiation (LW_{OUT}) and net radiation (Rn)] and heat
16 fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is
17 essential for quantifying the exchange of radiation, heat and water between the land and
18 atmosphere under global climate change. This study presents the first data-driven
19 energy-conservation datasets of global land surface radiation and heat fluxes from 2000
20 to 2020, generated by our model of Coordinated estimates of land Surface Energy
21 Balance components (CoSEB). The model integrates GLASS and MODIS remote
22 sensing data, ERA5-Land reanalysis datasets, topographic data, CO₂ concentration data
23 as independent variables and in situ radiation and heat flux observations at 258 eddy
24 covariance sites worldwide as dependent variables within a multivariate random forest
25 technique to effectively learn the physics of energy conservation. The developed
26 CoSEB-based datasets are strikingly advantageous in that [1] they are the first data-
27 driven global datasets that satisfy both surface radiation balance and heat balance

28 among the eight fluxes, as demonstrated by both the radiation imbalance ratio [RIR, 29 defined as $100\% \times (SW_{IN} - SW_{OUT} + LW_{IN} - LW_{OUT})/Rn$] and energy imbalance ratio 30 [EIR, defined as $100\% \times (Rn - G - LE - H)/Rn$] of 0, [2] the radiation and heat fluxes 31 are characterized by high accuracies, where (1) the RMSEs (R^2) for daily estimates of 32 SW_{IN} , SW_{OUT} , LW_{IN} , LW_{OUT} , Rn , LE , H and G from the CoSEB-based datasets at 44 independent test sites were 37.52 W/m^2 (0.81), 14.20 W/m^2 (0.42), 22.47 W/m^2 (0.90), 33 13.78 W/m^2 (0.95), 29.66 W/m^2 (0.77), 30.87 W/m^2 (0.60), 29.75 W/m^2 (0.44) and 5.69 W/m^2 (0.44), respectively, (2) the CoSEB-based datasets, in comparison to the 35 mainstream products/datasets (i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, 36 MOD16A2, PML_V2 and ETMonitor) that generally separately estimated subsets of 37 the eight flux components, better agreed with the in situ observations. Our developed 38 datasets hold significant potential for application across diverse fields such as 39 agriculture, forestry, hydrology, meteorology, ecology, and environmental science, 40 which can facilitate comprehensive studies on the variability, impacts, responses, 41 adaptation strategies, and mitigation measures of global and regional land surface 42 radiation and heat fluxes under the influences of climate change and human activities. 43 The CoSEB-based datasets are open access and available through the National Tibetan 44 Plateau Data Center (TPDC) at <https://doi.org/10.11888/Terre.tpdc.302559> (Tang et al., 45 2025a) and through the Science Data Bank (ScienceDB) at 46 <https://doi.org/10.57760/sciencedb.27228> (Tang et al., 2025b).

47 **Key words:** Surface energy balance; Surface radiation balance; Shortwave/Longwave
48 radiation; Net radiation; Sensible/Latent heat flux; Evapotranspiration; CoSEB

50 **1 Introduction**

51 Land surface radiation balance and heat balance play important roles in Earth's 52 climate system, representing the physical processes by which the surface-atmosphere 53 absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al., 54 1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the 55 exchange of water, energy, carbon, and other agents essential to climatic and ecological

systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al., 2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of global land surface radiation [including downward shortwave radiation (SW_{IN}), downward longwave radiation (LW_{IN}), upward shortwave radiation (SW_{OUT}), upward longwave radiation (LW_{OUT}) and net radiation (Rn)] and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for quantifying the exchange of radiation, heat and water between the land and atmosphere under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy, 2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization (Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild & Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management (De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS) technology, with its high spatial-temporal resolution and applicability over large areas, is considered to be the most effective and economical means for obtaining global land surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al., 2010).

In past decades, numerous RS-based products/datasets of global surface radiation and heat fluxes have significantly advanced, which were generally generated by physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao et al., 2023; Jung et al., 2019; Peng et al., 2020). However, two key limitations still exist in these products. Firstly, most available products provide only a single component of land surface radiation or heat fluxes, e.g. ETMonitor (Zheng et al., 2022) and MOD16A2 (Mu et al., 2011) only estimating LE, leading to the failure to satisfy surface radiation balance and heat balance when the single radiation or heat flux is utilized in conjunction with products containing other radiation and heat components (Wang et al., 2025), and further posing significant uncertainties to understand the interactions and redistributions of surface radiation and energy in the Earth-atmosphere system. Secondly, a few products, e.g., FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al.,

84 2015; Zhang et al., 2014), generated datasets for multiple components of surface
85 radiation and heat fluxes by using separate estimates from the uncoordinated models,
86 which make them difficult to abide by surface radiation and heat conservation. These
87 energy-imbalanced and radiation-imbalanced estimates among multiple components
88 from previous products/datasets severely limit their in-depth applications in analyzing
89 the spatial and temporal trends, simulating the physical processes of radiation, heat and
90 water cycles as well as revealing the attributions and mechanisms in Earth-surface
91 system under global climate change. It was imperative to develop global datasets of
92 land surface radiation and heat fluxes characterized by high accuracies, radiation
93 balance as well as heat balance, to better meet the requirements in practical applications
94 of various fields.

95 Our proposed data-driven model/framework of Coordinated estimates of land
96 Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively
97 learns the underlying physical interrelations (i.e., surface energy conservation law)
98 among multiple targeted variables, provides an unprecedented opportunity to develop
99 global datasets of land surface radiation and heat fluxes that can not only
100 simultaneously provide high-accuracy estimates of these components but also adhere
101 to surface radiation- and heat-conservation laws.

102 The objectives of this study are twofold: (1) to develop high-accuracy datasets of
103 global land surface radiation and heat fluxes, which comply with the principles of
104 radiation balance and heat balance, using our CoSEB model renewed based on in situ
105 observations, remote sensing data and reanalysis datasets; (2) to validate the
106 datasets/model estimates against data from in situ observations, mainstream products
107 as well as estimates from uncoordinated random forest (RF) techniques. Section 2
108 introduces the data resources used in this study. Section 3 briefly describes the method
109 we used to estimate global surface radiation and heat fluxes. Section 4 presents the
110 evaluation of the datasets/model estimates generated by our renewed CoSEB model.
111 Section 5 discusses the superiority, potential applications and uncertainties of the

112 developed datasets. Data availability is given in Section 6, and a summary and
113 conclusion is provided in Section 7.

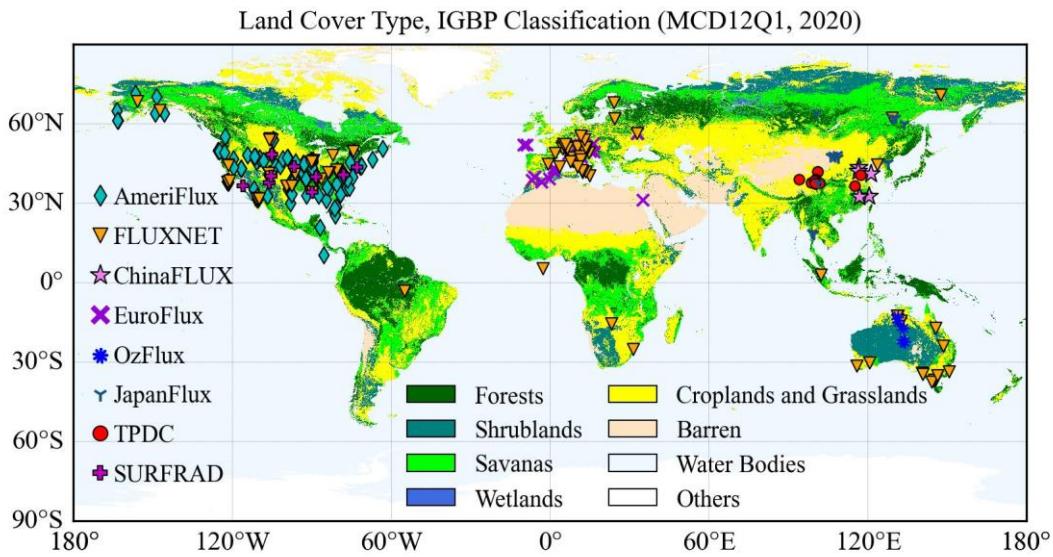
114 **2 Data**

115 **2.1 Ground-based observations**

116 In this study, the in situ observations of land surface radiation and heat fluxes at
117 302 eddy covariance (EC) sites from the networks of AmeriFlux (174 sites, 2000–2020,
118 <https://AmeriFlux.lbl.gov/Data/>, last access: 6 August 2024), EuroFlux (72 sites, 2000-
119 2020, <http://www.europe-fluxdata.eu/>, last access: 6 August 2024), OzFlux (5 sites,
120 2007-2012, <https://data.ozflux.org.au/>, last access: 6 August 2024), FLUXNET (108
121 sites, 2000–2014, <https://FLUXNET.org/Data/download-Data/>, last access: 6 August
122 2024), JapanFlux (15 sites, 2001-2020, <https://ads.nipr.ac.jp/japan-flux2024/>, last
123 access: 10 October 2025), ChinaFLUX (5 sites, 2005-2020, <http://www.chinaflux.org/>,
124 last access: 6 August 2024) and National Tibetan Plateau/Third Pole Environment Data
125 Center (TPDC, 13 sites, 2012–2020, <https://Data.tpdc.ac.cn/en/Data>, last access: 6
126 August 2024) were used (Fig. 1), where 37, 48 and 5 sites in FLUXNET were also
127 shared in AmeriFlux, EuroFlux and OzFlux, respectively. These 302 sites were filtered
128 out from all collected 1098 sites by following the quality-assurance and quality-control
129 steps, including: (1) any site with a missing component of any of the SW_{IN} , SW_{OUT} , LW_{IN} ,
130 LW_{OUT} , LE, H and G was excluded, reducing the 1098 sites to 472 sites for further
131 analysis; (2) any half-hour period with missing data for any of these components was
132 excluded; (3) the half-hourly ground-based observations with quality-control flag of 2
133 or 3 (bad quality) were removed but quality-control flag of 0 and 1 (good quality) were
134 maintained; (4) a daily average of the half-hour observations was calculated for each
135 day with greater than 80% good-quality data, further reducing the 472 sites to 355 sites;
136 (5) the aggregated daily LE and H were corrected for energy imbalance using the
137 Bowen ratio method when the daily energy balance closure [defined as
138 $(LE + H) / (Rn - G)$] varied between 0.2 and 1.8 following Wang et al. (2025) to

139 exclude physically implausible measurements; (6) extreme outliers in the daily
140 evaporative fraction were further removed by excluding values outside the 1st–99th
141 percentile range, a common practice in flux and remote sensing studies (Bartkowiak et
142 al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites. Besides, the RS
143 products/datasets involved in this study collocated at the sites should not be missing,
144 finally reducing the 337 sites to 302 sites for analysis. Note that the Rn at these sites
145 used in this study was calculated from the sum of net longwave radiation (LW_{IN} minus
146 LW_{OUT}) and net shortwave radiation (SW_{IN} minus SW_{OUT}), rather than using the
147 observed Rn directly, to ensure surface radiation balance in training datasets.

148 These 302 sites used in this study cover a wide range of global climate regimes
149 across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 55 sites);
150 (2) evergreen broadleaf forests (EBF, 12 sites); (3) deciduous needleleaf forests (DNF,
151 7 sites); (4) deciduous broadleaf forests (DBF, 40 sites); (5) mixed forests (MF, 8 sites);
152 (6) closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 11 sites); (8) woody
153 savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands (GRA, 62 sites);
154 (11) permanent wetlands (WET, 22 sites); (12) croplands (CRO, 59 sites); (13) water
155 bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics (CVM, 4 sites). Among
156 them, 44 sites (~15% of the total, see Table S1) were isolated to serve as spatially
157 independent sites to test the generated datasets and they did not participate in the
158 development of the model/datasets.



159

160 **Fig. 1 Spatial distribution of the 302 eddy covariance sites from AmeriFlux, FLUXNET,**
 161 **EuroFlux, OzFlux, JapanFlux, ChinaFLUX and TPDC, and nine radiation sites from**
 162 **SURFRAD involved for analysis in this study.**

163 Furthermore, ground-based radiation observations from nine sites that are located
 164 in large flat agricultural areas covered by crops and grasses from SURFRAD were also
 165 introduced to validate land surface radiation estimates. Similar to the preprocessing
 166 performed on the observations of the 302 EC sites, the SW_{IN} , SW_{OUT} , LW_{IN} , LW_{OUT} and
 167 Rn from the SURFRAD were also quality-controlled and aggregated to daily data.
 168 Spatial distribution of the 302 EC sites and nine radiation sites from SURFRAD are
 169 shown in Fig. 1, with site details (latitude, longitude, land cover types, digital elevation
 170 model and temporal coverage) provided in Supplementary Tables S1 and S2.

171 **2.2 Climate/meteorology and remote sensing data**

172 To generate global datasets of land surface radiation and heat fluxes from 2000 to
 173 2020, five types of climate/meteorology and remote sensing data were used in this study,
 174 including:

175 (1) ERA5-Land reanalysis datasets (<https://cds.climate.copernicus.eu/>, last access: 6
 176 August 2024) with the spatial resolution of ~9 km from 1950 (Muñoz-Sabater et
 177 al., 2021). Following our previous work (Wang et al., 2025), this study used
 178 variables from the ERA5-Land datasets to drive the model, including near-surface

179 2 m air temperature (T_a), soil temperature in layer 1 (0-7 cm, T_{s1}), soil volumetric
180 moisture content in layer 1 (0-7 cm, SMI), solar radiation reaching the surface of
181 the earth (SW_{IN}^{ERA5}), net thermal radiation at the surface (LW_{net}), pressure of the
182 atmosphere (PA), 10 m wind speed (WS), precipitation (P_r) and the 2 m dewpoint
183 temperature, daily minimum and maximum air temperature [for calculating
184 relative air humidity (RH)].

185 (2) GLASS datasets (<https://glass.bnu.edu.cn/>, last access: 6 August 2024), which
186 provide the 500 m 8-day leaf area index (LAI) and fractional vegetation cover
187 (FVC) from February 2000 to December 2021.

188 (3) MOD44B product (<https://lpdaac.usgs.gov/>, last access: 6 August 2024), which
189 offers yearly 250 m percent tree cover (PTC) since 2000, representing the
190 percentage (0~100%) of a pixel covered by tree canopy.

191 (4) NOAA/GML atmospheric carbon dioxide (CO_2) concentration data, providing
192 monthly global marine surface mean data since 1958
193 (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6
194 August 2024).

195 (5) GMTED2010 topographic data
196 (https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php, last
197 access: 6 August 2024), providing 500 m digital elevation model (DEM), slope,
198 and aspect.

199 The ~9 km ERA5-Land datasets were spatially interpolated to 500 m using the
200 cubic convolution method, and the 250 m PTC was resampled to 500 m using the
201 arithmetic averaging method.

202 **2.3 Mainstream datasets/products for inter-comparison**

203 Mainstream RS-based datasets/products of moderate-resolution global land
204 surface radiation and heat fluxes were collected for inter-comparison (Table 1),
205 including (1) the daily 0.05° GLASS SW_{IN} , LW_{IN} , LW_{OUT} and Rn products from 2000 to

206 2018 (<https://glass.bnu.edu.cn/>, last access: 6 August 2024), (2) the daily 0.05°
207 Breathing Earth System Simulator Radiation (BESS-Rad) SW_{IN} products from 2000 to
208 2020 (<https://www.environment.snu.ac.kr/bess-rad>), (3) the daily 0.05° BESS
209 Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020
210 (<https://www.environment.snu.ac.kr/bessv2>), (4) the 8-day 0.0833° FLUXCOM Rn, LE
211 and H products from 2001 to 2020 (<https://fluxcom.org/>, last access: 6 August 2024),
212 (5) the daily 1 km ETMonitor LE product from 2000 to 2020 (<https://data.casearth.cn/>,
213 last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2
214 (PML_V2, <https://www.tpdc.ac.cn/>, last access: 6 August 2024) LE product from 2000
215 to 2020; and (7) the 8-day 500 m MOD16A2 (<https://lpdaac.usgs.gov/>, last access: 6
216 August 2024) LE product from 2000 to 2020.

217 The GLASS SW_{IN} products are derived from a combination of the GLASS
218 broadband albedo product and the surface shortwave net radiation estimates, where the
219 surface shortwave net radiation is estimated using linear regression with MODIS top-
220 of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LW_{IN} and
221 LW_{OUT} products are generated using densely connected convolutional neural networks,
222 incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance
223 and ERA5 near-surface meteorological data (Xu et al., 2022b). The GLASS Rn
224 products are estimated from the meteorological variables from MERRA2 and surface
225 variables from GLASS using the multivariate adaptive regression splines model (Jiang
226 et al., 2015). The BESS-Rad and BESSV2.0 estimate SW_{IN} and Rn using a radiative
227 transfer model (i.e., Forest Light Environmental Simulator, FLiES) with an artificial
228 neural network based on MODIS and MERRA2 reanalysis datasets, and using FLiES
229 based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al.,
230 2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et
231 al., 2011), PML_V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated
232 global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor
233 equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and

234 H datasets are obtained through multiple machine learning methods based on in situ
 235 observations from FLUXNET and remote sensing and meteorological data (Jung et al.,
 236 2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected
 237 LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study.

238 **Table 1 Summary of mainstream datasets/products for inter-comparison used in this study**

Products/ datasets	Reso- lution	Time coverage	Variables	Algorithms	References
GLASS	0.05°/ daily	2000- 2018	SW_{IN} , LW_{IN} , LW_{OUT} , Rn	Machine learning, direct estimation algorithm	Wang et al. (2015); Xu et al. (2022b); Jiang et al. (2015)
BESS-Rad	0.05°/ daily	2000- 2020	SW_{IN}	BESS process model	Ryu et al. (2018)
BESSV2.0	0.05°/ daily	2000- 2020	Rn, LE	BESS process model	Li et al. (2023)
FLUXCOM	0.0833°/ 8-day	2000- 2020	Rn, LE, H	Model tree ensembles	Jung et al. (2019)
MOD16A2	500 m/ 8-day	2000- 2020	LE	Modified Penman- Monteith equation Penman Monteith- Leuning model, Priestly Taylor equation and Gash model	Mu et al. (2011)
PML_V2	500 m/ 8-day	2002- 2020	LE	Shuttleworth- Wallace two- source scheme, Gash model and Penman equation	Zhang et al. (2019)
ETMonitor	1 km/ daily	2000- 2020	LE	Gash model and Penman equation	Zheng et al. (2022)

239 **3 Methods**

240 The method used to generate global datasets of land surface radiation and heat
 241 fluxes is based on the CoSEB model/framework, which was developed by our
 242 previously published work (Wang et al., 2025), to coordinately estimate global land
 243 surface energy balance components (including Rn, LE, H and G) using the multivariate
 244 random forest technique, with a combination of MODIS and GLASS products, ERA5-

245 Land reanalysis datasets, and in situ observations at 336 EC sites. The CoSEB model
246 was demonstrated to be able to produce high-accuracy estimates of land surface energy
247 components, with the RMSE of $<17 \text{ W/m}^2$ and R^2 of > 0.83 for estimating 4-day Rn,
248 LE and H, and the RMSE of $<5 \text{ W/m}^2$ and R^2 of 0.55 for estimating 4-day G. The most
249 praiseworthy superiority of the CoSEB model lies in its ability to balance the land
250 surface energy components, with an energy imbalance ratio [EIR, defined as $100\% \times$
251 $(Rn - G - LE - H)/Rn$] of 0.

252 To coordinately estimate land surface radiation and heat fluxes that comply with
253 both radiation balance and heat balance, one of the key procedures in the construction
254 of the CoSEB model was to prepare training datasets that satisfy surface radiation and
255 heat balance. For this purpose, the energy-imbalance corrections on daily in situ
256 observed LE and H were conducted by the most widely applied Bowen ratio method

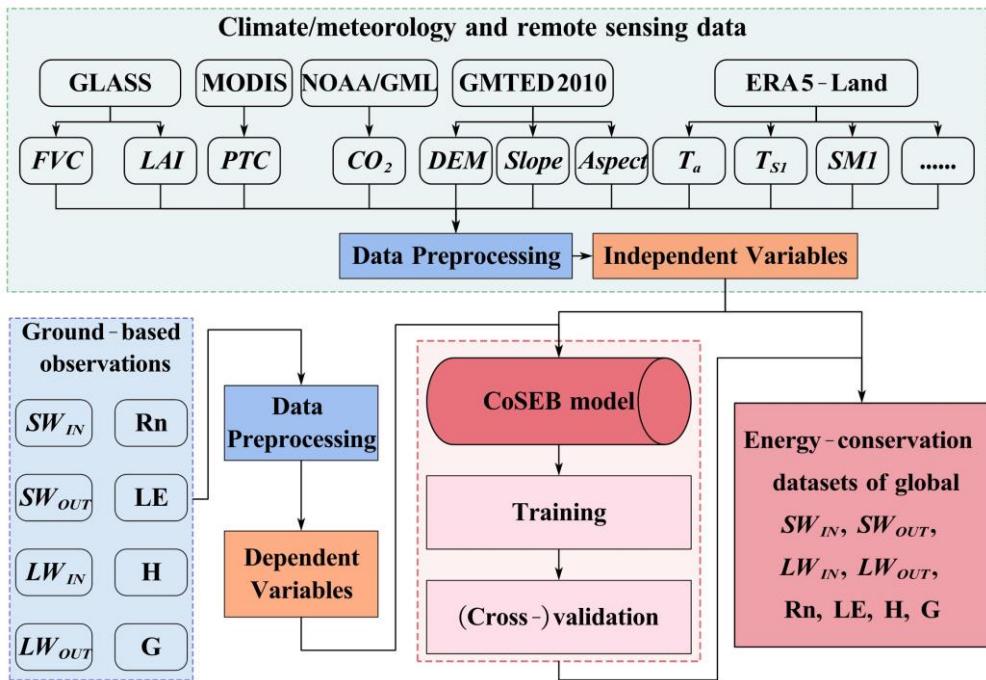
257 $[H^{corr} = \frac{H}{H+LE} \times (Rn - G), LE^{corr} = \frac{LE}{H+LE} \times (Rn - G)]$, where H^{corr} and LE^{corr}
258 represent the sensible heat flux and latent heat flux after energy-imbalance correction,
259 respectively] with the aid of Rn and G observations, and the in situ Rn was calculated
260 from the sum of in situ observed net longwave radiation (LW_{IN} minus LW_{OUT}) and net
261 shortwave radiation (SW_{IN} minus SW_{OUT}). The input variables to renew the CoSEB
262 model include: (1) climate/meteorology: T_a , SW_{IN}^{ERA5} , LW_{net} , WS , PA , P_r , RH ,
263 CO_2 concentration; (2) vegetation and soil: LAI , FVC , PTC , T_{SI} , SMI ; (3) topography
264 data: DEM , $Slope$ and $Aspect$, in addition to longitude (Lon), latitude (Lat), and inverse
265 relative distance from the Earth to the Sun (dr), in which the dr was calculated as
266 $dr = 1 + 0.033 \times \cos\left(\frac{2\pi \times DOY}{365}\right)$, where DOY represents the day of year. Considering

267 that the footprint of the site-based measurements of turbulent heat fluxes is generally at
268 a scale of hundreds of meters, to reduce the effect of differences of spatial scales
269 between ground-based measurements (dependent variables) and remotely
270 sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a
271 spatial scale of 500 m for coordinately estimating global daily land surface radiation

272 and heat fluxes, which can be expressed as follows:

273
$$\begin{pmatrix} SW_{IN}, SW_{OUT}, LW_{IN}, \\ LW_{OUT}, Rn, LE, H, G \end{pmatrix} = f \begin{pmatrix} Lon, Lat, T_a, T_{s1}, SM1, SW_{IN}^{ERA5}, LW_{net}, PA, WS, P_r, dr \\ RH, LAI, FVC, PTC, DEM, Slope, Aspect, CO_2 \end{pmatrix} \quad (1)$$

274 To enhance model generalization, the renewed CoSEB model was reoptimized
275 using random and grid search methods, resulting in different hyperparameters of 281
276 decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 from
277 those of Wang et al. (2025). Site-based 10-fold cross-validation was employed to
278 evaluate the transferability and generalization of the CoSEB model by randomly
279 dividing all sites into ten folds, where the samples from each fold of sites in turn served
280 as validation datasets while the remaining folds were used as training datasets, ensuring
281 that the validation was conducted on sites spatially independent from the training data.
282 Furthermore, to benchmark the coordinated estimates from the renewed CoSEB model,
283 eight RF-based uncoordinated models were constructed, each separately estimating one
284 of SW_{IN} , SW_{OUT} , LW_{IN} , LW_{OUT} , Rn , LE , H or G using the same inputs as those in the
285 renewed CoSEB model. Fig. 2 illustrates the flowchart for generating global datasets
286 of land surface radiation and heat fluxes by the CoSEB model.



287

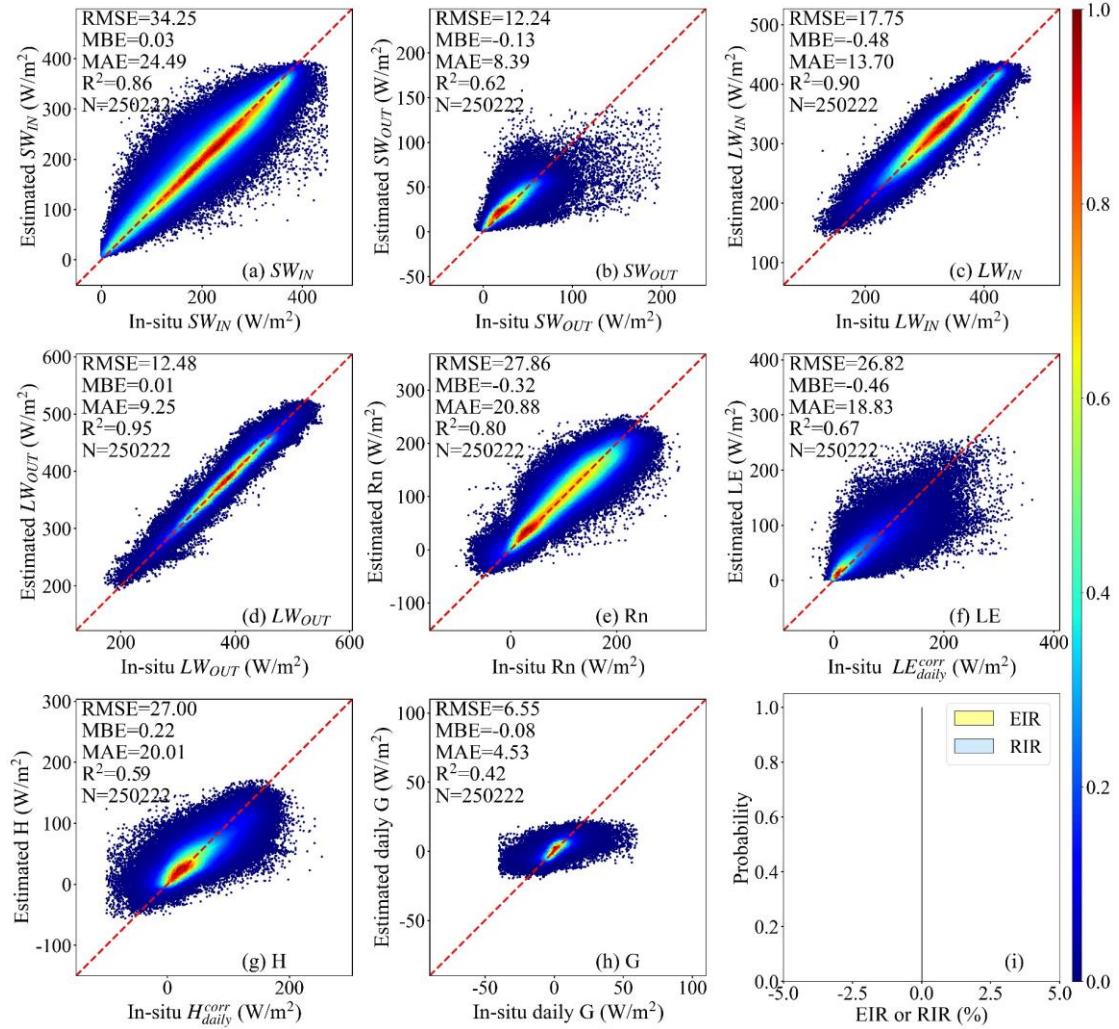
288 **Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation**
 289 [including downward shortwave radiation (SW_{IN}), downward longwave radiation (LW_{IN}),
 290 upward shortwave radiation (SW_{OUT}), upward longwave radiation (LW_{OUT}) and net radiation
 291 (Rn) and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux
 292 (H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and
 293 collocated remote sensing and reanalysis datasets.

294 **4 Results**295 **4.1 Validation of the CoSEB model**296 **4.1.1 Site-based 10-fold cross-validations at 258 EC sites**

297 Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-
 298 validation of daily SW_{IN} , LW_{IN} , SW_{OUT} , LW_{OUT} , Rn , LE , H and G estimated from the
 299 renewed CoSEB model and the RF-based uncoordinated models, respectively, by using
 300 the validation datasets collected at 258 EC sites worldwide. Results indicated that the
 301 estimates from both the CoSEB model and the RF-based uncoordinated models agreed
 302 well with the in situ observations, with the coefficient of determination (R^2) varying
 303 between 0.80 and 0.95 for SW_{IN} , LW_{IN} , LW_{OUT} and Rn , and between 0.59 and 0.67 for
 304 SW_{OUT} , LE and H . The CoSEB model, with the root mean square error (RMSE) of 26.82
 305 to 34.25 W/m^2 and mean absolute error (MAE) of 18.83 to 24.49 W/m^2 for SW_{IN} , Rn ,
 306 LE and H , the RMSE of 12.24 to 17.75 W/m^2 and the MAE of 8.39 to 13.70 W/m^2 for

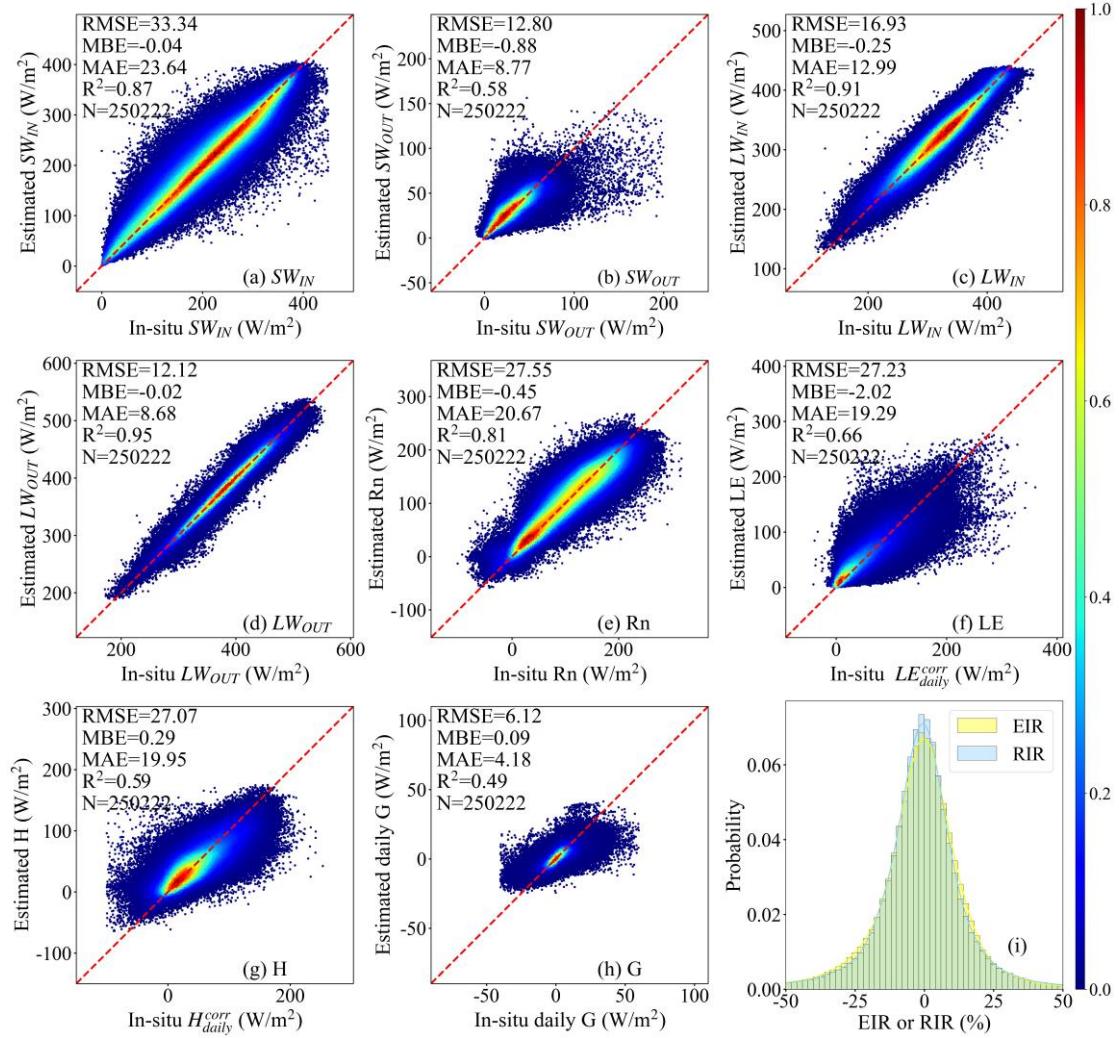
307 SW_{OUT} , LW_{IN} and LW_{OUT} , demonstrated comparable accuracies to the RF-based models,
308 with the RMSE of 27.07 to 33.34 W/m² and MAE of 19.29 to 23.64 W/m² for SW_{IN} ,
309 Rn, LE and H, the RMSE of 12.12 to 16.93 W/m² and the MAE of 8.68 to 12.99 W/m²
310 for SW_{OUT} , LW_{IN} and LW_{OUT} . In the validation of daily G, both the CoSEB and RF-based
311 models yielded RMSEs below 7 W/m². Comparisons with the corresponding training
312 results (Table S3 in the Supplementary Material) indicated that although the CoSEB
313 model performed better on the training datasets, its overall performance remained stable,
314 suggesting that the CoSEB model was not affected by overfitting.

315 Strikingly, the CoSEB model exhibited large superiority in balancing the surface
316 radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% \times
317 $(SW_{IN} - SW_{OUT} + LW_{IN} - LW_{OUT})/Rn$] and energy imbalance ratio [EIR, defined as 100%
318 $\times (Rn - G - LE - H)/Rn$] of 0, while the RF-based uncoordinated models showed
319 substantial imbalances of the surface radiation and heat fluxes, with RIR and EIR that
320 were approximately normally distributed, having absolute mean values of 38.84% and
321 31.22%, respectively, and reaching as high as 50% in some cases. Furthermore, the RIR
322 as well as EIR tended to be higher under lower solar radiation, air temperature, or FVC,
323 with more frequent low values of these three variables leading to a broader and less
324 peaked distribution of RIR and EIR (see Fig. S1 in the Supplementary Material).



325

326 **Fig. 3** Scatter density plots of the site-based 10-fold cross-validation of daily downward
 327 shortwave and longwave radiation (SW_{IN} and LW_{IN}), upward shortwave and longwave
 328 radiation (SW_{OUT} and LW_{OUT}), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and
 329 sensible heat flux (H) derived by the CoSEB model against in situ observed SW_{IN} , LW_{IN} , SW_{OUT} ,
 330 LW_{OUT} , Rn, G, and energy imbalance-corrected LE (LE_{daily}^{corr}) and H (H_{daily}^{corr}). The EIR and RIR
 331 in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which
 332 are defined as $100\% \times (Rn - G - LE - H)/Rn$ and $100\% \times (SW_{IN} - SW_{OUT} + LW_{IN} - LW_{OUT})/Rn$,
 333 respectively. The colorbar represents the normalized density of data points.



334

335 **Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models.**336 **4.1.2 Validation at nine radiation sites from SURFRAD**

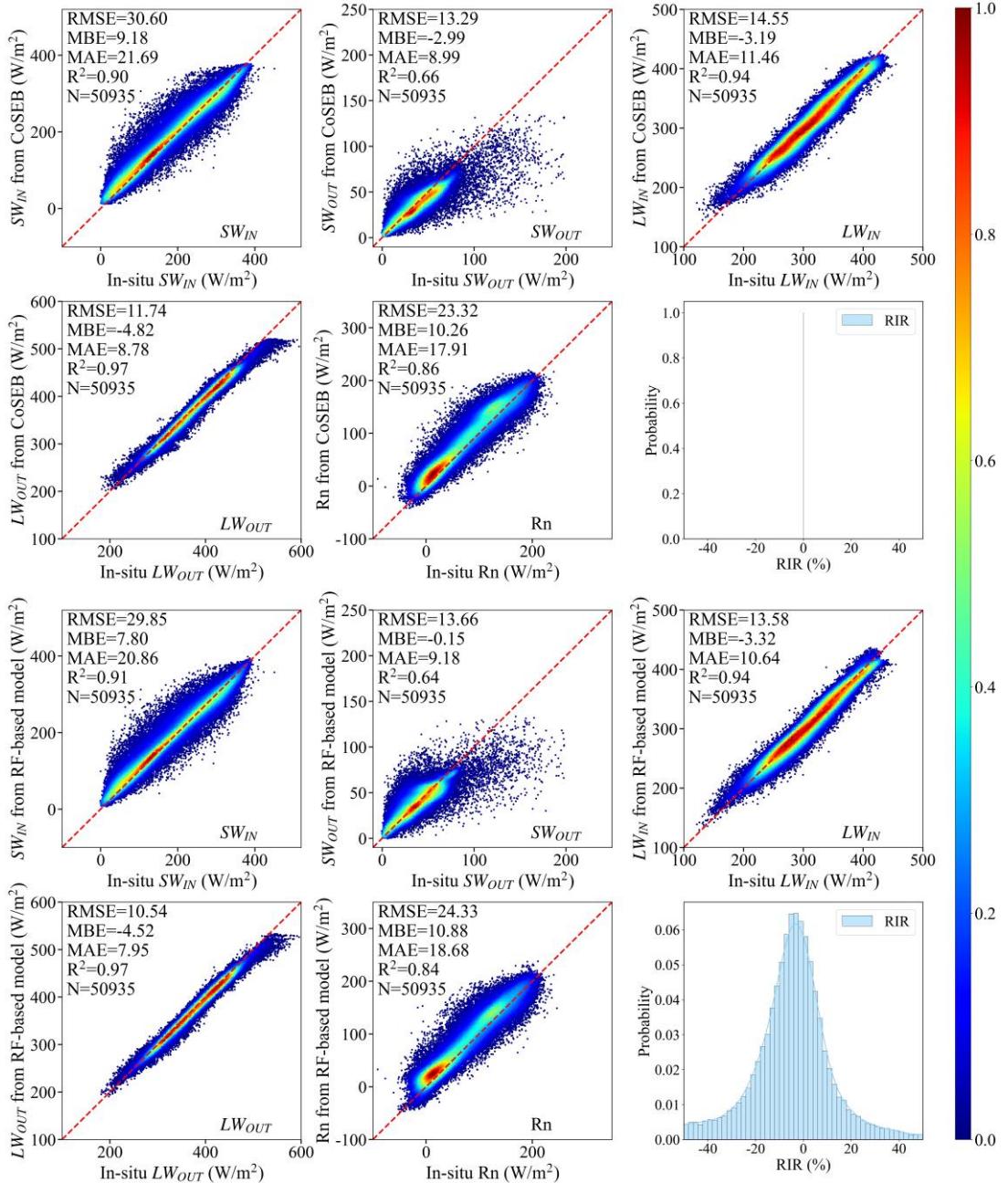
337 To further illustrate the generality and transferability of the renewed CoSEB model,
 338 the validation of estimates of the five radiation components (including SW_{IN} , SW_{OUT} ,
 339 LW_{IN} , LW_{OUT} , Rn) derived from both the CoSEB model and RF-based uncoordinated
 340 models against observations at nine radiation sites from SURFRAD was performed, as
 341 shown in Fig. 5. The results showed that both the CoSEB model and the RF-based
 342 models achieved high accuracy in estimating daily SW_{IN} , SW_{OUT} , LW_{IN} , LW_{OUT} and Rn ,
 343 with the RMSE of ~ 30 W/m^2 for SW_{IN} , ~ 14 W/m^2 for SW_{OUT} and LW_{IN} , ~ 12 W/m^2 for
 344 LW_{OUT} and ~ 24 W/m^2 for Rn , with the $R^2 > 0.9$ for SW_{IN} , LW_{IN} and LW_{OUT} , ~ 0.65 for
 345 SW_{OUT} and ~ 0.85 for Rn . Compared to the results of the site-based 10-fold cross-
 346 validation at 258 EC sites, the performances at nine radiation sites showed slight

347 improvements, with the RMSE decreasing by 0.74 to 4.54 W/m² for SW_{IN} , LW_{IN} , LW_{OUT}
348 and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by
349 ~ 1.05 W/m² for SW_{OUT} , suggesting the robust performance of the CoSEB model.
350 Furthermore, the CoSEB model demonstrated a large superiority in maintaining surface
351 radiation balance among the five radiation components, with the RIR of 0, in contrast
352 to the RF-based models, which failed to meet this balance, exhibiting significant RIR
353 exceeding 50%.

354 **4.2 Validation and inter-comparisons of the CoSEB-based datasets**

355 As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of
356 500 m achieved comparable accuracies to the RF-based uncoordinated models but
357 outperformed them in balancing surface radiation and heat fluxes. Evidenced by the
358 validation for its superiority, the renewed CoSEB model was then applied to the
359 spatially aggregated input datasets to generate our developed global daily datasets with
360 a spatial resolution of 0.05°. To further assess the performance of the developed
361 CoSEB-based datasets, in situ observations from another 44 spatially independent test
362 sites (see Section 2.1), which were not involved in model construction and datasets
363 generation, were used for validation. Mainstream products (i.e. GLASS, BESS-Rad,
364 BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for
365 inter-comparison at the 44 test sites.

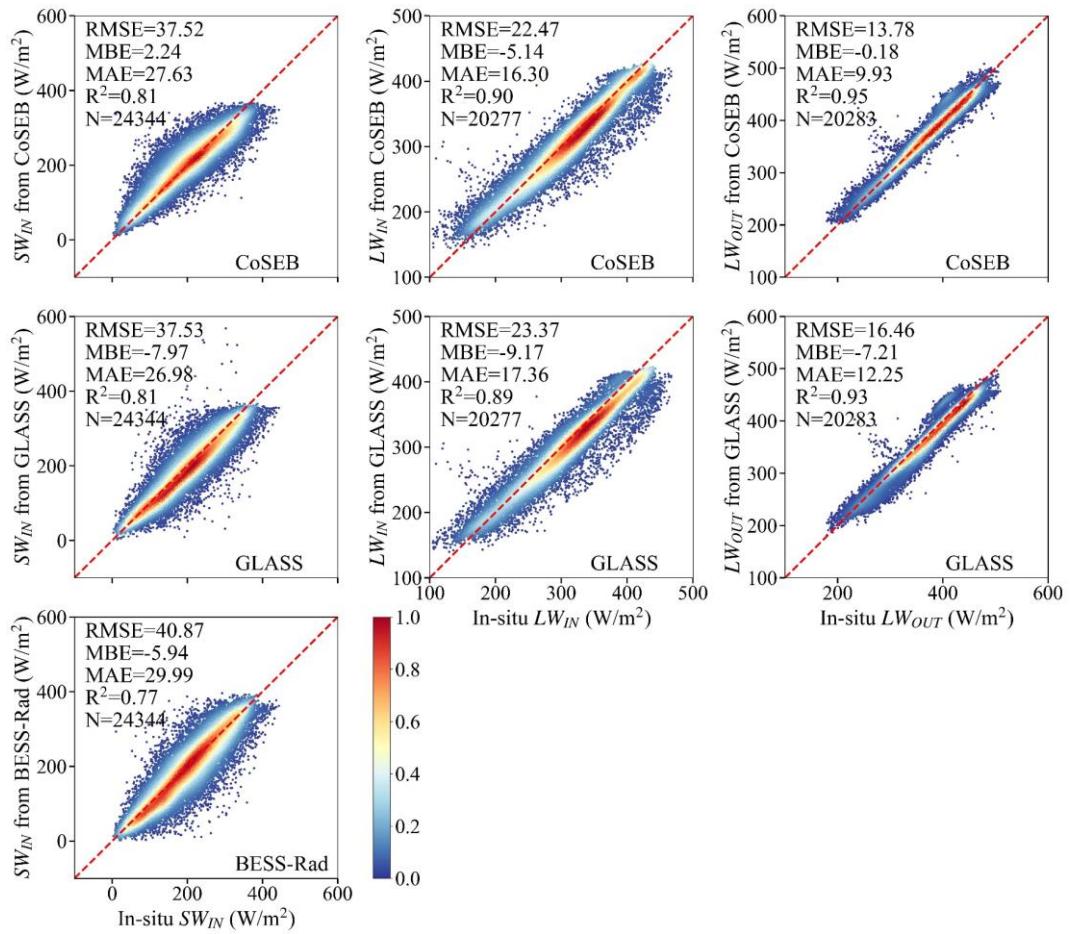
366 Note that due to the lack of moderate-resolution global RS-based products/datasets
367 of daily and/or 8-day SW_{OUT} , H and G , the intercomparison between different
368 products/datasets was impossible. Instead, we conducted a validation of these
369 components from the CoSEB-based datasets against in situ observations at 44 test sites,
370 as shown in Figs S2 and S3 in the Supplementary Material. Results indicated that the
371 CoSEB-based datasets could provide good estimates of SW_{OUT} , H and G , with the
372 RMSEs (R^2) of 14.20 W/m² (0.42), 29.75 W/m² (0.44) and 5.69 W/m² (0.44) at daily
373 scale, respectively, and the RMSE (R^2) of 12.19 W/m² (0.39) and 4.60 W/m² (0.47) for
374 8-day SW_{OUT} and G , respectively.



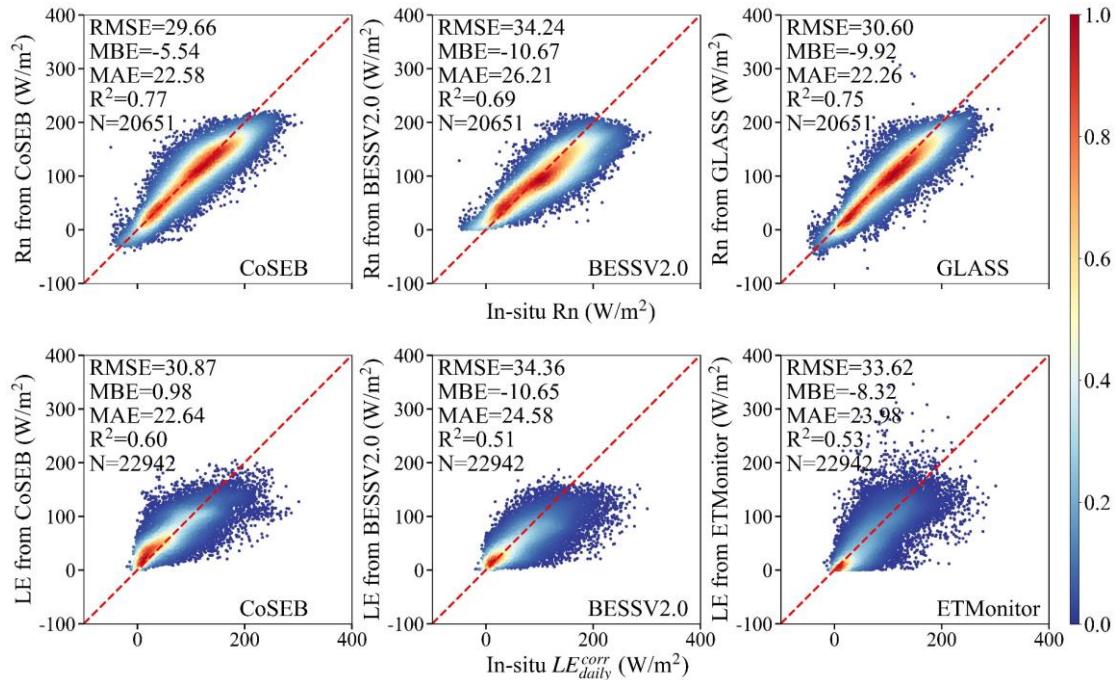
375
376 **Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave**
377 **radiation (SW_{IN} and LW_{IN}), upward shortwave and longwave radiation (SW_{OUT} and LW_{OUT})**
378 **and net radiation (Rn) from the renewed CoSEB model (upper two rows) and RF-based**
379 **uncoordinated models (lower two rows) against in situ observations at nine radiation sites**
380 **from SURFRAD. The RIR represents the radiation imbalance ratio, defined as $100\% \times (SW_{IN}$**
381 **- $SW_{OUT} + LW_{IN} - LW_{OUT})/Rn$. The colorbar represents the normalized density of data points.**

382 Fig. 6 and Fig. 7 present the comparison of daily SW_{IN} , LW_{IN} and LW_{OUT} , as well
383 as Rn and LE from the CoSEB-based datasets and mainstream products/datasets
384 (including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations
385 at 44 test sites, respectively. Overall, the estimates from the CoSEB-based datasets

386 exhibited a closer agreement with in situ observations than those from mainstream
 387 products/datasets, where the CoSEB-based datasets reduced the RMSE by 0.01 W/m²
 388 to 4.58 W/m² and increased the R² by 0.01 to 0.09 compared to mainstream products.
 389 Specifically, the RMSE for the SW_{IN} , LW_{IN} , LW_{OUT} increased from 37.52 W/m², 22.47
 390 W/m² and 13.78 W/m² in the CoSEB-based datasets to 37.53 W/m², 23.37 W/m² and
 391 16.46 W/m² in the GLASS, respectively, and for SW_{IN} from 37.52 W/m² in the CoSEB-
 392 based datasets to 40.87 W/m² in the BESS-Rad. Likewise, the RMSEs for daily Rn and
 393 LE were 29.66 W/m² and 30.87 W/m² in the CoSEB-based datasets, which were lower
 394 than those of 34.24 W/m² and 34.36 W/m² in BESSV2.0, respectively, as well as those
 395 of 30.60 W/m² for Rn in GLASS and 33.62 W/m² for LE in ETMonitor.



396
 397 **Fig. 6 Comparison of the daily downward shortwave radiation (SW_{IN} , the first column),**
 398 **downward longwave radiation (LW_{IN} , the second column) and upward longwave radiation**
 399 **(LW_{OUT} , the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the**
 400 **in situ observed SW_{IN} , LW_{IN} and LW_{OUT} at 44 test sites. The colorbar represents the normalized**
 401 **density of data points.**

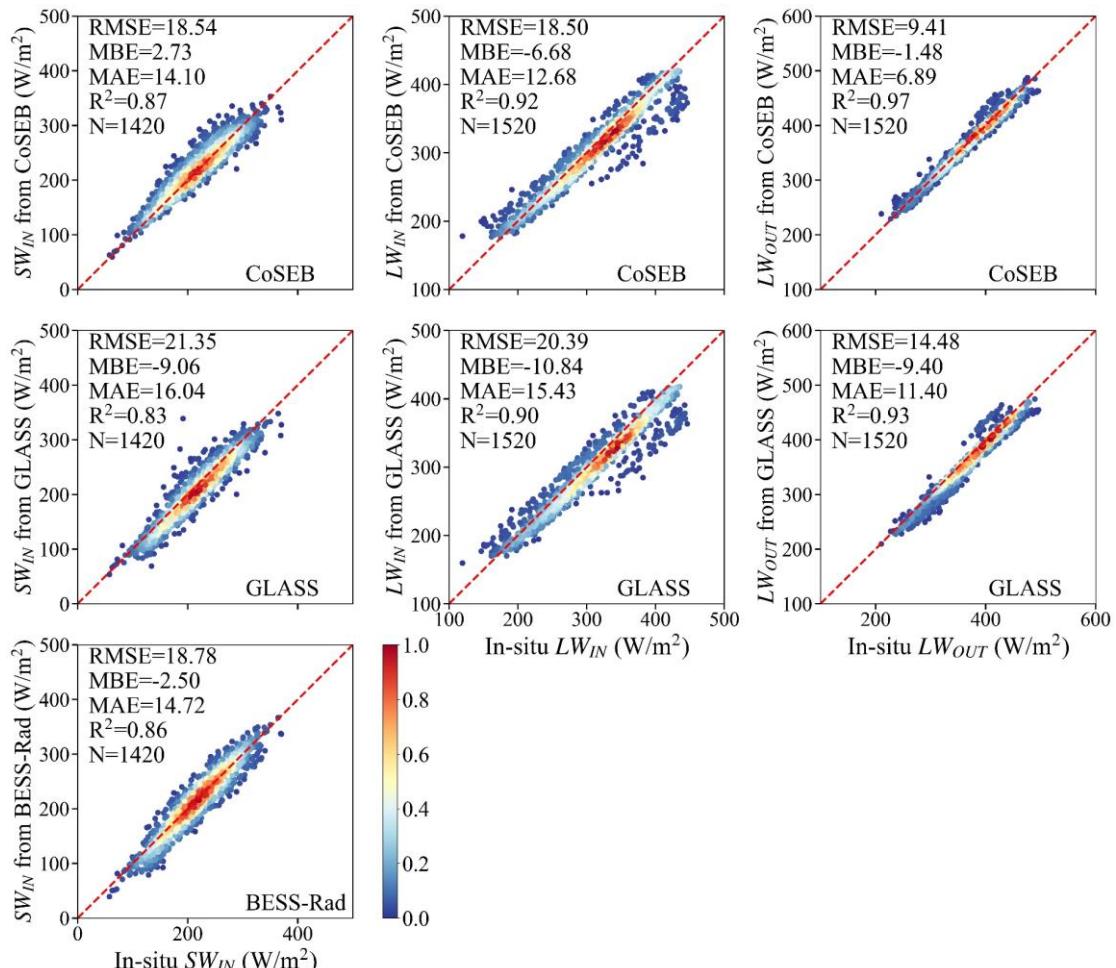


402
403 **Fig. 7 Comparison of the daily net radiation (Rn, the upper row)** and latent heat flux (LE, the
404 **lower row**) from the CoSEB-based datasets, BESSV2.0, GLASS and ETMonitor with the in
405 **situ observed Rn, and energy imbalance-corrected LE (LE_{daily}^{corr}) at 44 test sites. The colorbar**
406 **represents the normalized density of data points.**

407 Figs. 8, 9 and 10 compare the 8-day SW_{IN} , LW_{IN} and LW_{OUT} , Rn and LE, as well as
408 H from the CoSEB-based datasets and mainstream products, with in situ observations
409 at 44 test sites, respectively. Overall, the CoSEB-based datasets outperformed the
410 mainstream products/datasets for all surface radiation and heat fluxes, where the
411 CoSEB-based datasets reduced the RMSE by 0.24 W/m² to 10.48 W/m² and increased
412 the R² by 0.01 to 0.38 compared to mainstream products. Specifically, for SW_{IN} , LW_{IN}
413 and LW_{OUT} , the RMSE increased from 18.54 W/m², 18.50 W/m² and 9.41 W/m² in the
414 CoSEB-based datasets to 21.35 W/m², 20.39 W/m² and 14.48 W/m² in the GLASS,
415 respectively, and for SW_{IN} from 18.54 W/m² in the CoSEB-based datasets to 18.78
416 W/m² in the BESS-Rad. For Rn, the RMSE increased from 19.12 W/m² in the CoSEB-
417 based datasets to ~23 W/m² in the FLUXCOM and GLASS and to >27 W/m² in the
418 BESSV2.0, while the R² decreased from 0.82 in the CoSEB-based datasets to 0.75 in
419 the FLUXCOM and GLASS and to 0.62 in the BESSV2.0. Likewise, for LE, the RMSE
420 increased from 22.31 W/m² in the CoSEB-based datasets to ~25 W/m² in the

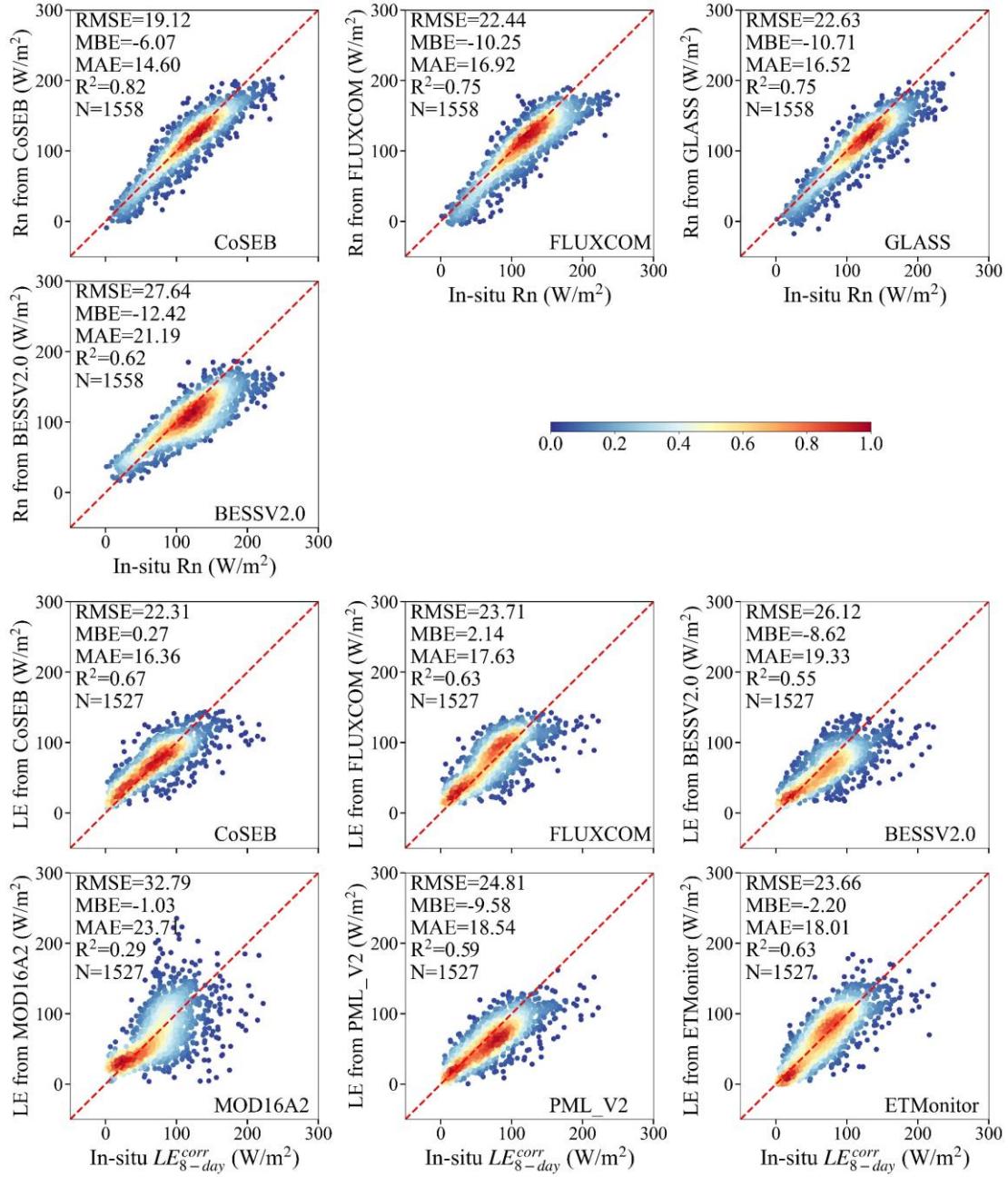
421 FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and to >32 W/m^2 in MOD16A2,
 422 while the R^2 decreased from 0.67 in the CoSEB-based datasets to ~ 0.60 in the
 423 FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and to <0.3 in the MOD16A1. For
 424 H, the RMSE increased from 21.63 W/m^2 in the CoSEB-based datasets to 22.64 W/m^2
 425 in the FLUXCOM.

426 The differences between the estimates from the CoSEB-based datasets and
 427 mainstream datasets are likely multifactorial, arising from the simplification and
 428 parameterization uncertainties in physics-based models, as well as the lack of physical
 429 constraints, limited training samples, and incomplete consideration of influencing
 430 factors in other machine-learning-based models.



431

432 **Fig. 8 Same as Fig. 6, but for the comparison at 8-day scale.**



433

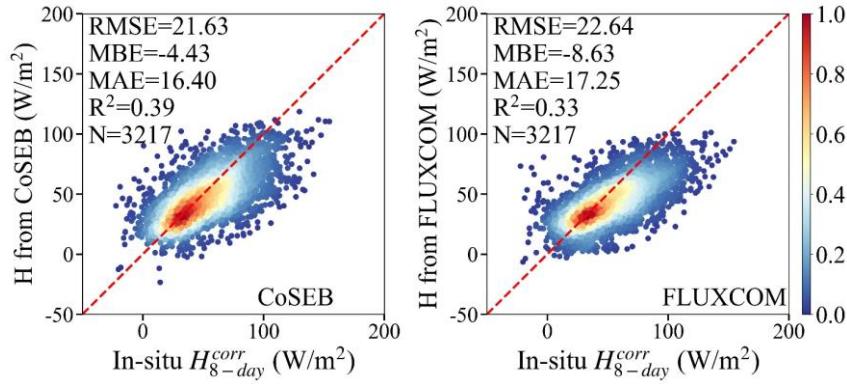
434

Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux (LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS,

435 MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-

436 corrected LE (LE_{8-day}^{corr}) at 44 test sites. The colorbar represents the normalized density of data

437 points.



439

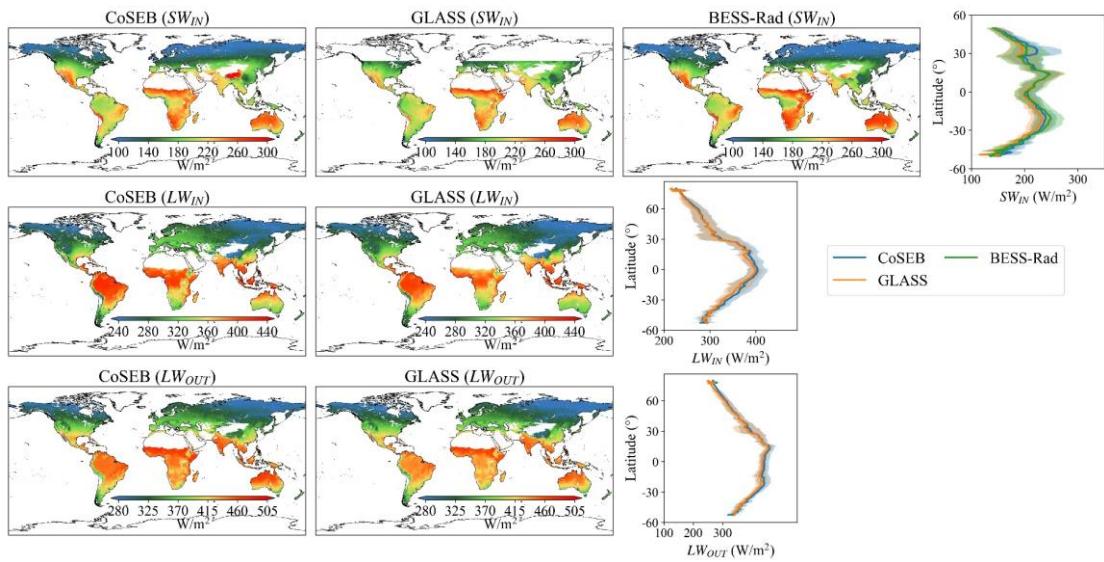
440 **Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and**
 441 **the FLUXCOM with the in situ energy imbalance-corrected H (H_{8-day}^{corr}) at 44 test sites. The**
 442 **colorbar represents the normalized density of data points.**

443 4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes

444 In addition to the validation and inter-comparison of the CoSEB-based datasets at
 445 the site scale, we further inter-compared the estimates of land surface radiation and heat
 446 fluxes from the CoSEB-based datasets and the mainstream products/datasets, in terms
 447 of their global spatial and temporal patterns.

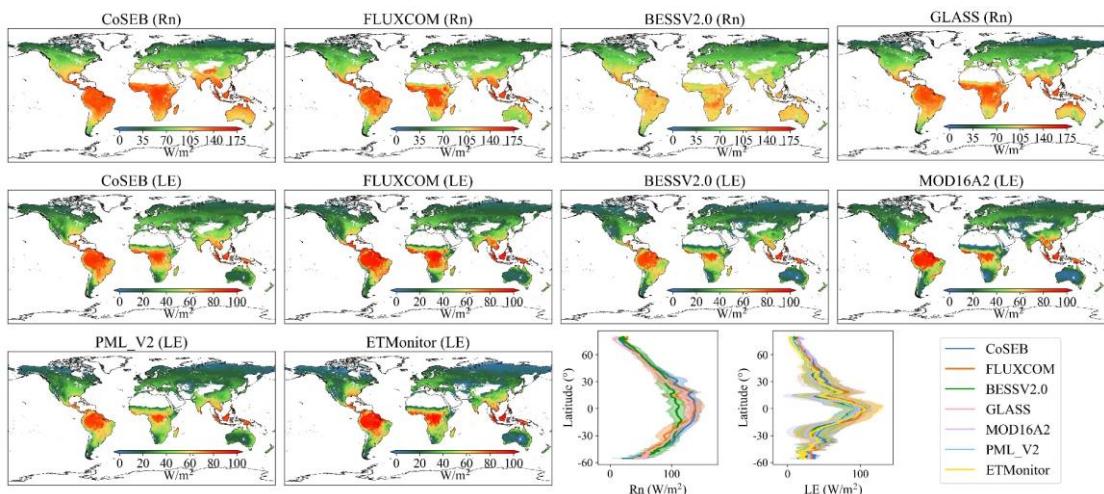
448 Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic
 449 continent, deserts, water bodies and permanent snow) and latitudinal profiles of the
 450 global 0.05° mean annual SW_{IN} , LW_{IN} and LW_{OUT} , Rn and LE, as well as H from 2001
 451 to 2018, respectively, as derived from the CoSEB-based datasets and mainstream
 452 products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2,
 453 PML_V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or
 454 cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates
 455 from the CoSEB-based datasets aligned well with those observed in these mainstream
 456 products/datasets, though regional discrepancies were present. Specifically, the mean
 457 annual LW_{IN} , LW_{OUT} , Rn, and LE generally exhibited decreasing trends from the equator
 458 towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo
 459 Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SW_{IN} and
 460 H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia,
 461 Sahel and Southern Africa, while the lower values were found in high-latitude regions

462 of $>50^{\circ}\text{N}$. In the region with high values, the mean annual estimates of SW_{IN} from the
463 CoSEB-based datasets were higher than those from GLASS but lower than those from
464 BESS-Rad, the estimates of LW_{IN} and LW_{OUT} from the CoSEB-based datasets were both
465 higher than those from GLASS, the estimates of Rn from the CoSEB-based datasets
466 were significantly higher than those from BESSV2.0, and comparable to or slightly
467 higher than those from FLUXCOM and GLASS, the estimates of LE from the CoSEB-
468 based datasets were close to those from BESSV2.0 and PML_V2, but slightly lower
469 than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates of H
470 from the CoSEB-based datasets were higher than those from FLUXCOM in regions
471 with high values, while lower than those from FLUXCOM in regions with low values.



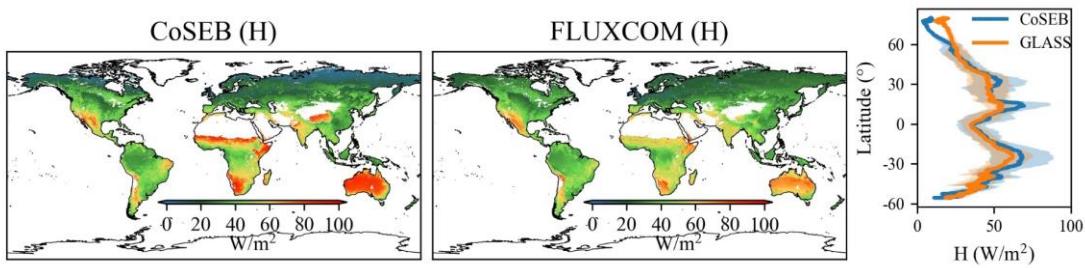
472
473
474
475
476
477
478

Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SW_{IN} , the first row), downward longwave radiation (LW_{IN} , the second row) and upward longwave radiation (LW_{OUT} , the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad. The rightmost subfigure of each row represents the latitudinal profiles of mean annual SW_{IN} , LW_{IN} and LW_{OUT} from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area represents the variation of standard deviation for each product.



479
480
481
482
483
484
485

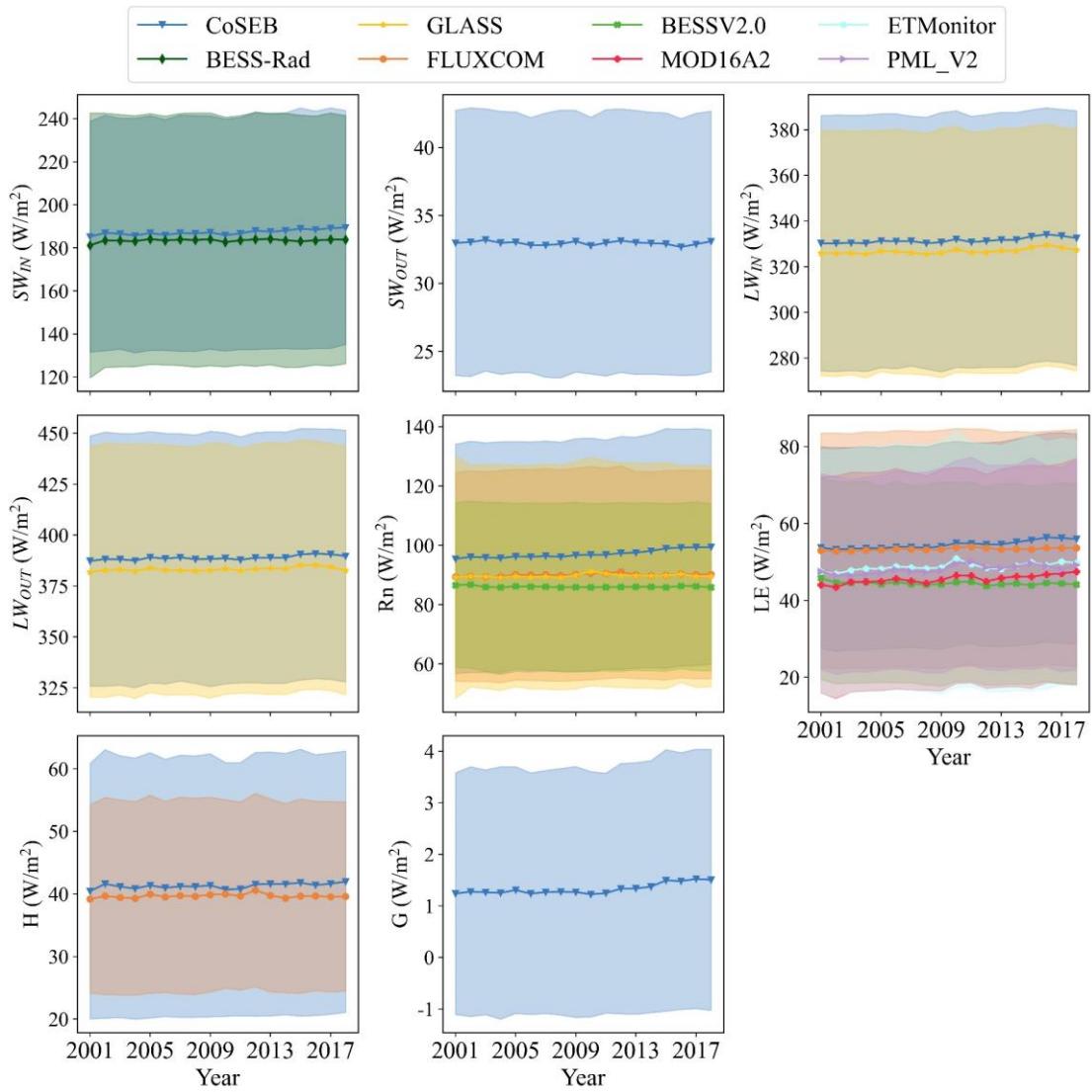
Fig.12 Spatial patterns of global mean annual net radiation (Rn), the first row) and latent heat flux (LE , the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets and these mainstream products/datasets, where the shaded area represents the variation of standard deviation for each product.



486

487 **Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by**
 488 **CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal**
 489 **profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded**
 490 **area represents the variation of standard deviation for each product.**

491 The temporal evolutions of the global (excluding Greenland, Antarctic continent,
 492 deserts, water bodies and permanent snow) land surface radiation and heat fluxes
 493 derived from the CoSEB-based datasets and mainstream products/datasets from 2001
 494 to 2018 were also investigated, as shown in Fig. 14. The results indicated that the
 495 temporal variation of each flux from the CoSEB-based datasets generally agreed well
 496 with those from mainstream products/datasets, exhibiting relatively stable trends. The
 497 global annual mean estimates using area weighting average by the CoSEB-based
 498 datasets from 2001 to 2018 varied between ~ 185.22 and ~ 189.50 W/m^2 with the mean
 499 of ~ 187.23 W/m^2 for SW_{IN} , between ~ 32.67 and ~ 33.20 W/m^2 with the mean of ~ 32.96
 500 W/m^2 for SW_{OUT} , between ~ 330.24 and ~ 334.14 W/m^2 with the mean of ~ 331.50 W/m^2
 501 for LW_{IN} , between ~ 387.25 and ~ 390.82 W/m^2 with the mean of ~ 388.81 W/m^2 for
 502 LW_{OUT} , between ~ 95.41 and ~ 99.39 W/m^2 with the mean of 97.11 W/m^2 for Rn ,
 503 between ~ 53.24 and ~ 56.37 W/m^2 with the mean of ~ 54.53 W/m^2 for LE , between
 504 ~ 40.44 and ~ 41.96 W/m^2 with the mean of ~ 41.29 W/m^2 for H , and between ~ 1.22 and
 505 ~ 1.52 W/m^2 with the mean of ~ 1.33 W/m^2 for G . For each radiation or heat flux, the
 506 annual mean estimates from the CoSEB-based datasets were overall higher than those
 507 from the mainstream products/datasets. In particular, the annual mean Rn estimates
 508 from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and
 509 BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based
 510 datasets were marginally higher than those from FLUXCOM, but substantially
 511 exceeded those from ETMonitor, PML_V2, MOD16A2 and BESSV2.0 sequentially.



512

513 **Fig. 14 Temporal variation of annual mean downward shortwave radiation (SW_{IN}), upward**

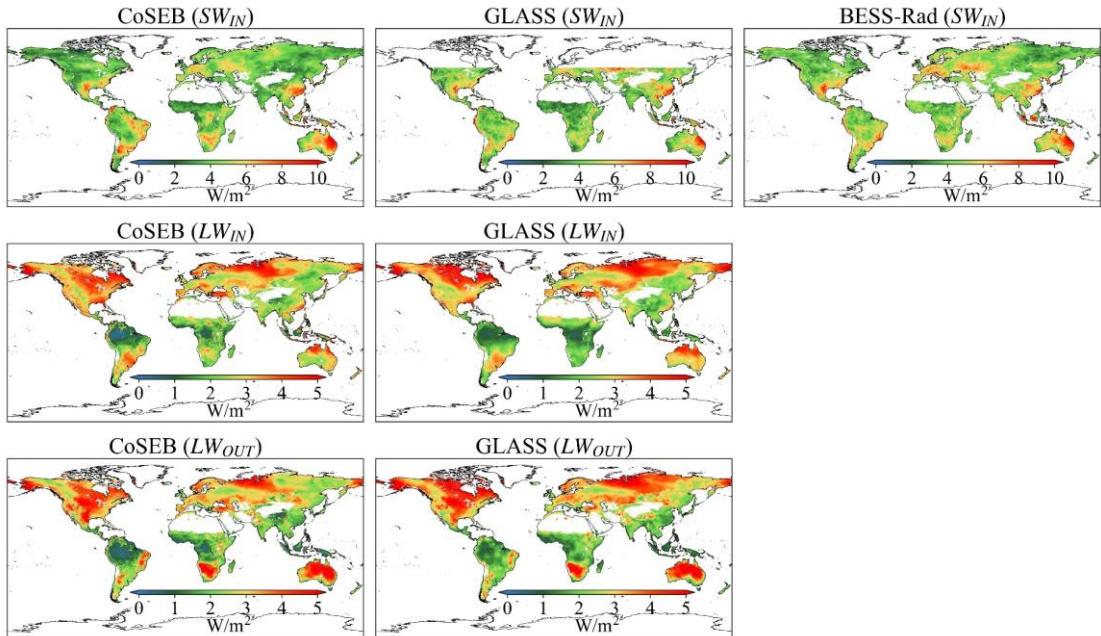
514 shortwave radiation (SW_{OUT}), downward longwave radiation (LW_{IN}), upward longwave

515 radiation (LW_{OUT}), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat

516 flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM,

517 BESSV2.0, PML_V2, MOD16A2 and ETMonitor. The shaded area represents the variation of

518 standard deviation for each product.

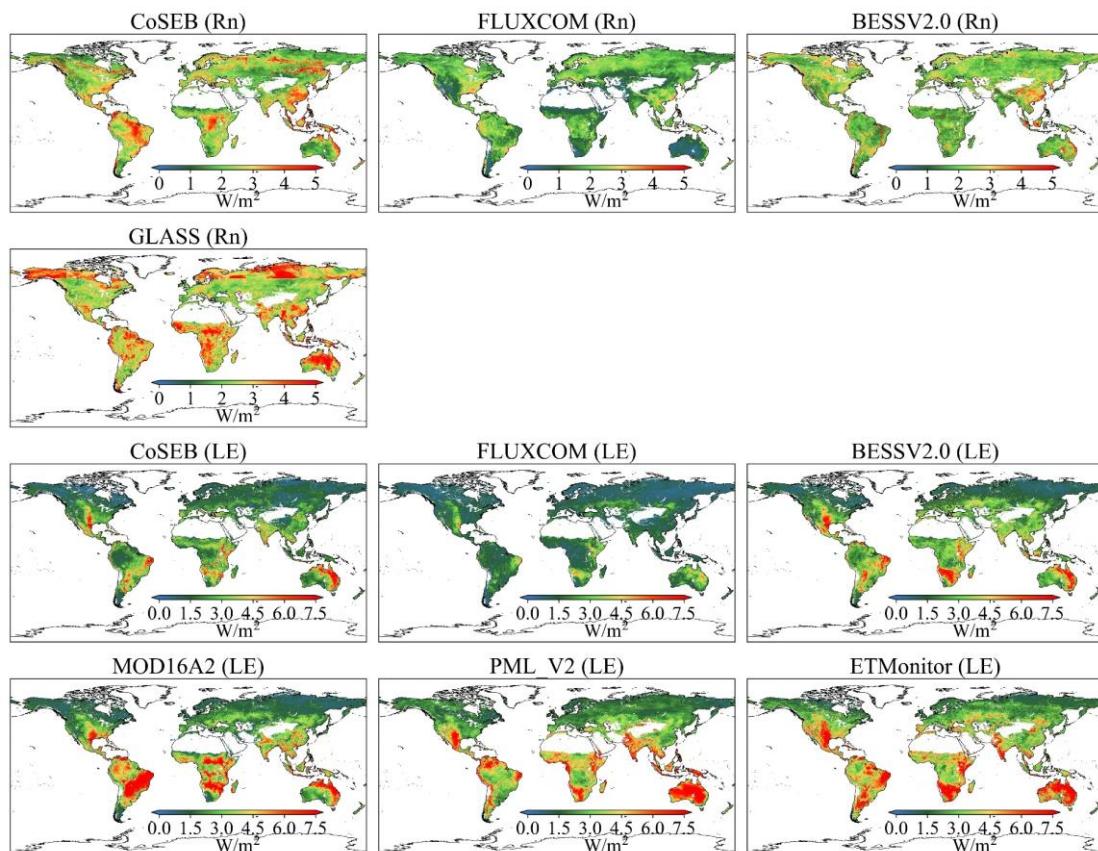


519

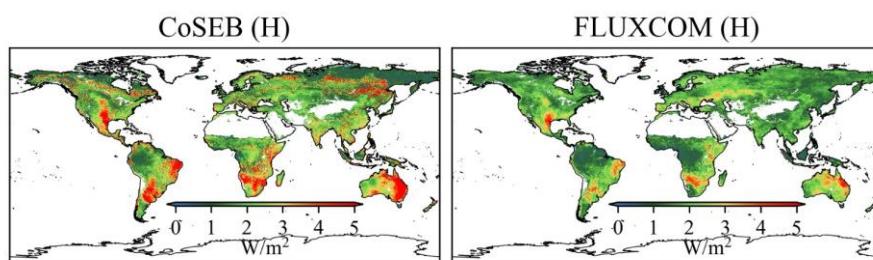
520 **Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward**
 521 **shortwave radiation (SW_{IN} , the first row), downward longwave radiation (LW_{IN} , the second**
 522 **row) and upward longwave radiation (LW_{OUT} , the third row) from 2001 to 2018 by the CoSEB-**
 523 **based datasets, GLASS and BESS-Rad.**

524 Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic
 525 continent, deserts, water bodies and permanent snow) of interannual variability of SW_{IN} ,
 526 LW_{IN} and LW_{OUT} , Rn and LE, as well as H from 2001 to 2018, respectively, derived
 527 from the CoSEB-based datasets and mainstream products/datasets. In general, the
 528 estimates from the CoSEB-based datasets displayed similar interannual variability in
 529 space with those from the mainstream products/datasets. Specially, the estimates of
 530 SW_{IN} from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant
 531 interannual variability mainly in northeastern Australia, eastern South America,
 532 Southeast China, and Southwest North America. The interannual variability of LW_{IN}
 533 and LW_{OUT} by the CoSEB-based datasets and GLASS displayed high values primarily
 534 at middle-to-high latitudes of the Northern Hemisphere and parts of Africa and
 535 Australia. The interannual variability of Rn observed by the CoSEB-based datasets was
 536 generally lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM.
 537 The CoSEB-based datasets missed the strong interannual variability of LE as observed
 538 in MOD16A2, PML_V2 and ETMonitor in parts of Africa, Australia and eastern South

539 America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE
 540 in almost all regions. The interannual variability of H derived from the CoSEB-based
 541 datasets was higher than that from FLUXCOM, with stronger interannual variabilities
 542 mainly observed in parts of eastern South America, southern Africa, and northeastern
 543 Australia.



544
 545 **Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn,**
 546 **the first and second rows) and latent heat flux (LE, the third and fourth row) from 2001 to**
 547 **2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2,**
 548 **ETMonitor and GLASS.**



549
 550 **Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux**
 551 **(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM.**

552 **5 Discussion**

553 Accurately monitoring the spatial and temporal variations of global land surface
554 radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and
555 water between the land and atmosphere under global climate change (Chen et al., 2020;
556 Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However,
557 although numerous global RS-based products/datasets of land surface radiation and
558 heat fluxes have been developed using physical and/or statistical methods, they
559 typically provide either merely a single flux or multiple fluxes (see Table 1) that are
560 estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019;
561 Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or
562 heat imbalance when these products are combined for practical applications. To address
563 these limitations, we generated high-accuracy global datasets of land surface radiation
564 and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation
565 laws, using our proposed CoSEB model (Wang et al., 2025).

566 Our CoSEB model, integrating underlying physical principles of training datasets
567 into machine learning technique to effectively learn the interrelations among multiple
568 targeted outputs, was originally designed for coordinating estimates of global land
569 surface energy balance components (Rn, LE, H and G) to satisfy the energy
570 conservation (Wang et al., 2025). Inspired by the idea of constructing the original
571 CoSEB model, we further incorporated land surface radiation fluxes into our model to
572 simultaneously consider the physical constraints of both surface radiation and heat
573 conservation principles, by renewing the CoSEB using multiple remote sensing and
574 reanalysis datasets, as well as in-situ observations of SW_{IN} , SW_{OUT} , LW_{IN} , LW_{OUT} , Rn,
575 LE, H and G. In selecting the 19 input variables to accommodate the additional target
576 variables, prior knowledge derived from previous studies was employed to identify
577 factors that exert significant influence on surface radiation and heat flux while
578 maintaining relative inter-independence as much as possible (Jung et al., 2019; Mohan
579 et al., 2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted

580 in data-driven models for estimating land surface water, energy, and carbon fluxes (Bai
581 et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance
582 scores of the 19 different feature variables are exhibited in Table S4 in the
583 Supplementary Material, and downward solar radiation, the primary source of the
584 energy at the earth surface, is the most important input variable, consistent with the
585 results from our previous study (Wang et al., 2025). Although some of the selected
586 variables may exhibit a certain degree of multi-collinearity, each contributes unique and
587 physically meaningful information, supporting the inclusion of all variables in model
588 construction. Note that the variable importance, derived from the built-in method of the
589 random forests and potentially affected by multicollinearity among the input variables,
590 is presented only as a reference. Retaining all 19 feature variables ensures the model's
591 flexibility and generalization capability, enabling future incorporation of additional
592 representative ground-based observations for further training and improvement.
593 Besides, to investigate the impact of lagged effects of input variables on model
594 performance, experiments were also conducted by adding lagged variables (e.g., the air
595 temperature of the previous day) to the 19 input features. The results (Fig. S4 in the
596 Supplementary Material) showed almost no improvement in model accuracy,
597 suggesting that lagged effects on model performance were negligible within the CoSEB
598 framework for estimates of daily surface radiation and heat fluxes. Furthermore, to
599 better illustrate the effect of including additional radiation components (SW_{IN} , SW_{OUT} ,
600 LW_{IN} and LW_{OUT}) in the renewed CoSEB model compared with the original version by
601 Wang et al. (2025), we have tested the performance of a reconstructed model that
602 estimated only Rn, LE, H and G using the same independent variables and samples as
603 those in the renewed CoSEB model. The results (Fig. S5 in the supplementary material)
604 showed no significant differences in accuracy compared with those of the renewed
605 CoSEB model, indicating the expansion of radiation components did not compromise
606 model performance.

607 The main advantages of our CoSEB-based datasets of land surface radiation and

heat fluxes lie in that [1] they are the first data-driven global datasets that satisfy both surface radiation balance ($SW_{IN} - SW_{OUT} + LW_{IN} - LW_{OUT} = Rn$) and heat balance ($LE + H + G = Rn$) among the eight fluxes, as demonstrated by both the RIR and EIR of 0, [2] the radiation and heat fluxes are characterized by high accuracies when validated against in-situ measurements at 44 independent test sites (see the second paragraph in Section 2.1), where (1) the RMSEs for daily estimates of SW_{IN} , SW_{OUT} , LW_{IN} , LW_{OUT} , Rn , LE , H and G from the CoSEB-based datasets were 37.52 W/m^2 , 14.20 W/m^2 , 22.47 W/m^2 , 13.78 W/m^2 , 29.66 W/m^2 , 30.87 W/m^2 , 29.75 W/m^2 and 5.69 W/m^2 , respectively, as well as for 8-day estimates were 18.54 W/m^2 , 12.19 W/m^2 , 18.50 W/m^2 , 9.41 W/m^2 , 19.12 W/m^2 , 22.31 W/m^2 , 21.63 W/m^2 and 4.60 W/m^2 , respectively, (2) the CoSEB-based datasets, in comparison to the mainstream RS-based products/datasets (i.e. GLASS, BESS-Rad, FLUXCOM, BESSV2.0, MOD16A2, PML_V2 and ETMonitor), better agreed with the in situ observations at the 44 test sites, showing the RMSE reductions ranging from 0.01 W/m^2 to 4.58 W/m^2 for SW_{IN} , LW_{IN} , LW_{OUT} , Rn and LE at daily scale, and 0.24 W/m^2 to 10.48 W/m^2 for SW_{IN} , LW_{IN} , LW_{OUT} , Rn , LE and H at 8-day scale. Furthermore, the CoSEB-based datasets outperformed the ERA5-Land reanalysis datasets in estimating surface energy fluxes (where SW_{OUT} , LW_{OUT} , Rn and G for the ERA-Land were inferred from surface radiation balance and heat balance), particularly for SW_{OUT} , H and G , with RMSE reductions of $0.13\text{--}8.15 \text{ W/m}^2$ when validated against in situ observations at the 44 test sites (Figs. S6 and S7 in the Supplementary Material). Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial patterns consistent with those of mainstream RS-based datasets and Earth system model outputs (see Fig. S8 in the supplementary material). More detailed analysis about their similarities and differences can be further conducted in future work.

Our developed datasets could be potentially applied in many fields, including but not limited to (1) exploring the spatial-temporal patterns of global land surface radiation and heat flux (es) and their driving mechanisms over the past decades under global change (e.g., rising CO_2 concentration, greening land surface and increasing air

636 temperature), (2) investigating the variability of land surface radiation and heat fluxes
637 caused by extreme events and human activities, e.g. afforestation or deforestation,
638 wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources
639 of solar energy, geothermal energy, surface and ground water at regional and global
640 scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry.

641 The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2)
642 the application of the CoSEB model across different spatial scales. Specifically, daily
643 averages of surface radiation and heat fluxes for each day were obtained for analysis
644 from good-quality half-hourly observations when the fraction of these good-quality
645 half-hourly observations was greater than 80% in a day, due to the lack of consensus on
646 the method for aggregating gapped half-hourly observations to daily data (Tang et al.,
647 2024a; Yao et al., 2017; Zheng et al., 2022). Simple temporal interpolation of half-
648 hourly in situ observations, which could therefore introduce substantial uncertainties,
649 was not applied, because surface radiation and heat fluxes are sensitive to short-term
650 variations in meteorological conditions and their intraday dynamics are often complex.
651 Likewise, since there was no agreement on how to correct for the energy imbalance of
652 turbulent heat fluxes, we adopted the most widely applied Bowen ratio method to
653 enforce energy closure between $Rn - G$ and $LE + H$ (Castelli et al., 2018; Twine et
654 al., 2000; Zhang et al., 2021). Another potential source of uncertainty arises from
655 differences in meteorological reanalysis data caused by spatial downscaling, which, as
656 demonstrated in our previous study (Wang et al., 2025, the last paragraph of Section
657 5.1), has a relatively small impact on model estimates by the machine-learning-based
658 CoSEB model combined with finer-resolution surface-related variables that partially
659 compensate for the spatial heterogeneity and localized variations not captured by the
660 coarse-resolution datasets. These data preprocessing had an effect on the construction
661 of the renewed CoSEB model, which may further affect the global datasets. Moreover,
662 the renewed CoSEB model was constructed at the spatial scale of 500 m to match the
663 footprints of the in situ EC observations, but applied at the spatial resolution of 0.05°

664 to generate global datasets, mainly limited by the computing and storage capabilities of
665 our personal computers. However, the CoSEB-based datasets have also been validated
666 and inter-compared at 44 independent test sites to demonstrate that the difference in
667 spatial scale would not much affect the performance of the datasets. Despite these
668 uncertainties, it is worth emphasizing that our work was the first attempt to innovatively
669 develop data-driven energy-conservation datasets of global land surface radiation and
670 heat fluxes with high accuracies.

671 **6 Data availability**

672 The energy-conservation datasets of global land surface radiation and heat fluxes
673 generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05°
674 from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan
675 Plateau Data Center at <https://doi.org/10.11888/Terre.tpdc.302559> (Tang et al., 2025a)
676 and through the Science Data Bank (ScienceDB) at
677 <https://doi.org/10.57760/sciencedb.27228> (Tang et al., 2025b).

678 **7 Summary and Conclusion**

679 This study for the first time developed data-driven energy-conservation datasets
680 of global land surface radiation and heat fluxes using our CoSEB model renewed based
681 on GLASS and MODIS products, ERA5-Land reanalysis datasets, topographic data,
682 CO₂ concentration data, and observations at 258 EC sites worldwide.

683 The CoSEB-based datasets of land surface radiation and heat fluxes are the first
684 data-driven global datasets that satisfy both surface radiation balance ($SW_{IN} - SW_{OUT} +$
685 $LW_{IN} - LW_{OUT} = Rn$) and heat balance ($LE + H + G = Rn$) among the eight fluxes.
686 Meanwhile, the CoSEB-based datasets outperformed the mainstream products/datasets
687 in accuracy. Specifically, at 44 independent test sites, the RMSEs (R^2) for daily
688 estimates of SW_{IN} , SW_{OUT} , LW_{IN} , LW_{OUT} , Rn , LE , H and G from the CoSEB-based
689 datasets were 37.52 W/m^2 (0.81), 14.20 W/m^2 (0.42), 22.47 W/m^2 (0.90), 13.78 W/m^2
690 (0.95), 29.66 W/m^2 (0.77), 30.87 W/m^2 (0.60), 29.75 W/m^2 (0.44) and 5.69 W/m^2 (0.44),

691 respectively, as well as for 8-day estimates were 18.54 W/m^2 (0.87), 12.19 W/m^2 (0.39),
692 18.50 W/m^2 (0.92), 9.41 W/m^2 (0.97), 19.12 W/m^2 (0.82), 22.31 W/m^2 (0.67), 21.63
693 W/m^2 (0.39) and 4.60 W/m^2 (0.47), respectively. Moreover, the estimates from the
694 CoSEB-based datasets in comparison to those from the mainstream products/datasets
695 reduced the RMSE by 0.01 W/m^2 to 4.58 W/m^2 and increased the R^2 by 0.01 to 0.09
696 for SW_{IN} , LW_{IN} , LW_{OUT} , Rn and LE at daily scale, and reduced the RMSE by 0.24 W/m^2
697 to 10.48 W/m^2 and increased the R^2 by 0.01 to 0.38 for SW_{IN} , LW_{IN} , LW_{OUT} , Rn , LE and
698 H at 8-day scale, when these estimates were validated against in situ observations at 44
699 independent test sites. Furthermore, the CoSEB-based datasets effectively captured the
700 spatial-temporal variability of global land surface radiation and heat fluxes, aligning
701 well with those from the mainstream products.

702 Our developed datasets hold significant potential for application across diverse
703 fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental
704 science. They can facilitate comprehensive studies on the variability, impacts, responses,
705 adaptation strategies, and mitigation measures of global and regional land surface
706 radiation and heat fluxes under the influences of climate change and human activities.
707 These datasets will provide valuable insights and data support for scientific research,
708 policy-making, and environmental management, advancing global solutions to address
709 climate change.

710 **Author contribution**

711 JW: Writing – original draft, Visualization, Software, Formal analysis, Data
712 curation. RT: Writing – original draft, Validation, Supervision, Methodology, Funding
713 acquisition, Formal analysis, Conceptualization. ML: Writing – review & editing,
714 Validation. ZL: Writing – review & editing.

715 **Competing interests**

716 The authors declare that they have no conflict of interest.

717 **Acknowledgment**

718 We thank the work from the AmeriFlux, FLUXNET, EuroFlux, OzFlux,
719 ChinaFLUX, the National Tibetan Plateau/Third Pole Environment Data Center and
720 SURFRAD for providing in situ measurements. We would also like to thank Dr. Martin
721 Jung and Dr. Ulrich Weber for providing the FLUXCOM Bowen ratio-corrected
722 products. This work is supported by the National Natural Science Foundation of China
723 [42271378], and the Strategic Priority Research Program of the Chinese Academy of
724 Sciences (Grant No. XDB0740202).

725 **References**

726 Bai, Y., Mallick, K., Hu, T., Zhang, S., Yang, S. and Ahmadi, A.: Integrating machine
727 learning with thermal-driven analytical energy balance model improved
728 terrestrial evapotranspiration estimation through enhanced surface conductance,
729 *Remote Sens. Environ.*, 311, 114308. 10.1016/j.rse.2024.114308, 2024.

730 Bartkowiak, P., Ventura, B., Jacob, A. and Castelli, M.: A Copernicus-based
731 evapotranspiration dataset at 100 m spatial resolution over four Mediterranean
732 basins, *Earth Syst. Sci. Data*, 16, 4709-4734. 10.5194/essd-16-4709-2024, 2024.

733 Berbery, E. H., Mitchell, K. E., Benjamin, S., Smirnova, T., Ritchie, H., Hogue, R. and
734 Radeva, E.: Assessment of land - surface energy budgets from regional and
735 global models, *J. Geophys. Res.-Atmos.*, 104, 19329-19348.
736 10.1029/1999jd900128, 1999.

737 Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J. and Viterbo, P. A.: The land
738 surface - atmosphere interaction: A review based on observational and global
739 modeling perspectives, *J. Geophys. Res.-Atmos.*, 101, 7209-7225.
740 10.1029/95jd02135, 1996.

741 Castelli, M., Anderson, M. C., Yang, Y., Wohlfahrt, G., Bertoldi, G., Niedrist, G.,
742 Hammerle, A., Zhao, P., Zebisch, M. and Notarnicola, C.: Two-source energy
743 balance modeling of evapotranspiration in Alpine grasslands, *Remote Sens. Environ.*, 209,
744 327-342. 10.1016/j.rse.2018.02.062, 2018.

745 Chen, J., He, T., Jiang, B. and Liang, S.: Estimation of all-sky all-wave daily net
746 radiation at high latitudes from MODIS data, *Remote Sens. Environ.*, 245,
747 111842. 10.1016/j.rse.2020.111842, 2020.

748 de Wit, A. J. W., Boogaard, H. L. and van Diepen, C. A.: Spatial resolution of
749 precipitation and radiation: The effect on regional crop yield forecasts, *Agric. For. Meteorol.*, 135,
750 156-168. 10.1016/j.agrformet.2005.11.012, 2005.

751 Du, Y., Wang, T., Zhou, Y., Letu, H., Li, D. and Xian, Y.: Towards user-friendly all-sky
752 surface longwave downward radiation from space: General scheme and product,

753 Bull. Amer. Meteorol. Soc., 105, E1303–E1319. 10.1175/bams-d-23-0126.1,
754 2024.

755 ElGhawi, R., Kraft, B., Reimers, C., Reichstein, M., Körner, M., Gentine, P. and
756 Winkler, A. J.: Hybrid modeling of evapotranspiration: inferring stomatal and
757 aerodynamic resistances using combined physics-based and machine learning,
758 Environ. Res. Lett., 18, 034039. 10.1088/1748-9326/acbbe0, 2023.

759 Ersi, C., Sudu, B., Song, Z., Bao, Y., Wei, S., Zhang, J., Tong, Z., Liu, X., Le, W. and
760 Rina, S.: The potential of NIRvP in estimating evapotranspiration, Remote Sens.
761 Environ., 315, 114405. 10.1016/j.rse.2024.114405, 2024.

762 Han, Q., Zeng, Y., Zhang, L., Wang, C., Prikaziuk, E., Niu, Z. and Su, B.: Global long
763 term daily 1 km surface soil moisture dataset with physics informed machine
764 learning, Sci. Data, 10, 101. 10.1038/s41597-023-02011-7, 2023.

765 Huang, J., Yu, H., Guan, X., Wang, G. and Guo, R.: Accelerated dryland expansion
766 under climate change, Nat. Clim. Chang., 6, 166-171. 10.1038/nclimate2837,
767 2015.

768 Huang, L., Luo, Y., Chen, J. M., Tang, Q., Steenhuis, T., Cheng, W. and Shi, W.:
769 Satellite-based near-real-time global daily terrestrial evapotranspiration
770 estimates, Earth Syst. Sci. Data, 16, 3993-4019. 10.5194/essd-16-3993-2024,
771 2024.

772 Jia, B., Xie, Z., Dai, A., Shi, C. and Chen, F.: Evaluation of satellite and reanalysis
773 products of downward surface solar radiation over East Asia: Spatial and
774 seasonal variations, J. Geophys. Res.-Atmos., 118, 3431-3446.
775 10.1002/jgrd.50353, 2013.

776 Jiang, B., Zhang, Y., Liang, S., Wohlfahrt, G., Arain, A., Cescatti, A., Georgiadis, T., Jia,
777 K., Kiely, G., Lund, M., Montagnani, L., Magliulo, V., Ortiz, P. S., Oechel, W.,
778 Vaccari, F. P., Yao, Y. and Zhang, X.: Empirical estimation of daytime net
779 radiation from shortwave radiation and ancillary information, Agric. For.
780 Meteorol., 211-212, 23-36. 10.1016/j.agrformet.2015.05.003, 2015.

781 Jiao, B., Su, Y., Li, Q., Manara, V. and Wild, M.: An integrated and homogenized global
782 surface solar radiation dataset and its reconstruction based on a convolutional
783 neural network approach, Earth Syst. Sci. Data, 15, 4519-4535. 10.5194/essd-
784 15-4519-2023, 2023.

785 Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D.,
786 Schwalm, C., Tramontana, G. and Reichstein, M.: The FLUXCOM ensemble of
787 global land-atmosphere energy fluxes, Sci. Data, 6, 74. 10.1038/s41597-019-
788 0076-8, 2019.

789 Kim, Y., Park, H., Kimball, J. S., Colliander, A. and McCabe, M. F.: Global estimates
790 of daily evapotranspiration using SMAP surface and root-zone soil moisture,
791 Remote Sens. Environ., 298, 113803. 10.1016/j.rse.2023.113803, 2023.

792 Li, B., Ryu, Y., Jiang, C., Dechant, B., Liu, J., Yan, Y. and Li, X.: BESSv2.0: A satellite-
793 based and coupled-process model for quantifying long-term global land-
794 atmosphere fluxes, Remote Sens. Environ., 295, 113696.

795 10.1016/j.rse.2023.113696, 2023.

796 797 798 Liang, S., Wang, D., He, T. and Yu, Y.: Remote sensing of earth's energy budget: synthesis and review, *Int. J. Digit. Earth*, 12, 737-780. 10.1080/17538947.2019.1597189, 2019.

799 800 801 Liang, S., Zheng, T., Liu, R., Fang, H., Tsay, S. C. and Running, S.: Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data, *J. Geophys. Res.-Atmos.*, 111. 10.1029/2005jd006730, 2006.

802 803 804 805 Liu, S., Xu, Z., Song, L., Zhao, Q., Ge, Y., Xu, T., Ma, Y., Zhu, Z., Jia, Z. and Zhang, F.: Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces, *Agric. For. Meteorol.*, 230, 97-113. 10.1016/j.agrformet.2016.04.008, 2016.

806 807 808 809 Mohan, M. M. P., Kanchirapuzha, R. and Varma, M. R. R.: Review of approaches for the estimation of sensible heat flux in remote sensing-based evapotranspiration models, *J. Appl. Remote Sens.*, 14, 041501-041501. 10.11117/1.Jrs.14.041501, 2020.

810 811 812 Mu, Q., Zhao, M. and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, *Remote Sens. Environ.*, 115, 1781-1800. 10.1016/j.rse.2011.02.019, 2011.

813 814 815 816 Mueller, R. W., Matsoukas, C., Gratzki, A., Behr, H. D. and Hollmann, R.: The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—A LUT based eigenvector hybrid approach, *Remote Sens. Environ.*, 113, 1012-1024. 10.1016/j.rse.2009.01.012, 2009.

817 818 819 820 821 822 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C. and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, *Earth Syst. Sci. Data*, 13, 4349-4383. 10.5194/essd-13-4349-2021, 2021.

823 824 825 826 Nemanic, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B. and Running, S. W.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999, *Science*, 300, 1560-1563. 10.1126/science.1082750, 2003.

827 828 O., S. and Orth, R.: Global soil moisture data derived through machine learning trained with in-situ measurements, *Sci. Data*, 8. 10.1038/s41597-021-00964-1, 2021.

829 830 831 832 833 Peng, Z., Letu, H., Wang, T., Shi, C., Zhao, C., Tana, G., Zhao, N., Dai, T., Tang, R., Shang, H., Shi, J. and Chen, L.: Estimation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 240, 106672. 10.1016/j.jqsrt.2019.106672, 2020.

834 835 836 Rios, G. and Ramamurthy, P.: A novel model to estimate sensible heat fluxes in urban areas using satellite-derived data, *Remote Sens. Environ.*, 270, 112880. 10.1016/j.rse.2021.112880, 2022.

837 Ryu, Y., Jiang, C., Kobayashi, H. and Detto, M.: MODIS-derived global land products
838 of shortwave radiation and diffuse and total photosynthetically active radiation
839 at 5 km resolution from 2000, *Remote Sens. Environ.*, 204, 812-825.
840 10.1016/j.rse.2017.09.021, 2018.

841 Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A.,
842 Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C.
843 B. and Henderson-Sellers, A.: Modeling the Exchanges of Energy, Water, and
844 Carbon Between Continents and the Atmosphere, *Science*, 275, 502-509.
845 10.1126/science.275.5299.502, 1997.

846 Sun, S., Bi, Z., Xiao, J., Liu, Y., Sun, G., Ju, W., Liu, C., Mu, M., Li, J., Zhou, Y., Li,
847 X., Liu, Y. and Chen, H.: A global 5 km monthly potential evapotranspiration
848 dataset (1982–2015) estimated by the Shuttleworth–Wallace model, *Earth Syst.
849 Sci. Data*, 15, 4849-4876. 10.5194/essd-15-4849-2023, 2023.

850 Tang, R., Peng, Z., Liu, M., Li, Z.-L., Jiang, Y., Hu, Y., Huang, L., Wang, Y., Wang, J.,
851 Jia, L., Zheng, C., Zhang, Y., Zhang, K., Yao, Y., Chen, X., Xiong, Y., Zeng, Z.
852 and Fisher, J. B.: Spatial-temporal patterns of land surface evapotranspiration
853 from global products, *Remote Sens. Environ.*, 304, 114066.
854 10.1016/j.rse.2024.114066, 2024a.

855 Tang, R., Wang, J., Liu, M. and Li, Z.-L.: Energy-conservation datasets of global land
856 surface radiation and heat fluxes from 2000-2020 generated by CoSEB,
857 National Tibetan Plateau / Third Pole Environment Data Center. [data set],
858 <https://doi.org/10.11888/Terre.tpdc.302559>, 2025a.

859 Tang, R., Wang, J., Liu, M. and Li, Z.-L.: Energy-conservation datasets of global land
860 surface radiation and heat fluxes from 2000-2020 generated by CoSEB, *Science
861 Data Bank: Science Data Bank*. [data set],
862 <https://doi.org/10.57760/sciencedb.27228>, 2025b.

863 Tang, W., He, J., Qi, J. and Yang, K.: A dense station-based, long-term and high-
864 accuracy dataset of daily surface solar radiation in China, *Earth Syst. Sci. Data*,
865 15, 4537-4551. 10.5194/essd-15-4537-2023, 2023.

866 Tang, W., He, J., Shao, C., Song, J., Yuan, Z. and Yan, B.: Constructing a long-term
867 global dataset of direct and diffuse radiation (10 km, 3 h, 1983–2018) separating
868 from the satellite-based estimates of global radiation, *Remote Sens. Environ.*,
869 311, 114292. 10.1016/j.rse.2024.114292, 2024b.

870 Tang, W., Yang, K., Qin, J., Li, X. and Niu, X.: A 16-year dataset (2000–2015) of high-
871 resolution (3 h, 10 km) global surface solar radiation, *Earth Syst. Sci. Data*, 11,
872 1905-1915. 10.5194/essd-11-1905-2019, 2019.

873 Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P.,
874 Prueger, J. H., Starks, P. J. and Wesely, M. L.: Correcting eddy-covariance flux
875 underestimates over a grassland, *Agric. For. Meteorol.*, 103, 279-300.
876 10.1016/S0168-1923(00)00123-4, 2000.

877 van der Tol, C.: Validation of remote sensing of bare soil ground heat flux, *Remote Sens.
878 Environ.*, 121, 275-286. 10.1016/j.rse.2012.02.009, 2012.

879 Wang, D., Liang, S., He, T. and Shi, Q.: Estimation of Daily Surface Shortwave Net
880 Radiation From the Combined MODIS Data, *IEEE Trans. Geosci. Remote*
881 *Sensing*, 53, 5519-5529. 10.1109/tgrs.2015.2424716, 2015.

882 Wang, D., Liang, S., Li, R. and Jia, A.: A synergic study on estimating surface
883 downward shortwave radiation from satellite data, *Remote Sens. Environ.*, 264,
884 112639. 10.1016/j.rse.2021.112639, 2021.

885 Wang, J., Tang, R., Liu, M., Jiang, Y., Huang, L. and Li, Z.-L.: Coordinated estimates
886 of 4-day 500 m global land surface energy balance components, *Remote Sens.*
887 *Environ.*, 326, 114795. 10.1016/j.rse.2025.114795, 2025.

888 Wang, K. C., Dickinson, R. E., Wild, M. and Liang, S.: Atmospheric impacts on climatic
889 variability of surface incident solar radiation, *Atmos. Chem. Phys.*, 12, 9581-
890 9592. 10.5194/acp-12-9581-2012, 2012.

891 Wang, T., Shi, J., Ma, Y., Letu, H. and Li, X.: All-sky longwave downward radiation
892 from satellite measurements: General parameterizations based on LST, column
893 water vapor and cloud top temperature, *ISPRS-J. Photogramm. Remote Sens.*,
894 161, 52-60. 10.1016/j.isprsjprs.2020.01.011, 2020.

895 Wang, Y., Hu, J., Li, R., Song, B. and Hailemariam, M.: Remote sensing of daily
896 evapotranspiration and gross primary productivity of four forest ecosystems in
897 East Asia using satellite multi-channel passive microwave measurements, *Agric.*
898 *For. Meteorol.*, 339, 109595. 10.1016/j.agrformet.2023.109595, 2023.

899 Wild, M.: Global dimming and brightening: A review, *J. Geophys. Res.-Atmos.*, 114,
900 D00D16. 10.1029/2008jd011470, 2009.

901 Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G. and König-Langlo, G.: The
902 global energy balance from a surface perspective, *Clim. Dyn.*, 40, 3107-3134.
903 10.1007/s00382-012-1569-8, 2012.

904 Wild, M. and Liepert, B.: The Earth radiation balance as driver of the global
905 hydrological cycle, *Environ. Res. Lett.*, 0, 025203. 10.1088/1748-
906 9326/5/2/025003, 2010.

907 Xia, X. A., Wang, P. C., Chen, H. B. and Liang, F.: Analysis of downwelling surface
908 solar radiation in China from National Centers for Environmental Prediction
909 reanalysis, satellite estimates, and surface observations, *J. Geophys. Res.-*
910 *Atmos.*, 111, D09103. 10.1029/2005jd006405, 2006.

911 Xian, Y., Wang, T., Leng, W., Letu, H., Shi, J., Wang, G., Yan, X. and Yuan, H.: Can
912 Topographic Effects on Solar Radiation Be Ignored: Evidence From the Tibetan
913 Plateau, *Geophys. Res. Lett.*, 51, e2024GL108653. 10.1029/2024gl108653,
914 2024.

915 Xu, J., Liang, S. and Jiang, B.: A global long-term (1981–2019) daily land surface
916 radiation budget product from AVHRR satellite data using a residual
917 convolutional neural network, *Earth Syst. Sci. Data*, 14, 2315-2341.
918 10.5194/essd-14-2315-2022, 2022a.

919 Xu, J., Liang, S., Ma, H. and He, T.: Generating 5 km resolution 1981–2018 daily global
920 land surface longwave radiation products from AVHRR shortwave and

921 longwave observations using densely connected convolutional neural networks,
922 *Remote Sens. Environ.*, 280, 113223. 10.1016/j.rse.2022.113223, 2022b.

923 Yao, Y., Liang, S., Li, X., Chen, J., Liu, S., Jia, K., Zhang, X., Xiao, Z., Fisher, J. B.,
924 Mu, Q., Pan, M., Liu, M., Cheng, J., Jiang, B., Xie, X., Grünwald, T., Bernhofer,
925 C. and Roupsard, O.: Improving global terrestrial evapotranspiration estimation
926 using support vector machine by integrating three process-based algorithms,
927 *Agric. For. Meteorol.*, 242, 55-74. 10.1016/j.agrformet.2017.04.011, 2017.

928 Yu, L., Qiu, G. Y., Yan, C., Zhao, W., Zou, Z., Ding, J., Qin, L. and Xiong, Y.: A global
929 terrestrial evapotranspiration product based on the three-temperature model
930 with fewer input parameters and no calibration requirement, *Earth Syst. Sci.
931 Data*, 14, 3673-3693. 10.5194/essd-14-3673-2022, 2022.

932 Zhang, C., Long, D., Zhang, Y., Anderson, M. C., Kustas, W. P. and Yang, Y.: A decadal
933 (2008–2017) daily evapotranspiration data set of 1 km spatial resolution and
934 spatial completeness across the North China Plain using TSEB and data fusion,
935 *Remote Sens. Environ.*, 262, 112519. 10.1016/j.rse.2021.112519, 2021.

936 Zhang, J., Zhao, L., Deng, S., Xu, W. and Zhang, Y.: A critical review of the models
937 used to estimate solar radiation, *Renew. Sust. Energ. Rev.*, 70, 314-329.
938 10.1016/j.rser.2016.11.124, 2017.

939 Zhang, K., Kimball, J. S., Nemani, R. R. and Running, S. W.: A continuous satellite -
940 derived global record of land surface evapotranspiration from 1983 to 2006,
941 *Water Resour. Res.*, 46, W09522. 10.1029/2009wr008800, 2010.

942 Zhang, X., Liang, S., Zhou, G., Wu, H. and Zhao, X.: Generating Global LAnd Surface
943 Satellite incident shortwave radiation and photosynthetically active radiation
944 products from multiple satellite data, *Remote Sens. Environ.*, 152, 318-332.
945 10.1016/j.rse.2014.07.003, 2014.

946 Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q. and Yang, Y.:
947 Coupled estimation of 500 m and 8-day resolution global evapotranspiration
948 and gross primary production in 2002–2017, *Remote Sens. Environ.*, 222, 165-
949 182. 10.1016/j.rse.2018.12.031, 2019.

950 Zheng, C., Jia, L. and Hu, G.: Global land surface evapotranspiration monitoring by
951 ETMonitor model driven by multi-source satellite earth observations, *J. Hydrol.*,
952 613, 128444. 10.1016/j.jhydrol.2022.128444, 2022.

953