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Abstract 12 

Accurately estimating global land surface radiation [including downward 13 

shortwave radiation (SWIN), downward longwave radiation (LWIN), upward shortwave 14 

radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation (Rn)] and heat 15 

fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is 16 

essential for quantifying the exchange of radiation, heat and water between the land and 17 

atmosphere under global climate change. This study presents the first data-driven 18 

energy-conservation datasets of global land surface radiation and heat fluxes from 2000 19 

to 2020, generated by our model of Coordinated estimates of land Surface Energy 20 

Balance components (CoSEB). The modelthat integrates GLASS and MODIS remote 21 

sensing data, ERA5-Land reanalysis datasets, topographic data, CO2 concentration data 22 

as independent variables and in situ radiation and heat flux observations at 258 eddy 23 

covariance sites worldwide as dependent variables within a multivariate random forest 24 

technique to effectively learn the physics of energy conservationwas renewed with a 25 

combination of GLASS and MODIS remote sensing data, ERA5-Land reanalysis 26 

datasets, topographic data, CO2 concentration data, and observations at 258 eddy 27 
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covariance sites worldwide from the AmeriFlux, FLUXNET, EuroFlux, OzFlux, 28 

ChinaFLUX and TPDC. The developed CoSEB-based datasets are strikingly 29 

advantageous in that [1] they are the first RS-baseddata-driven global datasets that 30 

satisfy both surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = Rn) and heat 31 

balance (LE + H + G = Rn) among the eight fluxes, as demonstrated by both the 32 

radiation imbalance ratio [RIR, defined as 100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn] 33 

and energy imbalance ratio [EIR, defined as 100% × (Rn - G - LE - H)/Rn] of 0, [2] the 34 

radiation and heat fluxes are characterized by high accuracies, where (1) the RMSEs 35 

(R2) for daily estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the 36 

CoSEB-based datasets at 44 independent test sites were 28.5137.52 W/m2 (0.81), 37 

10.394.20 W/m2 (0.42), 14.2922.47 W/m2 (0.90), 10.623.78 W/m2 (0.95), 22.409.66 38 

W/m2 (0.77), 24.3830.87 W/m2 (0.60), 22.679.75 W/m2 (0.44) and 6.775.69 W/m2 39 

(0.44), respectively, as well as for 8-day estimates were 12.81 W/m2, 7.08 W/m2, 9.22 40 

W/m2, 8.34 W/m2, 13.38 W/m2, 19.99 W/m2, 17.44 W/m2 and 4.25 W/m2, respectively, 41 

(2) the CoSEB-based datasets, in comparison to the mainstream products/datasets (i.e. 42 

GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, PML_V2 and ETMonitor) 43 

that generally separately estimated subsets of the eight flux components, better agreed 44 

with the in situ observations. Our developed datasets hold significant potential for 45 

application across diverse fields such as agriculture, forestry, hydrology, meteorology, 46 

ecology, and environmental science, which can facilitate comprehensive studies on the 47 

variability, impacts, responses, adaptation strategies, and mitigation measures of global 48 

and regional land surface radiation and heat fluxes under the influences of climate 49 

change and human activities. The CoSEB-based datasets are open access and available 50 

through the National Tibetan Plateau Data Center (TPDC) at 51 

https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) and through the Science 52 

Data Bank (ScienceDB) at https://doi.org/10.57760/sciencedb.27228 (Tang et al., 53 

2025b). 54 

Key words: Surface energy balance; Surface radiation balance; Shortwave/Longwave 55 
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radiation; Net radiation; Sensible/Latent heat flux; Evapotranspiration; CoSEB 56 

1 Introduction 57 

Land surface radiation balance and heat balance play important roles in Earth's 58 

climate system, representing the physical processes by which the surface-atmosphere 59 

absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al., 60 

1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the 61 

exchange of water, energy, carbon, and other agents essential to climatic and ecological 62 

systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al., 63 

2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of 64 

global land surface radiation [including downward shortwave radiation (SWIN), 65 

downward longwave radiation (LWIN), upward shortwave radiation (SWOUT), upward 66 

longwave radiation (LWOUT) and net radiation (Rn)] and heat fluxes [including latent 67 

heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for 68 

quantifying the exchange of radiation, heat and water between the land and atmosphere 69 

under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy, 70 

2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization 71 

(Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild & 72 

Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management 73 

(De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS) 74 

technology, with its high spatial-temporal resolution and applicability over large areas, 75 

is considered to be the most effective and economical means for obtaining global land 76 

surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al., 77 

2010). 78 

In past decades, numerous RS-based products/datasets of global surface radiation 79 

and heat fluxes have significantly advanced, which were generally generated by 80 

physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao et 81 

al., 2023; Jung et al., 2019; Peng et al., 2020). However, two key limitations still exist 82 

in these products. Firstly, most available products provide only a single component of 83 
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land surface radiation or heat fluxes, e.g. ETMonitor (Zheng et al., 2022) and 84 

MOD16A2 (Mu et al., 2011) only estimating LE, leading to the failure to satisfy surface 85 

radiation balance and heat balance when the single radiation or heat flux is utilized in 86 

conjunction with products containing other radiation and heat components (Wang et al., 87 

2025), and further posing significant uncertainties to understand the interactions and 88 

redistributions of surface radiation and energy in the Earth-atmosphere system. 89 

Secondly, a few products, e.g., FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al., 90 

2015; Zhang et al., 2014), generated datasets for multiple components of surface 91 

radiation and heat fluxes by using independent separate estimates from the 92 

uncoordinated models, which make them difficult to abide by surface radiation and heat 93 

conservation. These energy-imbalanced and radiation-imbalanced estimates among 94 

multiple components from previous products/datasets severely limit their in-depth 95 

applications in analyzing the spatial and temporal trends, simulating the physical 96 

processes of radiation, heat and water cycles as well as revealing the attributions and 97 

mechanisms in Earth-surface system under global climate change. It was impending 98 

and imperative to develop global datasets of land surface radiation and heat fluxes 99 

characterized by high accuracies, radiation balance as well as heat balance, to better 100 

meet the requirements in practical applications of various fields. 101 

Our proposed data-driven model/framework of Coordinated estimates of land 102 

Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively 103 

learns the underlying physical interrelations (i.e., surface energy conservation law) 104 

among multiple targeted variables, provides an unprecedented opportunity to develop 105 

global datasets of land surface radiation and heat fluxes that can not only 106 

simultaneously provide high-accuracy estimates of these components but also adhere 107 

to surface radiation- and heat-conservation laws. 108 

The objectives of this study are twofold: (1) to develop high-accuracy datasets of 109 

global land surface radiation and heat fluxes, which comply with the principles of 110 

radiation balance and heat balance, using our CoSEB model renewed based on in situ 111 
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observations, remote sensing data and reanalysis datasets; (2) to validate the 112 

datasets/model estimates against data from in situ observations, mainstream products 113 

as well as estimates from uncoordinated random forest (RF) techniques. Section 2 114 

introduces the data resources used in this study. Section 3 briefly describes the method 115 

we used to estimate global surface radiation and heat fluxes. Section 4 presents the 116 

evaluation of the datasets/model estimates generated by our renewed CoSEB model. 117 

Section 5 discusses the superiority, potential applications and uncertainties of the 118 

developed datasets. Data availability is given in Section 6, and a summary and 119 

conclusion is provided in Section 7. 120 

2 Data 121 

2.1 Ground-based observations 122 

In this study, the in situ observations of land surface radiation and heat fluxes at 123 

258 302 eddy covariance (EC) sites from the networks of AmeriFlux (145 174 sites, 124 

2000–2020, https://AmeriFlux.lbl.gov/Data/, last access: 6 August 2024), EuroFlux (72 125 

sites, 2000-2020, http://www.europe-fluxdata.eu/, last access: 6 August 2024), OzFlux 126 

(5 sites, 2007-2012, https://data.ozflux.org.au/, last access: 6 August 2024), FLUXNET 127 

(108 sites, 2000–2014, https://FLUXNET.org/Data/download-Data/, last access: 6 128 

August 2024), JapanFlux (15 sites, 2001-2020, https://ads.nipr.ac.jp/japan-flux2024/, 129 

last access: 10 October 2025), ChinaFLUX (5 sites, 2005-2020, 130 

http://www.chinaflux.org/, last access: 6 August 2024) and National Tibetan 131 

Plateau/Third Pole Environment Data Center (TPDC, 13 sites, 2012–2020, 132 

https://Data.tpdc.ac.cn/en/Data, last access: 6 August 2024) were used (Fig. 1), where 133 

37, 48 and 5 sites in FLUXNET were also shared in AmeriFlux, EuroFlux and OzFlux, 134 

respectively. These 258 302 sites were filtered out from all collected 1008 1098 sites 135 

by following the quality-assurance and quality-control steps, including: (1) any site 136 

with a missing component of any of the SWIN, SWOUT, LWIN, LWOUT, LE, H and G was 137 

excluded, reducing the 1008 1098 sites to 388 472 sites for further analysis; (2) any 138 

https://ameriflux.lbl.gov/Data/
https://data.ozflux.org.au/
https://ads.nipr.ac.jp/japan-flux2024/
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half-hour period with missing data for any of these components was excluded; (3) the 139 

half-hourly ground-based observations with quality-control flag of 2 or 3 (bad quality) 140 

were removed but quality-control flag of 0 and 1 (good quality) were maintained; (4) a 141 

daily average of the half-hour observations was calculated for each day with greater 142 

than 80% good-quality data, further reducing the 388 472 sites to 286 355 sites; (5) the 143 

aggregated daily LE and H were corrected for energy imbalance using the Bowen ratio 144 

method when the daily energy balance closure [defined as ( ) / ( )LE H Rn G+ − ] varied 145 

between 0.2 and 1.8 following Wang et al. (2025) to exclude physically implausible 146 

measurements; (56) extreme outliers in the daily evaporative fraction were further 147 

removed by excluding values outside the 1st–99th percentile range, a common practice 148 

in flux and remote sensing studies (Bartkowiak et al., 2024; Wang et al., 2023), further 149 

reducing the 355 sites to 337 sites. outliers were discarded, corresponding to the 1 and 150 

99 quantiles of the daily evaporation fraction, further reducing the 286 sites to 268 sites. 151 

Besides, the RS data products/datasets involved in this study collocated at the sites 152 

should not be missing, finally reducing the 268 337 sites to 258 302 sites for analysis. 153 

Note that the Rn at these sites used in this study was calculated from the sum of net 154 

longwave radiation (LWIN minus LWOUT) and net shortwave radiation (SWIN minus 155 

SWOUT), rather than using the observed Rn directly, to ensure surface radiation balance 156 

in training datasets. 157 

These 258 302 sites used in this study cover a wide range of global climate regimes 158 

across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 54 55 sites); 159 

(2) evergreen broadleaf forests (EBF, 11 12 sites); (3) deciduous needleleaf forests 160 

(DNF, 1 7 sites); (4) deciduous broadleaf forests (DBF, 39 40 sites); (5) mixed forests 161 

(MF, 8 sites); (6) closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 9 11 162 

sites); (8) woody savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands 163 

(GRA, 54 62 sites); (11) permanent wetlands (WET, 16 22 sites); (12) croplands (CRO, 164 

43 59 sites); (13) water bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics 165 

(CVM, 1 4 sites). Among them, 44 sites (~15% of the total, see Table S1) were isolated 166 
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to serve as spatially independent sites to test the generated datasets and they did not 167 

participate in the development of the model/datasets. 168 

 169 

170 

 171 

Fig. 1 Spatial distribution of the 258 302 eddy covariance sites from AmeriFlux, FLUXNET, 172 

EuroFlux, OzFlux, JapanFlux, ChinaFLUX and TPDC, and nine radiation sites from 173 

SURFRAD involved for analysis in this study. 174 

Furthermore, ground-based radiation observations from nine sites that are located 175 

in large flat agricultural areas covered by crops and grasses from SURFRAD were also 176 

introduced to validate land surface radiation estimates. Similar to the preprocessing 177 

performed on the observations of the 258 302 EC sites, the SWIN, SWOUT, LWIN, LWOUT 178 

and Rn from the SURFRAD were also quality-controlled and aggregated to daily data. 179 
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Spatial distribution of the 258 302 EC sites and nine radiation sites from SURFRAD 180 

are shown in Fig. 1, with site details (latitude, longitude, land cover types, digital 181 

elevation model and temporal coverage) provided in Supplementary Tables S1 and S2. 182 

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study 183 

Products/ 

datasets 

Reso-

lution 

Time 

coverage 
Variables Algorithms References 

GLASS 
0.05°/ 

daily 

2000-

2018 

SWIN, 

LWIN, 

LWOUT, Rn 

Machine 

learning, direct 

estimation 

algorithm 

Wang et al. (2015); 

Xu et al. (2022b); 

Jiang et al. (2015) 

BESS-Rad 
0.05°/ 

daily 

2000-

2020 
SWIN 

BESS process 

model 
Ryu et al. (2018) 

BESSV2.0 
0.05°/ 

daily 

2000-

2020 
Rn, LE 

BESS process 

model 
Li et al. (2023) 

FLUXCOM 
0.0833°/ 

8-day 

2000-

2020 
Rn, LE, H 

Model tree 

ensembles 
Jung et al. (2019) 

MOD16A2 
500 m/ 

8-day 

2000-

2020 
Rn, LE 

Modified Penman-

Monteith equation 
Mu et al. (2011) 

PML_V2 
500 m/ 

8-day 

2002-

2020 
LE 

Penman Monteith-

Leuning model, 

Priestly Taylor 

equation and Gash 

model 

Zhang et al. (2019) 

ETMonitor 
1 km/ 

daily 

2000-

2020 
LE 

Shuttleworth-

Wallace two-

source scheme, 

Gash model and 

Penman equation 

Zheng et al. (2022) 

2.2 Climate/meteorology and remote sensing data 184 

To generate global datasets of land surface radiation and heat fluxes from 2000 to 185 

2020, five types of climate/meteorology and remote sensing data were used in this study, 186 

including: 187 

(1) ERA5-Land reanalysis datasets (https://cds.climate.copernicus.eu/, last access: 6 188 

August 2024) with the spatial resolution of ~9 km from 1950 (Muñoz-Sabater et 189 

al., 2021). Following our previous work (Wang et al., 2025), this study used 190 
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variables from the ERA5-Land datasets to drive the model, including near-surface 191 

2 m air temperature ( aT ), soil temperature in layer 1 (0-7 cm, 1ST ), soil volumetric 192 

moisture content in layer 1 (0-7 cm,  SM1 1SM  ), solar radiation reaching the 193 

surface of the earth (
5ERA

INSW  ), net thermal radiation at the surface ( netLW  ), 194 

pressure of the atmosphere (PA PA ), 10 m wind speed (WSWS ), precipitation (Pr195 

rP  ) and the 2 m dewpoint temperature, daily minimum and maximum air 196 

temperature [for calculating relative air humidity (RH RH )]. 197 

(2) GLASS datasets (https://glass.bnu.edu.cn/, last access: 6 August 2024), which 198 

provide the 500 m 8-day leaf area index (LAI) and fractional vegetation cover 199 

(FVC) from February 2000 to December 2021. 200 

(3) MOD44B product (https://lpdaac.usgs.gov/, last access: 6 August 2024), which 201 

offers yearly 250 m percent tree cover (PTC) since 2000, representing the 202 

percentage (0~100%) of a pixel covered by tree canopy. 203 

(4) NOAA/GML atmospheric carbon dioxide (CO2) concentration data, providing 204 

monthly global marine surface mean data since 1958 205 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6 206 

August 2024).  207 

(5) GMTED2010 topographic data 208 

(https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php, last 209 

access: 6 August 2024), providing 500 m digital elevation model (DEM), slope, 210 

and aspect. 211 

The ~9 km ERA5-Land datasets were spatially interpolated to 500 m using the 212 

cubic convolution method, and the 250 m PTC was resampled to 500 m using the 213 

arithmetic averaging method. 214 

2.3 Mainstream datasets/products for inter-comparison 215 

Mainstream RS-based datasets/products of moderate-resolution global land 216 

surface radiation and heat fluxes were collected for inter-comparison (Table 1), 217 

https://glass.bnu.edu.cn/
https://lpdaac.usgs.gov/
https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php
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including (1) the daily 0.05° GLASS SWIN, LWIN, LWOUT and Rn products from 2000 to 218 

2018 (https://glass.bnu.edu.cn/, last access: 6 August 2024), (2) the daily 0.05° 219 

Breathing Earth System Simulator Radiation (BESS-Rad) SWIN products from 2000 to 220 

2020 (https://www.environment.snu.ac.kr/bess-rad), (3) the daily 0.05° BESS 221 

Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020 222 

(https://www.environment.snu.ac.kr/bessv2), (4) the 8-day 0.0833° FLUXCOM Rn, LE 223 

and H products from 2001 to 2020 (https://fluxcom.org/, last access: 6 August 2024), 224 

(5) the daily 1 km ETMonitor LE product from 2000 to 2020 (https://data.casearth.cn/, 225 

last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2 226 

(PML_V2, https://www.tpdc.ac.cn/, last access: 6 August 2024) LE product from 2000 227 

to 2020; and (7) the 8-day 500 m MOD16A2 (https://lpdaac.usgs.gov/, last access: 6 228 

August 2024) LE product from 2000 to 2020. 229 

The GLASS SWIN products are derived from a combination of the GLASS 230 

broadband albedo product and the surface shortwave net radiation estimates, where the 231 

surface shortwave net radiation is estimated using linear regression with MODIS top-232 

of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LWIN and 233 

LWOUT products are generated using densely connected convolutional neural networks, 234 

incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance 235 

and ERA5 near-surface meteorological data (Xu et al., 2022b). The GLASS Rn 236 

products are estimated from the meteorological variables from MERRA2 and surface 237 

variables from GLASS using the multivariate adaptive regression splines model (Jiang 238 

et al., 2015). The BESS-Rad and BESSV2.0 estimate SWIN and Rn using a radiative 239 

transfer model (i.e., Forest Light Environmental Simulator, FLiES) with an artificial 240 

neural network based on MODIS and MERRA2 reanalysis datasets, and using FLiES 241 

based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al., 242 

2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et 243 

al., 2011), PML_V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated 244 

global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor 245 

https://www.tpdc.ac.cn/
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equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and 246 

H datasets are obtained through multiple machine learning methods based on in situ 247 

observations from FLUXNET and remote sensing and meteorological data (Jung et al., 248 

2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected 249 

LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study. 250 

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study 251 

Products/ 

datasets 

Reso-

lution 

Time 

coverage 
Variables Algorithms References 

GLASS 
0.05°/ 

daily 

2000-

2018 

SWIN, 

LWIN, 

LWOUT, Rn 

Machine 

learning, direct 

estimation 

algorithm 

Wang et al. (2015); 

Xu et al. (2022b); 

Jiang et al. (2015) 

BESS-Rad 
0.05°/ 

daily 

2000-

2020 
SWIN 

BESS process 

model 
Ryu et al. (2018) 

BESSV2.0 
0.05°/ 

daily 

2000-

2020 
Rn, LE 

BESS process 

model 
Li et al. (2023) 

FLUXCOM 
0.0833°/ 

8-day 

2000-

2020 
Rn, LE, H 

Model tree 

ensembles 
Jung et al. (2019) 

MOD16A2 
500 m/ 

8-day 

2000-

2020 
LE 

Modified Penman-

Monteith equation 
Mu et al. (2011) 

PML_V2 
500 m/ 

8-day 

2002-

2020 
LE 

Penman Monteith-

Leuning model, 

Priestly Taylor 

equation and Gash 

model 

Zhang et al. (2019) 

ETMonitor 
1 km/ 

daily 

2000-

2020 
LE 

Shuttleworth-

Wallace two-

source scheme, 

Gash model and 

Penman equation 

Zheng et al. (2022) 

 252 

3 Methods 253 

The method used to generate global datasets of land surface radiation and heat 254 

fluxes is based on the CoSEB model/framework, which was developed by our recently 255 
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previously published work (Wang et al., 2025), to coordinately estimate global land 256 

surface energy balance components (including Rn, LE, H and G) using the multivariate 257 

random forest technique, with a combination of MODIS and GLASS products, ERA5-258 

Land reanalysis datasets, and in situ observations at 336 EC sites from the FLUXNET, 259 

AmeriFlux, ChinaFLUX, EuroFlux, OzFlux and Heihe River Basin flux network. The 260 

CoSEB model was demonstrated to be able to produce high-accuracy estimates of land 261 

surface energy components, with the RMSE of <17 W/m2 and R2 of > 0.83 for 262 

estimating 4-day Rn, LE and H, and the RMSE of <5 W/m2 and R2 of 0.55 for 263 

estimating 4-day G. The most praiseworthy superiority of the CoSEB model lies in its 264 

ability to balance the land surface energy components, with an energy imbalance ratio 265 

[EIR, defined as 100%×(Rn - G - LE - H)/Rn ( )100% /Rn G LE H Rn − − − ] of 0. 266 

To coordinately estimate land surface radiation and heat fluxes that comply with 267 

both radiation balance and heat balance, one of the key procedures in the construction 268 

of the CoSEB model was to prepare training datasets that satisfy surface radiation and 269 

heat balance. For this purpose, the energy-imbalance corrections on daily in situ 270 

observed LE and H were conducted by the most widely applied Bowen ratio method 271 

[ ( )corr H
H Rn G

H LE
=  −

+
 , ( )corr LE

LE Rn G
H LE

=  −
+

 , where corrH   and corrLE  272 

represent the sensible heat flux and latent heat flux after energy-imbalance correction, 273 

respectively] with the aid of Rn and G observations, and the in situ Rn was calculated 274 

from the sum of in situ observed net longwave radiation (LWIN minus LWOUT) and net 275 

shortwave radiation (SWIN minus SWOUT). The input variables to renew the CoSEB 276 

model include: (1) climate/meteorology: aT , 
5ERA

INSW , netLW , WS , PA , rP , RH , 277 

CO2 concentration; (2) vegetation and soil: LAI, FVC, PTC, TS1 1ST , SM1 1SM ; (3) 278 

topography data: DEM, Slope and Aspect, in addition to longitude (Lon), latitude (Lat), 279 

and inverse relative distance from the Earth to the Sun (dr), in which the dr was 280 

calculated as 
2

1 0.033 cos
365

DOY
dr

  
= +   

 
, where DOY represents the day of year. 281 
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Considering that the footprint of the site-based measurements of turbulent heat fluxes 282 

is generally at a scale of hundreds of meters, to reduce the effect of differences of spatial 283 

scales between ground-based measurements (dependent variables) and remotely 284 

sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a 285 

spatial scale of 500 m for coordinately estimating global daily land surface radiation 286 

and heat fluxes, which can be expressed as follows: 287 

 
5

1

2

, , , , , , , 1, , , , , ,

, , , , , , , , , , ,

ERA
IN OUT IN a S IN net r

OUT

SW SW LW Lon Lat T T SM SW LW PA WS P dr
f

LW Rn LE H G RH LAI FVC PTC DEM Slope Aspect CO

  
=   

   
(1)  288 

To enhance model generalization, the renewed CoSEB model was reoptimized 289 

using random and grid search methods, resulting in different hyperparameters of 281 290 

decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 from 291 

those of Wang et al. (2025). Site-based 10-fold cross-validation was employed to 292 

evaluate the transferability and generalization of the CoSEB model by randomly 293 

dividing all sites into ten folds, where the samples from each fold of sites in turn served 294 

as validation datasets while the remaining folds were used as training datasets, ensuring 295 

that the validation was conducted on sites spatially independent from the training data. 296 

For comparison, eight RF-based uncoordinated models for separate estimates of SWIN, 297 

SWOUT, LWIN, LWOUT, Rn, LE, H and G were also constructed using the same inputs as 298 

those in the renewed CoSEB model. Site-based 10-fold cross-validation was employed 299 

to assess the transferability and generalization of the CoSEB model by randomly 300 

dividing all sites into ten folds, where each fold in turn serves as validation datasets 301 

while the other folds as the training datasets, ensuring the validation of the estimates of 302 

the CoSEB was conducted at sites that are spatially independent from those selected for 303 

the training datasets. Furthermore, to benchmark the coordinated estimates from the 304 

renewed CoSEB model, eight RF-based uncoordinated models were constructed, each 305 

separately estimating one of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H or G using the same 306 

inputs as those in the renewed CoSEB model. Fig. 2 illustrates the flowchart for 307 

generating global datasets of land surface radiation and heat fluxes by the CoSEB model.  308 
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 309 
Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation 310 

[including downward shortwave radiation (SWIN), downward longwave radiation (LWIN), 311 

upward shortwave radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation 312 

(Rn)] and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux 313 

(H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and 314 

collocated remote sensing and reanalysis datasets. 315 

4 Results 316 

4.1 Validation of the CoSEB model 317 

4.1.1 Site-based 10-fold cross-validations at 258 EC sites 318 

Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-319 

validation of daily SWIN, LWIN, SWOUT, LWOUT, Rn, LE, H and G estimated from the 320 

renewed CoSEB model and the RF-based uncoordinated models, respectively, by using 321 

the validation datasets collected at 258 EC sites worldwide. Results indicated that the 322 

estimates from both the CoSEB model and the RF-based uncoordinated models agreed 323 

well with the in situ observations, with the coefficient of determination (R2) varying 324 

between 0.80 and 0.95 for SWIN, LWIN, LWOUT and Rn, and between 0.59 and 0.67 for 325 

SWOUT, LE and H. The CoSEB model, with the root mean square error (RMSE) of 26.82 326 

to 34.25 W/m2 and mean absolute error (MAE) of 18.83 to 24.49 W/m2 for SWIN, Rn, 327 

LE and H, the RMSE of 12.24 to 17.75 W/m2 and the MAE of 8.39 to 13.70 W/m2 for 328 
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SWOUT, LWIN and LWOUT, demonstrated comparable accuracies to the RF-based models, 329 

with the RMSE of 27.07 to 33.34 W/m2 and MAE of 19.29 to 23.64 W/m2 for SWIN, 330 

Rn, LE and H, the RMSE of 12.12 to 16.93 W/m2 and the MAE of 8.68 to 12.99 W/m2 331 

for SWOUT, LWIN and LWOUT. In the validation of daily G, both the CoSEB and RF-based 332 

models yielded RMSEs below 7 W/m2. Comparisons with the corresponding training 333 

results (Table S3 in the Supplementary Material) indicated that although the CoSEB 334 

model performed better on the training datasets, its overall performance remained stable, 335 

suggesting that the CoSEB model was not affected by overfitting. 336 

Strikingly, the CoSEB model exhibited large superiority in balancing the surface 337 

radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% × 338 

(SWIN – SWOUT + LWIN - LWOUT)/Rn 339 

( )100% /IN IN OUT OUT RnSW LW SW LW Rn− −− + ] and energy imbalance ratio [EIR, 340 

defined as 100% × (Rn - G - LE - H)/Rn ( )100% /Rn G LE H Rn − − − ] of 0, while 341 

the RF-based uncoordinated models showed substantial imbalances of the surface 342 

radiation and heat fluxes, with RIR and EIR that were approximately normally 343 

distributed, having absolute mean values of 38.84% and 31.22%, respectively, and 344 

reaching as high as 50% in some cases. Furthermore, the RIR as well as EIR tended to 345 

be higher under lower solar radiation, air temperature, or FVC, with more frequent low 346 

values of these three variables leading to a broader and less peaked distribution of RIR 347 

and EIR (see Fig. S1 in the Supplementary Material). 348 

It should be pointed out that the performances of both the renewed CoSEB model 349 

and the RF-based models could be further improved if the site-based 10-fold cross-350 

validation was replaced with the sample-based 10-fold cross-validation (Figs. S1 and 351 

S2 in the Supplementary Material). Specifically, for the CoSEB model, using the 352 

sample-based 10-fold cross-validation decreased the RMSE by 0.61 to 3.92 W/m2 for 353 

five radiation components and G, and by 6.25 W/m2 and 5.50 W/m2 for LE and H, 354 

respectively, in comparison to using the site-based 10-fold cross-validation. Likewise, 355 

for the RF-based models, the RMSE decreased by 1.41 to 5.25 W/m2 for five radiation 356 
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components and G, and by 9.63 W/m2 and 7.43 W/m2 for LE and H, respectively. The 357 

R2 of both the CoSEB model and the RF-based models using the sample-based 10-fold 358 

cross-validation increased by 0.02 to 0.28 compared to the R2 using the site-based 10-359 

fold cross-validation. 360 

 361 

Fig. 3 Scatter density plots of the site-based 10-fold cross-validation of daily downward 362 

shortwave and longwave radiation (SWIN and LWIN), upward shortwave and longwave 363 

radiation (SWOUT and LWOUT), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and 364 

sensible heat flux (H) derived by the CoSEB model against in situ observed SWIN, LWIN, SWOUT, 365 

LWOUT, Rn, G, and energy imbalance-corrected LE (
corr

dailyLE ) and H (
corr

dailyH ). The EIR and RIR 366 

in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which 367 

are defined as 100% × (Rn - G - LE - H)/Rn ( )100% /Rn G LE H Rn− − − and  100% × 368 

(SWIN – SWOUT + LWIN - LWOUT)/Rn 100% ( /)IN IN OUT OUTSW LW SW LW Rn Rn+ − − −  , 369 

respectively. The colorbar represents the normalized density of data points. 370 
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 371 
Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models. 372 

4.1.2 Validation at nine radiation sites from SURFRAD 373 

To further illustrate the generality and transferability of the renewed CoSEB model, 374 

the validation of estimates of the five radiation components (including SWIN, SWOUT, 375 

LWIN, LWOUT, Rn) derived from both the CoSEB model and RF-based uncoordinated 376 

models against observations at nine radiation sites from SURFRAD was performed, as 377 

shown in Fig. 5. The results showed that both the CoSEB model and the RF-based 378 

models achieved high accuracy in estimating daily SWIN, SWOUT, LWIN, LWOUT and Rn, 379 

with the RMSE of ~30 W/m2 for SWIN, ~14 W/m2 for SWOUT and LWIN, ~12 W/m2 for 380 

LWOUT and ~24 W/m2 for Rn, with the R2 >0.9 for SWIN, LWIN and LWOUT, ~0.65 for 381 

SWOUT and ~0.85 for Rn. Compared to the results of the site-based 10-fold cross-382 

validation at 258 EC sites, the performances at nine radiation sites showed slight 383 
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improvements, with the RMSE decreasing by 0.74 to 4.54 W/m2 for SWIN, LWIN, LWOUT 384 

and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by 385 

~1.05 W/m2 for SWOUT, suggesting the robust performance of the CoSEB model. 386 

Furthermore, the CoSEB model demonstrated a large superiority in maintaining surface 387 

radiation balance among the five radiation components, with the RIR of 0, in contrast 388 

to the RF-based models, which failed to meet this balance, exhibiting significant RIR 389 

exceeding 50%. 390 

4.2 Validation and inter-comparisons of the CoSEB-based datasets 391 

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of 392 

500 m achieved comparable accuracies to the RF-based uncoordinated models but 393 

outperformed them in balancing surface radiation and heat fluxes. Evidenced by the 394 

validation for its superiority, the renewed CoSEB model was then applied to the 395 

spatially aggregated input datasets to generate our developed global daily datasets with 396 

a spatial resolution of 0.05°. To further assess the performance of the developed 397 

CoSEB-based datasets, in situ observations from another 44 spatially independent test 398 

sites (see Section 2.1), which were not involved in model construction and datasets 399 

generation, were used for validation. Mainstream products (i.e. GLASS, BESS-Rad, 400 

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for 401 

inter-comparison at the 44 test sites. 402 

Note that due to the lack of moderate-resolution global RS-based products/datasets 403 

of daily and/or 8-day SWOUT, H and G, the intercomparison between different 404 

products/datasets was impossible. Instead, we conducted a validation of these 405 

components from the CoSEB-based datasets against in situ observations at 44 test sites, 406 

as shown in Figs S2 and S3 in the Supplementary Material. Results indicated that the 407 

CoSEB-based datasets could provide good estimates of SWOUT, H and G, with the 408 

RMSEs (R2) of 14.20 W/m2 (0.42), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44) at daily 409 

scale, respectively, and the RMSE (R2) of 12.19 W/m2 (0.39) and 4.60 W/m2 (0.47) for 410 

8-day SWOUT and G, respectively. 411 
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 413 
Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave 414 

radiation (SWIN and LWIN), upward shortwave and longwave radiation (SWOUT and LWOUT) 415 

and net radiation (Rn) from the renewed CoSEB model (upper two rows) and RF-based 416 

uncoordinated models (lower two rows) -based datasets against in situ observations at nine 417 

radiation sites from SURFRAD. The RIR represents the radiation imbalance ratio, defined as 418 

100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn ( )100% /IN IN OUT OUTSW LW SW LW Rn Rn+ − − − . 419 

The colorbar represents the normalized density of data points. 420 

4.2 Validation and inter-comparisons of the CoSEB-based datasets 421 

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of 422 
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500 m achieved comparable accuracies to the RF-based uncoordinated models but 423 

outperformed them in balancing surface radiation and heat fluxes. Evidenced by the 424 

validation for its superiority, the renewed CoSEB model was then applied to the 425 

spatially aggregated input datasets to generate our developed global daily datasets with 426 

a spatial resolution of 0.05°. To further assess the performance of the developed datasets, 427 

in situ observations at 134 sites out of the 258 EC sites were further used to test the 428 

performance of the CoSEB-based datasets, where the 134 sites were selected based on 429 

the commonly applied criterion (Salazar-Martínez et al., 2022; Tang et al., 2024a) that 430 

the fraction of the dominant land cover types (from the 500 m MCD12Q1 product) 431 

exceeded 80% within the 0.05° grid, ensuring surface homogeneity and spatial 432 

representativeness of the observations. Mainstream products (i.e. GLASS, BESS-Rad, 433 

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for 434 

inter-comparison at the 134 EC sites. 435 

Note that due to the lack of moderate-resolution global RS-based products/datasets 436 

of daily and/or 8-day SWOUT, H and G, the intercomparison between different 437 

products/datasets was impossible. Instead, we conducted a validation of these 438 

components from the CoSEB-based datasets against in situ observations at 134 EC sites, 439 

as shown in Figs S3 and S4 in the Supplementary Material. Results indicated that the 440 

CoSEB-based datasets could provide good estimates of SWOUT, H and G, with the 441 

RMSE of 10.39 W/m2, 22.67 W/m2 and 6.77 W/m2 at daily scale, respectively, and the 442 

RMSE of 7.08 W/m2 and 4.25 W/m2 for 8-day SWOUT and G, respectively. 443 

Fig. 6 and Fig. 7 present the comparison of daily SWIN, LWIN and LWOUT, as well 444 

as Rn and LE from the CoSEB-based datasets and mainstream products/datasets 445 

(including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations 446 

at 134 44 EC test sites, respectively. Overall, the estimates from the CoSEB-based 447 

datasets exhibited a closer agreement with in situ observations than those from 448 

mainstream products/datasets, where the CoSEB-based datasets reduced the RMSE by 449 

4.350.01 W/m2 to 11.464.58 W/m2 and increased the R² by 0.04 01 to 0.3 09 compared 450 
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to mainstream products. Specifically, the RMSE for the SWIN, LWIN, LWOUT increased 451 

from 28.5137.52 W/m2, 14.2922.47 W/m2 and 10.6213.78 W/m2 in the CoSEB-based 452 

datasets to 35.447.53 W/m2 ,18.6423.37 W/m2 and 15.2916.46 W/m2 in the GLASS, 453 

respectively, and for SWIN from 28.5137.52 W/m2 in the CoSEB-based datasets to 454 

36.2340.87 W/m2 in the BESS-Rad. Likewise, the RMSEs for daily Rn and LE were 455 

22.409.66 W/m2 and 24.3830.87 W/m2 in the CoSEB-based datasets, which were lower 456 

than those of 29.8034.24 W/m2 and 35.754.36 W/m2 in BESSV2.0, respectively, as well 457 

as those of 27.1130.60 W/m2 for Rn in GLASS and 35.843.62 W/m2 for LE in 458 

ETMonitor. 459 

460 
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 461 

Fig. 6 Comparison of the daily downward shortwave radiation (SWIN, the first column), 462 

downward longwave radiation (LWIN, the second column) and upward longwave radiation 463 

(LWOUT, the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the 464 

in situ observed SWIN, LWIN and LWOUT at 134 44 eddy covariancetest sites. The colorbar 465 

represents the normalized density of data points. 466 
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467 

 468 

Fig. 7 Comparison of the daily net radiation (Rn, the upper row) and latent heat flux (LE, the 469 

lower row) from the CoSEB-based datasets, BESSV2.0, GLASS and ETMonitor with the in 470 

situ observed Rn, and energy imbalance-corrected LE (
corr

dailyLE ) at 134 44 eddy covariancetest 471 

sites. The colorbar represents the normalized density of data points. 472 

Figs. 8, 9 and 10 compare the 8-day SWIN, LWIN and LWOUT, Rn and LE, as well as 473 

H from the CoSEB-based datasets and mainstream products, with in situ observations 474 

at 44 test134 EC sites, respectively. Overall, the CoSEB-based datasets outperformed 475 
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the mainstream products/datasets for all surface radiation and heat fluxes, where the 476 

CoSEB-based datasets reduced the RMSE by 4.620.24 W/m2 to 14.640.48 W/m2 and 477 

increased the R² by 0.04 01 to 0.41 38 compared to mainstream products. Specifically, 478 

for SWIN, LWIN and LWOUT, the RMSE increased from 12.818.54 W/m2, 9.2218.50 W/m2 479 

and 8.349.41 W/m2 in the CoSEB-based datasets to 21.23 35 W/m2, 15.3720.39 W/m2 480 

and 14.70 48 W/m2 in the GLASS, respectively, and for SWIN from 12.8118.54 W/m2 481 

in the CoSEB-based datasets to 17.4318.78 W/m2 in the BESS-Rad. For Rn, the RMSE 482 

increased from 13.389.12 W/m2 in the CoSEB-based datasets to ~23 W/m2 in the 483 

FLUXCOM and GLASS and to >27 W/m2 in the BESSV2.0 18.64 W/m2 in the GLASS 484 

and to >23 W/m2 in the FLUXCOM and BESSV2.0, while the R2 decreased from 0.91 485 

82 in the CoSEB-based datasets to 0.75 in the FLUXCOM and GLASS and to 0.82 62 486 

in the GLASS BESSV2.0and to <0.72 in the FLUXCOM and BESSV2.0. Likewise, for 487 

LE, the RMSE increased from 19.9922.31 W/m2 in the CoSEB-based datasets to 488 

~26.1625 W/m2 in the FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and 489 

to >28.1732 W/m2 in BESSV2.0, MOD16A2, PML_V2 and ETMonitor, while the R2 490 

decreased from 0.8 67 in the CoSEB-based datasets to ~0.65 60 in the FLUXCOM, 491 

PML_V2, BESSV2.0 and ETMonitorFLUXCOM, and to <0.6 3 in the remaining 492 

productsMOD16A1. For H, the RMSE increased from 17.4421.63 W/m2 in the CoSEB-493 

based datasets to 23.962.64 W/m2 in the FLUXCOM.  494 

The differences between the estimates from the CoSEB-based datasets and 495 

mainstream datasets are likely multifactorial, arising from the simplification and 496 

parameterization uncertainties in physics-based models, as well as the lack of physical 497 

constraints, limited training samples, and incomplete consideration of influencing 498 

factors in other machine-learning-based models. 499 

 500 
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 502 

Fig. 8 Same as Fig. 6, but for the comparison at 8-day scale. 503 
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 505 

Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux 506 

(LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS, 507 

MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-508 

corrected LE ( 8

corr

dayLE −  ) at 134 44 testeddy covariance sites. The colorbar represents the 509 

normalized density of data points. 510 

 511 
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512 

 513 

Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and 514 

the FLUXCOM with the in situ energy imbalance-corrected H ( 8

corr

dayH −  ) at 134 44 eddy 515 

covariancetest sites. The colorbar represents the normalized density of data points. 516 

4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes 517 

In addition to the validation and inter-comparison of the CoSEB-based datasets at 518 

the global site scales, we further inter-compared the estimates of land surface radiation 519 

and heat fluxes from the CoSEB-based datasets and the mainstream products/datasets, 520 

in terms of their global spatial and temporal patterns. 521 

Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic 522 

continent, deserts, water bodies and permanent snow) and latitudinal profiles of the 523 

global 0.05° mean annual SWIN, LWIN and LWOUT, Rn and LE, as well as H from 2001 524 

to 2018, respectively, as derived from the CoSEB-based datasets and mainstream 525 

products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, 526 

PML_V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or 527 

cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates 528 
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from the CoSEB-based datasets aligned well with those observed in these mainstream 529 

products/datasets, though regional discrepancies were present. Specifically, the mean 530 

annual LWIN, LWOUT, Rn, and LE generally exhibited decreasing trends from the equator 531 

towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo 532 

Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SWIN and 533 

H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia, 534 

Sahel and Southern Africa, while the lower values were found in high-latitude regions 535 

of >50°N. In the region with of high values, the mean annual estimates of SWIN from 536 

the CoSEB-based datasets were higher than those from GLASS but lower than those 537 

from BESS-Rad, the estimates of LWIN and LWOUT from the CoSEB-based datasets were 538 

both higher than those from GLASS, the estimates of Rn from the CoSEB-based 539 

datasets were significantly higher than those from BESSV2.0, and comparable to or 540 

slightly higher than those from FLUXCOM and GLASS, the estimates of LE from the 541 

CoSEB-based datasets were close to those from BESSV2.0 and PML_V2, but slightly 542 

lower than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates 543 

of H from the CoSEB-based datasets were higher than those from FLUXCOM in 544 

regions with high values, while lower than those from FLUXCOM in regions with low 545 

values.546 
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 547 
Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SWIN, the first 548 

row), downward longwave radiation (LWIN, the second row) and upward longwave radiation 549 

(LWOUT, the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad. 550 

The rightmost subfigure of each row represents the latitudinal profiles of mean annual SWIN, 551 

LWIN and LWOUT from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area 552 

represents the variation of standard deviation for each product. 553 

 554 

Fig.12 Spatial patterns of global mean annual net radiation (Rn, the first row) and latent heat 555 

flux (LE, the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM, 556 

BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third 557 

row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets 558 

and these mainstream products/datasets, where the shaded area represents the variation of 559 

standard deviation for each product. 560 



33 

 

 561 

Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by 562 

CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal 563 

profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded 564 

area represents the variation of standard deviation for each product. 565 

The temporal evolutions of the global (excluding Greenland, Antarctic continent, 566 

deserts, water bodies and permanent snow) land surface radiation and heat fluxes 567 

derived from the CoSEB-based datasets and mainstream products/datasets from 2001 568 

to 2018 were also investigated, as shown in Fig. 14. The results indicated that the 569 

temporal variation of each flux from the CoSEB-based datasets generally agreed well 570 

with those from mainstream products/datasets, exhibiting relatively stable trends. The 571 

global annual mean estimates using area weighting average by the CoSEB-based 572 

datasets from 2001 to 2018 varied between ~185.22 and ~189.50 W/m2 with the mean 573 

of ~187.23 W/m2 for SWIN, between ~32.67 and ~33.20 W/m2 with the mean of ~32.96 574 

W/m2 for SWOUT, between ~330.24 and ~334.14 W/m2 with the mean of ~331.50 W/m2 575 

for LWIN, between ~387.25 and ~390.82 W/m2 with the mean of ~388.81 W/m2 for 576 

LWOUT, between ~95.41 and ~99.39 W/m2 with the mean of 97.11 W/m2 for Rn, 577 

between ~53.24 and ~56.37 W/m2 with the mean of ~54.53 W/m2 for LE, between 578 

~40.44 and ~41.96 W/m2 with the mean of ~41.29 W/m2 for H, and between ~1.22 and 579 

~1.52 W/m2 with the mean of ~1.33 W/m2 for G. For each radiation or heat flux, the 580 

annual mean estimates from the CoSEB-based datasets were overall higher than those 581 

from the mainstream products/datasets. In particular, the annual mean Rn estimates 582 

from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and 583 

BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based 584 

datasets were marginally higher than those from FLUXCOM, but substantially 585 

exceeded those from ETMonitor, PML_V2, MOD16A2 and BESSV2.0 sequentially. 586 
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 587 

Fig. 14 Temporal variation of annual mean downward shortwave radiation (SWIN), upward 588 

shortwave radiation (SWOUT), downward longwave radiation (LWIN), upward longwave 589 

radiation (LWOUT), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat 590 

flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM, 591 

BESSV2.0, PML_V2, MOD16A2 and ETMonitor. The shaded area represents the variation of 592 

standard deviation for each product. 593 
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 594 
Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward 595 

shortwave radiation (SWIN, the first row), downward longwave radiation (LWIN, the second 596 

row) and upward longwave radiation (LWOUT, the third row) from 2001 to 2018 by the CoSEB-597 

based datasets, GLASS and BESS-Rad. 598 

Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic 599 

continent, deserts, water bodies and permanent snow) of interannual variability of SWIN, 600 

LWIN and LWOUT, Rn and LE, as well as H from 2001 to 2018, respectively, derived 601 

from the CoSEB-based datasets and mainstream products/datasets. In general, the 602 

estimates from the CoSEB-based datasets displayed similar interannual variability in 603 

space with those from the mainstream products/datasets. Specially, the estimates of 604 

SWIN from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant 605 

interannual variability mainly in northeastern Australia, eastern South America, 606 

Southeast China, and Southwest North America. The interannual variability of LWIN 607 

and LWOUT by the CoSEB-based datasets and GLASS displayed high values primarily 608 

at middle-to-high latitudes of the Northern Hemisphere and parts of Africa and 609 

Australia. The interannual variability of Rn observed by the CoSEB-based datasets was 610 

generally lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM. 611 

The CoSEB-based datasets missed the strong interannual variability of LE as observed 612 

in MOD16A2, PML_V2 and ETMonitor in parts of Africa, Australia and eastern South 613 
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America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE 614 

in almost all regions. The interannual variability of H derived from the CoSEB-based 615 

datasets was higher than those that from FLUXCOM, with stronger interannual 616 

variabilities mainly observed in parts of eastern South America, southern Africa, and 617 

northeastern Australia. 618 

 619 
Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn, 620 

the first and second rows) and latent heat flux (LE, the third and fourth row) from 2001 to 621 

2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2, 622 

ETMonitor and GLASS. 623 

 624 

Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux 625 

(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM. 626 
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5 Discussion 627 

Accurately monitoring the spatial and temporal variations of global land surface 628 

radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and 629 

water between the land and atmosphere under global climate change (Chen et al., 2020; 630 

Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However, 631 

although numerous global RS-based products/datasets of land surface radiation and 632 

heat fluxes have been developed using physical and/or statistical methods, they 633 

typically provide either merely a single flux or multiple fluxes (see Table 1) that are 634 

estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019; 635 

Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or 636 

heat imbalance when these products are combined for practical applications. To address 637 

these limitations, we generated high-accuracy global datasets of land surface radiation 638 

and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation 639 

laws, using our proposed CoSEB model (Wang et al., 2025). 640 

Our CoSEB model, integrating underlying physical principles of training datasets 641 

into machine learning technique to effectively learn the interrelations among multiple 642 

targeted outputs, was originally designed for coordinating estimates of global land 643 

surface energy balance components (Rn, LE, H and G) to satisfy the energy 644 

conservation (Wang et al., 2025). Inspired by the idea of constructing the original 645 

CoSEB model, we further incorporated land surface radiation fluxes into our model to 646 

simultaneously consider the physical constraints of both surface radiation and heat 647 

conservation principles, by renewing the CoSEB using multiple remote sensing 648 

productsand, reanalysis datasets, as well as in- situ observations of SWIN, SWOUT, LWIN, 649 

LWOUT, Rn, LE, H and G. In selecting the 19 input variables to accommodate the 650 

additional target variables, prior knowledge derived from previous studies was 651 

employed to identify factors that exert significant influence on surface radiation and 652 

heat flux while maintaining relative inter-independence as much as possible (Jung et al., 653 

2019; Mohan et al., 2020; Wang et al., 2021; Xian et al., 2024). This practice is 654 
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commonly adopted in data-driven models for estimating land surface water, energy, and 655 

carbon fluxes (Bai et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). 656 

The importance scores of the 19 different feature variables are exhibited in Table S4 in 657 

the Supplementary Material, and downward solar radiation, the primary source of the 658 

energy at the earth surface, is the most important input variable, consistent with the 659 

results from our previous study (Wang et al., 2025). Although some of the selected 660 

variables may exhibit a certain degree of multi-collinearity, each contributes unique and 661 

physically meaningful information, supporting the inclusion of all variables in model 662 

construction. To comprehensively account for the main factors influencing surface 663 

radiation and heat fluxes (Mohan et al., 2020; Wang et al., 2021; Xian et al., 2024)[JW1], 664 

the renewed CoSEB model utilized 19 easily accessible parameters/variables from 665 

ERA5-Land reanalysis datasets, GLASS products, MODIS products, GMTED2010 and 666 

NOAA/GML as input, which were readily available to generate datasets of global land 667 

surface radiation and heat fluxes in a practical and operational manner.(Wang et al., 668 

2025)Note that the variable importance, derived from the built-in method of the random 669 

forests and potentially affected by multicollinearity among the input variables, is 670 

presented only as a reference. Retaining all 19 feature variables ensures the model’s 671 

flexibility and generalization capability, enabling future incorporation of additional 672 

representative ground-based observations for further training and improvement. 673 

Besides, to investigate the impact of lagged effects of input variables on model 674 

performance, experiments were also conducted by adding lagged variables (e.g., the air 675 

temperature of the previous day) to the 19 input features. The results (Fig. S4 in the 676 

Supplementary Material) showed almost no improvement in model accuracy, 677 

suggesting that lagged effects on model performance were negligible within the CoSEB 678 

framework for estimates of daily surface radiation and heat fluxes. Furthermore, to 679 

better illustrate the effect of including additional radiation components (SWIN, SWOUT, 680 

LWIN and LWOUT) in the renewed CoSEB model compared with the original version by 681 

Wang et al. (2025), we have tested the performance of a reconstructed model that 682 
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estimated only Rn, LE, H and G using the same independent variables and samples as 683 

those in the renewed CoSEB model. The results (Fig. S5 in the supplementary material) 684 

showed no significant differences in accuracy compared with those of the renewed 685 

CoSEB model, indicating the expansion of radiation components did not compromise 686 

model performance. 687 

The main advantages of our CoSEB-based datasets of land surface radiation and 688 

heat fluxes lie in that [1] they are the first RS-baseddata-driven global datasets that 689 

satisfy both surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = Rn690 

IN OUT IN OUTSW SW LW LW Rn− + − =  ) and heat balance (LE + H + G = Rn691 

LE H G Rn+ + = ) among the eight fluxes, as demonstrated by both the RIR and EIR 692 

of 0, [2] the radiation and heat fluxes are characterized by high accuracies when 693 

validated against in- situ measurements at 134 “homogeneous”44 independent test sites 694 

(see the first second paragraph in Section 4.22.1), where (1) the RMSEs for daily 695 

estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based 696 

datasets were 28.5137.52 W/m2, 10.394.20 W/m2, 14.2922.47 W/m2, 10.623.78 W/m2, 697 

22.409.66 W/m2, 24.3830.87 W/m2, 22.679.75 W/m2 and 6.775.69 W/m2, respectively, 698 

as well as for 8-day estimates were 12.818.54 W/m2, 7.0812.19 W/m2, 9.2218.50 W/m2, 699 

8.349.41 W/m2, 13.389.12 W/m2, 19.9922.31 W/m2, 17.4421.63 W/m2 and 4.254.60 700 

W/m2, respectively, (2) the CoSEB-based datasets, in comparison to the mainstream 701 

RS-based products/datasets (i.e. GLASS, BESS-Rad, FLUXCOM, BESSV2.0, 702 

MOD16A2, PML_V2 and ETMonitor), better agreed with the in situ observations at 703 

134 ECthe 44 test sites, showing the RMSE reductions ranging from 4.350.01 W/m2 to 704 

11.464.58 W/m2 for SWIN, LWIN, LWOUT, Rn and LE at daily scale, and 4.620.24 W/m2 705 

to 14.640.48 W/m2 for SWIN, LWIN, LWOUT, Rn, LE and H at 8-day scale. Furthermore, 706 

the CoSEB-based datasets outperformed the ERA5-Land reanalysis datasets in 707 

estimating surface energy fluxes (where SWOUT, LWOUT, Rn and G for the ERA-Land 708 

were inferred from surface radiation balance and heat balance), particularly for SWOUT, 709 

H and G, with RMSE reductions of 0.13-8.15 W/m2 when validated against in situ 710 
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observations at the 44 test sites (Figs. S6 and S7 in the Supplementary Material). 711 

Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial patterns 712 

consistent with those of mainstream RS-based datasets and Earth system model outputs 713 

(see Fig. S8 in the supplementary material). More detailed analysis about their 714 

similarities and differences can be further conducted in future work. 715 

Our developed datasets could be potentially applied in many fields, including but 716 

not limited to (1) exploring the spatial-temporal patterns of global land surface radiation 717 

and heat flux (es) and their driving mechanisms over the past decades under global 718 

change (e.g., rising CO2 concentration, greening land surface and increasing air 719 

temperature), (2) investigating the variability of land surface radiation and heat fluxes 720 

caused by extreme events and human activities, e.g. afforestation or deforestation, 721 

wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources 722 

of solar energy, geothermal energy, surface and ground water at regional and global 723 

scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry. 724 

The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2) 725 

the application of the CoSEB at model across different spatial scales. Specifically, the 726 

daily averages of surface radiation and heat fluxes for each day wereas obtained for 727 

analysis from good-quality half-hourly observations when the fraction of these good-728 

quality half-hourly observations was greater than 80% in a day, due to the lack of 729 

consensus on the method for aggregating gapped half-hourly observations to daily data 730 

(Tang et al., 2024a; Yao et al., 2017; Zheng et al., 2022). Simple temporal interpolation 731 

of half-hourly in situ observations, which could therefore introduce substantial 732 

uncertainties, was not applied, because surface radiation and heat fluxes are sensitive 733 

to short-term variations in meteorological conditions and their intraday dynamics are 734 

often complex. Likewise, since there was no agreement on how to correct for the energy 735 

imbalance of turbulent heat fluxes, we adopted the most widely applied Bowen ratio 736 

method to enforce energy closure between Rn G−  and LE H+  (Castelli et al., 2018; 737 

Twine et al., 2000; Zhang et al., 2021). Another potential source of uncertainty arises 738 
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from differences in meteorological reanalysis data caused by spatial downscaling, 739 

which, as demonstrated in our previous study (Wang et al., 2025, the last paragraph of 740 

Section 5.1), has a relatively small impact on model estimates by the machine-learning-741 

based CoSEB model combined with finer-resolution surface-related variables that 742 

partially compensate for the spatial heterogeneity and localized variations not captured 743 

by the coarse-resolution datasets.(Wang et al., 2025, the last paragraph of Section 5.1) 744 

(Wang et al., 2025, the last paragraph of Section 5.1)These data preprocessing had an 745 

effect on the construction of the renewed CoSEB model, which may further affect the 746 

global datasets. Moreover, the renewed CoSEB model was constructed at the spatial 747 

scale of 500 m to match the footprints of the in situ EC observations, but applied at the 748 

spatial resolution of 0.05° to generate global datasets, mainly limited by the computing 749 

and storage capabilities in of our personal computers. However, the CoSEB-based 750 

datasets have also been validated and inter-compared at 134 EC44 independent test sites 751 

to demonstrate that the difference in spatial scale would not much affect the 752 

performance of the datasets. Despite these uncertainties, it is worth emphasizing that 753 

our work was the first attempt to innovatively develop data-driven energy-conservation 754 

datasets of global land surface radiation and heat fluxes with high accuracies. 755 

 756 

6 Data availability 757 

The energy-conservation datasets of global land surface radiation and heat fluxes 758 

generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05° 759 

from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan 760 

Plateau Data Center at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) 761 

and through the Science Data Bank (ScienceDB) at 762 

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b).  763 

https://doi.org/10.57760/sciencedb.27228
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7 Summary and Conclusion 764 

This study for the first time developed data-driven energy-conservation datasets 765 

of global land surface radiation and heat fluxes using our CoSEB model renewed based 766 

on GLASS and MODIS products, ERA5-Land reanalysis datasets, topographic data, 767 

CO2 concentration data, and observations at 258 EC sites worldwide from the 768 

FLUXNET, AmeriFlux, EuroFlux, OzFlux, ChinaFLUX and TPDC. 769 

The CoSEB-based datasets of land surface radiation and heat fluxes are the first 770 

RS-baseddata-driven global datasets that satisfy both surface radiation balance (SWIN - 771 

SWOUT + LWIN - LWOUT = Rn IN OUT IN OUTSW SW LW LW Rn− + − = ) and heat balance (LE 772 

+ H + G = Rn LE H G Rn+ + = ) among the eight fluxes. Meanwhile, the CoSEB-based 773 

datasets outperformed the mainstream products/datasets in accuracy. Specifically, at 774 

134 44EC  independent test sites, the RMSEs (R2) for daily estimates of SWIN, SWOUT, 775 

LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based datasets were 37.52 W/m2 (0.81), 776 

14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 13.78 W/m2 (0.95), 29.66 W/m2 (0.77), 30.87 777 

W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44), respectivelythe RMSEs for 778 

daily estimates of SWIN, SWIN, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based 779 

datasets were 28.51 W/m2, 10.39 W/m2, 14.29 W/m2, 10.62 W/m2, 22.40 W/m2, 24.38 780 

W/m2, 22.67 W/m2 and 6.77 W/m2, respectively, as well as for 8-day estimates were 781 

12.8118.54 W/m2 (0.87), 7.0812.19 W/m2 (0.39), 9.2218.50 W/m2 (0.92), 8.349.41 782 

W/m2 (0.97), 13.389.12 W/m2 (0.82), 19.9922.31 W/m2 (0.67), 17.4421.63 W/m2 (0.39) 783 

and 4.254.60 W/m2 (0.47), respectively. Moreover, the estimates from the CoSEB-784 

based datasets in comparison to those from the mainstream products/datasets reduced 785 

the RMSE by 4.350.01 W/m2 to 11.464.58 W/m2 and increased the R2 by 0.04 01 to 0.3 786 

09 for SWIN, LWIN, LWOUT, Rn and LE at daily scale, and reduced the RMSE by 4.620.24 787 

W/m2 to 14.640.48 W/m2 and increased the R2 by 0.04 01 to 0.41 38 for SWIN, LWIN, 788 

LWOUT, Rn, LE and H at 8-day scale, when these estimates were validated against in 789 

situ observations at 134 44 EC independent test sites. Furthermore, the CoSEB-based 790 

datasets effectively captured the spatial-temporal variability of global land surface 791 
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radiation and heat fluxes, aligning well with those from the mainstream products. 792 

Our developed datasets hold significant potential for application across diverse 793 

fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental 794 

science. They can facilitate comprehensive studies on the variability, impacts, responses, 795 

adaptation strategies, and mitigation measures of global and regional land surface 796 

radiation and heat fluxes under the influences of climate change and human activities. 797 

These datasets will provide valuable insights and data support for scientific research, 798 

policy-making, and environmental management, advancing global solutions to address 799 

climate change. 800 
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