
Summary of major revisions 

We have carefully considered all the comments and made point-to-point 

modifications in the revised manuscript.  

Firstly, we have more precisely described the datasets as “the first data-driven 

energy-conservation datasets of global land-surface radiation and heat fluxes”. 

Secondly, following the reviewers’ suggestions, we have additionally 

incorporated 44 test sites to validate and compare the performance of the CoSEB-

based datasets with mainstream products (Section 4.2) and with the ERA5-Land 

datasets (Figs. S6 and S7). 

Thirdly, we have (1) added a new table (Table S3) summarizing the mean 

accuracy of the training datasets of the renewed CoSEB model to evaluate potential 

overfitting; (2) briefly described the optimization of hyperparameters for the 

renewed CoSEB model (Section 3); and (3) added a new table (Table S4) presenting 

the importance scores of different feature variables for estimating daily surface 

radiation and heat fluxes. 

Fourthly, we have included new experiments to (1) illustrate the relationship 

between the energy (radiation) imbalance ratio derived from RF-based 

uncoordinated models and three critical input variables (Fig. S1); (2) investigate the 

impact of lagged effects of input variables on model performance (Fig. S4); (3) 

demonstrate the effects of incorporating additional radiation components in the 

renewed CoSEB model (Fig. S5) compared with the original version by Wang et al. 

(2025). 

Lastly, in Section 5, we have discussed the selection of 19 input feature 

variables, the uncertainty introduced by the downscaling of ERA5-Land datasets, the 

consistent spatial patterns between CoSEB-based datasets and CESM Large 

Ensemble Project (Fig. S8) while noting that a more detailed analysis of their spatial-

temporal patterns and variability could be conducted in future work. 

Accordingly, the texts, figures, and tables have been updated throughout the 

manuscript. We believe our manuscript has been greatly improved by following the 

reviewers’ comments and suggestions.  



Responses to the Comments and Suggestions 

Reviewer #1:  

This paper presents an energy conservation datasets of global land surface radiation 

and heat fluxes from 2000 to 2020. The dataset is generated by the model of 

Coordinated estimates of land Surface Energy Balance components (CoSEB), with a 

combination of GLASS and MODIS remote sensing data, ERA5-Land reanalysis 

datasets, topographic data, CO2 concentration data, and observations at 258 eddy 

covariance sites worldwide from the AmeriFlux, FLUXNET, EuroFlux, OzFlux, 

ChinaFLUX and TPDC. The primary merit of this new model is energy-conservation. 

Although the dataset might be useful, this dataset is not the first energy conservation 

datasets of global land surface radiation and heat fluxes as claimed by the authors. 

Therefore, major revisions are required before the paper is accepted. 

Ans: Thank you very much for your valuable comments and suggestions. We 

sincerely appreciate your recognition of the dataset and the CoSEB model’s merit in 

ensuring energy conservation. We would like to clarify that our initial statement, 

which described the datasets as “the first energy-conservation datasets of global land 

surface radiation and heat fluxes,” may not have been entirely accurate. After careful 

consideration, we have revised the manuscript to more precisely describe the 

datasets as “the first data-driven energy-conservation datasets of global land-surface 

radiation and heat fluxes”. Besides, we have carefully considered all the comments 

and suggestions from you and another reviewer and made corresponding 

modifications and clarifications in the revised manuscript. More detailed information 

of our revisions can be found in the item-by-item response below. 

 

Specific comments: 

1. The authors claim that “This study presents the first energy conservation 

datasets of global land surface radiation and heat fluxes”, but reanalysis datasets, 

such as ERA5 which is used as inputs of this new dataset, also provide energy 

conservation surface fluxes for these energy fluxes. Maybe the authors want to 

say that this is the first remote sensing-based dataset? But the ERA5 radiative 

fluxes, which are not remote sensing-based, are used to generate surface fluxes 

in this paper, so this dataset is neither the first remote sensing-based dataset. 

Ans: We sincerely thank the reviewer for this insightful comment. We acknowledge 

that reanalysis datasets, such as ERA5-Land, can in principle calculate these fluxes 

based on surface energy conservation. However, these reanalysis datasets rarely 

include all eight flux components directly. For example, ERA5-Land does not 

explicitly provide upward shortwave radiation, upward longwave radiation, net 

radiation or soil heat flux. Additionally, we would also like to clarify that the 

CoSEB-based datasets were developed by integrating both remote sensing products 

(e.g., PTC from MOD44B, LAI and FVC from GLASS, DEM, slope, and aspect 

from GMTED2010) and meteorological reanalysis data as inputs. It should be noted 

that widely used surface radiation and heat flux products, commonly referred to as 

remote sensing-based datasets, generally require meteorological reanalysis data as 



inputs, e.g., the MOD16 ET product (Mu et al., 2011), SSEBop ET product (Senay et 

al., 2020), and GLASS radiation products (Wang et al., 2015; Xu et al., 2022), rather 

than relying solely on remote sensing data. Therefore, although our CoSEB-based 

datasets incorporate meteorological data from ERA5-Land in addition to remote 

sensing data, we believe it appropriate to refer to them as remote sensing-based 

datasets. 

After careful consideration, we have revised the manuscript to more precisely 

describe the datasets as “the first data-driven energy-conservation datasets of global 

land-surface radiation and heat fluxes”. We have revised this in the new manuscript 

as follows: 

Abstract: 

“This study presents the first data-driven energy-conservation datasets of global land 

surface radiation and heat fluxes from 2000 to 2020 ... The developed CoSEB-based 

datasets are strikingly advantageous in that [1] they are the first data-driven global 

datasets that satisfy both surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = 

Rn) and heat balance (LE + H + G = Rn) among the eight fluxes,…” 

 

5 Discussion  

“The main advantages of our CoSEB-based datasets of land surface radiation and 

heat fluxes lie in that [1] they are the first data-driven global datasets that satisfy 

both surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = Rn) and heat 

balance (LE + H + G = Rn) among the eight fluxes, as demonstrated by both the RIR 

and EIR of 0, …” 

 

“Despite these uncertainties, it is worth emphasizing that our work was the first 

attempt to innovatively develop data-driven energy-conservation datasets of global 

land surface radiation and heat fluxes with high accuracies.” 

 

7 Summary and Conclusion 

“This study for the first time developed data-driven energy-conservation 

datasets of global land surface radiation and heat fluxes…” 

“The CoSEB-based datasets of land surface radiation and heat fluxes are the 

first data-driven global datasets that satisfy both surface radiation balance (SWIN - 

SWOUT + LWIN - LWOUT = Rn) and heat balance (LE + H + G = Rn) among the eight 

fluxes.” 

 

2. The merit of this new dataset is still unclear to me. According to Lines 171-180, 

ERA5 downward solar radiation and net thermal radiation at the surface is used 

in this paper, but why not simply use ERA5 fluxes if someone need to surface 

fluxes? The new dataset might be more accurate than ERA5 in places where 

ground-based observations are used to generate the new dataset, but the ground 

sites are sparce. To solve this problem, the authors should compare in-situ 

measurements with both the new data and ERA5 data in independent sites (i. e., 

sites that are not used in the generation of the new dataset). 



Ans: We sincerely appreciate the reviewer’s insightful comment and suggestion. We 

would like to clarify that the ERA5-Land reanalysis datasets do not explicitly 

provide upward shortwave radiation, upward longwave radiation, net radiation, or 

soil heat flux, although these components can theoretically be computed using 

surface radiation and heat balance principles. The purpose of our work was to 

innovatively provide energy-conservation surface radiation and heat fluxes based on 

data-driven technique. This is motivated by the fact that existing data-driven 

products (e.g., FLUXCOM and GLASS) estimate each energy component separately, 

leading to obvious energy imbalance among these components (Wang et al., 2025).  

To further address the reviewer’s concern, we have compared estimates from 

CoSEB-based datasets and ERA5-Land datasets with in-situ observations from 44 

sites (collected from recently published JapanFlux and updated AmeriFlux, see the 

sites for “test” in Table S1), which are independent from the 258 sites that are used 

for model construction and datasets generation. As demonstrated by the comparison 

results (see Figs. S6 and S7), the CoSEB-based datasets exhibit higher accuracy than 

the ERA5-Land datasets in estimating surface energy fluxes, especially in estimating 

SWOUT, H and G. We have discussed this in the third paragraph of Section 5 in the 

revised manuscript with the following sentences: 

“Furthermore, the CoSEB-based datasets outperformed the ERA5-Land reanalysis 

datasets in estimating surface energy fluxes (where SWOUT, LWOUT, Rn and G for the 

ERA-Land were inferred from surface radiation balance and heat balance), 

particularly for SWOUT, H and G, with RMSE reductions of 0.13-8.15 W/m2 when 

validated against in situ observations at the 44 test sites (Figs. S6 and S7 in the 

Supplementary Material).” 

 



 

Fig. S6 Comparison of the daily downward shortwave radiation (SWIN), upward shortwave 

radiation (SWOUT), downward longwave radiation (LWIN), upward longwave radiation 

(LWOUT) and net radiation (Rn) from the CoSEB-based datasets (upper 5 panels) and 

ERA5-Land (lower 5 panels) with the in-situ observed SWIN, SWOUT, LWIN and LWOUT at 44 

test sites. The colorbar represents the normalized density of data points. 



 
Fig. S7 Comparison of the daily latent heat flux (LE), sensible heat flux (H) and soil heat 

flux (G) from the CoSEB-based datasets (first row) and ERA5-Land (second row)with the 

in-situ energy imbalance-corrected LE ( corr

dailyLE ) and H ( corr

dailyH ), as well as observed G at 44 

test sites. The colorbar represents the normalized density of data points. 

 

3. The abstract is not well formatted. An abstract usually provides a brief and 

comprehensive summary, so trivial details in brackets [including downward 

shortwave radiation (SWIN), downward longwave radiation (LWIN), upward 

shortwave 15 radiation (SWOUT), upward longwave radiation (LWOUT) and 

net radiation (Rn)], [including latent heat flux (LE), soil heat flux (G) and 

sensible heat flux (H)], and (SWIN - SWOUT + LWIN - LWOUT = Rn) might 

be deleted. Internet links https://doi.org/10.11888/Terre.tpdc.302559 and 

citations (Tang et al., 2025a) should be removed from the abstract. On the other 

hand, the authors should briefly describe how these data sources are used to 

generate the new dataset. 

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that the latter 

part of the Abstract describes the accuracy of each of the eight surface radiation and 

heat flux components, as well as the overall surface radiation balance and energy 

balance among them. Therefore, to ensure consistency and readability, we chose to 

retain the introduction of all eight fluxes and their corresponding abbreviations at the 

beginning of the Abstract. However, the two equations, (SWIN - SWOUT + LWIN - 

LWOUT = Rn) and (LE + H + G = Rn), were deleted in the Abstract, as suggested by 

the reviewer. Furthermore, the links and citations of the datasets are mandatorily 

required by the journal and editors in the Abstract, and therefore cannot be removed. 

Besides, following the reviewer’s suggestion, we have briefly explained how 

multiple data sources were integrated to generate the CoSEB-based datasets in the 

revised manuscript as follows: 



“This study presents the first data-driven energy-conservation datasets of global land 

surface radiation and heat fluxes from 2000 to 2020, generated by our model of 

Coordinated estimates of land Surface Energy Balance components (CoSEB). The 

model integrates GLASS and MODIS remote sensing data, ERA5-Land reanalysis 

datasets, topographic data, CO2 concentration data as independent variables and in 

situ radiation and heat flux observations at 258 eddy covariance sites worldwide as 

dependent variables within a multivariate random forest technique to effectively 

learn the physics of energy conservation.” 

 

  



Reviewer #2:  

Review of Energy-conservation datasets of global land surface radiation and 

heat fluxes from 2000-2020 generated by CoSEB 

 

Summary and recommendation- In this paper, the authors apply a model of 

Coordinated estimates of land surface energy balance components (CoSEB) to 

generate estimates of surface radiation and heat fluxes from 2000 to 2020. An 

advantage of the CoSEB based approach is that estimates of radiation and heat are in 

“harmony” as opposed to generating independent estimates of each. The authors 

compare their estimates against observations from eddy covariance sites, other 

individual estimates and other individual observations. The paper is generally well 

written, and the results are presented clearly. However, I had several questions about 

the CoSEB framework itself and also the validations applied here in the manuscript. 

Hence I recommend major revisions. I have presented major comments and specific 

comments below. 

Ans: Thank you very much for your thoughtful and constructive comments. We 

sincerely appreciate your recognition of the CoSEB model and the datasets, 

particularly the advantage of generating global surface radiation and heat fluxes that 

adhere to energy conservation. We have carefully considered all the comments and 

suggestions from you and another reviewer, especially your concerns regarding the 

CoSEB framework and the validation of the datasets, and have made corresponding 

modifications and clarifications in the revised manuscript. More detailed information 

of our revisions can be found in the item-by-item response as below. 

 

Major comments- 

1. Explanation of updates to the CoSEB framework- While reading the 

manuscript I realized that it is not only a paper that applies the existing CoSEB 

framework that is already published but also updates this framework to estimate 

to estimate radiation (previously this model estimated only land surface energy 

components and not short wave and long wave radiation). Therefore, authors 

need to discuss the effect of the addition of additional predicted variables on the 

equations and the results of the random forest. In particular, can the authors 

discuss which of the predictors were found to be the most important and also 

discuss how this differed with their previous publication? Also, can authors 

discuss generic details such as how many splits were generated by the random 

forest before and after the updates. Authors should also discuss the directionality 

of effects of different predictor variables based on the revised random forest. 

Ans: We thank the reviewer for these insightful comments and questions. Indeed, the 

renewed CoSEB model extends beyond the original version (Wang et al., 2025) by 

jointly estimating both radiation components (SWIN, SWOUT, LWIN, LWOUT and Rn) 

and heat fluxes (LE, H, G), thereby ensuring that both radiation and energy balance 

are simultaneously satisfied.  

(1) To illustrate the effect of including additional radiation components (SWIN, 

SWOUT, LWIN and LWOUT) in the renewed CoSEB model compared with the original 



version by Wang et al. (2025), we have tested the performance of a reconstructed 

model that estimated only Rn, LE, H and G using the same independent variables 

and samples as those in the renewed CoSEB model. The results (Fig. S5 in the 

supplementary material) showed no significant differences from those produced by 

the renewed CoSEB model, indicating that the expansion of radiation components 

did not compromise the model’s overall performance. We have discussed this in the 

second paragraph of Section 5 with the following sentences: 

“Furthermore, to better illustrate the effect of including additional radiation 

components (SWIN, SWOUT, LWIN and LWOUT) in the renewed CoSEB model 

compared with the original version by Wang et al. (2025), we have tested the 

performance of a reconstructed model that estimated only Rn, LE, H and G using the 

same independent variables and samples as those in the renewed CoSEB model. The 

results (Fig. S5 in the supplementary material) showed no significant differences in 

accuracy compared with those of the renewed CoSEB model, indicating the 

expansion of radiation components did not compromise model performance.” 

 

Fig. S5 Scatter density plots of the site-based 10-fold cross-validation of daily net radiation 

(Rn), soil heat flux (G), latent heat flux (LE) and sensible heat flux (H) derived by a 

reconstructed model within the CoSEB framework against in-situ observed Rn, G, and 

energy imbalance-corrected LE (
corr

dailyLE ) and H (
corr

dailyH ), where the model was designed to 

estimate only four of the eight flux components. The EIR in the subfigure (e) represents the 

energy imbalance ratio, which are defined as 100% × (Rn - G - LE - H)/Rn. The colorbar 

represents the normalized density of data points. 

 

(2) Regarding your concern about the importance of the feature variables to the 

renewed CoSEB model, we have added a new table (Table S4 in the Supplementary 

Material) to show the importance scores of different feature variables using the built-



in method of the random forests. The results showed that solar radiation reaching the 

surface of the earth is the most important variable, which is consistent with the 

results from our previous study (Wang et al., 2025). We have discussed this in the 

second paragraph of Section 5 with the following sentences: 

“The importance scores of the 19 different feature variables are exhibited in Table S4 

in the Supplementary Material, and downward solar radiation, the primary source of 

the energy at the earth surface, is the most important input variable, consistent with 

the results from our previous study (Wang et al., 2025).” 

 

Table S4 Importance scores of the 19 different feature variables in the construction of the 

renewed CoSEB model for estimating daily downward shortwave and longwave radiation (SWIN 

and LWIN), upward shortwave and longwave radiation (SWOUT and LWOUT), net radiation (Rn), 

latent heat flux (LE), sensible heat flux (H) and soil heat flux (G). 

Types Features Variables Abbreviation 
Importance 

Score 

Cumulative 

Percentage (%) 

Climate/meteorology solar radiation reaching the surface of the earth SWIN
ERA5 0.5724 57.24 

Climate/meteorology 2 m air temperature Ta 0.2338 80.62 

Vegetation and soil Fractional tree cover FVC 0.0292 83.54 

Climate/meteorology net thermal radiation at the surface LWnet 0.0241 85.95 
Vegetation and soil Leaf area index LAI 0.0241 88.36 

Vegetation and soil Percent tree cover PTC 0.0177 90.13 

Vegetation and soil soil temperature in surface layer TS1 0.0107 91.20 
Climate/meteorology surface air pressure PA 0.0097 92.17 

Topography Surface slope Slope 0.0093 93.10 

Climate/meteorology precipitation Pr 0.0091 94.01 

Others 
inverse relative distance from the Earth to the 

Sun 
dr 0.0089 94.9 

Others latitude Lat 0.0075 96.65 
Climate/meteorology Relative air humidity RH 0.0074 96.39 

Topography Digital elevation model DEM 0.0072 97.11 

Vegetation and soil soil volumetric moisture content in surface layer SM1 0.007 97.81 
Others longitude Lon 0.0067 98.48 

Climate/meteorology Carbon dioxide concentration CO2 0.0056 99.04 

Topography Surface aspect Aspect 0.005 99.54 
Climate/meteorology Wind speed WS 0.0046 100 

 

(3) We have added a brief description of the optimization of hyperparameters 

for the renewed CoSEB model using the random search method and grid search 

method. Specifically, the number of decision trees, the max depth, min samples split, 

and min samples leaf of the MRF are set to 281, 21, 8, and 8, respectively, compared 

to 295, 20, 12, and 8 in our previous study of Wang et al. (2025). The corresponding 

details have been added at the beginning of the third paragraph of Section 3 in the 

revised manuscript with the following sentences: 

“To enhance model generalization, the renewed CoSEB model was reoptimized 

using random and grid search methods, resulting in different hyperparameters of 281 

decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 

from those of Wang et al. (2025).” 

 

(4) We would like to emphasize that the main focus of this study was to develop 

the data-driven energy-conservation global datasets using multiple input variables 

that have certain influences on surface radiation and heat fluxes, rather than to 

explore the directionality of effects of each input variable on surface radiation and 

heat fluxes. Since directionality analysis does not alter model parameters, affect 



model construction, or impact the generation of the CoSEB-based datasets, in almost 

no articles (Jung et al., 2019; Mu et al., 2011; Ryu et al., 2018; Xu et al., 2022) 

focusing on models and algorithms for surface radiation fluxes and heat fluxes have 

we seen anyone conduct directionality analysis; therefore, conducting directionality 

analysis is not necessary within the scope of our study. 

 

2. Multi-collinearity amongst predictor variables- Authors should also discuss how 

multi-collinearity is handled amongst predictor variables given the large number 

of predictors. As far as I understand, random forests do not explicitly deal with 

multi collinearity unlike a PCA based approach for example. This can affect 

variable importance significantly. I would suggest authors explore this in detail. 

Ans: We thank the reviewer for this comment. While random forests do not 

explicitly eliminate multi-collinearity among input variables, they randomly select 

subsets of input features at each split (Breiman, 2001) and are generally considered 

robust in terms of performance even when multi-collinearity exists among some 

inputs (Drobnič et al., 2020). Besides, in selecting the input variables, prior 

knowledge derived from previous studies was employed to identify factors that exert 

significant influence on surface radiation and heat flux while maintaining relative 

inter-independence. This practice is widely adopted in data-driven models for 

estimating land surface water, energy, and carbon fluxes (Bai et al., 2024; Elghawi et 

al., 2023; Han et al., 2023; O. & Orth, 2021), and few studies specifically perform 

multicollinearity analysis before modeling. Although some of the selected variables 

may exhibit a certain degree of multi-collinearity, each carries unique characteristic 

information, making it inappropriate to consider only a single dominant variable 

during model construction. Moreover, we acknowledge that variable importance 

should be interpreted with caution, since the importances may not be accurate in the 

presence of multicollinearity. However, we would also like to clarify that the primary 

aim of this study was to improve the accuracy of the developed datasets rather than 

to interpret the individual contributions of each input variable. We have discussed 

this in second paragraph of Section 5 with the following sentence: 

“In selecting the 19 input variables to accommodate the additional target variables, 

prior knowledge derived from previous studies was employed to identify factors that 

exert significant influence on surface radiation and heat flux while maintaining 

relative inter-independence as much as possible (Jung et al., 2019; Mohan et al., 

2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted in 

data-driven models for estimating land surface water, energy, and carbon fluxes (Bai 

et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance 

scores of the 19 different feature variables are exhibited in Table S4 in the 

Supplementary Material, and downward solar radiation, the primary source of the 

energy at the earth surface, is the most important input variable, consistent with the 

results from our previous study (Wang et al., 2025). Although some of the selected 

variables may exhibit a certain degree of multi-collinearity, each contributes unique 

and physically meaningful information, supporting the inclusion of all variables in 

model construction. Note that the variable importance, derived from the built-in 



method of the random forests and potentially affected by multicollinearity among the 

input variables, is presented only as a reference. Retaining all 19 feature variables 

ensures the model’s flexibility and generalization capability, enabling future 

incorporation of additional representative ground-based observations for further 

training and improvement.” 

 

3. Effect of autocorrelation- Given the temporal nature of several predictor 

variables, can authors confirm that autocorrelation does not exist or is 

minimized in their framework? What tests were performed to check for this? In 

particular I would recommend authors add lagged variables to the model to 

make sure that this is not the case. I believe several models constructed for earth 

system variables tend to ignore aspects such as autocorrelation and therefore this 

is an important point to address. 

Ans: Thanks for your question and suggestion. We agree that several predictor 

variables may exhibit autocorrelation. To investigate the impact of lagged effects of 

input variables on model performance, we specifically conducted an experiment by 

including lagged air temperature (i.e., the air temperature of the previous day, 

because air temperature, identified alongside downward solar radiation as one of the 

two most influential variables in the model based on the importance scores in 

Supplementary Table S4, exhibits a more pronounced lagged effect than solar 

radiation) as additional predictor. The results (Fig. S4 in the Supplementary Material) 

showed no noticeable improvement in model accuracy, suggesting that lagged effects 

were negligible in the CoSEB framework for estimates of daily surface radiation and 

heat fluxes. We speculate that lagged effects may have a more pronounced influence 

on flux estimates at higher temporal resolutions (e.g., half-hourly), but this is beyond 

the scope of the present study. We have discussed this in the second paragraph of 

Section 5 with the following sentence: 

“Besides, to investigate the impact of lagged effects of input variables on model 

performance, experiments were also conducted by adding lagged variables (e.g., the 

air temperature of the previous day) to the 19 input features. The results (Fig. S4 in 

the Supplementary Material) showed almost no improvement in model accuracy, 

suggesting that lagged effects on model performance were negligible within the 

CoSEB framework for estimates of daily surface radiation and heat fluxes.” 



 

Fig. S4 Scatter density plots of the site-based 10-fold cross-validation of daily downward 

shortwave and longwave radiation (SWIN and LWIN), upward shortwave and longwave 

radiation (SWOUT and LWOUT), net radiation (Rn), soil heat flux (G), latent heat flux (LE) 

and sensible heat flux (H) derived by a reconstructed model within the CoSEB framework 

against in situ observed SWIN, LWIN, SWOUT, LWOUT, Rn, G, and energy imbalance-

corrected LE (
corr

dailyLE ) and H (
corr

dailyH ), where the air temperature of the previous day was 

additionally added to the 19 input feature variables of the model as the lagged variable. 

The EIR and RIR in the subfigure (i) represent the energy imbalance ratio and radiation 

imbalance ratio, which are defined as 100% × (Rn - G - LE - H)/Rn and 100% × (SWIN – 

SWOUT + LWIN - LWOUT)/Rn, respectively. The colorbar represents the normalized density of 

data points. 

 

4. Effect of downscaling ERA5- Land datasets- The authors note on lines 195-197 

that the ERA 5 land datasets used here have been downscaled from a resolution 

of ~9 kms to ~500m. This is a significant level of downscaling performed using 

a rather simple cubic convolution method. There are several variables related to 

the land cover (such as the LAI for example) that are used as predictor variables 

in the author’s framework. Can the authors address the uncertainty caused by 



such large downscaling between scales on their results? On the one hand, based 

on the results, it seems that the model has produced reliable results compared to 

observations and other datasets even after such large downscaling. Is it that the 

land cover related variables do not play an important role in the predictions? 

Ans: Thanks for your comment and question. We would like to clarify that the 

ERA5-Land datasets used in this study mainly include meteorological reanalysis 

variables (e.g., solar radiation, pressure of the atmosphere, wind speed and relative 

air humidity), which were downscaled from their original ~9 km spatial resolution to 

500 m. In contrast, the land cover-related vegetation variables, including LAI, FVC, 

and PTC, were directly obtained from remote sensing products such as MODIS and 

GLASS (see Section 2.2), which already have an original spatial resolution of ~500 

m and therefore did not require spatial downscaling. 

Besides, we acknowledge that downscaling ERA5-Land datasets from ~9 km to 

~500 m using a cubic convolution method may introduce certain uncertainties. 

However, this resampling was necessary to match the footprint of the site-based 

measurements of turbulent heat fluxes, which is a common practice in the generation 

of remote sensing products (Mu et al., 2011; Ryu et al., 2018; Senay et al., 2020; 

Zhang et al., 2019; Zheng et al., 2022). Moreover, the machine learning framework 

of the CoSEB model can partially mitigate such uncertainties introduced by the 

downscaling during training by learning complex relationships among multiple 

inputs and in situ observed energy components. This is reflected in the good 

agreement of the CoSEB-based estimates with both in-situ observations and other 

mainstream products. Our previous studies (Wang et al., 2025, the last paragraph of 

Section 5.1) also have demonstrated that the differences in meteorological reanalysis 

data caused by spatial downscaling have a relatively small impact on the estimates 

by the machine-learning-based CoSEB model. 

Furthermore, it is also important to note that this does not imply that land-

cover-related variables do not play an important role in the estimations. As shown by 

the variable importance scores presented in the newly added Table S4 in the 

Supplementary Material, vegetation and surface-related parameters such as FVC and 

LAI have high importance scores. These variables can partially compensate for the 

spatial heterogeneity and localized variations not captured by the coarse-resolution 

ERA5-Land datasets, thereby enhancing the performance of the model.  

We have discussed this in the last paragraph of Section 5 with the following 

sentence: 

“Another potential source of uncertainty arises from differences in meteorological 

reanalysis data caused by spatial downscaling, which, as demonstrated in our 

previous study (Wang et al., 2025, the last paragraph of Section 5.1), has a relatively 

small impact on model estimates by the machine-learning-based CoSEB model 

combined with finer-resolution surface-related variables that partially compensate 

for the spatial heterogeneity and localized variations not captured by the coarse-

resolution datasets.” 

 

5. In sample vs out of sample testing- While the authors present significant 



comparisons with observations and other datasets to validate their model (e.g. 

Figure 3, Figure 4 and Figure 5), it seems the authors have not checked for 

overfitting of their approach by splitting the dataset into a training vs testing 

dataset. This is especially important since as mentioned in Major comment 1., 

the CoSEB framework itself has been updated. Authors should address this in 

detail. In fact, looking at Figure 3, it seems that the R squared values for G and 

H are on the lower side. I am curious as to what the values look like when out of 

sample testing is conducted? 

Ans: We appreciate the reviewer’s insightful comments and questions. We would 

like to clarify that the out-of-sample testing of the updated CoSEB model has 

already been evaluated using site-based 10-fold cross-validation. In this approach, all 

sites were divided into ten folds, where the samples from each fold of sites in turn 

served as validation datasets while the remaining folds were used for training. This 

ensures that the validation datasets are spatially independent from the training 

datasets, effectively serving as out-of-sample testing. The results shown in Figure 3, 

corresponding to the site-based 10-fold cross-validation, showed that the R² values 

for H and G are 0.59 and 0.42, respectively. We have already described the site-

based 10-fold cross-validation in the third paragraph of Section 3 with the following 

sentence: 

“Site-based 10-fold cross-validation was employed to evaluate the transferability and 

generalization of the CoSEB model by randomly dividing all sites into ten folds, 

where the samples from each fold of sites in turn served as validation datasets while 

the remaining folds were used as training datasets, ensuring that the validation was 

conducted on sites spatially independent from the training data.” 

 

Furthermore, to evaluate potential overfitting, the mean RMSE and R2 values along 

with their standard deviations across the ten folds of the site-based cross-validation 

have been presented in Table S3 of the Supplementary Material. Comparisons 

between the training results (Table S3) and validation results (Fig. 3) indicate that, 

although the CoSEB model performs better on the training datasets than on the 

validation datasets, the overall performance remains stable. This stability, 

particularly given that the validation is conducted on spatially independent sites, 

demonstrates that the model is not affected by overfitting. We have illustrated this in 

the first paragraph of Section 4.1.1 with the following sentence: 

“Comparisons with the corresponding training results (Table S3 in the 

Supplementary Material) indicated that although the CoSEB model performed better 

on the training datasets, its overall performance remained stable, suggesting that the 

CoSEB model was not affected by overfitting.”  



Table S3 The mean root mean square error (RMSE) and coefficient of determination (R2) along 

with their standard deviations across the ten folds of the site-based cross-validation for the 

renewed CoSEB model. 

 RMSE (W/m2) R2 

SWIN 28.56±0.09 0.91±0.001 

SWOUT 9.83±0.10 0.79±0.003 

LWIN 12.41±0.08 0.95±0.001 

LWOUT 8.52±0.07 0.97±0.001 

Rn 22.49±0.08 0.85±0.001 

LE 19.75±0.15 0.82±0.003 

H 19.36±0.12 0.76±0.003 

G 5.39±0.04 0.60±0.004 

 

Specific comments- 

1. Abstract lines 31-36- The RMSEs presented here do not make any sense at this 

point since the reader has no sense of scale of values to expect. I recommend 

authors report the R squared values here instead. Also make sure to report 

whether the R squared is based on pooled data or just the testing data (See 

Major comment 5) 

Ans: We appreciate the reviewer’s constructive suggestion. We would like to clarify 

that RMSE remains a key metric for evaluating the accuracy of the model and 

datasets, particularly for energy flux estimations (Bisht & Bras, 2011; Comini De 

Andrade et al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it 

directly quantifies prediction errors in physical units (W/m2), making it an indicator 

of significant interest to both model developers and product users. However, R2 

indeed is another important metric, indicating the degree to which the model 

predictions align with the reference truth. Therefore, in the revised Abstract, we have 

reported both RMSE and R2 values for the CoSEB-based datasets. In addition, we 

have clarified that the reported RMSE and R2 values of the CoSEB-based datasets 

are derived from validation at independent test datasets across 44 sites (see Section 

2.1). The revised sentences are as follows: 

“(1) the RMSEs (R2) for daily estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H 

and G from the CoSEB-based datasets at 44 independent test sites were 37.52 W/m2 

(0.81), 14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 13.78 W/m2 (0.95), 29.66 W/m2 

(0.77), 30.87 W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44), respectively,” 

 

2. Introduction lines 74-75- Can the authors differentiate the citations between 

those for physical vs those for statistical methods. 

Ans: Thanks for your valuable suggestion. We have clearly differentiated the 

citations between those for physical vs those for statistical methods in the revised 

manuscript as follows: 

“In past decades, numerous RS-based products/datasets of global surface radiation 

and heat fluxes have significantly advanced, which were generally generated by 

physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao 

et al., 2023; Jung et al., 2019; Peng et al., 2020).” 



 

3. Introduction line 92- “impending” is an awkward word here. I would just say “It 

was imperative”. 

Ans: We appreciate the reviewer’s suggestion. We have revised this sentence to “It 

was imperative to develop global datasets of land surface radiation and heat fluxes 

characterized by high accuracies, radiation balance as well as heat balance, to better 

meet the requirements in practical applications of various fields.” in the new 

manuscript. 

 

4. Data lines 131-132- Why could a simple interpolation not be applied for missing 

half hourly data? Is the data extremely sensitive to time? Some clarification is 

needed here. 

Ans: Thank you for your comments and questions. The half-hourly surface radiation 

and heat fluxes are sensitive to short-term temporal variations caused by rapid 

changes in meteorological conditions, but their intraday dynamics are often 

nonlinear, particularly due to the intermittent effects of cloud cover. Therefore, 

applying simple interpolation methods (e.g. linear interpolation) could introduce 

considerable uncertainties. To ensure data quality, we only retained directly observed 

values (data quality flag=0) and good-quality gap-filled data (data quality flag=1) 

provided by the official gap-filling algorithms, and then computed daily averages 

only when more than 80% of half-hourly observations were available, as already 

described in the first paragraph of Section 2.1 with the following sentence: 

“(3) the half-hourly ground-based observations with quality-control flag of 2 or 3 

(bad quality) were removed but quality-control flag of 0 and 1 (good quality) were 

maintained; (4) a daily average of the half-hour observations was calculated for each 

day with greater than 80% good-quality data, further reducing the 472 sites to 355 

sites;” 

 

Besides, we have already discussed the uncertainties caused by the daily averages of 

surface radiation and heat fluxes in the last paragraph of Section 5 with the following 

sentence: 

“Specifically, daily averages of surface radiation and heat fluxes for each day were 

obtained for analysis from good-quality half-hourly observations when the fraction 

of these good-quality half-hourly observations was greater than 80% in a day, due to 

the lack of consensus on the method for aggregating gapped half-hourly observations 

to daily data (Tang et al., 2024a; Yao et al., 2017; Zheng et al., 2022).” 

 

Following your suggestion, we have also further clarified the simple temporal 

interpolation in the last paragraph of Section 5 with the following sentence: 

“Simple temporal interpolation of half-hourly in situ observations, which could 

therefore introduce substantial uncertainties, was not applied, because surface 

radiation and heat fluxes are sensitive to short-term variations in meteorological 

conditions and their intraday dynamics are often complex.” 

 



5. Data lines 138-139- Can the authors clarify why this criteria was applied for 

screening outliers? 

Ans: Thank you for your valuable question. We would like to clarify that the energy 

balance ratio (EBR) of 0.2-1.8 and the 1st-99th quantiles of the daily evaporation 

fraction was both applied to remove physically implausible measurements, such as 

cases where the available surface energy (Rn − G) is close to zero while LE and H 

remain comparatively large, where the threshold of 0.2-1.8 was adopted following 

our previous study (Wang et al., 2025), which has demonstrated that nearly all 

available data fall within this range and that the accuracy of the CoSEB model 

showed no significant differences when applying different EBR thresholds, while the 

percentile-based screening was employed following common practice in flux and 

remote sensing studies (Bartkowiak et al., 2024; Ghorbanpour et al., 2022; Wang et 

al., 2023). We have clarified this in the first paragraph of Section 2.1 with the 

following sentence: 

“(5) the aggregated daily LE and H were corrected for energy imbalance using the 

Bowen ratio method when the daily energy balance closure [defined as 

( ) / ( )LE H Rn G+ − ] varied between 0.2 and 1.8 following Wang et al. (2025) to 

exclude physically implausible measurements; (6) extreme outliers in the daily 

evaporative fraction were further removed by excluding values outside the 1st–99th 

percentile range, a common practice in flux and remote sensing studies (Bartkowiak 

et al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites.” 

 

6. Mainstream datasets/products for inter comparison- I was curious as to why the 

authors so not compare their estimates with heat and radiation estimates from 

popular earth system modelling systems such as CESM and CTSM 

(https://www.cesm.ucar.edu/). In fact, if the authors approach can produce 

estimates similar to earth system models, this would be a huge benefit to the 

community (since these models are laborious to run) 

Ans: Thanks for your comment. The outputs of Earth system models generally have 

coarse spatial resolutions (e.g., the CESM Large Ensemble Project has a spatial 

resolution of ~1°). Due to the surface heterogeneity, these model outputs cannot be 

directly validated using radiation and heat flux observations from ground sites with 

limited spatial representativeness. This is the main reason why both we and others 

usually do not compare the outputs of Earth system models with remote sensing-

based datasets.  

Although we believe that comparing the outputs of Earth system models with 

remote sensing-based datasets (including our CoSEB-based datasets and others’ 

PML_V2, MOD16A2, FLUXCOM, BESSV2.0, GLASS) and validating them 

against ground-based observations is not appropriate, following the reviewer’s 

suggestion, we compared the global spatial distributions of mean annual estimates 

from CoSEB-based datasets with the outputs from the CESM Large Ensemble 

project. The results (see Section 4.3 and Fig. S8) show that, overall, the global 

spatial patterns of the estimated SWIN, LWIN, LWOUT, Rn, LE and H are consistent, 



though numerical differences exist. Considering the scope and length of the current 

manuscript, a more detailed analysis of the spatial-temporal distribution patterns, 

trends, and variability between Earth system model outputs and remote sensing-

based datasets could be conducted in future work. We have discussed this in the third 

paragraph of Section 5 with the following sentences: 

“Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial 

patterns consistent with those of mainstream RS-based datasets and Earth system 

model outputs (see Fig. S8 in the supplementary material). More detailed analysis 

about their similarities and differences can be further conducted in future work.” 

 

 

Fig. S8 Spatial patterns of global mean annual downward shortwave radiation (SWIN), 

downward longwave radiation (LWIN), upward longwave radiation (LWOUT), net radiation 

(Rn), latent heat flux (LE) and sensible heat flux from 2001 to 2018 by Community Earth 

System Model (CESM) Large Ensemble project, where LWOUT and Rn were inferred from 

surface radiation balance and heat balance. 

 

7. Methods lines 243-244- Once again the usage of RMSEs here does not make 

much sense. Can the authors just report the R squared values instead. 

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE 

remains an essential metric for evaluating the accuracy of the model and datasets, 

particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et 

al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly 

quantifies prediction errors in physical units (W/m2), making it an indicator of 

significant interest to both model developers and product users. Nevertheless, R2 

indeed is another important metric, indicating the degree to which the model 

predictions align with the reference truth. After careful consideration, we have 

additionally reported R2 values in the revised manuscript to more comprehensively 

demonstrate the model performance. The revised sentence is as follows: 

“The CoSEB model was demonstrated to be able to produce high-accuracy estimates 

of land surface energy components, with the RMSE of <17 W/m2 and R2 of > 0.83 

for estimating 4-day Rn, LE and H, and the RMSE of <5 W/m2 and R2 of 0.55 for 

estimating 4-day G.” 

 



8. Methods lines 269-270- Just to confirm, the RF based uncoordinated models are 

models where only individual variables are estimated rather than the 

simultaneous calculation of several variables? This should be clarified. 

Ans: Thanks for your valuable question. Your understanding is correct. We have 

more clearly clarified this in the third paragraph of Section 3 of the revised 

manuscript with the following sentence: 

“Furthermore, to benchmark the coordinated estimates from the renewed CoSEB 

model, eight RF-based uncoordinated models were constructed, each separately 

estimating one of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H or G using the same inputs 

as those in the renewed CoSEB model.” 

 

9. Results Lines 306-309- I was curious looking at Figure 4 whether there were 

correlations or relationships between the EIR or RIR values and any of the other 

predictor variables? Is the shape of that distribution affected by any particular 

variables? 

Ans: Thanks for your question. We would like to clarify that our CoSEB model 

showed no energy imbalance, with the RIR and EIR of 0, as shown in Figure 3. The 

distributions of RIR and EIR in Figure 4 were derived from RF-based uncoordinated 

models, which were used only for comparison with our CoSEB model and were not 

the focus of our study.  

However, considering your concern about whether the distributions of the RIR 

and EIR values are affected by specific predictor variables, we further conducted a 

binned statistical analysis, where the three most critical input variables identified in 

Table S4 (i.e. 5ERA

INSW , Ta and FVC) were divided into equal-width bins, and for each 

bin the mean and standard deviation for positive and negative RIR conditions were 

calculated. Besides, the Pearson correlation coefficients (r) between RIR (EIR) and 

each input variable were computed to quantify their overall relationships. The results 

showed that lower levels of solar radiation, air temperature, or FVC are associated 

with larger RIR (EIR), while the predominance of low values of these three variables 

tends to result in decreased kurtosis correspondingly, implying flatter and broader 

probability shapes of RIR and EIR. We have also briefly illustrated this in the end of 

the second paragraph of Section 4.1.1 with the following sentence: 

“Furthermore, the RIR as well as EIR tended to be higher under lower solar radiation, 

air temperature, or FVC, with more frequent low values of these three variables 

leading to a broader and less peaked distribution of RIR and EIR (see Fig. S1 in the 

Supplementary Material).” 



 

Fig. S1 Relationships between radiation imbalance ratio [RIR, 100% × (SWIN – SWOUT + 

LWIN - LWOUT)/Rn] and energy imbalance ratio [EIR, 100% × (Rn - G - LE - H)/Rn] 

derived from RF-based uncoordinated models and three critical input variables identified 

in Table S4, including solar radiation reaching the surface of the earth from ERA5-Land 

(
5ERA

INSW , the first column), 2 m air temperature from ERA5-Land (Ta, the second column) 

and fraction vegetation cover from GLASS (FVC, the third column). The mean and 

standard deviation were calculated within equal-width bins of 
5ERA

INSW , Ta, and FVC under 

positive and negative EIR (RIR) conditions, where the solid lines represent the mean values, 

and the shaded area represents the corresponding variation of standard deviations. The r 

values in legends indicate the Pearson correlation coefficients. 

 

10. Results Lines 311-312- Can the authors clarify the differences between site-

based validation vs sample-based validation? 

Ans: We appreciate the reviewer’s insightful comment. Sample-based 10-fold cross-

validation refers to randomly splitting all available samples from all sites into ten 

folds, with each fold in turn serving as the validation dataset while the remaining 

folds are used for training. This approach allows samples from the same site to 

appear in both the training and validation datasets. In contrast, site-based 10-fold 

cross-validation was performed by randomly dividing all sites into ten folds, with the 

samples from each fold of sites used for validation in turn. This strategy ensures that 

the validation datasets are spatially independent from the training datasets, thereby 

providing a more rigorous assessment of the model’s spatial generalization capability. 

We have already described the site-based 10-fold cross-validation in the third 

paragraph of Section 3 with the following sentences: 

“Site-based 10-fold cross-validation was employed to evaluate the transferability and 



generalization of the CoSEB model by randomly dividing all sites into ten folds, 

where the samples from each fold of sites in turn served as validation datasets while 

the remaining folds were used as training datasets, ensuring that the validation was 

conducted on sites spatially independent from the training data.” 

 

Furthermore, after careful consideration, site-based 10-fold cross-validation was 

deemed to be more suitable for assessing the performance of the model than sample-

based 10-fold cross-validation, as the validation datasets in site-based cross-

validation are spatially independent from the training datasets. To make the main 

focus of the manuscript clearer and more concise, we retained only the site-based 10-

fold cross-validation and removed the sample-based 10-fold cross-validation in the 

revised manuscript. 

 

11. Results lines 381-382- Once again, the RMSE values don’t make a lot of sense 

here. Authors should report the R squared values instead. 

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE 

remains an essential metric for evaluating the accuracy of the model and datasets, 

particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et 

al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly 

quantifies prediction errors in physical units (W/m2), making it an indicator of 

significant interest to both model developers and product users. However, R2 indeed 

is another important metric, indicating the degree to which the model predictions 

align with the reference truth. After careful consideration, we have additionally 

incorporated the R² values into the revised manuscript. The revised sentence is as 

follows: 

“Results indicated that the CoSEB-based datasets could provide good estimates of 

SWOUT, H and G, with the RMSEs (R2) of 14.20 W/m2 (0.42), 29.75 W/m2 (0.44) and 

5.69 W/m2 (0.44) at daily scale, respectively, and the RMSE (R2) of 12.19 W/m2 

(0.39) and 4.60 W/m2 (0.47) for 8-day SWOUT and G, respectively.” 

 

12. Section 4.2- When discussing the differences between the CoSEB model 

estimates vs other estimates, can authors also describe why the differences occur? 

A detailed discussion is not warranted here. Rather, I was interested in the 

author’s perspective as to why the author’s approach produces some differences 

over existing approaches.   

Ans: Thanks for your constructive comments. The possible reasons for the 

differences between estimates from the CoSEB-based datasets and the mainstream 

products/datasets are complex and may arise from differences in both 

methodological frameworks and input datasets. Specifically, the discrepancies may 

result from the simplification of physical processes and the uncertainties in 

parameterization within the physics-based products (e.g., MOD16A1, BESSV2.0, 

PML_V2, and ETMonitor). In contrast, the differences between the CoSEB-based 

datasets and other machine-learning-based products (e.g., BESS-Rad, GLASS, and 

FLUXCOM) may be attributed to the limited sample sizes of training data, the 



incomplete consideration of influencing factors (e.g., CO2 concentration, surface 

aspect), and the lack of physical constraints among energy balance components in 

existing machine-learning frameworks. We have briefly discussed this in the last 

paragraph of Section 4.2 of the revised manuscript with the following sentence:  

“The differences between the estimates from the CoSEB-based datasets and 

mainstream datasets are likely multifactorial, arising from the simplification and 

parameterization uncertainties in physics-based models, as well as the lack of 

physical constraints, limited training samples, and incomplete consideration of 

influencing factors in other machine-learning-based models.” 
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Abstract 12 

Accurately estimating global land surface radiation [including downward 13 

shortwave radiation (SWIN), downward longwave radiation (LWIN), upward shortwave 14 

radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation (Rn)] and heat 15 

fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is 16 

essential for quantifying the exchange of radiation, heat and water between the land and 17 

atmosphere under global climate change. This study presents the first data-driven 18 

energy-conservation datasets of global land surface radiation and heat fluxes from 2000 19 

to 2020, generated by our model of Coordinated estimates of land Surface Energy 20 

Balance components (CoSEB). The modelthat integrates GLASS and MODIS remote 21 

sensing data, ERA5-Land reanalysis datasets, topographic data, CO2 concentration data 22 

as independent variables and in situ radiation and heat flux observations at 258 eddy 23 

covariance sites worldwide as dependent variables within a multivariate random forest 24 

technique to effectively learn the physics of energy conservationwas renewed with a 25 

combination of GLASS and MODIS remote sensing data, ERA5-Land reanalysis 26 

datasets, topographic data, CO2 concentration data, and observations at 258 eddy 27 
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covariance sites worldwide from the AmeriFlux, FLUXNET, EuroFlux, OzFlux, 28 

ChinaFLUX and TPDC. The developed CoSEB-based datasets are strikingly 29 

advantageous in that [1] they are the first RS-baseddata-driven global datasets that 30 

satisfy both surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = Rn) and heat 31 

balance (LE + H + G = Rn) among the eight fluxes, as demonstrated by both the 32 

radiation imbalance ratio [RIR, defined as 100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn] 33 

and energy imbalance ratio [EIR, defined as 100% × (Rn - G - LE - H)/Rn] of 0, [2] the 34 

radiation and heat fluxes are characterized by high accuracies, where (1) the RMSEs 35 

(R2) for daily estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the 36 

CoSEB-based datasets at 44 independent test sites were 28.5137.52 W/m2 (0.81), 37 

10.394.20 W/m2 (0.42), 14.2922.47 W/m2 (0.90), 10.623.78 W/m2 (0.95), 22.409.66 38 

W/m2 (0.77), 24.3830.87 W/m2 (0.60), 22.679.75 W/m2 (0.44) and 6.775.69 W/m2 39 

(0.44), respectively, as well as for 8-day estimates were 12.81 W/m2, 7.08 W/m2, 9.22 40 

W/m2, 8.34 W/m2, 13.38 W/m2, 19.99 W/m2, 17.44 W/m2 and 4.25 W/m2, respectively, 41 

(2) the CoSEB-based datasets, in comparison to the mainstream products/datasets (i.e. 42 

GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, PML_V2 and ETMonitor) 43 

that generally separately estimated subsets of the eight flux components, better agreed 44 

with the in situ observations. Our developed datasets hold significant potential for 45 

application across diverse fields such as agriculture, forestry, hydrology, meteorology, 46 

ecology, and environmental science, which can facilitate comprehensive studies on the 47 

variability, impacts, responses, adaptation strategies, and mitigation measures of global 48 

and regional land surface radiation and heat fluxes under the influences of climate 49 

change and human activities. The CoSEB-based datasets are open access and available 50 

through the National Tibetan Plateau Data Center (TPDC) at 51 

https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) and through the Science 52 

Data Bank (ScienceDB) at https://doi.org/10.57760/sciencedb.27228 (Tang et al., 53 

2025b). 54 

Key words: Surface energy balance; Surface radiation balance; Shortwave/Longwave 55 

https://doi.org/10.57760/sciencedb.27228
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radiation; Net radiation; Sensible/Latent heat flux; Evapotranspiration; CoSEB 56 

1 Introduction 57 

Land surface radiation balance and heat balance play important roles in Earth's 58 

climate system, representing the physical processes by which the surface-atmosphere 59 

absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al., 60 

1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the 61 

exchange of water, energy, carbon, and other agents essential to climatic and ecological 62 

systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al., 63 

2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of 64 

global land surface radiation [including downward shortwave radiation (SWIN), 65 

downward longwave radiation (LWIN), upward shortwave radiation (SWOUT), upward 66 

longwave radiation (LWOUT) and net radiation (Rn)] and heat fluxes [including latent 67 

heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for 68 

quantifying the exchange of radiation, heat and water between the land and atmosphere 69 

under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy, 70 

2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization 71 

(Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild & 72 

Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management 73 

(De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS) 74 

technology, with its high spatial-temporal resolution and applicability over large areas, 75 

is considered to be the most effective and economical means for obtaining global land 76 

surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al., 77 

2010). 78 

In past decades, numerous RS-based products/datasets of global surface radiation 79 

and heat fluxes have significantly advanced, which were generally generated by 80 

physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao et 81 

al., 2023; Jung et al., 2019; Peng et al., 2020). However, two key limitations still exist 82 

in these products. Firstly, most available products provide only a single component of 83 
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land surface radiation or heat fluxes, e.g. ETMonitor (Zheng et al., 2022) and 84 

MOD16A2 (Mu et al., 2011) only estimating LE, leading to the failure to satisfy surface 85 

radiation balance and heat balance when the single radiation or heat flux is utilized in 86 

conjunction with products containing other radiation and heat components (Wang et al., 87 

2025), and further posing significant uncertainties to understand the interactions and 88 

redistributions of surface radiation and energy in the Earth-atmosphere system. 89 

Secondly, a few products, e.g., FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al., 90 

2015; Zhang et al., 2014), generated datasets for multiple components of surface 91 

radiation and heat fluxes by using independent separate estimates from the 92 

uncoordinated models, which make them difficult to abide by surface radiation and heat 93 

conservation. These energy-imbalanced and radiation-imbalanced estimates among 94 

multiple components from previous products/datasets severely limit their in-depth 95 

applications in analyzing the spatial and temporal trends, simulating the physical 96 

processes of radiation, heat and water cycles as well as revealing the attributions and 97 

mechanisms in Earth-surface system under global climate change. It was impending 98 

and imperative to develop global datasets of land surface radiation and heat fluxes 99 

characterized by high accuracies, radiation balance as well as heat balance, to better 100 

meet the requirements in practical applications of various fields. 101 

Our proposed data-driven model/framework of Coordinated estimates of land 102 

Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively 103 

learns the underlying physical interrelations (i.e., surface energy conservation law) 104 

among multiple targeted variables, provides an unprecedented opportunity to develop 105 

global datasets of land surface radiation and heat fluxes that can not only 106 

simultaneously provide high-accuracy estimates of these components but also adhere 107 

to surface radiation- and heat-conservation laws. 108 

The objectives of this study are twofold: (1) to develop high-accuracy datasets of 109 

global land surface radiation and heat fluxes, which comply with the principles of 110 

radiation balance and heat balance, using our CoSEB model renewed based on in situ 111 
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observations, remote sensing data and reanalysis datasets; (2) to validate the 112 

datasets/model estimates against data from in situ observations, mainstream products 113 

as well as estimates from uncoordinated random forest (RF) techniques. Section 2 114 

introduces the data resources used in this study. Section 3 briefly describes the method 115 

we used to estimate global surface radiation and heat fluxes. Section 4 presents the 116 

evaluation of the datasets/model estimates generated by our renewed CoSEB model. 117 

Section 5 discusses the superiority, potential applications and uncertainties of the 118 

developed datasets. Data availability is given in Section 6, and a summary and 119 

conclusion is provided in Section 7. 120 

2 Data 121 

2.1 Ground-based observations 122 

In this study, the in situ observations of land surface radiation and heat fluxes at 123 

258 302 eddy covariance (EC) sites from the networks of AmeriFlux (145 174 sites, 124 

2000–2020, https://AmeriFlux.lbl.gov/Data/, last access: 6 August 2024), EuroFlux (72 125 

sites, 2000-2020, http://www.europe-fluxdata.eu/, last access: 6 August 2024), OzFlux 126 

(5 sites, 2007-2012, https://data.ozflux.org.au/, last access: 6 August 2024), FLUXNET 127 

(108 sites, 2000–2014, https://FLUXNET.org/Data/download-Data/, last access: 6 128 

August 2024), JapanFlux (15 sites, 2001-2020, https://ads.nipr.ac.jp/japan-flux2024/, 129 

last access: 10 October 2025), ChinaFLUX (5 sites, 2005-2020, 130 

http://www.chinaflux.org/, last access: 6 August 2024) and National Tibetan 131 

Plateau/Third Pole Environment Data Center (TPDC, 13 sites, 2012–2020, 132 

https://Data.tpdc.ac.cn/en/Data, last access: 6 August 2024) were used (Fig. 1), where 133 

37, 48 and 5 sites in FLUXNET were also shared in AmeriFlux, EuroFlux and OzFlux, 134 

respectively. These 258 302 sites were filtered out from all collected 1008 1098 sites 135 

by following the quality-assurance and quality-control steps, including: (1) any site 136 

with a missing component of any of the SWIN, SWOUT, LWIN, LWOUT, LE, H and G was 137 

excluded, reducing the 1008 1098 sites to 388 472 sites for further analysis; (2) any 138 

https://ameriflux.lbl.gov/Data/
https://data.ozflux.org.au/
https://ads.nipr.ac.jp/japan-flux2024/
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half-hour period with missing data for any of these components was excluded; (3) the 139 

half-hourly ground-based observations with quality-control flag of 2 or 3 (bad quality) 140 

were removed but quality-control flag of 0 and 1 (good quality) were maintained; (4) a 141 

daily average of the half-hour observations was calculated for each day with greater 142 

than 80% good-quality data, further reducing the 388 472 sites to 286 355 sites; (5) the 143 

aggregated daily LE and H were corrected for energy imbalance using the Bowen ratio 144 

method when the daily energy balance closure [defined as ( ) / ( )LE H Rn G+ − ] varied 145 

between 0.2 and 1.8 following Wang et al. (2025) to exclude physically implausible 146 

measurements; (56) extreme outliers in the daily evaporative fraction were further 147 

removed by excluding values outside the 1st–99th percentile range, a common practice 148 

in flux and remote sensing studies (Bartkowiak et al., 2024; Wang et al., 2023), further 149 

reducing the 355 sites to 337 sites. outliers were discarded, corresponding to the 1 and 150 

99 quantiles of the daily evaporation fraction, further reducing the 286 sites to 268 sites. 151 

Besides, the RS data products/datasets involved in this study collocated at the sites 152 

should not be missing, finally reducing the 268 337 sites to 258 302 sites for analysis. 153 

Note that the Rn at these sites used in this study was calculated from the sum of net 154 

longwave radiation (LWIN minus LWOUT) and net shortwave radiation (SWIN minus 155 

SWOUT), rather than using the observed Rn directly, to ensure surface radiation balance 156 

in training datasets. 157 

These 258 302 sites used in this study cover a wide range of global climate regimes 158 

across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 54 55 sites); 159 

(2) evergreen broadleaf forests (EBF, 11 12 sites); (3) deciduous needleleaf forests 160 

(DNF, 1 7 sites); (4) deciduous broadleaf forests (DBF, 39 40 sites); (5) mixed forests 161 

(MF, 8 sites); (6) closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 9 11 162 

sites); (8) woody savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands 163 

(GRA, 54 62 sites); (11) permanent wetlands (WET, 16 22 sites); (12) croplands (CRO, 164 

43 59 sites); (13) water bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics 165 

(CVM, 1 4 sites). Among them, 44 sites (~15% of the total, see Table S1) were isolated 166 
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to serve as spatially independent sites to test the generated datasets and they did not 167 

participate in the development of the model/datasets. 168 

 169 

170 

 171 

Fig. 1 Spatial distribution of the 258 302 eddy covariance sites from AmeriFlux, FLUXNET, 172 

EuroFlux, OzFlux, JapanFlux, ChinaFLUX and TPDC, and nine radiation sites from 173 

SURFRAD involved for analysis in this study. 174 

Furthermore, ground-based radiation observations from nine sites that are located 175 

in large flat agricultural areas covered by crops and grasses from SURFRAD were also 176 

introduced to validate land surface radiation estimates. Similar to the preprocessing 177 

performed on the observations of the 258 302 EC sites, the SWIN, SWOUT, LWIN, LWOUT 178 

and Rn from the SURFRAD were also quality-controlled and aggregated to daily data. 179 
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Spatial distribution of the 258 302 EC sites and nine radiation sites from SURFRAD 180 

are shown in Fig. 1, with site details (latitude, longitude, land cover types, digital 181 

elevation model and temporal coverage) provided in Supplementary Tables S1 and S2. 182 

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study 183 

Products/ 

datasets 

Reso-

lution 

Time 

coverage 
Variables Algorithms References 

GLASS 
0.05°/ 

daily 

2000-

2018 

SWIN, 

LWIN, 

LWOUT, Rn 

Machine 

learning, direct 

estimation 

algorithm 

Wang et al. (2015); 

Xu et al. (2022b); 

Jiang et al. (2015) 

BESS-Rad 
0.05°/ 

daily 

2000-

2020 
SWIN 

BESS process 

model 
Ryu et al. (2018) 

BESSV2.0 
0.05°/ 

daily 

2000-

2020 
Rn, LE 

BESS process 

model 
Li et al. (2023) 

FLUXCOM 
0.0833°/ 

8-day 

2000-

2020 
Rn, LE, H 

Model tree 

ensembles 
Jung et al. (2019) 

MOD16A2 
500 m/ 

8-day 

2000-

2020 
Rn, LE 

Modified Penman-

Monteith equation 
Mu et al. (2011) 

PML_V2 
500 m/ 

8-day 

2002-

2020 
LE 

Penman Monteith-

Leuning model, 

Priestly Taylor 

equation and Gash 

model 

Zhang et al. (2019) 

ETMonitor 
1 km/ 

daily 

2000-

2020 
LE 

Shuttleworth-

Wallace two-

source scheme, 

Gash model and 

Penman equation 

Zheng et al. (2022) 

2.2 Climate/meteorology and remote sensing data 184 

To generate global datasets of land surface radiation and heat fluxes from 2000 to 185 

2020, five types of climate/meteorology and remote sensing data were used in this study, 186 

including: 187 

(1) ERA5-Land reanalysis datasets (https://cds.climate.copernicus.eu/, last access: 6 188 

August 2024) with the spatial resolution of ~9 km from 1950 (Muñoz-Sabater et 189 

al., 2021). Following our previous work (Wang et al., 2025), this study used 190 



9 

 

variables from the ERA5-Land datasets to drive the model, including near-surface 191 

2 m air temperature ( aT ), soil temperature in layer 1 (0-7 cm, 1ST ), soil volumetric 192 

moisture content in layer 1 (0-7 cm,  SM1 1SM  ), solar radiation reaching the 193 

surface of the earth (
5ERA

INSW  ), net thermal radiation at the surface ( netLW  ), 194 

pressure of the atmosphere (PA PA ), 10 m wind speed (WSWS ), precipitation (Pr195 

rP  ) and the 2 m dewpoint temperature, daily minimum and maximum air 196 

temperature [for calculating relative air humidity (RH RH )]. 197 

(2) GLASS datasets (https://glass.bnu.edu.cn/, last access: 6 August 2024), which 198 

provide the 500 m 8-day leaf area index (LAI) and fractional vegetation cover 199 

(FVC) from February 2000 to December 2021. 200 

(3) MOD44B product (https://lpdaac.usgs.gov/, last access: 6 August 2024), which 201 

offers yearly 250 m percent tree cover (PTC) since 2000, representing the 202 

percentage (0~100%) of a pixel covered by tree canopy. 203 

(4) NOAA/GML atmospheric carbon dioxide (CO2) concentration data, providing 204 

monthly global marine surface mean data since 1958 205 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6 206 

August 2024).  207 

(5) GMTED2010 topographic data 208 

(https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php, last 209 

access: 6 August 2024), providing 500 m digital elevation model (DEM), slope, 210 

and aspect. 211 

The ~9 km ERA5-Land datasets were spatially interpolated to 500 m using the 212 

cubic convolution method, and the 250 m PTC was resampled to 500 m using the 213 

arithmetic averaging method. 214 

2.3 Mainstream datasets/products for inter-comparison 215 

Mainstream RS-based datasets/products of moderate-resolution global land 216 

surface radiation and heat fluxes were collected for inter-comparison (Table 1), 217 

https://glass.bnu.edu.cn/
https://lpdaac.usgs.gov/
https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php
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including (1) the daily 0.05° GLASS SWIN, LWIN, LWOUT and Rn products from 2000 to 218 

2018 (https://glass.bnu.edu.cn/, last access: 6 August 2024), (2) the daily 0.05° 219 

Breathing Earth System Simulator Radiation (BESS-Rad) SWIN products from 2000 to 220 

2020 (https://www.environment.snu.ac.kr/bess-rad), (3) the daily 0.05° BESS 221 

Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020 222 

(https://www.environment.snu.ac.kr/bessv2), (4) the 8-day 0.0833° FLUXCOM Rn, LE 223 

and H products from 2001 to 2020 (https://fluxcom.org/, last access: 6 August 2024), 224 

(5) the daily 1 km ETMonitor LE product from 2000 to 2020 (https://data.casearth.cn/, 225 

last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2 226 

(PML_V2, https://www.tpdc.ac.cn/, last access: 6 August 2024) LE product from 2000 227 

to 2020; and (7) the 8-day 500 m MOD16A2 (https://lpdaac.usgs.gov/, last access: 6 228 

August 2024) LE product from 2000 to 2020. 229 

The GLASS SWIN products are derived from a combination of the GLASS 230 

broadband albedo product and the surface shortwave net radiation estimates, where the 231 

surface shortwave net radiation is estimated using linear regression with MODIS top-232 

of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LWIN and 233 

LWOUT products are generated using densely connected convolutional neural networks, 234 

incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance 235 

and ERA5 near-surface meteorological data (Xu et al., 2022b). The GLASS Rn 236 

products are estimated from the meteorological variables from MERRA2 and surface 237 

variables from GLASS using the multivariate adaptive regression splines model (Jiang 238 

et al., 2015). The BESS-Rad and BESSV2.0 estimate SWIN and Rn using a radiative 239 

transfer model (i.e., Forest Light Environmental Simulator, FLiES) with an artificial 240 

neural network based on MODIS and MERRA2 reanalysis datasets, and using FLiES 241 

based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al., 242 

2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et 243 

al., 2011), PML_V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated 244 

global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor 245 

https://www.tpdc.ac.cn/
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equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and 246 

H datasets are obtained through multiple machine learning methods based on in situ 247 

observations from FLUXNET and remote sensing and meteorological data (Jung et al., 248 

2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected 249 

LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study. 250 

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study 251 

Products/ 

datasets 

Reso-

lution 

Time 

coverage 
Variables Algorithms References 

GLASS 
0.05°/ 

daily 

2000-

2018 

SWIN, 

LWIN, 

LWOUT, Rn 

Machine 

learning, direct 

estimation 

algorithm 

Wang et al. (2015); 

Xu et al. (2022b); 

Jiang et al. (2015) 

BESS-Rad 
0.05°/ 

daily 

2000-

2020 
SWIN 

BESS process 

model 
Ryu et al. (2018) 

BESSV2.0 
0.05°/ 

daily 

2000-

2020 
Rn, LE 

BESS process 

model 
Li et al. (2023) 

FLUXCOM 
0.0833°/ 

8-day 

2000-

2020 
Rn, LE, H 

Model tree 

ensembles 
Jung et al. (2019) 

MOD16A2 
500 m/ 

8-day 

2000-

2020 
LE 

Modified Penman-

Monteith equation 
Mu et al. (2011) 

PML_V2 
500 m/ 

8-day 

2002-

2020 
LE 

Penman Monteith-

Leuning model, 

Priestly Taylor 

equation and Gash 

model 

Zhang et al. (2019) 

ETMonitor 
1 km/ 

daily 

2000-

2020 
LE 

Shuttleworth-

Wallace two-

source scheme, 

Gash model and 

Penman equation 

Zheng et al. (2022) 

 252 

3 Methods 253 

The method used to generate global datasets of land surface radiation and heat 254 

fluxes is based on the CoSEB model/framework, which was developed by our recently 255 
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previously published work (Wang et al., 2025), to coordinately estimate global land 256 

surface energy balance components (including Rn, LE, H and G) using the multivariate 257 

random forest technique, with a combination of MODIS and GLASS products, ERA5-258 

Land reanalysis datasets, and in situ observations at 336 EC sites from the FLUXNET, 259 

AmeriFlux, ChinaFLUX, EuroFlux, OzFlux and Heihe River Basin flux network. The 260 

CoSEB model was demonstrated to be able to produce high-accuracy estimates of land 261 

surface energy components, with the RMSE of <17 W/m2 and R2 of > 0.83 for 262 

estimating 4-day Rn, LE and H, and the RMSE of <5 W/m2 and R2 of 0.55 for 263 

estimating 4-day G. The most praiseworthy superiority of the CoSEB model lies in its 264 

ability to balance the land surface energy components, with an energy imbalance ratio 265 

[EIR, defined as 100%×(Rn - G - LE - H)/Rn ( )100% /Rn G LE H Rn − − − ] of 0. 266 

To coordinately estimate land surface radiation and heat fluxes that comply with 267 

both radiation balance and heat balance, one of the key procedures in the construction 268 

of the CoSEB model was to prepare training datasets that satisfy surface radiation and 269 

heat balance. For this purpose, the energy-imbalance corrections on daily in situ 270 

observed LE and H were conducted by the most widely applied Bowen ratio method 271 

[ ( )corr H
H Rn G

H LE
=  −

+
 , ( )corr LE

LE Rn G
H LE

=  −
+

 , where corrH   and corrLE  272 

represent the sensible heat flux and latent heat flux after energy-imbalance correction, 273 

respectively] with the aid of Rn and G observations, and the in situ Rn was calculated 274 

from the sum of in situ observed net longwave radiation (LWIN minus LWOUT) and net 275 

shortwave radiation (SWIN minus SWOUT). The input variables to renew the CoSEB 276 

model include: (1) climate/meteorology: aT , 
5ERA

INSW , netLW , WS , PA , rP , RH , 277 

CO2 concentration; (2) vegetation and soil: LAI, FVC, PTC, TS1 1ST , SM1 1SM ; (3) 278 

topography data: DEM, Slope and Aspect, in addition to longitude (Lon), latitude (Lat), 279 

and inverse relative distance from the Earth to the Sun (dr), in which the dr was 280 

calculated as 
2

1 0.033 cos
365

DOY
dr

  
= +   

 
, where DOY represents the day of year. 281 
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Considering that the footprint of the site-based measurements of turbulent heat fluxes 282 

is generally at a scale of hundreds of meters, to reduce the effect of differences of spatial 283 

scales between ground-based measurements (dependent variables) and remotely 284 

sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a 285 

spatial scale of 500 m for coordinately estimating global daily land surface radiation 286 

and heat fluxes, which can be expressed as follows: 287 

 
5

1

2

, , , , , , , 1, , , , , ,

, , , , , , , , , , ,

ERA
IN OUT IN a S IN net r

OUT

SW SW LW Lon Lat T T SM SW LW PA WS P dr
f

LW Rn LE H G RH LAI FVC PTC DEM Slope Aspect CO

  
=   

   
(1)  288 

To enhance model generalization, the renewed CoSEB model was reoptimized 289 

using random and grid search methods, resulting in different hyperparameters of 281 290 

decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 from 291 

those of Wang et al. (2025). Site-based 10-fold cross-validation was employed to 292 

evaluate the transferability and generalization of the CoSEB model by randomly 293 

dividing all sites into ten folds, where the samples from each fold of sites in turn served 294 

as validation datasets while the remaining folds were used as training datasets, ensuring 295 

that the validation was conducted on sites spatially independent from the training data. 296 

For comparison, eight RF-based uncoordinated models for separate estimates of SWIN, 297 

SWOUT, LWIN, LWOUT, Rn, LE, H and G were also constructed using the same inputs as 298 

those in the renewed CoSEB model. Site-based 10-fold cross-validation was employed 299 

to assess the transferability and generalization of the CoSEB model by randomly 300 

dividing all sites into ten folds, where each fold in turn serves as validation datasets 301 

while the other folds as the training datasets, ensuring the validation of the estimates of 302 

the CoSEB was conducted at sites that are spatially independent from those selected for 303 

the training datasets. Furthermore, to benchmark the coordinated estimates from the 304 

renewed CoSEB model, eight RF-based uncoordinated models were constructed, each 305 

separately estimating one of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H or G using the same 306 

inputs as those in the renewed CoSEB model. Fig. 2 illustrates the flowchart for 307 

generating global datasets of land surface radiation and heat fluxes by the CoSEB model.  308 
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 309 
Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation 310 

[including downward shortwave radiation (SWIN), downward longwave radiation (LWIN), 311 

upward shortwave radiation (SWOUT), upward longwave radiation (LWOUT) and net radiation 312 

(Rn)] and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux 313 

(H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and 314 

collocated remote sensing and reanalysis datasets. 315 

4 Results 316 

4.1 Validation of the CoSEB model 317 

4.1.1 Site-based 10-fold cross-validations at 258 EC sites 318 

Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-319 

validation of daily SWIN, LWIN, SWOUT, LWOUT, Rn, LE, H and G estimated from the 320 

renewed CoSEB model and the RF-based uncoordinated models, respectively, by using 321 

the validation datasets collected at 258 EC sites worldwide. Results indicated that the 322 

estimates from both the CoSEB model and the RF-based uncoordinated models agreed 323 

well with the in situ observations, with the coefficient of determination (R2) varying 324 

between 0.80 and 0.95 for SWIN, LWIN, LWOUT and Rn, and between 0.59 and 0.67 for 325 

SWOUT, LE and H. The CoSEB model, with the root mean square error (RMSE) of 26.82 326 

to 34.25 W/m2 and mean absolute error (MAE) of 18.83 to 24.49 W/m2 for SWIN, Rn, 327 

LE and H, the RMSE of 12.24 to 17.75 W/m2 and the MAE of 8.39 to 13.70 W/m2 for 328 



15 

 

SWOUT, LWIN and LWOUT, demonstrated comparable accuracies to the RF-based models, 329 

with the RMSE of 27.07 to 33.34 W/m2 and MAE of 19.29 to 23.64 W/m2 for SWIN, 330 

Rn, LE and H, the RMSE of 12.12 to 16.93 W/m2 and the MAE of 8.68 to 12.99 W/m2 331 

for SWOUT, LWIN and LWOUT. In the validation of daily G, both the CoSEB and RF-based 332 

models yielded RMSEs below 7 W/m2. Comparisons with the corresponding training 333 

results (Table S3 in the Supplementary Material) indicated that although the CoSEB 334 

model performed better on the training datasets, its overall performance remained stable, 335 

suggesting that the CoSEB model was not affected by overfitting. 336 

Strikingly, the CoSEB model exhibited large superiority in balancing the surface 337 

radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% × 338 

(SWIN – SWOUT + LWIN - LWOUT)/Rn 339 

( )100% /IN IN OUT OUT RnSW LW SW LW Rn− −− + ] and energy imbalance ratio [EIR, 340 

defined as 100% × (Rn - G - LE - H)/Rn ( )100% /Rn G LE H Rn − − − ] of 0, while 341 

the RF-based uncoordinated models showed substantial imbalances of the surface 342 

radiation and heat fluxes, with RIR and EIR that were approximately normally 343 

distributed, having absolute mean values of 38.84% and 31.22%, respectively, and 344 

reaching as high as 50% in some cases. Furthermore, the RIR as well as EIR tended to 345 

be higher under lower solar radiation, air temperature, or FVC, with more frequent low 346 

values of these three variables leading to a broader and less peaked distribution of RIR 347 

and EIR (see Fig. S1 in the Supplementary Material). 348 

It should be pointed out that the performances of both the renewed CoSEB model 349 

and the RF-based models could be further improved if the site-based 10-fold cross-350 

validation was replaced with the sample-based 10-fold cross-validation (Figs. S1 and 351 

S2 in the Supplementary Material). Specifically, for the CoSEB model, using the 352 

sample-based 10-fold cross-validation decreased the RMSE by 0.61 to 3.92 W/m2 for 353 

five radiation components and G, and by 6.25 W/m2 and 5.50 W/m2 for LE and H, 354 

respectively, in comparison to using the site-based 10-fold cross-validation. Likewise, 355 

for the RF-based models, the RMSE decreased by 1.41 to 5.25 W/m2 for five radiation 356 
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components and G, and by 9.63 W/m2 and 7.43 W/m2 for LE and H, respectively. The 357 

R2 of both the CoSEB model and the RF-based models using the sample-based 10-fold 358 

cross-validation increased by 0.02 to 0.28 compared to the R2 using the site-based 10-359 

fold cross-validation. 360 

 361 

Fig. 3 Scatter density plots of the site-based 10-fold cross-validation of daily downward 362 

shortwave and longwave radiation (SWIN and LWIN), upward shortwave and longwave 363 

radiation (SWOUT and LWOUT), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and 364 

sensible heat flux (H) derived by the CoSEB model against in situ observed SWIN, LWIN, SWOUT, 365 

LWOUT, Rn, G, and energy imbalance-corrected LE (
corr

dailyLE ) and H (
corr

dailyH ). The EIR and RIR 366 

in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which 367 

are defined as 100% × (Rn - G - LE - H)/Rn ( )100% /Rn G LE H Rn− − − and  100% × 368 

(SWIN – SWOUT + LWIN - LWOUT)/Rn 100% ( /)IN IN OUT OUTSW LW SW LW Rn Rn+ − − −  , 369 

respectively. The colorbar represents the normalized density of data points. 370 
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 371 
Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models. 372 

4.1.2 Validation at nine radiation sites from SURFRAD 373 

To further illustrate the generality and transferability of the renewed CoSEB model, 374 

the validation of estimates of the five radiation components (including SWIN, SWOUT, 375 

LWIN, LWOUT, Rn) derived from both the CoSEB model and RF-based uncoordinated 376 

models against observations at nine radiation sites from SURFRAD was performed, as 377 

shown in Fig. 5. The results showed that both the CoSEB model and the RF-based 378 

models achieved high accuracy in estimating daily SWIN, SWOUT, LWIN, LWOUT and Rn, 379 

with the RMSE of ~30 W/m2 for SWIN, ~14 W/m2 for SWOUT and LWIN, ~12 W/m2 for 380 

LWOUT and ~24 W/m2 for Rn, with the R2 >0.9 for SWIN, LWIN and LWOUT, ~0.65 for 381 

SWOUT and ~0.85 for Rn. Compared to the results of the site-based 10-fold cross-382 

validation at 258 EC sites, the performances at nine radiation sites showed slight 383 
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improvements, with the RMSE decreasing by 0.74 to 4.54 W/m2 for SWIN, LWIN, LWOUT 384 

and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by 385 

~1.05 W/m2 for SWOUT, suggesting the robust performance of the CoSEB model. 386 

Furthermore, the CoSEB model demonstrated a large superiority in maintaining surface 387 

radiation balance among the five radiation components, with the RIR of 0, in contrast 388 

to the RF-based models, which failed to meet this balance, exhibiting significant RIR 389 

exceeding 50%. 390 

4.2 Validation and inter-comparisons of the CoSEB-based datasets 391 

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of 392 

500 m achieved comparable accuracies to the RF-based uncoordinated models but 393 

outperformed them in balancing surface radiation and heat fluxes. Evidenced by the 394 

validation for its superiority, the renewed CoSEB model was then applied to the 395 

spatially aggregated input datasets to generate our developed global daily datasets with 396 

a spatial resolution of 0.05°. To further assess the performance of the developed 397 

CoSEB-based datasets, in situ observations from another 44 spatially independent test 398 

sites (see Section 2.1), which were not involved in model construction and datasets 399 

generation, were used for validation. Mainstream products (i.e. GLASS, BESS-Rad, 400 

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for 401 

inter-comparison at the 44 test sites. 402 

Note that due to the lack of moderate-resolution global RS-based products/datasets 403 

of daily and/or 8-day SWOUT, H and G, the intercomparison between different 404 

products/datasets was impossible. Instead, we conducted a validation of these 405 

components from the CoSEB-based datasets against in situ observations at 44 test sites, 406 

as shown in Figs S2 and S3 in the Supplementary Material. Results indicated that the 407 

CoSEB-based datasets could provide good estimates of SWOUT, H and G, with the 408 

RMSEs (R2) of 14.20 W/m2 (0.42), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44) at daily 409 

scale, respectively, and the RMSE (R2) of 12.19 W/m2 (0.39) and 4.60 W/m2 (0.47) for 410 

8-day SWOUT and G, respectively. 411 
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 413 
Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave 414 

radiation (SWIN and LWIN), upward shortwave and longwave radiation (SWOUT and LWOUT) 415 

and net radiation (Rn) from the renewed CoSEB model (upper two rows) and RF-based 416 

uncoordinated models (lower two rows) -based datasets against in situ observations at nine 417 

radiation sites from SURFRAD. The RIR represents the radiation imbalance ratio, defined as 418 

100% × (SWIN – SWOUT + LWIN - LWOUT)/Rn ( )100% /IN IN OUT OUTSW LW SW LW Rn Rn+ − − − . 419 

The colorbar represents the normalized density of data points. 420 

4.2 Validation and inter-comparisons of the CoSEB-based datasets 421 

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of 422 
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500 m achieved comparable accuracies to the RF-based uncoordinated models but 423 

outperformed them in balancing surface radiation and heat fluxes. Evidenced by the 424 

validation for its superiority, the renewed CoSEB model was then applied to the 425 

spatially aggregated input datasets to generate our developed global daily datasets with 426 

a spatial resolution of 0.05°. To further assess the performance of the developed datasets, 427 

in situ observations at 134 sites out of the 258 EC sites were further used to test the 428 

performance of the CoSEB-based datasets, where the 134 sites were selected based on 429 

the commonly applied criterion (Salazar-Martínez et al., 2022; Tang et al., 2024a) that 430 

the fraction of the dominant land cover types (from the 500 m MCD12Q1 product) 431 

exceeded 80% within the 0.05° grid, ensuring surface homogeneity and spatial 432 

representativeness of the observations. Mainstream products (i.e. GLASS, BESS-Rad, 433 

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for 434 

inter-comparison at the 134 EC sites. 435 

Note that due to the lack of moderate-resolution global RS-based products/datasets 436 

of daily and/or 8-day SWOUT, H and G, the intercomparison between different 437 

products/datasets was impossible. Instead, we conducted a validation of these 438 

components from the CoSEB-based datasets against in situ observations at 134 EC sites, 439 

as shown in Figs S3 and S4 in the Supplementary Material. Results indicated that the 440 

CoSEB-based datasets could provide good estimates of SWOUT, H and G, with the 441 

RMSE of 10.39 W/m2, 22.67 W/m2 and 6.77 W/m2 at daily scale, respectively, and the 442 

RMSE of 7.08 W/m2 and 4.25 W/m2 for 8-day SWOUT and G, respectively. 443 

Fig. 6 and Fig. 7 present the comparison of daily SWIN, LWIN and LWOUT, as well 444 

as Rn and LE from the CoSEB-based datasets and mainstream products/datasets 445 

(including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations 446 

at 134 44 EC test sites, respectively. Overall, the estimates from the CoSEB-based 447 

datasets exhibited a closer agreement with in situ observations than those from 448 

mainstream products/datasets, where the CoSEB-based datasets reduced the RMSE by 449 

4.350.01 W/m2 to 11.464.58 W/m2 and increased the R² by 0.04 01 to 0.3 09 compared 450 
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to mainstream products. Specifically, the RMSE for the SWIN, LWIN, LWOUT increased 451 

from 28.5137.52 W/m2, 14.2922.47 W/m2 and 10.6213.78 W/m2 in the CoSEB-based 452 

datasets to 35.447.53 W/m2 ,18.6423.37 W/m2 and 15.2916.46 W/m2 in the GLASS, 453 

respectively, and for SWIN from 28.5137.52 W/m2 in the CoSEB-based datasets to 454 

36.2340.87 W/m2 in the BESS-Rad. Likewise, the RMSEs for daily Rn and LE were 455 

22.409.66 W/m2 and 24.3830.87 W/m2 in the CoSEB-based datasets, which were lower 456 

than those of 29.8034.24 W/m2 and 35.754.36 W/m2 in BESSV2.0, respectively, as well 457 

as those of 27.1130.60 W/m2 for Rn in GLASS and 35.843.62 W/m2 for LE in 458 

ETMonitor. 459 

460 
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 461 

Fig. 6 Comparison of the daily downward shortwave radiation (SWIN, the first column), 462 

downward longwave radiation (LWIN, the second column) and upward longwave radiation 463 

(LWOUT, the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the 464 

in situ observed SWIN, LWIN and LWOUT at 134 44 eddy covariancetest sites. The colorbar 465 

represents the normalized density of data points. 466 
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467 

 468 

Fig. 7 Comparison of the daily net radiation (Rn, the upper row) and latent heat flux (LE, the 469 

lower row) from the CoSEB-based datasets, BESSV2.0, GLASS and ETMonitor with the in 470 

situ observed Rn, and energy imbalance-corrected LE (
corr

dailyLE ) at 134 44 eddy covariancetest 471 

sites. The colorbar represents the normalized density of data points. 472 

Figs. 8, 9 and 10 compare the 8-day SWIN, LWIN and LWOUT, Rn and LE, as well as 473 

H from the CoSEB-based datasets and mainstream products, with in situ observations 474 

at 44 test134 EC sites, respectively. Overall, the CoSEB-based datasets outperformed 475 
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the mainstream products/datasets for all surface radiation and heat fluxes, where the 476 

CoSEB-based datasets reduced the RMSE by 4.620.24 W/m2 to 14.640.48 W/m2 and 477 

increased the R² by 0.04 01 to 0.41 38 compared to mainstream products. Specifically, 478 

for SWIN, LWIN and LWOUT, the RMSE increased from 12.818.54 W/m2, 9.2218.50 W/m2 479 

and 8.349.41 W/m2 in the CoSEB-based datasets to 21.23 35 W/m2, 15.3720.39 W/m2 480 

and 14.70 48 W/m2 in the GLASS, respectively, and for SWIN from 12.8118.54 W/m2 481 

in the CoSEB-based datasets to 17.4318.78 W/m2 in the BESS-Rad. For Rn, the RMSE 482 

increased from 13.389.12 W/m2 in the CoSEB-based datasets to ~23 W/m2 in the 483 

FLUXCOM and GLASS and to >27 W/m2 in the BESSV2.0 18.64 W/m2 in the GLASS 484 

and to >23 W/m2 in the FLUXCOM and BESSV2.0, while the R2 decreased from 0.91 485 

82 in the CoSEB-based datasets to 0.75 in the FLUXCOM and GLASS and to 0.82 62 486 

in the GLASS BESSV2.0and to <0.72 in the FLUXCOM and BESSV2.0. Likewise, for 487 

LE, the RMSE increased from 19.9922.31 W/m2 in the CoSEB-based datasets to 488 

~26.1625 W/m2 in the FLUXCOM, PML_V2, BESSV2.0 and ETMonitor, and 489 

to >28.1732 W/m2 in BESSV2.0, MOD16A2, PML_V2 and ETMonitor, while the R2 490 

decreased from 0.8 67 in the CoSEB-based datasets to ~0.65 60 in the FLUXCOM, 491 

PML_V2, BESSV2.0 and ETMonitorFLUXCOM, and to <0.6 3 in the remaining 492 

productsMOD16A1. For H, the RMSE increased from 17.4421.63 W/m2 in the CoSEB-493 

based datasets to 23.962.64 W/m2 in the FLUXCOM.  494 

The differences between the estimates from the CoSEB-based datasets and 495 

mainstream datasets are likely multifactorial, arising from the simplification and 496 

parameterization uncertainties in physics-based models, as well as the lack of physical 497 

constraints, limited training samples, and incomplete consideration of influencing 498 

factors in other machine-learning-based models. 499 

 500 
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 502 

Fig. 8 Same as Fig. 6, but for the comparison at 8-day scale. 503 
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 505 

Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux 506 

(LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS, 507 

MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-508 

corrected LE ( 8

corr

dayLE −  ) at 134 44 testeddy covariance sites. The colorbar represents the 509 

normalized density of data points. 510 

 511 
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512 

 513 

Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and 514 

the FLUXCOM with the in situ energy imbalance-corrected H ( 8

corr

dayH −  ) at 134 44 eddy 515 

covariancetest sites. The colorbar represents the normalized density of data points. 516 

4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes 517 

In addition to the validation and inter-comparison of the CoSEB-based datasets at 518 

the global site scales, we further inter-compared the estimates of land surface radiation 519 

and heat fluxes from the CoSEB-based datasets and the mainstream products/datasets, 520 

in terms of their global spatial and temporal patterns. 521 

Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic 522 

continent, deserts, water bodies and permanent snow) and latitudinal profiles of the 523 

global 0.05° mean annual SWIN, LWIN and LWOUT, Rn and LE, as well as H from 2001 524 

to 2018, respectively, as derived from the CoSEB-based datasets and mainstream 525 

products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, 526 

PML_V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or 527 

cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates 528 
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from the CoSEB-based datasets aligned well with those observed in these mainstream 529 

products/datasets, though regional discrepancies were present. Specifically, the mean 530 

annual LWIN, LWOUT, Rn, and LE generally exhibited decreasing trends from the equator 531 

towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo 532 

Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SWIN and 533 

H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia, 534 

Sahel and Southern Africa, while the lower values were found in high-latitude regions 535 

of >50°N. In the region with of high values, the mean annual estimates of SWIN from 536 

the CoSEB-based datasets were higher than those from GLASS but lower than those 537 

from BESS-Rad, the estimates of LWIN and LWOUT from the CoSEB-based datasets were 538 

both higher than those from GLASS, the estimates of Rn from the CoSEB-based 539 

datasets were significantly higher than those from BESSV2.0, and comparable to or 540 

slightly higher than those from FLUXCOM and GLASS, the estimates of LE from the 541 

CoSEB-based datasets were close to those from BESSV2.0 and PML_V2, but slightly 542 

lower than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates 543 

of H from the CoSEB-based datasets were higher than those from FLUXCOM in 544 

regions with high values, while lower than those from FLUXCOM in regions with low 545 

values.546 
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 547 
Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SWIN, the first 548 

row), downward longwave radiation (LWIN, the second row) and upward longwave radiation 549 

(LWOUT, the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad. 550 

The rightmost subfigure of each row represents the latitudinal profiles of mean annual SWIN, 551 

LWIN and LWOUT from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area 552 

represents the variation of standard deviation for each product. 553 

 554 

Fig.12 Spatial patterns of global mean annual net radiation (Rn, the first row) and latent heat 555 

flux (LE, the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM, 556 

BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third 557 

row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets 558 

and these mainstream products/datasets, where the shaded area represents the variation of 559 

standard deviation for each product. 560 
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 561 

Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by 562 

CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal 563 

profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded 564 

area represents the variation of standard deviation for each product. 565 

The temporal evolutions of the global (excluding Greenland, Antarctic continent, 566 

deserts, water bodies and permanent snow) land surface radiation and heat fluxes 567 

derived from the CoSEB-based datasets and mainstream products/datasets from 2001 568 

to 2018 were also investigated, as shown in Fig. 14. The results indicated that the 569 

temporal variation of each flux from the CoSEB-based datasets generally agreed well 570 

with those from mainstream products/datasets, exhibiting relatively stable trends. The 571 

global annual mean estimates using area weighting average by the CoSEB-based 572 

datasets from 2001 to 2018 varied between ~185.22 and ~189.50 W/m2 with the mean 573 

of ~187.23 W/m2 for SWIN, between ~32.67 and ~33.20 W/m2 with the mean of ~32.96 574 

W/m2 for SWOUT, between ~330.24 and ~334.14 W/m2 with the mean of ~331.50 W/m2 575 

for LWIN, between ~387.25 and ~390.82 W/m2 with the mean of ~388.81 W/m2 for 576 

LWOUT, between ~95.41 and ~99.39 W/m2 with the mean of 97.11 W/m2 for Rn, 577 

between ~53.24 and ~56.37 W/m2 with the mean of ~54.53 W/m2 for LE, between 578 

~40.44 and ~41.96 W/m2 with the mean of ~41.29 W/m2 for H, and between ~1.22 and 579 

~1.52 W/m2 with the mean of ~1.33 W/m2 for G. For each radiation or heat flux, the 580 

annual mean estimates from the CoSEB-based datasets were overall higher than those 581 

from the mainstream products/datasets. In particular, the annual mean Rn estimates 582 

from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and 583 

BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based 584 

datasets were marginally higher than those from FLUXCOM, but substantially 585 

exceeded those from ETMonitor, PML_V2, MOD16A2 and BESSV2.0 sequentially. 586 



34 

 

 587 

Fig. 14 Temporal variation of annual mean downward shortwave radiation (SWIN), upward 588 

shortwave radiation (SWOUT), downward longwave radiation (LWIN), upward longwave 589 

radiation (LWOUT), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat 590 

flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM, 591 

BESSV2.0, PML_V2, MOD16A2 and ETMonitor. The shaded area represents the variation of 592 

standard deviation for each product. 593 



35 

 

 594 
Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward 595 

shortwave radiation (SWIN, the first row), downward longwave radiation (LWIN, the second 596 

row) and upward longwave radiation (LWOUT, the third row) from 2001 to 2018 by the CoSEB-597 

based datasets, GLASS and BESS-Rad. 598 

Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic 599 

continent, deserts, water bodies and permanent snow) of interannual variability of SWIN, 600 

LWIN and LWOUT, Rn and LE, as well as H from 2001 to 2018, respectively, derived 601 

from the CoSEB-based datasets and mainstream products/datasets. In general, the 602 

estimates from the CoSEB-based datasets displayed similar interannual variability in 603 

space with those from the mainstream products/datasets. Specially, the estimates of 604 

SWIN from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant 605 

interannual variability mainly in northeastern Australia, eastern South America, 606 

Southeast China, and Southwest North America. The interannual variability of LWIN 607 

and LWOUT by the CoSEB-based datasets and GLASS displayed high values primarily 608 

at middle-to-high latitudes of the Northern Hemisphere and parts of Africa and 609 

Australia. The interannual variability of Rn observed by the CoSEB-based datasets was 610 

generally lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM. 611 

The CoSEB-based datasets missed the strong interannual variability of LE as observed 612 

in MOD16A2, PML_V2 and ETMonitor in parts of Africa, Australia and eastern South 613 
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America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE 614 

in almost all regions. The interannual variability of H derived from the CoSEB-based 615 

datasets was higher than those that from FLUXCOM, with stronger interannual 616 

variabilities mainly observed in parts of eastern South America, southern Africa, and 617 

northeastern Australia. 618 

 619 
Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn, 620 

the first and second rows) and latent heat flux (LE, the third and fourth row) from 2001 to 621 

2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2, 622 

ETMonitor and GLASS. 623 

 624 

Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux 625 

(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM. 626 
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5 Discussion 627 

Accurately monitoring the spatial and temporal variations of global land surface 628 

radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and 629 

water between the land and atmosphere under global climate change (Chen et al., 2020; 630 

Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However, 631 

although numerous global RS-based products/datasets of land surface radiation and 632 

heat fluxes have been developed using physical and/or statistical methods, they 633 

typically provide either merely a single flux or multiple fluxes (see Table 1) that are 634 

estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019; 635 

Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or 636 

heat imbalance when these products are combined for practical applications. To address 637 

these limitations, we generated high-accuracy global datasets of land surface radiation 638 

and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation 639 

laws, using our proposed CoSEB model (Wang et al., 2025). 640 

Our CoSEB model, integrating underlying physical principles of training datasets 641 

into machine learning technique to effectively learn the interrelations among multiple 642 

targeted outputs, was originally designed for coordinating estimates of global land 643 

surface energy balance components (Rn, LE, H and G) to satisfy the energy 644 

conservation (Wang et al., 2025). Inspired by the idea of constructing the original 645 

CoSEB model, we further incorporated land surface radiation fluxes into our model to 646 

simultaneously consider the physical constraints of both surface radiation and heat 647 

conservation principles, by renewing the CoSEB using multiple remote sensing 648 

productsand, reanalysis datasets, as well as in- situ observations of SWIN, SWOUT, LWIN, 649 

LWOUT, Rn, LE, H and G. In selecting the 19 input variables to accommodate the 650 

additional target variables, prior knowledge derived from previous studies was 651 

employed to identify factors that exert significant influence on surface radiation and 652 

heat flux while maintaining relative inter-independence as much as possible (Jung et al., 653 

2019; Mohan et al., 2020; Wang et al., 2021; Xian et al., 2024). This practice is 654 
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commonly adopted in data-driven models for estimating land surface water, energy, and 655 

carbon fluxes (Bai et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). 656 

The importance scores of the 19 different feature variables are exhibited in Table S4 in 657 

the Supplementary Material, and downward solar radiation, the primary source of the 658 

energy at the earth surface, is the most important input variable, consistent with the 659 

results from our previous study (Wang et al., 2025). Although some of the selected 660 

variables may exhibit a certain degree of multi-collinearity, each contributes unique and 661 

physically meaningful information, supporting the inclusion of all variables in model 662 

construction. To comprehensively account for the main factors influencing surface 663 

radiation and heat fluxes (Mohan et al., 2020; Wang et al., 2021; Xian et al., 2024)[JW1], 664 

the renewed CoSEB model utilized 19 easily accessible parameters/variables from 665 

ERA5-Land reanalysis datasets, GLASS products, MODIS products, GMTED2010 and 666 

NOAA/GML as input, which were readily available to generate datasets of global land 667 

surface radiation and heat fluxes in a practical and operational manner.(Wang et al., 668 

2025)Note that the variable importance, derived from the built-in method of the random 669 

forests and potentially affected by multicollinearity among the input variables, is 670 

presented only as a reference. Retaining all 19 feature variables ensures the model’s 671 

flexibility and generalization capability, enabling future incorporation of additional 672 

representative ground-based observations for further training and improvement. 673 

Besides, to investigate the impact of lagged effects of input variables on model 674 

performance, experiments were also conducted by adding lagged variables (e.g., the air 675 

temperature of the previous day) to the 19 input features. The results (Fig. S4 in the 676 

Supplementary Material) showed almost no improvement in model accuracy, 677 

suggesting that lagged effects on model performance were negligible within the CoSEB 678 

framework for estimates of daily surface radiation and heat fluxes. Furthermore, to 679 

better illustrate the effect of including additional radiation components (SWIN, SWOUT, 680 

LWIN and LWOUT) in the renewed CoSEB model compared with the original version by 681 

Wang et al. (2025), we have tested the performance of a reconstructed model that 682 
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estimated only Rn, LE, H and G using the same independent variables and samples as 683 

those in the renewed CoSEB model. The results (Fig. S5 in the supplementary material) 684 

showed no significant differences in accuracy compared with those of the renewed 685 

CoSEB model, indicating the expansion of radiation components did not compromise 686 

model performance. 687 

The main advantages of our CoSEB-based datasets of land surface radiation and 688 

heat fluxes lie in that [1] they are the first RS-baseddata-driven global datasets that 689 

satisfy both surface radiation balance (SWIN - SWOUT + LWIN - LWOUT = Rn690 

IN OUT IN OUTSW SW LW LW Rn− + − =  ) and heat balance (LE + H + G = Rn691 

LE H G Rn+ + = ) among the eight fluxes, as demonstrated by both the RIR and EIR 692 

of 0, [2] the radiation and heat fluxes are characterized by high accuracies when 693 

validated against in- situ measurements at 134 “homogeneous”44 independent test sites 694 

(see the first second paragraph in Section 4.22.1), where (1) the RMSEs for daily 695 

estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based 696 

datasets were 28.5137.52 W/m2, 10.394.20 W/m2, 14.2922.47 W/m2, 10.623.78 W/m2, 697 

22.409.66 W/m2, 24.3830.87 W/m2, 22.679.75 W/m2 and 6.775.69 W/m2, respectively, 698 

as well as for 8-day estimates were 12.818.54 W/m2, 7.0812.19 W/m2, 9.2218.50 W/m2, 699 

8.349.41 W/m2, 13.389.12 W/m2, 19.9922.31 W/m2, 17.4421.63 W/m2 and 4.254.60 700 

W/m2, respectively, (2) the CoSEB-based datasets, in comparison to the mainstream 701 

RS-based products/datasets (i.e. GLASS, BESS-Rad, FLUXCOM, BESSV2.0, 702 

MOD16A2, PML_V2 and ETMonitor), better agreed with the in situ observations at 703 

134 ECthe 44 test sites, showing the RMSE reductions ranging from 4.350.01 W/m2 to 704 

11.464.58 W/m2 for SWIN, LWIN, LWOUT, Rn and LE at daily scale, and 4.620.24 W/m2 705 

to 14.640.48 W/m2 for SWIN, LWIN, LWOUT, Rn, LE and H at 8-day scale. Furthermore, 706 

the CoSEB-based datasets outperformed the ERA5-Land reanalysis datasets in 707 

estimating surface energy fluxes (where SWOUT, LWOUT, Rn and G for the ERA-Land 708 

were inferred from surface radiation balance and heat balance), particularly for SWOUT, 709 

H and G, with RMSE reductions of 0.13-8.15 W/m2 when validated against in situ 710 
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observations at the 44 test sites (Figs. S6 and S7 in the Supplementary Material). 711 

Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial patterns 712 

consistent with those of mainstream RS-based datasets and Earth system model outputs 713 

(see Fig. S8 in the supplementary material). More detailed analysis about their 714 

similarities and differences can be further conducted in future work. 715 

Our developed datasets could be potentially applied in many fields, including but 716 

not limited to (1) exploring the spatial-temporal patterns of global land surface radiation 717 

and heat flux (es) and their driving mechanisms over the past decades under global 718 

change (e.g., rising CO2 concentration, greening land surface and increasing air 719 

temperature), (2) investigating the variability of land surface radiation and heat fluxes 720 

caused by extreme events and human activities, e.g. afforestation or deforestation, 721 

wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources 722 

of solar energy, geothermal energy, surface and ground water at regional and global 723 

scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry. 724 

The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2) 725 

the application of the CoSEB at model across different spatial scales. Specifically, the 726 

daily averages of surface radiation and heat fluxes for each day wereas obtained for 727 

analysis from good-quality half-hourly observations when the fraction of these good-728 

quality half-hourly observations was greater than 80% in a day, due to the lack of 729 

consensus on the method for aggregating gapped half-hourly observations to daily data 730 

(Tang et al., 2024a; Yao et al., 2017; Zheng et al., 2022). Simple temporal interpolation 731 

of half-hourly in situ observations, which could therefore introduce substantial 732 

uncertainties, was not applied, because surface radiation and heat fluxes are sensitive 733 

to short-term variations in meteorological conditions and their intraday dynamics are 734 

often complex. Likewise, since there was no agreement on how to correct for the energy 735 

imbalance of turbulent heat fluxes, we adopted the most widely applied Bowen ratio 736 

method to enforce energy closure between Rn G−  and LE H+  (Castelli et al., 2018; 737 

Twine et al., 2000; Zhang et al., 2021). Another potential source of uncertainty arises 738 
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from differences in meteorological reanalysis data caused by spatial downscaling, 739 

which, as demonstrated in our previous study (Wang et al., 2025, the last paragraph of 740 

Section 5.1), has a relatively small impact on model estimates by the machine-learning-741 

based CoSEB model combined with finer-resolution surface-related variables that 742 

partially compensate for the spatial heterogeneity and localized variations not captured 743 

by the coarse-resolution datasets.(Wang et al., 2025, the last paragraph of Section 5.1) 744 

(Wang et al., 2025, the last paragraph of Section 5.1)These data preprocessing had an 745 

effect on the construction of the renewed CoSEB model, which may further affect the 746 

global datasets. Moreover, the renewed CoSEB model was constructed at the spatial 747 

scale of 500 m to match the footprints of the in situ EC observations, but applied at the 748 

spatial resolution of 0.05° to generate global datasets, mainly limited by the computing 749 

and storage capabilities in of our personal computers. However, the CoSEB-based 750 

datasets have also been validated and inter-compared at 134 EC44 independent test sites 751 

to demonstrate that the difference in spatial scale would not much affect the 752 

performance of the datasets. Despite these uncertainties, it is worth emphasizing that 753 

our work was the first attempt to innovatively develop data-driven energy-conservation 754 

datasets of global land surface radiation and heat fluxes with high accuracies. 755 

 756 

6 Data availability 757 

The energy-conservation datasets of global land surface radiation and heat fluxes 758 

generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05° 759 

from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan 760 

Plateau Data Center at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) 761 

and through the Science Data Bank (ScienceDB) at 762 

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b).  763 

https://doi.org/10.57760/sciencedb.27228
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7 Summary and Conclusion 764 

This study for the first time developed data-driven energy-conservation datasets 765 

of global land surface radiation and heat fluxes using our CoSEB model renewed based 766 

on GLASS and MODIS products, ERA5-Land reanalysis datasets, topographic data, 767 

CO2 concentration data, and observations at 258 EC sites worldwide from the 768 

FLUXNET, AmeriFlux, EuroFlux, OzFlux, ChinaFLUX and TPDC. 769 

The CoSEB-based datasets of land surface radiation and heat fluxes are the first 770 

RS-baseddata-driven global datasets that satisfy both surface radiation balance (SWIN - 771 

SWOUT + LWIN - LWOUT = Rn IN OUT IN OUTSW SW LW LW Rn− + − = ) and heat balance (LE 772 

+ H + G = Rn LE H G Rn+ + = ) among the eight fluxes. Meanwhile, the CoSEB-based 773 

datasets outperformed the mainstream products/datasets in accuracy. Specifically, at 774 

134 44EC  independent test sites, the RMSEs (R2) for daily estimates of SWIN, SWOUT, 775 

LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based datasets were 37.52 W/m2 (0.81), 776 

14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 13.78 W/m2 (0.95), 29.66 W/m2 (0.77), 30.87 777 

W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44), respectivelythe RMSEs for 778 

daily estimates of SWIN, SWIN, LWIN, LWOUT, Rn, LE, H and G from the CoSEB-based 779 

datasets were 28.51 W/m2, 10.39 W/m2, 14.29 W/m2, 10.62 W/m2, 22.40 W/m2, 24.38 780 

W/m2, 22.67 W/m2 and 6.77 W/m2, respectively, as well as for 8-day estimates were 781 

12.8118.54 W/m2 (0.87), 7.0812.19 W/m2 (0.39), 9.2218.50 W/m2 (0.92), 8.349.41 782 

W/m2 (0.97), 13.389.12 W/m2 (0.82), 19.9922.31 W/m2 (0.67), 17.4421.63 W/m2 (0.39) 783 

and 4.254.60 W/m2 (0.47), respectively. Moreover, the estimates from the CoSEB-784 

based datasets in comparison to those from the mainstream products/datasets reduced 785 

the RMSE by 4.350.01 W/m2 to 11.464.58 W/m2 and increased the R2 by 0.04 01 to 0.3 786 

09 for SWIN, LWIN, LWOUT, Rn and LE at daily scale, and reduced the RMSE by 4.620.24 787 

W/m2 to 14.640.48 W/m2 and increased the R2 by 0.04 01 to 0.41 38 for SWIN, LWIN, 788 

LWOUT, Rn, LE and H at 8-day scale, when these estimates were validated against in 789 

situ observations at 134 44 EC independent test sites. Furthermore, the CoSEB-based 790 

datasets effectively captured the spatial-temporal variability of global land surface 791 
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radiation and heat fluxes, aligning well with those from the mainstream products. 792 

Our developed datasets hold significant potential for application across diverse 793 

fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental 794 

science. They can facilitate comprehensive studies on the variability, impacts, responses, 795 

adaptation strategies, and mitigation measures of global and regional land surface 796 

radiation and heat fluxes under the influences of climate change and human activities. 797 

These datasets will provide valuable insights and data support for scientific research, 798 

policy-making, and environmental management, advancing global solutions to address 799 

climate change. 800 
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