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Thank you very much for your excellent revision work. We appreciate your thorough
responses to the reviewers’ comments.

After integrating additional feedback from further reviewers, we encourage authors
to revise the manuscript to accommodate their suggestions.

Reviewer 1 wrote:

“Authors have done an excellent job with their responses. I am happy to approve the
publication.

I did want to follow up on one point. While it’s true, as the authors point out, that
Earth system models have large ensemble runs at 1 degree, currently several Earth
system models are being deployed at finer scales (0.5 degrees, even 1 km). In
general, I would like the authors to mention that their framework can reproduce
results of Earth system models. This would be a great benefit to the community
given the effort required to run those models.”

In addition, Reviewer 2’s suggestions are provided in the attached file. I agree with
Reviewer 2 that the manuscript should explicitly address the limitations of the
current dataset, particularly the lack of data coverage in the Southern Hemisphere, in
order to avoid potentially misleading users.

We would be grateful if you could revise the manuscript to address these comments
and resubmit a revised version for further consideration.

Additional private note (visible to authors and reviewers only):

Thank you very much for your support!

Ans: We sincerely thank the editor and reviewers for their time and effort, as well as
for their valuable comments and constructive suggestions, which have greatly helped
to improve the quality of our manuscript.

In response to the suggestion from Reviewer 1, we have further clarified the

capability of CoSEB to provide significant benefits to the community, particularly in
light of the high computational cost and long execution times associated with Earth
system models. This clarification has been added at the end of the third paragraph of
Section 5 with the following sentences:
“Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial
patterns consistent with those of mainstream RS-based datasets and Earth system
model outputs (see Fig. S9 in the supplementary material), suggesting that the
CoSEB-based datasets (or CoSEB framework) more broadly, are capable of
reproducing the large-scale spatial features of Earth system models. This capability
would be a great benefit to the community given the limitations associated with the
high computational cost and long execution time of Earth system models. More
detailed analysis about their similarities and differences can be further conducted in
future work.”

Regarding the suggestion from Reviewer 2, we have explicitly acknowledged the
limitation arising from the uneven distribution of eddy-covariance sites used in this
study and emphasized the need for additional observations from currently
underrepresented regions of the Southern Hemisphere to improve the global
representativeness of the CoSEB-based datasets in the future in the last paragraph of



Section 5 in the revised manuscript with the following sentences:

“Note that the 302 sites used for training, validation, and testing are predominantly
located in the Northern Hemisphere, reflecting the inherent uneven distribution of
the global flux networks. Although these sites cover a wide range of land cover types
and climate regimes, thereby providing substantial heterogeneity for model
development, the limited representation of the Southern Hemisphere may introduce
uncertainties in the estimation of surface radiation and heat fluxes for certain
ecosystems and soil types. In the future, enhancing the flux observation network
coverage in the Southern Hemisphere, particularly in South America and Africa, and
incorporating these observations into the CoSEB framework would help further
improve the accuracy of surface radiation and heat flux estimates in these regions.”

More detailed information on our revisions to other comments and suggestions can
be found in the item-by-item response below.



Reviewer #1:

Authors have done an excellent job with their responses. I am happy to approve the
publication.

I did want to follow up on one point. While it’s true, as the authors point out, that
Earth system models have large ensemble runs at 1 degree, currently several Earth
system models are being deployed at finer scales (0.5 degrees, even 1 km). In
general, I would like the authors to mention that their framework can reproduce
results of Earth system models. This would be a great benefit to the community
given the effort required to run those models.

Ans: Thanks for your valuable comments and constructive suggestions. Following
your suggestion, we have further clarified this at the end of the third paragraph of
Section 5 in the revised manuscript with the following sentences:

“Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial
patterns consistent with those of mainstream RS-based datasets and Earth system
model outputs (see Fig. S9 in the supplementary material), suggesting that the
CoSEB-based datasets (or CoSEB framework) more broadly, are capable of
reproducing the large-scale spatial features of Earth system models. This capability
would be a great benefit to the community given the limitations associated with the
high computational cost and long execution time of Earth system models. More
detailed analysis about their similarities and differences can be further conducted in
future work.”



Reviewer #2:

Authors describe use of ‘coordinated’ model (CoSEB) to understand surface energy
and heat budgets. Their paper presents reasons that (many?) others might do likewise.
Ans: The lack of energy closure in existing products/datasets represents a
fundamental and well-recognized issue, posing substantial challenges for studies of
surface energy balance changes under a changing climate. We believe that this
concern is shared by many others in the community. The key contribution of our
study is to address this issue by developing the CoSEB framework, which enables
coordinated multi-component estimation while explicitly enforcing surface energy
conservation.

Two reviewers offered good thoughtful comments, including substantive suggestions
and concerns. Authors responded in detail, including by revising perview and re-
running some calculations. This reviewer considers that authors have made useful
appropriate response. Authors now present a well-written well-organized manuscript.
Data prove easy to access and to use.

I raise general questions, focused more on impact and utility. Topical editor will need
to decide based on these comments

Ans: We sincerely thank the reviewer for the thoughtful and encouraging assessment
of our revised manuscript. Regarding the reviewer’s general questions on impact and
utility, we have carefully considered these points and further revised the manuscript
to better articulate the scientific value, applicability, and potential for wider adoption
of our CoSEB-based datasets. We believe our manuscript has been greatly improved
by following the reviewer’s comments and suggestions.

Their product covers, unfortunately, northern hemisphere land. Admittedly we can’t
escape land only. But, without Australia, we would basically have no data from
southern hemisphere. Not in any way the fault of these authors, but they do need to
admit up front these limitations. Do we miss significant ecosystems or soil types
from South America or South Africa?

Ans: Thanks for your valuable comment and question. We would like to clarify that
our CoSEB-based datasets provide global land estimates, including those of the
Southern Hemisphere. We understand that this concern likely arises from the fact
that the eddy-covariance sites used in this study are predominantly located in the
Northern Hemisphere. We acknowledge that, despite our efforts to collect
observations from multiple global/regional networks (e.g., FLUXNET, AmeriFlux,
EuroFlux, OzFlux, JapanFlux, and TPDC), the 302 sites retained after data
preprocessing and quality control are mainly concentrated in the Northern
Hemisphere. This limitation is inherent to the current global eddy-covariance
observational network and is not specific to our study. We agree that the sparse
coverage of the Southern Hemisphere, particularly South America and South Africa,
may limit the representation of some ecosystems and soil types. Nevertheless, the
selected sites encompass 14 land cover types (e.g., evergreen needleleaf forests,
evergreen broadleaf forests, savannas, croplands, and grasslands) across a wide



range of climate regimes (tropical, dry, temperate, and continental). The multi-year
observations capture diverse meteorological, soil moisture, and vegetation conditions,
providing substantial spatiotemporal variability for model development.

Responding to the reviewer’s comments, we have explicitly acknowledged this

limitation and emphasized the need for additional observations from currently
underrepresented  Southern Hemisphere regions to improve the global
representativeness of the CoSEB-based datasets in the future in the last paragraph of
Section 5 in the revised manuscript with the following sentences:
“Note that the 302 sites used for training, validation, and testing are predominantly
located in the Northern Hemisphere, reflecting the inherent uneven distribution of
the global flux networks. Although these sites cover a wide range of land cover types
and climate regimes, thereby providing substantial heterogeneity for model
development, the limited representation of the Southern Hemisphere may introduce
uncertainties in the estimation of surface radiation and heat fluxes for certain
ecosystems and soil types. In the future, enhancing the flux observation network
coverage in the Southern Hemisphere, particularly in South America and Africa, and
incorporating these observations into the CoSEB framework would help further
improve the accuracy of surface radiation and heat flux estimates in these regions.”

This reader remains confused about how CoSEB assures surface energy or surface
heat budgets close to ‘zero’. Authors state this closure multiple times as a positive
feature. I suppose multiple internal calculations and iterations must assure this result,
and I applaud their ‘clean’ outcome, but what artificial corrections will we have
introduced or accepted to ensure this outcome? I doubt that we know (can measure)
LE or RN to that accuracy? But the model can do it? What happens seasonally, as
ecosystems burn or migrate, or as one feature or multiple features change? CoSEB
always ensures zero net offset? I appreciate what we might gain. What might we lose?
Ans: Thank you for your insightful comments and questions. We would like to
clarify that the radiation and heat balance in this study refers specifically to the
conservation among the eight variables analyzed in the manuscript (i.e., SWi, LW,
SWour, LWour, Rn, LE, G, H), which constitute the major components of the surface
energy budget, and does not account for energy introduced by disturbance-related
processes such as wildfires and volcanic eruptions. We have further illustrated this in
the last paragraph of Section 5 in the revised manuscript with the following
sentences:

“Furthermore, the radiation and heat balance in this study refers specifically to the
conservation among the eight variables (i.e., SWiy, LW, SWour, LWour, Rn, LE, G,
H), which constitute the major components of the surface energy budget, and does
not account for energy introduced by disturbance-related processes such as wildfires
and volcanic eruptions.”

The standard deviations in time series (Fig 14) give me pause. All high! Very high.
Hard to tell exactly, but CoSEB seems no better than any individual or cumulative
product. So what have we lost or gained? If no product shows significant trends, why



have we made such effort? If no product show significant change with time, over 20
years, we do not track relevant features? We all know that global atmospheric CO2
rises significantly over that time. Likewise atmospheric temperature. But none of
these ‘measured’ fluxes? Land static, everything driven by ocean?

Ans: We thank the reviewer for the thoughtful comments and questions. We would
like to clarify that the standard deviation shown in Fig. 14 primarily reflects the
spatial variability of each product across global land surfaces. Given the strong
heterogeneity in climate regimes, land cover types, and surface energy partitioning,
substantial spatial variability is expected and does not imply inferior product
performance. Moreover, the performance of the CoSEB-based datasets was
evaluated through independent validation and inter-comparison against in situ
observations, with results from 44 test sites (see Section 4.2) consistently showing
lower RMSE and bias, and higher R?, than those of other mainstream products.

In addition, the relatively large mean values and standard deviations in Fig. 14

make it difficult to visually identify long-term trends in the time series. To better
illustrate these trends, we have additionally added a figure (Fig. S4 in the
Supplementary Material) presenting anomaly time series for each product. This
anomaly-based representation reveals clear temporal trends over the 20 years. We
have illustrated this in the third paragraph of Section 4.3 in the revised manuscript
with the following sentences:
“The anomaly-based analyses (Fig. S4 in the Supplementary Material) reveal clear
and coherent temporal trends of these radiation and heat fluxes, which respond well
to global climate change, such as increasing atmospheric CO; and rising air
temperatures.”
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Fig. S4 Anomalies of downward shortwave radiation (SWiv), upward shortwave radiation
(SWour), downward longwave radiation (LW;n), upward longwave radiation (LWour), net
radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat flux (G) from 2001
to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM, BESSV2.0,
PML_V2, MOD16A2 and ETMonitor.

I likewise doubt differences between coordinated (CoSEB) and uncoordinated
analyses. In Figs3 vs 4, considering r2, CoSEB shows no significant differences to
uncoordinated RF analyses. If true, why do authors and readers need to spend
additional time comparing validations or imaging geographic differences?

Ans: Thank you for your questions. We would like to clarify that the key advantage
of our coordinated model (CoSEB) over the uncoordinated models lies in its ability
to enforce energy balance among the eight radiation and heat fluxes, thereby
producing estimates with improved physical consistency. We have already illustrated
this in the second paragraph of Section 4.1.1 and in the first paragraph of Section
4.1.2 with the following sentences:

“Strikingly, the CoSEB model exhibited large superiority in balancing the surface



radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% X
SWin — SWour + LWin - LWour)/Rn] and energy imbalance ratio [EIR, defined as
100% % (Rn - G - LE - H)/Rn] of 0, while the RF-based uncoordinated models
showed substantial imbalances of the surface radiation and heat fluxes, with RIR and
EIR that were approximately normally distributed, having absolute mean values of
38.84% and 31.22%, respectively, and reaching as high as 50% in some cases.”

“Furthermore, the CoSEB model demonstrated a large superiority in maintaining
surface radiation balance among the five radiation components, with the RIR of 0, in
contrast to the RF-based models, which failed to meet this balance, exhibiting
significant RIR exceeding 50%.”

In addition, the validation and inter-comparisons conducted at 44 independent test
sites in Section 4.2 indicate that the CoSEB-based datasets consistently outperform
existing mainstream products/datasets, as evidenced by lower RMSE and bias and
higher R2. In light of these advantages, we further conducted a comparison of the
geographic patterns between the CoSEB-based datasets and existing products.

I emphasize: I like coordinated integrated approach! I respect authors skil in pulling
this together. I worry - and authors can correct - that we might oversell.

Ans: We sincerely thank the reviewer for the positive comments and for recognizing
the value of our coordinated approach. We have revised our manuscript following
your comments and suggestions. We believe that, after this revision, the
contributions of our work are no longer overstated.
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Abstract

Accurately estimating global land surface radiation [including downward
shortwave radiation (SWin), downward longwave radiation (LW), upward shortwave
radiation (SWour), upward longwave radiation (LWour) and net radiation (Rn)] and heat
fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is
essential for quantifying the exchange of radiation, heat and water between the land and
atmosphere under global climate change. This study presents the first data-driven
energy-conservation datasets of global land surface radiation and heat fluxes from 2000
to 2020, generated by our model of Coordinated estimates of land Surface Energy
Balance components (CoSEB). The model integrates GLASS and MODIS remote
sensing data, ERAS5-Land reanalysis datasets, topographic data, CO> concentration data
as independent variables and in situ radiation and heat flux observations at 258 eddy
covariance sites worldwide as dependent variables within a multivariate random forest
technique to effectively learn the physics of energy conservation. The developed
CoSEB-based datasets are strikingly advantageous in that [1] they are the first data-

driven global datasets that satisfy both surface radiation balance and heat balance
1
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among the eight fluxes, as demonstrated by both the radiation imbalance ratio [RIR,
defined as 100% x (SWiv — SWour + LWy - LWour)/Rn] and energy imbalance ratio
[EIR, defined as 100% x (Rn - G - LE - H)/Rn] of 0, [2] the radiation and heat fluxes
are characterized by high accuracies, where (1) the RMSEs (R?) for daily estimates of
SWin, SWour, LWin, LWour, Rn, LE, H and G from the CoSEB-based datasets at 44
independent test sites were 37.52 W/m? (0.81), 14.20 W/m? (0.42), 22.47 W/m? (0.90),
13.78 W/m? (0.95), 29.66 W/m? (0.77), 30.87 W/m? (0.60), 29.75 W/m? (0.44) and 5.69
W/m? (0.44), respectively, (2) the CoSEB-based datasets, in comparison to the
mainstream products/datasets (i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM,
MODI16A2, PML V2 and ETMonitor) that generally separately estimated subsets of
the eight flux components, better agreed with the in situ observations. Our developed
datasets hold significant potential for application across diverse fields such as
agriculture, forestry, hydrology, meteorology, ecology, and environmental science,
which can facilitate comprehensive studies on the variability, impacts, responses,
adaptation strategies, and mitigation measures of global and regional land surface
radiation and heat fluxes under the influences of climate change and human activities.
The CoSEB-based datasets are open access and available through the National Tibetan

Plateau Data Center (TPDC) at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al.,

2025a) and  through the Science Data  Bank  (ScienceDB) at

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b).

Key words: Surface energy balance; Surface radiation balance; Shortwave/Longwave

radiation; Net radiation; Sensible/Latent heat flux; Evapotranspiration; CoSEB

1 Introduction

Land surface radiation balance and heat balance play important roles in Earth's
climate system, representing the physical processes by which the surface-atmosphere
absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al.,
1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the

exchange of water, energy, carbon, and other agents essential to climatic and ecological
2
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systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al.,
2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of
global land surface radiation [including downward shortwave radiation (SWi),
downward longwave radiation (LWy), upward shortwave radiation (SWour), upward
longwave radiation (LWour) and net radiation (Rn)] and heat fluxes [including latent
heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for
quantifying the exchange of radiation, heat and water between the land and atmosphere
under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy,
2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization
(Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild &
Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management
(De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS)
technology, with its high spatial-temporal resolution and applicability over large areas,
is considered to be the most effective and economical means for obtaining global land
surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al.,
2010).

In past decades, numerous RS-based products/datasets of global surface radiation
and heat fluxes have significantly advanced, which were generally generated by
physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao et
al., 2023; Jung et al., 2019; Peng et al., 2020). However, two key limitations still exist
in these products. Firstly, most available products provide only a single component of
land surface radiation or heat fluxes, e.g. ETMonitor (Zheng et al., 2022) and
MOD16A2 (Mu et al., 2011) only estimating LE, leading to the failure to satisfy surface
radiation balance and heat balance when the single radiation or heat flux is utilized in
conjunction with products containing other radiation and heat components (Wang et al.,
2025), and further posing significant uncertainties to understand the interactions and
redistributions of surface radiation and energy in the Earth-atmosphere system.

Secondly, a few products, e.g., FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al.,
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2015; Zhang et al., 2014), generated datasets for multiple components of surface
radiation and heat fluxes by using separate estimates from the uncoordinated models,
which make them difficult to abide by surface radiation and heat conservation. These
energy-imbalanced and radiation-imbalanced estimates among multiple components
from previous products/datasets severely limit their in-depth applications in analyzing
the spatial and temporal trends, simulating the physical processes of radiation, heat and
water cycles as well as revealing the attributions and mechanisms in Earth-surface
system under global climate change. It was imperative to develop global datasets of
land surface radiation and heat fluxes characterized by high aeeuraeiesaccuracy,
radiation balance as well as heat balance, to better meet the requirements in practical
applications of various fields.

Our proposed data-driven model/framework of Coordinated estimates of land
Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively
learns the underlying physical interrelations (i.e., surface energy conservation law)
among multiple targeted variables, provides an unprecedented opportunity to develop
global datasets of land surface radiation and heat fluxes that can not only
simultaneously provide high-accuracy estimates of these components but also adhere
to surface radiation- and heat-conservation laws.

The objectives of this study are twofold: (1) to develop high-accuracy datasets of
global land surface radiation and heat fluxes, which comply with the principles of
radiation balance and heat balance, using our CoSEB model renewed based on in situ
observations, remote sensing data and reanalysis datasets; (2) to validate the
datasets/model estimates against data from in situ observations, mainstream products
as well as estimates from uncoordinated random forest (RF) techniques. Section 2
introduces the data resources used in this study. Section 3 briefly describes the method
we used to estimate global surface radiation and heat fluxes. Section 4 presents the
evaluation of the datasets/model estimates generated by our renewed CoSEB model.

Section 5 discusses the superiority, potential applications and uncertainties of the
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developed datasets. Data availability is given in Section 6, and a summary and

conclusion is provided in Section 7.

2 Data

2.1 Ground-based observations
In this study, the in situ observations of land surface radiation and heat fluxes at
302 eddy covariance (EC) sites from the networks of AmeriFlux (174 sites, 2000—2020,

https://AmeriFlux.lbl.gov/Data/, last access: 6 August 2024), EuroFlux (72 sites, 2000-

2020, http://www.europe-fluxdata.eu/, last access: 6 August 2024), OzFlux (5 sites,

2007-2012, https://data.ozflux.org.au/, last access: 6 August 2024), FLUXNET (108

sites, 2000-2014, https://FLUXNET.org/Data/download-Data/, last access: 6 August

2024), JapanFlux (15 sites, 2001-2020, https://ads.nipr.ac.jp/japan-flux2024/, last

access: 10 October 2025), ChinaFLUX (5 sites, 2005-2020, http://www.chinaflux.org/,

last access: 6 August 2024) and National Tibetan Plateau/Third Pole Environment Data

Center (TPDC, 13 sites, 2012-2020, https://Data.tpdc.ac.cn/en/Data, last access: 6

August 2024) were used (Fig. 1), where 37, 48 and 5 sites in FLUXNET were also
shared in AmeriFlux, EuroFlux and OzFlux, respectively. These 302 sites were filtered
out from all collected 1098 sites by following the quality-assurance and quality-control
steps, including: (1) any site with a missing component of any of the SWi, SWour, LW,
LWour, LE, H and G was excluded, reducing the 1098 sites to 472 sites for further
analysis; (2) any half-hour period with missing data for any of these components was
excluded; (3) the half-hourly ground-based observations with quality-control flag of 2
or 3 (bad quality) were removed but quality-control flag of 0 and 1 (good quality) were
maintained; (4) a daily average of the half-hour observations was calculated for each
day with greater than 80% good-quality data, further reducing the 472 sites to 355 sites;
(5) the aggregated daily LE and H were corrected for energy imbalance using the

Bowen ratio method when the daily energy balance closure [defined as
(LE+H)/(Rn—G) ] varied between 0.2 and 1.8 following Wang et al. (2025) to

5
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exclude physically implausible measurements; (6) extreme outliers in the daily
evaporative fraction were further removed by excluding values outside the 1st—99th
percentile range, a common practice in flux and remote sensing studies (Bartkowiak et
al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites. Besides, the RS
products/datasets involved in this study collocated at the sites should not be missing,
finally reducing the 337 sites to 302 sites for analysis. Note that the Rn at these sites
used in this study was calculated from the sum of net longwave radiation (LW;y minus
LWour) and net shortwave radiation (SWp minus SWour), rather than using the
observed Rn directly, to ensure surface radiation balance in training datasets.

These 302 sites used in this study cover a wide range of global climate regimes
across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 55 sites);
(2) evergreen broadleaf forests (EBF, 12 sites); (3) deciduous needleleaf forests (DNF,
7 sites); (4) deciduous broadleaf forests (DBF, 40 sites); (5) mixed forests (MF, 8 sites);
(6) closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 11 sites); (8) woody
savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands (GRA, 62 sites);
(11) permanent wetlands (WET, 22 sites); (12) croplands (CRO, 59 sites); (13) water
bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics (CVM, 4 sites). Among
them, 44 sites (~15% of the total, see Table S1) were isolated to serve as spatially
independent sites to test the generated datasets and they did not participate in the

development of the model/datasets.



159
160
161
162

163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178

Land Cover Type, IGBP Classification (MCD12Q1, 2020)
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Fig. 1 Spatial distribution of the 302 eddy covariance sites from AmeriFlux, FLUXNET,
EuroFlux, OzFlux, JapanFlux, ChinaFLUX and TPDC, and nine radiation sites from
SURFRAD involved for analysis in this study.

Furthermore, ground-based radiation observations from nine sites that are located
in large flat agricultural areas covered by crops and grasses from SURFRAD

(https://eml.noaa.gov/) were also introduced to validate land surface radiation estimates.

Similar to the preprocessing performed on the observations of the 302 EC sites, the
SWin, SWour, LW, LWour and Rn from the SURFRAD were also quality-controlled
and aggregated to daily data. Spatial distribution of the 302 EC sites and nine radiation
sites from SURFRAD are shown in Fig. 1, with site details (latitude, longitude, land
cover types, digital elevation model and temporal coverage) provided in Supplementary

Tables S1 and S2.

2.2 Climate/meteorology and remote sensing data

To generate global datasets of land surface radiation and heat fluxes from 2000 to
2020, five types of climate/meteorology and remote sensing data were used in this study,
including:

(1) ERAS5-Land reanalysis datasets (https://cds.climate.copernicus.eu/, last access: 6

August 2024) with the spatial resolution of ~9 km from 1950 (Mufioz-Sabater et
al., 2021). Following our previous work (Wang et al., 2025), this study used

7
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(4)

(5)

variables from the ERAS5-Land datasets to drive the model, including near-surface

2 m air temperature (7, ), soil temperature in layer 1 (0-7 cm, 7§, ), soil volumetric

moisture content in layer 1 (0-7 cm, SM1), solar radiation reaching the surface of
the earth (SW,)***), net thermal radiation at the surface (LW,,, ), pressure of the

atmosphere (P4), 10 m wind speed (WS), precipitation (P,) and the 2 m dewpoint
temperature, daily minimum and maximum air temperature [for calculating
relative air humidity (RH)].

GLASS datasets (https://glass.bnu.edu.cn/, last access: 6 August 2024), which

provide the 500 m 8-day leaf area index (LA/) and fractional vegetation cover
(FVC) from February 2000 to December 2021.

MOD44B product (https://Ipdaac.usgs.gov/, last access: 6 August 2024), which

offers yearly 250 m percent tree cover (P7TC) since 2000, representing the
percentage (0~100%) of a pixel covered by tree canopy.

NOAA/GML atmospheric carbon dioxide (CO2) concentration data, providing
monthly global marine surface mean data since 1958

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6

August 2024).
GMTED2010 topographic data

(https://topotools.cr.usgs.gov/gmted viewer/gmted2010_global_grids.php, last

access: 6 August 2024), providing 500 m digital elevation model (DEM), slope,
and aspect.

The ~9 km ERAS5-Land datasets were spatially interpolated to 500 m using the

cubic convolution method, and the 250 m PTC was resampled to 500 m using the

arithmetic averaging method.

2.3 Mainstream datasets/products for inter-comparison

Mainstream RS-based datasets/products of moderate-resolution global land

surface radiation and heat fluxes were collected for inter-comparison (Table 1),
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including (1) the daily 0.05° GLASS SWi, LWin, LWour and Rn products from 2000 to

2018 (https://glass.bnu.edu.cn/, last access: 6 August 2024), (2) the daily 0.05°

Breathing Earth System Simulator Radiation (BESS-Rad) SWv products from 2000 to
2020 (https://www.environment.snu.ac.kr/bess-rad), (3) the daily 0.05° BESS

Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020

(https://www.environment.snu.ac.kr/bessv2), (4) the 8-day 0.0833° FLUXCOM Rn, LE

and H products from 2001 to 2020 (https://fluxcom.org/, last access: 6 August 2024),

(5) the daily 1 km ETMonitor LE product from 2000 to 2020 (https://data.casearth.cn/,

last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2

(PML_V2, https://www.tpdc.ac.cn/, last access: 6 August 2024) LE product from 2000

to 2020; and (7) the 8-day 500 m MODI16A2 (https://Ipdaac.usgs.gov/, last access: 6

August 2024) LE product from 2000 to 2020.

The GLASS SWn products are derived from a combination of the GLASS
broadband albedo product and the surface shortwave net radiation estimates, where the
surface shortwave net radiation is estimated using linear regression with MODIS top-
of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LWy and
LWour products are generated using densely connected convolutional neural networks,
incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance
and ERAS near-surface meteorological data (Xu et al.,, 2022b). The GLASS Rn
products are estimated from the meteorological variables from MERRA2 and surface
variables from GLASS using the multivariate adaptive regression splines model (Jiang
et al., 2015). The BESS-Rad and BESSV2.0 estimate SW;v and Rn using a radiative
transfer model (i.e., Forest Light Environmental Simulator, FLiES) with an artificial
neural network based on MODIS and MERRA?2 reanalysis datasets, and using FLiES
based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al.,
2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et
al.,2011), PML V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated

global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor
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equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and

H datasets are obtained through multiple machine learning methods based on in situ

observations from FLUXNET and remote sensing and meteorological data (Jung et al.,

2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected

LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study.

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study

Products/ Reso- Time ] ]
] Variables Algorithms References
datasets lution  coverage
Machine
SWin, ) ] Wang et al. (2015);
0.05°/ 2000- learning, direct
GLASS . LW, . Xu et al. (2022b);
daily 2018 estimation .
LWour, Rn . Jiang et al. (2015)
algorithm
0.05°/ 2000- BESS process
BESS-Rad . SWiv Ryu et al. (2018)
daily 2020 model
0.05°/ 2000- BESS process .
BESSV2.0 . Rn, LE Lietal. (2023)
daily 2020 model
0.0833°/  2000- Model tree
FLUXCOM Rn, LE, H Jung et al. (2019)
8-day 2020 ensembles
500 m/ 2000- Modified Penman-
MOD16A2 LE . . Mu et al. (2011)
8-day 2020 Monteith equation
Penman Monteith-
Leuning model,
500 m/ 2002- . .
PML V2 LE PriestleyPriestly Zhang et al. (2019)
8-day 2020 .
Taylor equation
and Gash model
Shuttleworth-
Wallace two-
. 1 km/ 2000-
ETMonitor . LE source scheme, Zheng et al. (2022)
daily 2020
Gash model and
Penman equation
3 Methods

The method used to generate global datasets of land surface radiation and heat

fluxes is based on the CoSEB model/framework, which was developed by our

previously published work (Wang et al., 2025), to coordinately estimate global land

surface energy balance components (including Rn, LE, H and G) using the multivariate

10
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random forest technique, with a combination of MODIS and GLASS products, ERAS5-
Land reanalysis datasets, and in situ observations at 336 EC sites. The CoSEB model
was demonstrated to be able to produce high-accuracy estimates of land surface energy
components, with the RMSE of <17 W/m? and R? of > 0.83 for estimating 4-day Rn,
LE and H, and the RMSE of <5 W/m? and R? of 0.55 for estimating 4-day G. The most
praiseworthy superiority of the CoSEB model lies in its ability to balance the land
surface energy components, with an energy imbalance ratio [EIR, defined as 100% x
(Rn - G - LE - H)/Rn] of 0.

To coordinately estimate land surface radiation and heat fluxes that comply with
both radiation balance and heat balance, one of the key procedures in the construction
of the CoSEB model was to prepare training datasets that satisfy surface radiation and
heat balance. For this purpose, the energy-imbalance corrections on daily in situ

observed LE and H were conducted by the most widely applied Bowen ratio method

[Hcorr — H X(RH—G), LEcorr —
H+LE H+LE

represent the sensible heat flux and latent heat flux after energy-imbalance correction,

x(Rn — G) , Where H“" and LE“"

respectively] with the aid of Rn and G observations, and the in situ Rn was calculated
from the sum of in situ observed net longwave radiation (LW;v minus LWour) and net

shortwave radiation (SW minus SWour). The input variables to renew the CoSEB

model include: (1) climate/meteorology: T,, SW,.“°, LW, , WS, PA, P, RH,

net > 7
CO: concentration; (2) vegetation and soil: LAL, FVC, PTC, Ts;, SM1; (3) topography
data: DEM, Slope and Aspect, in addition to longitude (Lon), latitude (Lat), and inverse

relative distance from the Earth to the Sun (dr), in which the dr was calculated as

dr=1+0.033xcos

2 x DOY o
———— |, where DOY represents the day of year. Considering

that the footprint of the site-based measurements of turbulent heat fluxes is generally at
a scale of hundreds of meters, to reduce the effect of differences of spatial scales
between ground-based measurements (dependent variables) and remotely

sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a
11
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spatial scale of 500 m for coordinately estimating global daily land surface radiation

and heat fluxes, which can be expressed as follows:

(SW,N,SWOUT,LW,N, j_ [Lon,Lat,Ta,TSl,SMl,SW,ﬁRAS,LW

s PAWS, P, dr (1
Lw, ., Rn,LE,H,G RH,LAI, FVC,PTC,DEM, Slope, Aspect,CO,

To enhance model generalization, the renewed CoSEB model was reoptimized
using random and grid search methods, resulting in different hyperparameters of 281
decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 from
those of Wang et al. (2025). Site-based 10-fold cross-validation was employed to
evaluate the transferability and generalization of the CoSEB model by randomly
dividing all sites into ten folds, where the samples from each fold of sites in turn served
as validation datasets while the remaining folds were used as training datasets, ensuring
that the validation was conducted on sites spatially independent from the training data.
Furthermore, to benchmark the coordinated estimates from the renewed CoSEB model,
eight RF-based uncoordinated models were constructed, each separately estimating one
of SWin, SWour, LW, LWour, Rn, LE, H or G using the same inputs as those in the
renewed CoSEB model. Fig. 2 illustrates the flowchart for generating global datasets

of land surface radiation and heat fluxes by the CoSEB model.
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Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation

[including downward shortwave radiation (SWiv), downward longwave radiation (LWjy),
upward shortwave radiation (SWour), upward longwave radiation (LWoyr) and net radiation
(Rn)| and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux
(H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and

collocated remote sensing and reanalysis datasets.

4 Results

4.1 Validation of the CoSEB model
4.1.1 Site-based 10-fold cross-validations at 258 EC sites

Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-
validation of daily SWi, LW, SWour, LWour, Rn, LE, H and G estimated from the
renewed CoSEB model and the RF-based uncoordinated models, respectively, by using
the validation datasets collected at 258 EC sites worldwide. Results indicated that the
estimates from both the CoSEB model and the RF-based uncoordinated models agreed
well with the in situ observations, with the coefficient of determination (R?) varying
between 0.80 and 0.95 for SWiv, LW, LWour and Rn, and between 0.59 and 0.67 for
SWour, LE and H. The CoSEB model, with the root mean square error (RMSE) of 26.82
to 34.25 W/m? and mean absolute error (MAE) of 18.83 to 24.49 W/m? for SW, Rn,

LE and H, the RMSE of 12.24 to 17.75 W/m? and the MAE of 8.39 to 13.70 W/m? for

13
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SWour, LW and LWour, demonstrated comparable accuracies to the RF-based models,
with the RMSE of 27.07 to 33.34 W/m* and MAE of 19.29 to 23.64 W/m? for SWy,
Rn, LE and H, the RMSE of 12.12 to 16.93 W/m? and the MAE of 8.68 to 12.99 W/m?
for SWour, LWy and LWour. In the validation of daily G, both the CoSEB and RF-based
models yielded RMSEs below 7 W/m?. Comparisons with the corresponding training
results (Table S3 in the Supplementary Material) indicated that although the CoSEB
model performed better on the training datasets, its overall performance remained stable,
suggesting that the CoSEB model was not affected by overfitting.

Strikingly, the CoSEB model exhibited large superiority in balancing the surface
radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% x
(SWin—SWour+ LWin - LWour)/Rn] and energy imbalance ratio [EIR, defined as 100%
x (Rn - G - LE - H)/Rn] of 0, while the RF-based uncoordinated models showed
substantial imbalances of the surface radiation and heat fluxes, with RIR and EIR that
were approximately normally distributed, having absolute mean values of 38.84% and
31.22%, respectively, and reaching as high as 50% in some cases. Furthermore, the RIR
as well as EIR tended to be higher under lower solar radiation, air temperature, or FVC,
with more frequent low values of these three variables leading to a broader and less

peaked distribution of RIR and EIR (see Fig. S1 in the Supplementary Material).
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327  Fig. 3 Scatter density plots of the site-based 10-fold cross-validation of daily downward
328 shortwave and longwave radiation (SWi;v and LWjy), upward shortwave and longwave
329  radiation (SWour and LWour), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and
330  sensible heat flux (H) derived by the CoSEB model against in situ observed SWiy, LWin, SWour,

331  LWour, Rn, G, and energy imbalance-corrected LE (LE, ) and H (H,, ). The EIR and RIR

daily daily

332 in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which
333  aredefined as 100% x (Rn - G - LE - H)/Rn and 100% x (SWiy—SWour + LWin - LWour)/Rn,
334 respectively. The colorbar represents the normalized density of data points.
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Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models.

4.1.2 Validation at nine radiation sites from SURFRAD

To further illustrate the generality and transferability of the renewed CoSEB model,
the validation of estimates of the five radiation components (including SWin, SWour,
LW, LWour, Rn) derived from both the CoSEB model and RF-based uncoordinated
models against observations at nine radiation sites from SURFRAD was performed, as
shown in Fig. 5. The results showed that both the CoSEB model and the RF-based
models achieved high accuracy in estimating daily SWin, SWour, LWin, LWour and Rn,
with the RMSE of ~30 W/m? for SW, ~14 W/m? for SWour and LWy, ~12 W/m? for
LWour and ~24 W/m? for Rn, with the R? >0.9 for SWi, LWiv and LWour, ~0.65 for
SWour and ~0.85 for Rn. Compared to the results of the site-based 10-fold cross-

validation at 258 EC sites, the performances at nine radiation sites showed slight

16



348
349
350
351
352
353
354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

improvements, with the RMSE decreasing by 0.74 to 4.54 W/m? for SWx, LWy, LWour
and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by
~1.05 W/m? for SWour, suggesting the robust performance of the CoSEB model.
Furthermore, the CoSEB model demonstrated a large superiority in maintaining surface
radiation balance among the five radiation components, with the RIR of 0, in contrast
to the RF-based models, which failed to meet this balance, exhibiting significant RIR

exceeding 50%.

4.2 Validation and inter-comparisons of the CoSEB-based datasets

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of
500 m achieved comparable accuracies to the RF-based uncoordinated models but
outperformed them in balancing surface radiation and heat fluxes. Evidenced by the
validation for its superiority, the renewed CoSEB model was then applied to the
spatially aggregated input datasets to generate our developed global daily datasets with
a spatial resolution of 0.05°. To further assess the performance of the developed
CoSEB-based datasets, in situ observations from another 44 spatially independent test
sites (see Section 2.1), which were not involved in model construction and datasets
generation, were used for validation. Mainstream products (i.e. GLASS, BESS-Rad,
BESSV2.0, FLUXCOM, PML V2, MOD16A2 and ETMonitor) were also involved for
inter-comparison at the 44 test sites.

Note that due to the lack of moderate-resolution global RS-based products/datasets
of daily and/or 8-day SWour, H and G, the intercomparison between different
products/datasets was impossible. Instead, we conducted a validation of these
components from the CoSEB-based datasets against in situ observations at 44 test sites,
as shown in Figs S2 and S3 in the Supplementary Material. Results indicated that the
CoSEB-based datasets could provide good estimates of SWour, H and G, with the
RMSEs (R?) of 14.20 W/m? (0.42), 29.75 W/m? (0.44) and 5.69 W/m? (0.44) at daily
scale, respectively, and the RMSE (R?) of 12.19 W/m? (0.39) and 4.60 W/m? (0.47) for

8-day SWour and G, respectively.
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Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave
radiation (SWiv and LWy), upward shortwave and longwave radiation (SWour and LWour)
and net radiation (Rn) from the renewed CoSEB model (upper two rows) and RF-based
uncoordinated models (lower two rows) against in situ observations at nine radiation sites
from SURFRAD. The RIR represents the radiation imbalance ratio, defined as 100% x (SWv
—SWour + LWiN - LWour)/Rn. The colorbar represents the normalized density of data points.

Fig. 6 and Fig. 7 present the comparison of daily SWi, LWy and LWour, as well
as Rn and LE from the CoSEB-based datasets and mainstream products/datasets
(including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations
at 44 test sites, respectively. Overall, the estimates from the CoSEB-based datasets
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exhibited a closer agreement with in situ observations than those from mainstream
products/datasets, where the CoSEB-based datasets reduced the RMSE by 0.01 W/m?
to 4.58 W/m? and increased the R? by 0.01 to 0.09 compared to mainstream products.

Specifically, the RMSE for the SWin, LW, and LWour increased from 37.52 W/m?,

22.47 W/m? and 13.78 W/m? in the CoSEB-based datasets to 37.53 W/m? ,23.37 W/m?
and 16.46 W/m? in the GLASS, respectively, and for SWyy from 37.52 W/m? in the
CoSEB-based datasets to 40.87 W/m? in the BESS-Rad. Likewise, the RMSEs for daily
Rn and LE were 29.66 W/m? and 30.87 W/m? in the CoSEB-based datasets, which were
lower than those of 34.24 W/m? and 34.36 W/m? in BESSV2.0, respectively, as well as
those of 30.60 W/m? for Rn in GLASS and 33.62 W/m? for LE in ETMonitor.
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Fig. 6 Comparison of the daily downward shortwave radiation (SWiy, the first column),
downward longwave radiation (LWjy, the second column) and upward longwave radiation
(LWour, the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the
in situ observed SWin, LWy and LWoyr at 44 test sites. The colorbar represents the normalized
density of data points.
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Fig. 7 Comparison of the daily net radiation (Rn, the upper row) and latent heat flux (LE, the
lower row) from the CoSEB-based datasets, BESSV2.0, GLASS and ETMonitor with the in

situ observed Rn, and energy imbalance-corrected LE (LE;Z;;) at 44 test sites. The colorbar

represents the normalized density of data points.

Figs. 8,9 and 10 compare the 8-day SWin, LWy and LWour, Rn and LE, as well as
H from the CoSEB-based datasets and mainstream products, with in situ observations
at 44 test sites, respectively. Overall, the CoSEB-based datasets outperformed the
mainstream products/datasets for all surface radiation and heat fluxes, where the
CoSEB-based datasets reduced the RMSE by 0.24 W/m? to 10.48 W/m? and increased
the R? by 0.01 to 0.38 compared to mainstream products. Specifically, for SWi, LW
and LWour, the RMSE increased from 18.54 W/m?, 18.50 W/m? and 9.41 W/m? in the
CoSEB-based datasets to 21.35 W/m?, 20.39 W/m? and 14.48 W/m? in the GLASS,
respectively, and for SWiy from 18.54 W/m? in the CoSEB-based datasets to 18.78
W/m? in the BESS-Rad. For Rn, the RMSE increased from 19.12 W/m? in the CoSEB-
based datasets to ~23 W/m? in the FLUXCOM and GLASS and to >27 W/m? in the
BESSV2.0, while the R? decreased from 0.82 in the CoSEB-based datasets to 0.75 in
the FLUXCOM and GLASS and to 0.62 in the BESSV2.0. Likewise, for LE, the RMSE

increased from 22.31 W/m? in the CoSEB-based datasets to ~25 W/m? in the

20



422
423
424
425
426
427
428
429
430
431

432
433

FLUXCOM, PML V2, BESSV2.0 and ETMonitor, and to >32 W/m? in MOD16A2,
while the R? decreased from 0.67 in the CoSEB-based datasets to ~0.60 in the
FLUXCOM, PML V2, BESSV2.0 and ETMonitor, and to <0.3 in the MOD16A1. For
H, the RMSE increased from 21.63 W/m? in the CoSEB-based datasets to 22.64 W/m?
in the FLUXCOM.

The differences between the estimates from the CoSEB-based datasets and
mainstream datasets are likely multifactorial, arising from the simplification and
parameterization uncertainties in physics-based models, as well as the lack of physical
constraints, limited training samples, and incomplete consideration of influencing

factors in other machine-learning-based models.
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Fig. 8 Same as Fig. 6, but for the comparison at 8-day scale.
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Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux
(LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS,
MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-

corrected LE (LEgcf;ray) at 44 test sites. The colorbar represents the normalized density of data

points.
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Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and
the FLUXCOM with the in situ energy imbalance-corrected H (/1. ;’i’;,;y) at 44 test sites. The

colorbar represents the normalized density of data points.

4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes

In addition to the validation and inter-comparison of the CoSEB-based datasets at
the site scale, we further inter-compared the estimates of land surface radiation and heat
fluxes from the CoSEB-based datasets and the mainstream products/datasets, in terms
of their global spatial and temporal patterns.

Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic
continent, deserts, water bodies and permanent snow) and latitudinal profiles of the
global 0.05° mean annual SWiv, LW v and LWour, Rn and LE, as well as H from 2001
to 2018, respectively, as derived from the CoSEB-based datasets and mainstream
products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MODI16A2,
PML_ V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or
cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates
from the CoSEB-based datasets aligned well with those observed in these mainstream
products/datasets, though regional discrepancies were present. Specifically, the mean
annual LW, LWour, Rn, and LE generally exhibited decreasing trends from the equator
towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo
Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SWjy and
H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia,

Sahel and Southern Africa, while the lower values were found in high-latitude regions
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of >50°N. In the region with high values, the mean annual estimates of SWjy from the
CoSEB-based datasets were higher than those from GLASS but lower than those from
BESS-Rad, the estimates of LWy and LWour from the CoSEB-based datasets were both
higher than those from GLASS, the estimates of Rn from the CoSEB-based datasets
were significantly higher than those from BESSV2.0, and comparable to or slightly
higher than those from FLUXCOM and GLASS, the estimates of LE from the CoSEB-
based datasets were close to those from BESSV2.0 and PML V2, but slightly lower
than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates of H
from the CoSEB-based datasets were higher than those from FLUXCOM in regions

with high values, while lower than those from FLUXCOM in regions with low values.
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Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SWi, the first
row), downward longwave radiation (LW, the second row) and upward longwave radiation
(LWour, the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad.
The rightmost subfigure of each row represents the latitudinal profiles of mean annual SW;y,
LWin and LWoyr from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area

represents the variation of standard deviation for each product.
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Fig.12 Spatial patterns of global mean annual net radiation (Rn, the first row) and latent heat
flux (LE, the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM,
BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third
row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets
and these mainstream products/datasets, where the shaded area represents the variation of

standard deviation for each product.
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Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by
CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal
profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded
area represents the variation of standard deviation for each product.

The temporal evolutions of the global (excluding Greenland, Antarctic continent,
deserts, water bodies and permanent snow) land surface radiation and heat fluxes
derived from the CoSEB-based datasets and mainstream products/datasets from 2001
to 2018 were also investigated, as shown in Fig. 14. The results indicated that the
temporal variation of each flux from the CoSEB-based datasets generally agreed well
with those from mainstream products/datasets;-exhibitingrelatively-stable-trends. The
global annual mean estimates using area weighting average by the CoSEB-based
datasets from 2001 to 2018 varied between ~185.22 and ~189.50 W/m? with the mean
of ~187.23 W/m? for SWin, between ~32.67 and ~33.20 W/m? with the mean of ~32.96
W/m? for SWour, between ~330.24 and ~334.14 W/m? with the mean of ~331.50 W/m?
for LWy, between ~387.25 and ~390.82 W/m? with the mean of ~388.81 W/m? for
LWour, between ~95.41 and ~99.39 W/m? with the mean of 97.11 W/m? for Rn,
between ~53.24 and ~56.37 W/m? with the mean of ~54.53 W/m? for LE, between
~40.44 and ~41.96 W/m? with the mean of ~41.29 W/m? for H, and between ~1.22 and
~1.52 W/m? with the mean of ~1.33 W/m? for G. For each radiation or heat flux, the
annual mean estimates from the CoSEB-based datasets were overall higher than those
from the mainstream products/datasets. In particular, the annual mean Rn estimates
from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and
BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based
datasets were marginally higher than those from FLUXCOM, but substantially

exceeded those from ETMonitor, PML V2, MOD16A2 and BESSV2.0 sequentially.
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513  The anomaly-based analyses (Fig. S4 in the Supplementary Material) reveal clear and

514  coherent temporal trends of these radiation and heat fluxes, which respond well to

515  global climate change, such as increasing atmospheric CO» and rising air temperatures.

516
—— CoSEB —— GLASS —— BESSV2.0 ETMonitor
—— BESS-Rad —=— FLUXCOM —— MODI6A2 —— PML_V2
240 — " T 350! IS —aa
Azzo- ~ 3601
% 2001 8 5z E
z % g o ST S S 4 = = B i o .o S
~ 180 ~ b5 I
2 S £ 3201
2 1601 s 30 <
300 A
140
257 280 1 R =
120 S == =
450 oo 130 %01
A425- 120
E o & 601
i 4001 | | E 100 &
S375 e s g g
= £ 801 = 40
. 350
60 1
35| 201 g
2001 2005 2009 2013 2017
= o Year
.M’
2001 2005 2009 2013 2017 2001 2005 2009 2013 2017
517 Year Year

518  Fig. 14 Temporal variation of annual mean downward shortwave radiation (SW;y), upward
519  shortwave radiation (SWour), downward longwave radiation (LW), upward longwave
520  radiation (LWour), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat
521  flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM,
522 BESSV2.0,PML_V2,MOD16A2 and ETMonitor. The shaded area represents the variation of
|523 the standard deviation for each product.
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Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward
shortwave radiation (SW;y, the first row), downward longwave radiation (LWn, the second
row) and upward longwave radiation (L Wour, the third row) from 2001 to 2018 by the CoSEB-
based datasets, GLASS and BESS-Rad.

Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic
continent, deserts, water bodies and permanent snow) of interannual variability of SWy,
LWy and LWour, Rn and LE, as well as H from 2001 to 2018, respectively, derived
from the CoSEB-based datasets and mainstream products/datasets. In general, the
estimates from the CoSEB-based datasets displayed similar interannual variability in
space with those from the mainstream products/datasets. Specially, the estimates of
SWin from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant
interannual variability mainly in northeastern Australia, eastern South America,
Southeast China, and Southwest North America. The interannual variability of LWy
and LWour by the CoSEB-based datasets and GLASS displayed high values primarily
at middle-to-high latitudes of the Northern Hemisphere and parts of Africa and
Australia. The interannual variability of Rn observed by the CoSEB-based datasets was
generally lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM.
The CoSEB-based datasets missed the strong interannual variability of LE as observed

in MOD16A2, PML V2 and ETMonitor in parts of Africa, Australia and eastern South
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America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE
in almost all regions. The interannual variability of H derived from the CoSEB-based
datasets was higher than that from FLUXCOM, with stronger interannual variabilities

mainly observed in parts of eastern South America, southern Africa, and northeastern

Australia.
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Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn,
the first and second rows) and latent heat flux (LE, the third and fourth rows) from 2001 to
2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2,
ETMonitor and GLASS.
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Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux
(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM.
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5 Discussion

Accurately monitoring the spatial and temporal variations of global land surface
radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and
water between the land and atmosphere under global climate change (Chen et al., 2020;
Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However,
although numerous global RS-based products/datasets of land surface radiation and
heat fluxes have been developed using physical and/or statistical methods, they
typically provide either merely a single flux or multiple fluxes (see Table 1) that are
estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019;
Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or
heat imbalance when these products are combined for practical applications. To address
these limitations, we generated high-accuracy global datasets of land surface radiation
and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation
laws, using our proposed CoSEB model (Wang et al., 2025).

Our CoSEB model, integrating underlying physical principles of training datasets
into machine learning technique to effectively learn the interrelations among multiple
targeted outputs, was originally designed for coordinating estimates of global land
surface energy balance components (Rn, LE, H and G) to satisfy the energy
conservation (Wang et al., 2025). Inspired by the idea of constructing the original
CoSEB model, we further incorporated land surface radiation fluxes into our model to
simultaneously consider the physical constraints of both surface radiation and heat
conservation principles, by renewing the CoSEB using multiple remote sensing and
reanalysis datasets, as well as in-situ observations of SWin, SWour, LWin, LWour, Rn,
LE, H and G. In selecting the 19 input variables to accommodate the additional target
variables, prior knowledge derived from previous studies was employed to identify
factors that exert significant influence on surface radiation and heat flux while
maintaining relative inter-independence as much as possible (Jung et al., 2019; Mohan

et al., 2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted
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in data-driven models for estimating land surface water, energy, and carbon fluxes (Bai
et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance
scores of the 19 different feature variables are exhibited in Table S4 in the
Supplementary Material, and downward solar radiation, the primary source of the
energy at the earth surface, is the most important input variable, consistent with the
results from our previous study (Wang et al., 2025). Although some of the selected
variables may exhibit a certain degree of multi-collinearity, each contributes unique and
physically meaningful information, supporting the inclusion of all variables in model
construction. Note that the variable importance, derived from the built-in method of the
random forests and potentially affected by multicollinearity among the input variables,
is presented only as a reference. Retaining all 19 feature variables ensures the model’s
flexibility and generalization capability, enabling future incorporation of additional
representative ground-based observations for further training and improvement.
Besides, to investigate the impact of lagged effects of input variables on model
performance, experiments were also conducted by adding lagged variables (e.g., the air
temperature of the previous day) to the 19 input features. The results (Fig. S4-S5 in the
Supplementary Material) showed almost no improvement in model accuracy,
suggesting that lagged effects on model performance were negligible within the CoSEB
framework for estimates of daily surface radiation and heat fluxes. Furthermore, to
better illustrate the effect of including additional radiation components (SW, SWour,
LWy and LWour) in the renewed CoSEB model compared with the original version by
Wang et al. (2025), we have tested the performance of a reconstructed model that
estimated only Rn, LE, H and G using the same independent variables and samples as
those in the renewed CoSEB model. The results (Fig. S5-S6 in the supplementary
material) showed no significant differences in accuracy compared with those of the
renewed CoSEB model, indicating the expansion of radiation components did not
compromise model performance.

The main advantages of our CoSEB-based datasets of land surface radiation and
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heat fluxes lie in that [1] they are the first data-driven global datasets that satisfy both
surface radiation balance (SWiv - SWour + LWin - LWour = Rn) and heat balance (LE +
H + G = Rn) among the eight fluxes, as demonstrated by both the RIR and EIR of 0, [2]
the radiation and heat fluxes are characterized by high accuracies when validated
against in-situ measurements at 44 independent test sites (see the second paragraph in
Section 2.1), where (1) the RMSEs for daily estimates of SWin, SWour, LW, LWour,
Rn, LE, H and G from the CoSEB-based datasets were 37.52 W/m?, 14.20 W/m?, 22.47
W/m?, 13.78 W/m?, 29.66 W/m?, 30.87 W/m?, 29.75 W/m? and 5.69 W/m?, respectively,
as well as for 8-day estimates were 18.54 W/m?, 12.19 W/m?, 18.50 W/m?, 9.41 W/m?,
19.12 W/m?, 22.31 W/m?, 21.63 W/m? and 4.60 W/m?, respectively, (2) the CoSEB-
based datasets, in comparison to the mainstream RS-based products/datasets (i.e.
GLASS, BESS-Rad, FLUXCOM, BESSV2.0, MOD16A2, PML V2 and ETMonitor),
better agreed with the in situ observations at the 44 test sites, showing the RMSE
reductions ranging from 0.01 W/m? to 4.58 W/m? for SWyy, LW, LWour, Rn and LE
at daily scale, and 0.24 W/m? to 10.48 W/m? for SWy, LWin, LWour, Rn, LE and H at
8-day scale. Furthermore, the CoSEB-based datasets outperformed the ERAS-Land
reanalysis datasets in estimating surface energy fluxes (where SWour, LWour, Rn and
G for the ERAS5-Land were inferred from surface radiation balance and heat balance),
particularly for SWour, H and G, with RMSE reductions of 0.13-8.15 W/m? when

validated against in situ observations at the 44 test sites (Figs. S6-S7 and S7-S8 in the

Supplementary Material). Preliminary analysis indicates that the CoSEB-based datasets

exhibit spatial patterns consistent with those of mainstream RS-based datasets and Earth

system model outputs (see Fig. SO in the supplementary material), suggesting that the

CoSEB-based datasets (or CoSEB framework) more broadly, are capable of

reproducing the large-scale spatial features of Earth system models. This capability

would be a great benefit to the community given the limitations associated with the high

computational cost and long execution time of Farth system models. More detailed

analysis about their similarities and differences can be further conducted in future
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Our developed datasets could be potentially applied in many fields, including but

not limited to (1) exploring the spatial-temporal patterns of global land surface radiation
and heat flux (es) and their driving mechanisms over the past decades under global
change (e.g., rising CO2 concentration, greening land surface and increasing air
temperature), (2) investigating the variability of land surface radiation and heat fluxes
caused by extreme events and human activities, e.g. afforestation or deforestation,
wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources
of solar energy, geothermal energy, surface and ground water at regional and global
scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry.

The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2)
the application of the CoSEB model across different spatial scales. Specifically, daily
averages of surface radiation and heat fluxes for each day were obtained for analysis
from good-quality half-hourly observations when the fraction of these good-quality
half-hourly observations was greater than 80% in a day, due to the lack of consensus on
the method for aggregating gapped half-hourly observations to daily data (Tang et al.,
2024a; Yao et al., 2017; Zheng et al., 2022). Simple temporal interpolation of half-
hourly in situ observations, which could therefore introduce substantial uncertainties,
was not applied, because surface radiation and heat fluxes are sensitive to short-term
variations in meteorological conditions and their intraday dynamics are often complex.
Likewise, since there was no agreement on how to correct for the energy imbalance of
turbulent heat fluxes, we adopted the most widely applied Bowen ratio method to
enforce energy closure between Rn—G and LE+ H (Castelli et al., 2018; Twine et
al., 2000; Zhang et al., 2021). Another potential source of uncertainty arises from

differences in meteorological reanalysis data caused by spatial downscaling, which, as

33



669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
0685
686
0687
688
689
690
091
692
693
694
095

696

demonstrated in our previous study (Wang et al., 2025, the last paragraph of Section
5.1), has a relatively small impact on model estimates by the machine-learning-based
CoSEB model combined with finer-resolution surface-related variables that partially
compensate for the spatial heterogeneity and localized variations not captured by the
coarse-resolution datasets. These data preprocessing had an effect on the construction
of the renewed CoSEB model, which may further affect the global datasets. Moreover,
the renewed CoSEB model was constructed at the spatial scale of 500 m to match the
footprints of the in situ EC observations, but applied at the spatial resolution of 0.05°
to generate global datasets, mainly limited by the computing and storage capabilities of
our personal computers. However, the CoSEB-based datasets have also been validated
and inter-compared at 44 independent test sites to demonstrate that the difference in

spatial scale would not much affect the performance of the datasets. Note that the 302

sites used for training, validation, and testing are predominantly located in the Northern

Hemisphere, reflecting the inherent uneven distribution of the global flux networks.

Although these sites cover a wide range of land cover types and climate regimes,

thereby providing substantial heterogeneity for model development, the limited

representation of the Southern Hemisphere may introduce uncertainties in the

estimation of surface radiation and heat fluxes for certain ecosystems and soil types. In

the future, enhancing the flux observation network coverage in the Southern

Hemisphere, particularly in South America and Africa, and incorporating these

observations into the CoSEB framework would help further improve the accuracy of

surface radiation and heat flux estimates in these regions. Furthermore, the radiation

and heat balance in this study refers specifically to the conservation among the eight

variables (i.e., SWi, LW, SWour, LWour, Rn, LE, G, H), which constitute the major

components of the surface energy budget, and does not account for energy introduced

by disturbance-related processes such as wildfires and volcanic eruptions. Despite these

these uncertainties, it is worth emphasizing that our work was the first attempt to

innovatively develop data-driven energy-conservation datasets of global land surface
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radiation and heat fluxes with high accuracies.

6 Data availability

The energy-conservation datasets of global land surface radiation and heat fluxes
generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05°
from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan

Plateau Data Center at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a)

and through the Science Data Bank (ScienceDB) at

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b).

7 Summary and Conclusion

This study for the first time developed data-driven energy-conservation datasets
of global land surface radiation and heat fluxes using our CoSEB model renewed based
on GLASS and MODIS products, ERA5-Land reanalysis datasets, topographic data,
CO; concentration data, and observations at 258 EC sites worldwide.

The CoSEB-based datasets of land surface radiation and heat fluxes are the first
data-driven global datasets that satisfy both surface radiation balance (SWi - SWour +
LWin - LWour = Rn) and heat balance (LE + H + G = Rn) among the eight fluxes.
Meanwhile, the CoSEB-based datasets outperformed the mainstream products/datasets
in accuracy. Specifically, at 44 independent test sites, the RMSEs (R?) for daily
estimates of SWi, SWour, LWin, LWour, Rn, LE, H and G from the CoSEB-based
datasets were 37.52 W/m? (0.81), 14.20 W/m? (0.42), 22.47 W/m? (0.90), 13.78 W/m?
(0.95), 29.66 W/m? (0.77), 30.87 W/m? (0.60), 29.75 W/m? (0.44) and 5.69 W/m? (0.44),
respectively, as well as for 8-day estimates were 18.54 W/m? (0.87), 12.19 W/m? (0.39),
18.50 W/m? (0.92), 9.41 W/m? (0.97), 19.12 W/m? (0.82), 22.31 W/m? (0.67), 21.63
W/m? (0.39) and 4.60 W/m? (0.47), respectively. Moreover, the estimates from the
CoSEB-based datasets in comparison to those from the mainstream products/datasets
reduced the RMSE by 0.01 W/m? to 4.58 W/m? and increased the R? by 0.01 to 0.09

for SWi, LWin, LWour, Rn and LE at daily scale, and reduced the RMSE by 0.24 W/m?
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to 10.48 W/m? and increased the R? by 0.01 to 0.38 for SWyv, LWy, LWour, Rn, LE and
H at 8-day scale, when these estimates were validated against in situ observations at 44
independent test sites. Furthermore, the CoSEB-based datasets effectively captured the
spatial-temporal variability of global land surface radiation and heat fluxes, aligning
well with those from the mainstream products.

Our developed datasets hold significant potential for application across diverse
fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental
science. They can facilitate comprehensive studies on the variability, impacts, responses,
adaptation strategies, and mitigation measures of global and regional land surface
radiation and heat fluxes under the influences of climate change and human activities.
These datasets will provide valuable insights and data support for scientific research,
policy-making, and environmental management, advancing global solutions to address

climate change.
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