
1 

 

Energy-conservation datasets of global land surface radiation 1 

and heat fluxes from 2000-2020 generated by CoSEB 2 

Junrui Wanga, b, Ronglin Tanga, b, *, Meng Liuc, Zhao-Liang Lia, b, c 3 

a State Key Laboratory of Resources and Environment Information System, Institute of 4 

Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 5 

Beijing 100101, China 6 

b University of Chinese Academy of Sciences, Beijing 100049, China 7 

c State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of 8 

Agricultural Resources and Regional Planning, Chinese Academy of Agricultural 9 

Sciences, Beijing 100081, China 10 

* Authors to whom correspondence should be addressed: tangrl@lreis.ac.cn 11 

Abstract 12 

Accurately estimating global land surface radiation [including downward 13 

shortwave radiation (SWIN), downward longwave radiation (LWIN), upward shortwave 14 

radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation (Rn)] and heat 15 

fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is 16 

essential for quantifying the exchange of radiation, heat and water between the land and 17 

atmosphere under global climate change. This study presents the first data-driven 18 

energy-conservation datasets of global land surface radiation and heat fluxes from 2000 19 

to 2020, generated by our model of Coordinated estimates of land Surface Energy 20 

Balance components (CoSEB). The model integrates GLASS and MODIS remote 21 

sensing data, ERA5-Land reanalysis datasets, topographic data, CO2 concentration data 22 

as independent variables and in situ radiation and heat flux observations at 258 eddy 23 

covariance sites worldwide as dependent variables within a multivariate random forest 24 

technique to effectively learn the physics of energy conservation. The developed 25 

CoSEB-based datasets are strikingly advantageous in that [1] they are the first data-26 

driven global datasets that satisfy both surface radiation balance and heat balance 27 
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among the eight fluxes, as demonstrated by both the radiation imbalance ratio [RIR, 28 

defined as 100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn] and energy imbalance ratio 29 

[EIR, defined as 100% × (Rn - G - LE - H)/Rn] of 0, [2] the radiation and heat fluxes 30 

are characterized by high accuracies, where (1) the RMSEs (R2) for daily estimates of 31 

SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based datasets at 44 32 

independent test sites were 37.52 W/m2 (0.81), 14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 33 

13.78 W/m2 (0.95), 29.66 W/m2 (0.77), 30.87 W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 34 

W/m2 (0.44), respectively, (2) the CoSEB-based datasets, in comparison to the 35 

mainstream products/datasets (i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, 36 

MOD16A2, PML_V2 and ETMonitor) that generally separately estimated subsets of 37 

the eight flux components, better agreed with the in situ observations. Our developed 38 

datasets hold significant potential for application across diverse fields such as 39 

agriculture, forestry, hydrology, meteorology, ecology, and environmental science, 40 

which can facilitate comprehensive studies on the variability, impacts, responses, 41 

adaptation strategies, and mitigation measures of global and regional land surface 42 

radiation and heat fluxes under the influences of climate change and human activities. 43 

The CoSEB-based datasets are open access and available through the National Tibetan 44 

Plateau Data Center (TPDC) at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 45 

2025a) and through the Science Data Bank (ScienceDB) at 46 

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b). 47 

Key words: Surface energy balance; Surface radiation balance; Shortwave/Longwave 48 

radiation; Net radiation; Sensible/Latent heat flux; Evapotranspiration; CoSEB 49 

1 Introduction 50 

Land surface radiation balance and heat balance play important roles in Earth's 51 

climate system, representing the physical processes by which the surface-atmosphere 52 

absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al., 53 

1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the 54 

exchange of water, energy, carbon, and other agents essential to climatic and ecological 55 
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systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al., 56 

2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of 57 

global land surface radiation [including downward shortwave radiation (SWIN), 58 

downward longwave radiation (LWIN), upward shortwave radiation (SWOUT), upward 59 

longwave radiation (LWOUT) and net radiation (Rn)] and heat fluxes [including latent 60 

heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for 61 

quantifying the exchange of radiation, heat and water between the land and atmosphere 62 

under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy, 63 

2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization 64 

(Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild & 65 

Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management 66 

(De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS) 67 

technology, with its high spatial-temporal resolution and applicability over large areas, 68 

is considered to be the most effective and economical means for obtaining global land 69 

surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al., 70 

2010). 71 

In past decades, numerous RS-based products/datasets of global surface radiation 72 

and heat fluxes have significantly advanced, which were generally generated by 73 

physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao et 74 

al., 2023; Jung et al., 2019; Peng et al., 2020). However, two key limitations still exist 75 

in these products. Firstly, most available products provide only a single component of 76 

land surface radiation or heat fluxes, e.g. ETMonitor (Zheng et al., 2022) and 77 

MOD16A2 (Mu et al., 2011) only estimating LE, leading to the failure to satisfy surface 78 

radiation balance and heat balance when the single radiation or heat flux is utilized in 79 

conjunction with products containing other radiation and heat components (Wang et al., 80 

2025), and further posing significant uncertainties to understand the interactions and 81 

redistributions of surface radiation and energy in the Earth-atmosphere system. 82 

Secondly, a few products, e.g., FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al., 83 
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2015; Zhang et al., 2014), generated datasets for multiple components of surface 84 

radiation and heat fluxes by using separate estimates from the uncoordinated models, 85 

which make them difficult to abide by surface radiation and heat conservation. These 86 

energy-imbalanced and radiation-imbalanced estimates among multiple components 87 

from previous products/datasets severely limit their in-depth applications in analyzing 88 

the spatial and temporal trends, simulating the physical processes of radiation, heat and 89 

water cycles as well as revealing the attributions and mechanisms in Earth-surface 90 

system under global climate change. It was imperative to develop global datasets of 91 

land surface radiation and heat fluxes characterized by high accuraciesaccuracy, 92 

radiation balance as well as heat balance, to better meet the requirements in practical 93 

applications of various fields. 94 

Our proposed data-driven model/framework of Coordinated estimates of land 95 

Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively 96 

learns the underlying physical interrelations (i.e., surface energy conservation law) 97 

among multiple targeted variables, provides an unprecedented opportunity to develop 98 

global datasets of land surface radiation and heat fluxes that can not only 99 

simultaneously provide high-accuracy estimates of these components but also adhere 100 

to surface radiation- and heat-conservation laws. 101 

The objectives of this study are twofold: (1) to develop high-accuracy datasets of 102 

global land surface radiation and heat fluxes, which comply with the principles of 103 

radiation balance and heat balance, using our CoSEB model renewed based on in situ 104 

observations, remote sensing data and reanalysis datasets; (2) to validate the 105 

datasets/model estimates against data from in situ observations, mainstream products 106 

as well as estimates from uncoordinated random forest (RF) techniques. Section 2 107 

introduces the data resources used in this study. Section 3 briefly describes the method 108 

we used to estimate global surface radiation and heat fluxes. Section 4 presents the 109 

evaluation of the datasets/model estimates generated by our renewed CoSEB model. 110 

Section 5 discusses the superiority, potential applications and uncertainties of the 111 
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developed datasets. Data availability is given in Section 6, and a summary and 112 

conclusion is provided in Section 7. 113 

2 Data 114 

2.1 Ground-based observations 115 

In this study, the in situ observations of land surface radiation and heat fluxes at 116 

302 eddy covariance (EC) sites from the networks of AmeriFlux (174 sites, 2000–2020, 117 

https://AmeriFlux.lbl.gov/Data/, last access: 6 August 2024), EuroFlux (72 sites, 2000-118 

2020, http://www.europe-fluxdata.eu/, last access: 6 August 2024), OzFlux (5 sites, 119 

2007-2012, https://data.ozflux.org.au/, last access: 6 August 2024), FLUXNET (108 120 

sites, 2000–2014, https://FLUXNET.org/Data/download-Data/, last access: 6 August 121 

2024), JapanFlux (15 sites, 2001-2020, https://ads.nipr.ac.jp/japan-flux2024/, last 122 

access: 10 October 2025), ChinaFLUX (5 sites, 2005-2020, http://www.chinaflux.org/, 123 

last access: 6 August 2024) and National Tibetan Plateau/Third Pole Environment Data 124 

Center (TPDC, 13 sites, 2012–2020, https://Data.tpdc.ac.cn/en/Data, last access: 6 125 

August 2024) were used (Fig. 1), where 37, 48 and 5 sites in FLUXNET were also 126 

shared in AmeriFlux, EuroFlux and OzFlux, respectively. These 302 sites were filtered 127 

out from all collected 1098 sites by following the quality-assurance and quality-control 128 

steps, including: (1) any site with a missing component of any of the SWIN, SWOUT, LWIN, 129 

LWOUT, LE, H and G was excluded, reducing the 1098 sites to 472 sites for further 130 

analysis; (2) any half-hour period with missing data for any of these components was 131 

excluded; (3) the half-hourly ground-based observations with quality-control flag of 2 132 

or 3 (bad quality) were removed but quality-control flag of 0 and 1 (good quality) were 133 

maintained; (4) a daily average of the half-hour observations was calculated for each 134 

day with greater than 80% good-quality data, further reducing the 472 sites to 355 sites; 135 

(5) the aggregated daily LE and H were corrected for energy imbalance using the 136 

Bowen ratio method when the daily energy balance closure [defined as 137 

( ) / ( )LE H Rn G+ −  ] varied between 0.2 and 1.8 following Wang et al. (2025) to 138 

https://ameriflux.lbl.gov/Data/
https://data.ozflux.org.au/
https://ads.nipr.ac.jp/japan-flux2024/
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exclude physically implausible measurements; (6) extreme outliers in the daily 139 

evaporative fraction were further removed by excluding values outside the 1st–99th 140 

percentile range, a common practice in flux and remote sensing studies (Bartkowiak et 141 

al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites. Besides, the RS 142 

products/datasets involved in this study collocated at the sites should not be missing, 143 

finally reducing the 337 sites to 302 sites for analysis. Note that the Rn at these sites 144 

used in this study was calculated from the sum of net longwave radiation (LWIN minus 145 

LWOUT) and net shortwave radiation (SWIN minus SWOUT), rather than using the 146 

observed Rn directly, to ensure surface radiation balance in training datasets. 147 

These 302 sites used in this study cover a wide range of global climate regimes 148 

across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 55 sites); 149 

(2) evergreen broadleaf forests (EBF, 12 sites); (3) deciduous needleleaf forests (DNF, 150 

7 sites); (4) deciduous broadleaf forests (DBF, 40 sites); (5) mixed forests (MF, 8 sites); 151 

(6) closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 11 sites); (8) woody 152 

savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands (GRA, 62 sites); 153 

(11) permanent wetlands (WET, 22 sites); (12) croplands (CRO, 59 sites); (13) water 154 

bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics (CVM, 4 sites). Among 155 

them, 44 sites (~15% of the total, see Table S1) were isolated to serve as spatially 156 

independent sites to test the generated datasets and they did not participate in the 157 

development of the model/datasets. 158 



7 

 

 159 

Fig. 1 Spatial distribution of the 302 eddy covariance sites from AmeriFlux, FLUXNET, 160 

EuroFlux, OzFlux, JapanFlux, ChinaFLUX and TPDC, and nine radiation sites from 161 

SURFRAD involved for analysis in this study. 162 

Furthermore, ground-based radiation observations from nine sites that are located 163 

in large flat agricultural areas covered by crops and grasses from SURFRAD 164 

(https://gml.noaa.gov/) were also introduced to validate land surface radiation estimates. 165 

Similar to the preprocessing performed on the observations of the 302 EC sites, the 166 

SWIN, SWOUT, LWIN, LWOUT and Rn from the SURFRAD were also quality-controlled 167 

and aggregated to daily data. Spatial distribution of the 302 EC sites and nine radiation 168 

sites from SURFRAD are shown in Fig. 1, with site details (latitude, longitude, land 169 

cover types, digital elevation model and temporal coverage) provided in Supplementary 170 

Tables S1 and S2. 171 

2.2 Climate/meteorology and remote sensing data 172 

To generate global datasets of land surface radiation and heat fluxes from 2000 to 173 

2020, five types of climate/meteorology and remote sensing data were used in this study, 174 

including: 175 

(1) ERA5-Land reanalysis datasets (https://cds.climate.copernicus.eu/, last access: 6 176 

August 2024) with the spatial resolution of ~9 km from 1950 (Muñoz-Sabater et 177 

al., 2021). Following our previous work (Wang et al., 2025), this study used 178 
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variables from the ERA5-Land datasets to drive the model, including near-surface 179 

2 m air temperature ( aT ), soil temperature in layer 1 (0-7 cm, 1ST ), soil volumetric 180 

moisture content in layer 1 (0-7 cm, SM1), solar radiation reaching the surface of 181 

the earth (
5ERA

INSW ), net thermal radiation at the surface ( netLW ), pressure of the 182 

atmosphere (PA), 10 m wind speed (WS), precipitation (Pr) and the 2 m dewpoint 183 

temperature, daily minimum and maximum air temperature [for calculating 184 

relative air humidity (RH)]. 185 

(2) GLASS datasets (https://glass.bnu.edu.cn/, last access: 6 August 2024), which 186 

provide the 500 m 8-day leaf area index (LAI) and fractional vegetation cover 187 

(FVC) from February 2000 to December 2021. 188 

(3) MOD44B product (https://lpdaac.usgs.gov/, last access: 6 August 2024), which 189 

offers yearly 250 m percent tree cover (PTC) since 2000, representing the 190 

percentage (0~100%) of a pixel covered by tree canopy. 191 

(4) NOAA/GML atmospheric carbon dioxide (CO2) concentration data, providing 192 

monthly global marine surface mean data since 1958 193 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6 194 

August 2024). 195 

(5) GMTED2010 topographic data 196 

(https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php, last 197 

access: 6 August 2024), providing 500 m digital elevation model (DEM), slope, 198 

and aspect. 199 

The ~9 km ERA5-Land datasets were spatially interpolated to 500 m using the 200 

cubic convolution method, and the 250 m PTC was resampled to 500 m using the 201 

arithmetic averaging method. 202 

2.3 Mainstream datasets/products for inter-comparison 203 

Mainstream RS-based datasets/products of moderate-resolution global land 204 

surface radiation and heat fluxes were collected for inter-comparison (Table 1), 205 

https://glass.bnu.edu.cn/
https://lpdaac.usgs.gov/
https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php
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including (1) the daily 0.05° GLASS SWIN, LWIN, LWOUT and Rn products from 2000 to 206 

2018 (https://glass.bnu.edu.cn/, last access: 6 August 2024), (2) the daily 0.05° 207 

Breathing Earth System Simulator Radiation (BESS-Rad) SWIN products from 2000 to 208 

2020 (https://www.environment.snu.ac.kr/bess-rad), (3) the daily 0.05° BESS 209 

Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020 210 

(https://www.environment.snu.ac.kr/bessv2), (4) the 8-day 0.0833° FLUXCOM Rn, LE 211 

and H products from 2001 to 2020 (https://fluxcom.org/, last access: 6 August 2024), 212 

(5) the daily 1 km ETMonitor LE product from 2000 to 2020 (https://data.casearth.cn/, 213 

last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2 214 

(PML_V2, https://www.tpdc.ac.cn/, last access: 6 August 2024) LE product from 2000 215 

to 2020; and (7) the 8-day 500 m MOD16A2 (https://lpdaac.usgs.gov/, last access: 6 216 

August 2024) LE product from 2000 to 2020. 217 

The GLASS SWIN products are derived from a combination of the GLASS 218 

broadband albedo product and the surface shortwave net radiation estimates, where the 219 

surface shortwave net radiation is estimated using linear regression with MODIS top-220 

of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LWIN and 221 

LWOUT products are generated using densely connected convolutional neural networks, 222 

incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance 223 

and ERA5 near-surface meteorological data (Xu et al., 2022b). The GLASS Rn 224 

products are estimated from the meteorological variables from MERRA2 and surface 225 

variables from GLASS using the multivariate adaptive regression splines model (Jiang 226 

et al., 2015). The BESS-Rad and BESSV2.0 estimate SWIN and Rn using a radiative 227 

transfer model (i.e., Forest Light Environmental Simulator, FLiES) with an artificial 228 

neural network based on MODIS and MERRA2 reanalysis datasets, and using FLiES 229 

based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al., 230 

2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et 231 

al., 2011), PML_V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated 232 

global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor 233 

https://www.tpdc.ac.cn/
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equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and 234 

H datasets are obtained through multiple machine learning methods based on in situ 235 

observations from FLUXNET and remote sensing and meteorological data (Jung et al., 236 

2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected 237 

LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study. 238 

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study 239 

Products/ 

datasets 

Reso-

lution 

Time 

coverage 
Variables Algorithms References 

GLASS 
0.05°/ 

daily 

2000-

2018 

SWIN, 

LWIN, 

LWOUT, Rn 

Machine 

learning, direct 

estimation 

algorithm 

Wang et al. (2015); 

Xu et al. (2022b); 

Jiang et al. (2015) 

BESS-Rad 
0.05°/ 

daily 

2000-

2020 
SWIN 

BESS process 

model 
Ryu et al. (2018) 

BESSV2.0 
0.05°/ 

daily 

2000-

2020 
Rn, LE 

BESS process 

model 
Li et al. (2023) 

FLUXCOM 
0.0833°/ 

8-day 

2000-

2020 
Rn, LE, H 

Model tree 

ensembles 
Jung et al. (2019) 

MOD16A2 
500 m/ 

8-day 

2000-

2020 
LE 

Modified Penman-

Monteith equation 
Mu et al. (2011) 

PML_V2 
500 m/ 

8-day 

2002-

2020 
LE 

Penman Monteith-

Leuning model, 

PriestleyPriestly 

Taylor equation 

and Gash model 

Zhang et al. (2019) 

ETMonitor 
1 km/ 

daily 

2000-

2020 
LE 

Shuttleworth-

Wallace two-

source scheme, 

Gash model and 

Penman equation 

Zheng et al. (2022) 

3 Methods 240 

The method used to generate global datasets of land surface radiation and heat 241 

fluxes is based on the CoSEB model/framework, which was developed by our 242 

previously published work (Wang et al., 2025), to coordinately estimate global land 243 

surface energy balance components (including Rn, LE, H and G) using the multivariate 244 
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random forest technique, with a combination of MODIS and GLASS products, ERA5-245 

Land reanalysis datasets, and in situ observations at 336 EC sites. The CoSEB model 246 

was demonstrated to be able to produce high-accuracy estimates of land surface energy 247 

components, with the RMSE of <17 W/m2 and R2 of > 0.83 for estimating 4-day Rn, 248 

LE and H, and the RMSE of <5 W/m2 and R2 of 0.55 for estimating 4-day G. The most 249 

praiseworthy superiority of the CoSEB model lies in its ability to balance the land 250 

surface energy components, with an energy imbalance ratio [EIR, defined as 100%×251 

(Rn - G - LE - H)/Rn] of 0. 252 

To coordinately estimate land surface radiation and heat fluxes that comply with 253 

both radiation balance and heat balance, one of the key procedures in the construction 254 

of the CoSEB model was to prepare training datasets that satisfy surface radiation and 255 

heat balance. For this purpose, the energy-imbalance corrections on daily in situ 256 

observed LE and H were conducted by the most widely applied Bowen ratio method 257 

[ ( )corr H
H Rn G

H LE
=  −

+
 , ( )corr LE

LE Rn G
H LE

=  −
+

 , where corrH   and corrLE  258 

represent the sensible heat flux and latent heat flux after energy-imbalance correction, 259 

respectively] with the aid of Rn and G observations, and the in situ Rn was calculated 260 

from the sum of in situ observed net longwave radiation (LWIN minus LWOUT) and net 261 

shortwave radiation (SWIN minus SWOUT). The input variables to renew the CoSEB 262 

model include: (1) climate/meteorology: aT , 
5ERA

INSW , netLW , WS , PA , rP , RH , 263 

CO2 concentration; (2) vegetation and soil: LAI, FVC, PTC, TS1, SM1; (3) topography 264 

data: DEM, Slope and Aspect, in addition to longitude (Lon), latitude (Lat), and inverse 265 

relative distance from the Earth to the Sun (dr), in which the dr was calculated as 266 

2
1 0.033 cos

365

DOY
dr

  
= +   

 
, where DOY represents the day of year. Considering 267 

that the footprint of the site-based measurements of turbulent heat fluxes is generally at 268 

a scale of hundreds of meters, to reduce the effect of differences of spatial scales 269 

between ground-based measurements (dependent variables) and remotely 270 

sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a 271 
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spatial scale of 500 m for coordinately estimating global daily land surface radiation 272 

and heat fluxes, which can be expressed as follows: 273 

 
5

1

2

, , , , , , , 1, , , , , ,

, , , , , , , , , , ,

ERA
IN OUT IN a S IN net r

OUT

SW SW LW Lon Lat T T SM SW LW PA WS P dr
f

LW Rn LE H G RH LAI FVC PTC DEM Slope Aspect CO

  
=   

   
(1)  274 

To enhance model generalization, the renewed CoSEB model was reoptimized 275 

using random and grid search methods, resulting in different hyperparameters of 281 276 

decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 from 277 

those of Wang et al. (2025). Site-based 10-fold cross-validation was employed to 278 

evaluate the transferability and generalization of the CoSEB model by randomly 279 

dividing all sites into ten folds, where the samples from each fold of sites in turn served 280 

as validation datasets while the remaining folds were used as training datasets, ensuring 281 

that the validation was conducted on sites spatially independent from the training data. 282 

Furthermore, to benchmark the coordinated estimates from the renewed CoSEB model, 283 

eight RF-based uncoordinated models were constructed, each separately estimating one 284 

of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H or G using the same inputs as those in the 285 

renewed CoSEB model. Fig. 2 illustrates the flowchart for generating global datasets 286 

of land surface radiation and heat fluxes by the CoSEB model.  287 
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 288 
Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation 289 

[including downward shortwave radiation (SWIN), downward longwave radiation (LWIN), 290 

upward shortwave radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation 291 

(Rn)] and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux 292 

(H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and 293 

collocated remote sensing and reanalysis datasets. 294 

4 Results 295 

4.1 Validation of the CoSEB model 296 

4.1.1 Site-based 10-fold cross-validations at 258 EC sites 297 

Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-298 

validation of daily SWIN, LWIN, SWOUT, LWOUT, Rn, LE, H and G estimated from the 299 

renewed CoSEB model and the RF-based uncoordinated models, respectively, by using 300 

the validation datasets collected at 258 EC sites worldwide. Results indicated that the 301 

estimates from both the CoSEB model and the RF-based uncoordinated models agreed 302 

well with the in situ observations, with the coefficient of determination (R2) varying 303 

between 0.80 and 0.95 for SWIN, LWIN, LWOUT and Rn, and between 0.59 and 0.67 for 304 

SWOUT, LE and H. The CoSEB model, with the root mean square error (RMSE) of 26.82 305 

to 34.25 W/m2 and mean absolute error (MAE) of 18.83 to 24.49 W/m2 for SWIN, Rn, 306 

LE and H, the RMSE of 12.24 to 17.75 W/m2 and the MAE of 8.39 to 13.70 W/m2 for 307 
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SWOUT, LWIN and LWOUT, demonstrated comparable accuracies to the RF-based models, 308 

with the RMSE of 27.07 to 33.34 W/m2 and MAE of 19.29 to 23.64 W/m2 for SWIN, 309 

Rn, LE and H, the RMSE of 12.12 to 16.93 W/m2 and the MAE of 8.68 to 12.99 W/m2 310 

for SWOUT, LWIN and LWOUT. In the validation of daily G, both the CoSEB and RF-based 311 

models yielded RMSEs below 7 W/m2. Comparisons with the corresponding training 312 

results (Table S3 in the Supplementary Material) indicated that although the CoSEB 313 

model performed better on the training datasets, its overall performance remained stable, 314 

suggesting that the CoSEB model was not affected by overfitting. 315 

Strikingly, the CoSEB model exhibited large superiority in balancing the surface 316 

radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% × 317 

(SWIN – SWOUT + LWIN - LWOUT)/Rn] and energy imbalance ratio [EIR, defined as 100% 318 

× (Rn - G - LE - H)/Rn] of 0, while the RF-based uncoordinated models showed 319 

substantial imbalances of the surface radiation and heat fluxes, with RIR and EIR that 320 

were approximately normally distributed, having absolute mean values of 38.84% and 321 

31.22%, respectively, and reaching as high as 50% in some cases. Furthermore, the RIR 322 

as well as EIR tended to be higher under lower solar radiation, air temperature, or FVC, 323 

with more frequent low values of these three variables leading to a broader and less 324 

peaked distribution of RIR and EIR (see Fig. S1 in the Supplementary Material). 325 
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 326 

Fig. 3 Scatter density plots of the site-based 10-fold cross-validation of daily downward 327 

shortwave and longwave radiation (SWIN and LWIN), upward shortwave and longwave 328 

radiation (SWOUT and LWOUT), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and 329 

sensible heat flux (H) derived by the CoSEB model against in situ observed SWIN, LWIN, SWOUT, 330 

LWOUT, Rn, G, and energy imbalance-corrected LE (
corr

dailyLE ) and H (
corr

dailyH ). The EIR and RIR 331 

in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which 332 

are defined as 100% × (Rn - G - LE - H)/Rn and 100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn, 333 

respectively. The colorbar represents the normalized density of data points. 334 
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 335 
Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models. 336 

4.1.2 Validation at nine radiation sites from SURFRAD 337 

To further illustrate the generality and transferability of the renewed CoSEB model, 338 

the validation of estimates of the five radiation components (including SWIN, SWOUT, 339 

LWIN, LWOUT, Rn) derived from both the CoSEB model and RF-based uncoordinated 340 

models against observations at nine radiation sites from SURFRAD was performed, as 341 

shown in Fig. 5. The results showed that both the CoSEB model and the RF-based 342 

models achieved high accuracy in estimating daily SWIN, SWOUT, LWIN, LWOUT and Rn, 343 

with the RMSE of ~30 W/m2 for SWIN, ~14 W/m2 for SWOUT and LWIN, ~12 W/m2 for 344 

LWOUT and ~24 W/m2 for Rn, with the R2 >0.9 for SWIN, LWIN and LWOUT, ~0.65 for 345 

SWOUT and ~0.85 for Rn. Compared to the results of the site-based 10-fold cross-346 

validation at 258 EC sites, the performances at nine radiation sites showed slight 347 
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improvements, with the RMSE decreasing by 0.74 to 4.54 W/m2 for SWIN, LWIN, LWOUT 348 

and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by 349 

~1.05 W/m2 for SWOUT, suggesting the robust performance of the CoSEB model. 350 

Furthermore, the CoSEB model demonstrated a large superiority in maintaining surface 351 

radiation balance among the five radiation components, with the RIR of 0, in contrast 352 

to the RF-based models, which failed to meet this balance, exhibiting significant RIR 353 

exceeding 50%. 354 

4.2 Validation and inter-comparisons of the CoSEB-based datasets 355 

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of 356 

500 m achieved comparable accuracies to the RF-based uncoordinated models but 357 

outperformed them in balancing surface radiation and heat fluxes. Evidenced by the 358 

validation for its superiority, the renewed CoSEB model was then applied to the 359 

spatially aggregated input datasets to generate our developed global daily datasets with 360 

a spatial resolution of 0.05°. To further assess the performance of the developed 361 

CoSEB-based datasets, in situ observations from another 44 spatially independent test 362 

sites (see Section 2.1), which were not involved in model construction and datasets 363 

generation, were used for validation. Mainstream products (i.e. GLASS, BESS-Rad, 364 

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for 365 

inter-comparison at the 44 test sites. 366 

Note that due to the lack of moderate-resolution global RS-based products/datasets 367 

of daily and/or 8-day SWOUT, H and G, the intercomparison between different 368 

products/datasets was impossible. Instead, we conducted a validation of these 369 

components from the CoSEB-based datasets against in situ observations at 44 test sites, 370 

as shown in Figs S2 and S3 in the Supplementary Material. Results indicated that the 371 

CoSEB-based datasets could provide good estimates of SWOUT, H and G, with the 372 

RMSEs (R2) of 14.20 W/m2 (0.42), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44) at daily 373 

scale, respectively, and the RMSE (R2) of 12.19 W/m2 (0.39) and 4.60 W/m2 (0.47) for 374 

8-day SWOUT and G, respectively. 375 
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 376 
Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave 377 

radiation (SWIN and LWIN), upward shortwave and longwave radiation (SWOUT and LWOUT) 378 

and net radiation (Rn) from the renewed CoSEB model (upper two rows) and RF-based 379 

uncoordinated models (lower two rows) against in situ observations at nine radiation sites 380 

from SURFRAD. The RIR represents the radiation imbalance ratio, defined as 100% × (SWIN 381 

– SWOUT + LWIN - LWOUT)/Rn. The colorbar represents the normalized density of data points. 382 

Fig. 6 and Fig. 7 present the comparison of daily SWIN, LWIN and LWOUT, as well 383 

as Rn and LE from the CoSEB-based datasets and mainstream products/datasets 384 

(including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations 385 

at 44 test sites, respectively. Overall, the estimates from the CoSEB-based datasets 386 
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exhibited a closer agreement with in situ observations than those from mainstream 387 

products/datasets, where the CoSEB-based datasets reduced the RMSE by 0.01 W/m2 388 

to 4.58 W/m2 and increased the R² by 0.01 to 0.09 compared to mainstream products. 389 

Specifically, the RMSE for the SWIN, LWIN, and LWOUT increased from 37.52 W/m2, 390 

22.47 W/m2 and 13.78 W/m2 in the CoSEB-based datasets to 37.53 W/m2 ,23.37 W/m2 391 

and 16.46 W/m2 in the GLASS, respectively, and for SWIN from 37.52 W/m2 in the 392 

CoSEB-based datasets to 40.87 W/m2 in the BESS-Rad. Likewise, the RMSEs for daily 393 

Rn and LE were 29.66 W/m2 and 30.87 W/m2 in the CoSEB-based datasets, which were 394 

lower than those of 34.24 W/m2 and 34.36 W/m2 in BESSV2.0, respectively, as well as 395 

those of 30.60 W/m2 for Rn in GLASS and 33.62 W/m2 for LE in ETMonitor. 396 

 397 

Fig. 6 Comparison of the daily downward shortwave radiation (SWIN, the first column), 398 

downward longwave radiation (LWIN, the second column) and upward longwave radiation 399 

(LWOUT, the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the 400 

in situ observed SWIN, LWIN and LWOUT at 44 test sites. The colorbar represents the normalized 401 

density of data points. 402 
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 403 

Fig. 7 Comparison of the daily net radiation (Rn, the upper row) and latent heat flux (LE, the 404 

lower row) from the CoSEB-based datasets, BESSV2.0, GLASS and ETMonitor with the in 405 

situ observed Rn, and energy imbalance-corrected LE (
corr

dailyLE ) at 44 test sites. The colorbar 406 

represents the normalized density of data points. 407 

Figs. 8, 9 and 10 compare the 8-day SWIN, LWIN and LWOUT, Rn and LE, as well as 408 

H from the CoSEB-based datasets and mainstream products, with in situ observations 409 

at 44 test sites, respectively. Overall, the CoSEB-based datasets outperformed the 410 

mainstream products/datasets for all surface radiation and heat fluxes, where the 411 

CoSEB-based datasets reduced the RMSE by 0.24 W/m2 to 10.48 W/m2 and increased 412 

the R² by 0.01 to 0.38 compared to mainstream products. Specifically, for SWIN, LWIN 413 

and LWOUT, the RMSE increased from 18.54 W/m2, 18.50 W/m2 and 9.41 W/m2 in the 414 

CoSEB-based datasets to 21.35 W/m2, 20.39 W/m2 and 14.48 W/m2 in the GLASS, 415 

respectively, and for SWIN from 18.54 W/m2 in the CoSEB-based datasets to 18.78 416 

W/m2 in the BESS-Rad. For Rn, the RMSE increased from 19.12 W/m2 in the CoSEB-417 

based datasets to ~23 W/m2 in the FLUXCOM and GLASS and to >27 W/m2 in the 418 

BESSV2.0, while the R2 decreased from 0.82 in the CoSEB-based datasets to 0.75 in 419 

the FLUXCOM and GLASS and to 0.62 in the BESSV2.0. Likewise, for LE, the RMSE 420 

increased from 22.31 W/m2 in the CoSEB-based datasets to ~25 W/m2 in the 421 
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FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and to >32 W/m2 in MOD16A2, 422 

while the R2 decreased from 0.67 in the CoSEB-based datasets to ~0.60 in the 423 

FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and to <0.3 in the MOD16A1. For 424 

H, the RMSE increased from 21.63 W/m2 in the CoSEB-based datasets to 22.64 W/m2 425 

in the FLUXCOM.  426 

The differences between the estimates from the CoSEB-based datasets and 427 

mainstream datasets are likely multifactorial, arising from the simplification and 428 

parameterization uncertainties in physics-based models, as well as the lack of physical 429 

constraints, limited training samples, and incomplete consideration of influencing 430 

factors in other machine-learning-based models. 431 

 432 

Fig. 8 Same as Fig. 6, but for the comparison at 8-day scale. 433 



22 

 

 434 
Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux 435 

(LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS, 436 

MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-437 

corrected LE ( 8

corr

dayLE − ) at 44 test sites. The colorbar represents the normalized density of data 438 

points. 439 
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 440 
Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and 441 

the FLUXCOM with the in situ energy imbalance-corrected H ( 8

corr

dayH − ) at 44 test sites. The 442 

colorbar represents the normalized density of data points. 443 

4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes 444 

In addition to the validation and inter-comparison of the CoSEB-based datasets at 445 

the site scale, we further inter-compared the estimates of land surface radiation and heat 446 

fluxes from the CoSEB-based datasets and the mainstream products/datasets, in terms 447 

of their global spatial and temporal patterns. 448 

Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic 449 

continent, deserts, water bodies and permanent snow) and latitudinal profiles of the 450 

global 0.05° mean annual SWIN, LWIN and LWOUT, Rn and LE, as well as H from 2001 451 

to 2018, respectively, as derived from the CoSEB-based datasets and mainstream 452 

products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, 453 

PML_V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or 454 

cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates 455 

from the CoSEB-based datasets aligned well with those observed in these mainstream 456 

products/datasets, though regional discrepancies were present. Specifically, the mean 457 

annual LWIN, LWOUT, Rn, and LE generally exhibited decreasing trends from the equator 458 

towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo 459 

Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SWIN and 460 

H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia, 461 

Sahel and Southern Africa, while the lower values were found in high-latitude regions 462 



24 

 

of >50°N. In the region with high values, the mean annual estimates of SWIN from the 463 

CoSEB-based datasets were higher than those from GLASS but lower than those from 464 

BESS-Rad, the estimates of LWIN and LWOUT from the CoSEB-based datasets were both 465 

higher than those from GLASS, the estimates of Rn from the CoSEB-based datasets 466 

were significantly higher than those from BESSV2.0, and comparable to or slightly 467 

higher than those from FLUXCOM and GLASS, the estimates of LE from the CoSEB-468 

based datasets were close to those from BESSV2.0 and PML_V2, but slightly lower 469 

than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates of H 470 

from the CoSEB-based datasets were higher than those from FLUXCOM in regions 471 

with high values, while lower than those from FLUXCOM in regions with low values.472 
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 473 
Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SWIN, the first 474 

row), downward longwave radiation (LWIN, the second row) and upward longwave radiation 475 

(LWOUT, the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad. 476 

The rightmost subfigure of each row represents the latitudinal profiles of mean annual SWIN, 477 

LWIN and LWOUT from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area 478 

represents the variation of standard deviation for each product. 479 

 480 

Fig.12 Spatial patterns of global mean annual net radiation (Rn, the first row) and latent heat 481 

flux (LE, the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM, 482 

BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third 483 

row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets 484 

and these mainstream products/datasets, where the shaded area represents the variation of 485 

standard deviation for each product. 486 
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 487 

Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by 488 

CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal 489 

profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded 490 

area represents the variation of standard deviation for each product. 491 

The temporal evolutions of the global (excluding Greenland, Antarctic continent, 492 

deserts, water bodies and permanent snow) land surface radiation and heat fluxes 493 

derived from the CoSEB-based datasets and mainstream products/datasets from 2001 494 

to 2018 were also investigated, as shown in Fig. 14. The results indicated that the 495 

temporal variation of each flux from the CoSEB-based datasets generally agreed well 496 

with those from mainstream products/datasets, exhibiting relatively stable trends. The 497 

global annual mean estimates using area weighting average by the CoSEB-based 498 

datasets from 2001 to 2018 varied between ~185.22 and ~189.50 W/m2 with the mean 499 

of ~187.23 W/m2 for SWIN, between ~32.67 and ~33.20 W/m2 with the mean of ~32.96 500 

W/m2 for SWOUT, between ~330.24 and ~334.14 W/m2 with the mean of ~331.50 W/m2 501 

for LWIN, between ~387.25 and ~390.82 W/m2 with the mean of ~388.81 W/m2 for 502 

LWOUT, between ~95.41 and ~99.39 W/m2 with the mean of 97.11 W/m2 for Rn, 503 

between ~53.24 and ~56.37 W/m2 with the mean of ~54.53 W/m2 for LE, between 504 

~40.44 and ~41.96 W/m2 with the mean of ~41.29 W/m2 for H, and between ~1.22 and 505 

~1.52 W/m2 with the mean of ~1.33 W/m2 for G. For each radiation or heat flux, the 506 

annual mean estimates from the CoSEB-based datasets were overall higher than those 507 

from the mainstream products/datasets. In particular, the annual mean Rn estimates 508 

from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and 509 

BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based 510 

datasets were marginally higher than those from FLUXCOM, but substantially 511 

exceeded those from ETMonitor, PML_V2, MOD16A2 and BESSV2.0 sequentially. 512 
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The anomaly-based analyses (Fig. S4 in the Supplementary Material) reveal clear and 513 

coherent temporal trends of these radiation and heat fluxes, which respond well to 514 

global climate change, such as increasing atmospheric CO2 and rising air temperatures. 515 

 516 

 517 

Fig. 14 Temporal variation of annual mean downward shortwave radiation (SWIN), upward 518 

shortwave radiation (SWOUT), downward longwave radiation (LWIN), upward longwave 519 

radiation (LWOUT), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat 520 

flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM, 521 

BESSV2.0, PML_V2, MOD16A2 and ETMonitor. The shaded area represents the variation of 522 

the standard deviation for each product. 523 
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 524 
Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward 525 

shortwave radiation (SWIN, the first row), downward longwave radiation (LWIN, the second 526 

row) and upward longwave radiation (LWOUT, the third row) from 2001 to 2018 by the CoSEB-527 

based datasets, GLASS and BESS-Rad. 528 

Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic 529 

continent, deserts, water bodies and permanent snow) of interannual variability of SWIN, 530 

LWIN and LWOUT, Rn and LE, as well as H from 2001 to 2018, respectively, derived 531 

from the CoSEB-based datasets and mainstream products/datasets. In general, the 532 

estimates from the CoSEB-based datasets displayed similar interannual variability in 533 

space with those from the mainstream products/datasets. Specially, the estimates of 534 

SWIN from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant 535 

interannual variability mainly in northeastern Australia, eastern South America, 536 

Southeast China, and Southwest North America. The interannual variability of LWIN 537 

and LWOUT by the CoSEB-based datasets and GLASS displayed high values primarily 538 

at middle-to-high latitudes of the Northern Hemisphere and parts of Africa and 539 

Australia. The interannual variability of Rn observed by the CoSEB-based datasets was 540 

generally lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM. 541 

The CoSEB-based datasets missed the strong interannual variability of LE as observed 542 

in MOD16A2, PML_V2 and ETMonitor in parts of Africa, Australia and eastern South 543 
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America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE 544 

in almost all regions. The interannual variability of H derived from the CoSEB-based 545 

datasets was higher than that from FLUXCOM, with stronger interannual variabilities 546 

mainly observed in parts of eastern South America, southern Africa, and northeastern 547 

Australia. 548 

 549 
Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn, 550 

the first and second rows) and latent heat flux (LE, the third and fourth rows) from 2001 to 551 

2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2, 552 

ETMonitor and GLASS. 553 

 554 

Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux 555 

(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM. 556 
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5 Discussion 557 

Accurately monitoring the spatial and temporal variations of global land surface 558 

radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and 559 

water between the land and atmosphere under global climate change (Chen et al., 2020; 560 

Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However, 561 

although numerous global RS-based products/datasets of land surface radiation and 562 

heat fluxes have been developed using physical and/or statistical methods, they 563 

typically provide either merely a single flux or multiple fluxes (see Table 1) that are 564 

estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019; 565 

Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or 566 

heat imbalance when these products are combined for practical applications. To address 567 

these limitations, we generated high-accuracy global datasets of land surface radiation 568 

and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation 569 

laws, using our proposed CoSEB model (Wang et al., 2025). 570 

Our CoSEB model, integrating underlying physical principles of training datasets 571 

into machine learning technique to effectively learn the interrelations among multiple 572 

targeted outputs, was originally designed for coordinating estimates of global land 573 

surface energy balance components (Rn, LE, H and G) to satisfy the energy 574 

conservation (Wang et al., 2025). Inspired by the idea of constructing the original 575 

CoSEB model, we further incorporated land surface radiation fluxes into our model to 576 

simultaneously consider the physical constraints of both surface radiation and heat 577 

conservation principles, by renewing the CoSEB using multiple remote sensing and 578 

reanalysis datasets, as well as in-situ observations of SWIN, SWOUT, LWIN, LWOUT, Rn, 579 

LE, H and G. In selecting the 19 input variables to accommodate the additional target 580 

variables, prior knowledge derived from previous studies was employed to identify 581 

factors that exert significant influence on surface radiation and heat flux while 582 

maintaining relative inter-independence as much as possible (Jung et al., 2019; Mohan 583 

et al., 2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted 584 



31 

 

in data-driven models for estimating land surface water, energy, and carbon fluxes (Bai 585 

et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance 586 

scores of the 19 different feature variables are exhibited in Table S4 in the 587 

Supplementary Material, and downward solar radiation, the primary source of the 588 

energy at the earth surface, is the most important input variable, consistent with the 589 

results from our previous study (Wang et al., 2025). Although some of the selected 590 

variables may exhibit a certain degree of multi-collinearity, each contributes unique and 591 

physically meaningful information, supporting the inclusion of all variables in model 592 

construction. Note that the variable importance, derived from the built-in method of the 593 

random forests and potentially affected by multicollinearity among the input variables, 594 

is presented only as a reference. Retaining all 19 feature variables ensures the model’s 595 

flexibility and generalization capability, enabling future incorporation of additional 596 

representative ground-based observations for further training and improvement. 597 

Besides, to investigate the impact of lagged effects of input variables on model 598 

performance, experiments were also conducted by adding lagged variables (e.g., the air 599 

temperature of the previous day) to the 19 input features. The results (Fig. S4 S5 in the 600 

Supplementary Material) showed almost no improvement in model accuracy, 601 

suggesting that lagged effects on model performance were negligible within the CoSEB 602 

framework for estimates of daily surface radiation and heat fluxes. Furthermore, to 603 

better illustrate the effect of including additional radiation components (SWIN, SWOUT, 604 

LWIN and LWOUT) in the renewed CoSEB model compared with the original version by 605 

Wang et al. (2025), we have tested the performance of a reconstructed model that 606 

estimated only Rn, LE, H and G using the same independent variables and samples as 607 

those in the renewed CoSEB model. The results (Fig. S5 S6 in the supplementary 608 

material) showed no significant differences in accuracy compared with those of the 609 

renewed CoSEB model, indicating the expansion of radiation components did not 610 

compromise model performance. 611 

The main advantages of our CoSEB-based datasets of land surface radiation and 612 
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heat fluxes lie in that [1] they are the first data-driven global datasets that satisfy both 613 

surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = Rn) and heat balance (LE + 614 

H + G = Rn) among the eight fluxes, as demonstrated by both the RIR and EIR of 0, [2] 615 

the radiation and heat fluxes are characterized by high accuracies when validated 616 

against in-situ measurements at 44 independent test sites (see the second paragraph in 617 

Section 2.1), where (1) the RMSEs for daily estimates of SWIN, SWOUT, LWIN, LWOUT, 618 

Rn, LE, H and G from the CoSEB-based datasets were 37.52 W/m2, 14.20 W/m2, 22.47 619 

W/m2, 13.78 W/m2, 29.66 W/m2, 30.87 W/m2, 29.75 W/m2 and 5.69 W/m2, respectively, 620 

as well as for 8-day estimates were 18.54 W/m2, 12.19 W/m2, 18.50 W/m2, 9.41 W/m2, 621 

19.12 W/m2, 22.31 W/m2, 21.63 W/m2 and 4.60 W/m2, respectively, (2) the CoSEB-622 

based datasets, in comparison to the mainstream RS-based products/datasets (i.e. 623 

GLASS, BESS-Rad, FLUXCOM, BESSV2.0, MOD16A2, PML_V2 and ETMonitor), 624 

better agreed with the in situ observations at the 44 test sites, showing the RMSE 625 

reductions ranging from 0.01 W/m2 to 4.58 W/m2 for SWIN, LWIN, LWOUT, Rn and LE 626 

at daily scale, and 0.24 W/m2 to 10.48 W/m2 for SWIN, LWIN, LWOUT, Rn, LE and H at 627 

8-day scale. Furthermore, the CoSEB-based datasets outperformed the ERA5-Land 628 

reanalysis datasets in estimating surface energy fluxes (where SWOUT, LWOUT, Rn and 629 

G for the ERA5-Land were inferred from surface radiation balance and heat balance), 630 

particularly for SWOUT, H and G, with RMSE reductions of 0.13-8.15 W/m2 when 631 

validated against in situ observations at the 44 test sites (Figs. S6 S7 and S7 S8 in the 632 

Supplementary Material). Preliminary analysis indicates that the CoSEB-based datasets 633 

exhibit spatial patterns consistent with those of mainstream RS-based datasets and Earth 634 

system model outputs (see Fig. S9 in the supplementary material), suggesting that the 635 

CoSEB-based datasets (or CoSEB framework) more broadly, are capable of 636 

reproducing the large-scale spatial features of Earth system models. This capability 637 

would be a great benefit to the community given the limitations associated with the high 638 

computational cost and long execution time of Earth system models. More detailed 639 

analysis about their similarities and differences can be further conducted in future 640 
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work.Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial 641 

patterns consistent with those of mainstream RS-based datasets and Earth system model 642 

outputs (see Fig. S8 in the supplementary material). More detailed analysis about their 643 

similarities and differences can be further conducted in future work. 644 

Our developed datasets could be potentially applied in many fields, including but 645 

not limited to (1) exploring the spatial-temporal patterns of global land surface radiation 646 

and heat flux (es) and their driving mechanisms over the past decades under global 647 

change (e.g., rising CO2 concentration, greening land surface and increasing air 648 

temperature), (2) investigating the variability of land surface radiation and heat fluxes 649 

caused by extreme events and human activities, e.g. afforestation or deforestation, 650 

wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources 651 

of solar energy, geothermal energy, surface and ground water at regional and global 652 

scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry. 653 

The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2) 654 

the application of the CoSEB model across different spatial scales. Specifically, daily 655 

averages of surface radiation and heat fluxes for each day were obtained for analysis 656 

from good-quality half-hourly observations when the fraction of these good-quality 657 

half-hourly observations was greater than 80% in a day, due to the lack of consensus on 658 

the method for aggregating gapped half-hourly observations to daily data (Tang et al., 659 

2024a; Yao et al., 2017; Zheng et al., 2022). Simple temporal interpolation of half-660 

hourly in situ observations, which could therefore introduce substantial uncertainties, 661 

was not applied, because surface radiation and heat fluxes are sensitive to short-term 662 

variations in meteorological conditions and their intraday dynamics are often complex. 663 

Likewise, since there was no agreement on how to correct for the energy imbalance of 664 

turbulent heat fluxes, we adopted the most widely applied Bowen ratio method to 665 

enforce energy closure between Rn G−  and LE H+  (Castelli et al., 2018; Twine et 666 

al., 2000; Zhang et al., 2021). Another potential source of uncertainty arises from 667 

differences in meteorological reanalysis data caused by spatial downscaling, which, as 668 
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demonstrated in our previous study (Wang et al., 2025, the last paragraph of Section 669 

5.1), has a relatively small impact on model estimates by the machine-learning-based 670 

CoSEB model combined with finer-resolution surface-related variables that partially 671 

compensate for the spatial heterogeneity and localized variations not captured by the 672 

coarse-resolution datasets. These data preprocessing had an effect on the construction 673 

of the renewed CoSEB model, which may further affect the global datasets. Moreover, 674 

the renewed CoSEB model was constructed at the spatial scale of 500 m to match the 675 

footprints of the in situ EC observations, but applied at the spatial resolution of 0.05° 676 

to generate global datasets, mainly limited by the computing and storage capabilities of 677 

our personal computers. However, the CoSEB-based datasets have also been validated 678 

and inter-compared at 44 independent test sites to demonstrate that the difference in 679 

spatial scale would not much affect the performance of the datasets. Note that the 302 680 

sites used for training, validation, and testing are predominantly located in the Northern 681 

Hemisphere, reflecting the inherent uneven distribution of the global flux networks. 682 

Although these sites cover a wide range of land cover types and climate regimes, 683 

thereby providing substantial heterogeneity for model development, the limited 684 

representation of the Southern Hemisphere may introduce uncertainties in the 685 

estimation of surface radiation and heat fluxes for certain ecosystems and soil types. In 686 

the future, enhancing the flux observation network coverage in the Southern 687 

Hemisphere, particularly in South America and Africa, and incorporating these 688 

observations into the CoSEB framework would help further improve the accuracy of 689 

surface radiation and heat flux estimates in these regions. Furthermore, the radiation 690 

and heat balance in this study refers specifically to the conservation among the eight 691 

variables (i.e., SWIN, LWIN, SWOUT, LWOUT, Rn, LE, G, H), which constitute the major 692 

components of the surface energy budget, and does not account for energy introduced 693 

by disturbance-related processes such as wildfires and volcanic eruptions. Despite these 694 

these uncertainties, it is worth emphasizing that our work was the first attempt to 695 

innovatively develop data-driven energy-conservation datasets of global land surface 696 
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radiation and heat fluxes with high accuracies. 697 

6 Data availability 698 

The energy-conservation datasets of global land surface radiation and heat fluxes 699 

generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05° 700 

from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan 701 

Plateau Data Center at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) 702 

and through the Science Data Bank (ScienceDB) at 703 

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b). 704 

7 Summary and Conclusion 705 

This study for the first time developed data-driven energy-conservation datasets 706 

of global land surface radiation and heat fluxes using our CoSEB model renewed based 707 

on GLASS and MODIS products, ERA5-Land reanalysis datasets, topographic data, 708 

CO2 concentration data, and observations at 258 EC sites worldwide. 709 

The CoSEB-based datasets of land surface radiation and heat fluxes are the first 710 

data-driven global datasets that satisfy both surface radiation balance (SWIN - SWOUT + 711 

LWIN - LWOUT = Rn) and heat balance (LE + H + G = Rn) among the eight fluxes. 712 

Meanwhile, the CoSEB-based datasets outperformed the mainstream products/datasets 713 

in accuracy. Specifically, at 44 independent test sites, the RMSEs (R2) for daily 714 

estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based 715 

datasets were 37.52 W/m2 (0.81), 14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 13.78 W/m2 716 

(0.95), 29.66 W/m2 (0.77), 30.87 W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44), 717 

respectively, as well as for 8-day estimates were 18.54 W/m2 (0.87), 12.19 W/m2 (0.39), 718 

18.50 W/m2 (0.92), 9.41 W/m2 (0.97), 19.12 W/m2 (0.82), 22.31 W/m2 (0.67), 21.63 719 

W/m2 (0.39) and 4.60 W/m2 (0.47), respectively. Moreover, the estimates from the 720 

CoSEB-based datasets in comparison to those from the mainstream products/datasets 721 

reduced the RMSE by 0.01 W/m2 to 4.58 W/m2 and increased the R2 by 0.01 to 0.09 722 

for SWIN, LWIN, LWOUT, Rn and LE at daily scale, and reduced the RMSE by 0.24 W/m2 723 

https://doi.org/10.57760/sciencedb.27228
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to 10.48 W/m2 and increased the R2 by 0.01 to 0.38 for SWIN, LWIN, LWOUT, Rn, LE and 724 

H at 8-day scale, when these estimates were validated against in situ observations at 44 725 

independent test sites. Furthermore, the CoSEB-based datasets effectively captured the 726 

spatial-temporal variability of global land surface radiation and heat fluxes, aligning 727 

well with those from the mainstream products. 728 

Our developed datasets hold significant potential for application across diverse 729 

fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental 730 

science. They can facilitate comprehensive studies on the variability, impacts, responses, 731 

adaptation strategies, and mitigation measures of global and regional land surface 732 

radiation and heat fluxes under the influences of climate change and human activities. 733 

These datasets will provide valuable insights and data support for scientific research, 734 

policy-making, and environmental management, advancing global solutions to address 735 

climate change. 736 
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