Summary of major revisions

We have carefully considered all the comments and made point-to-point
modifications in the revised manuscript.

Firstly, we have more precisely described the datasets as “the first data-driven
energy-conservation datasets of global land-surface radiation and heat fluxes”.

Secondly, following the reviewers’ suggestions, we have additionally
incorporated 44 test sites to validate and compare the performance of the CoSEB-
based datasets with mainstream products (Section 4.2) and with the ERAS5-Land
datasets (Figs. S6 and S7).

Thirdly, we have (1) added a new table (Table S3) summarizing the mean
accuracy of the training datasets of the renewed CoSEB model to evaluate potential
overfitting; (2) briefly described the optimization of hyperparameters for the
renewed CoSEB model (Section 3); and (3) added a new table (Table S4) presenting
the importance scores of different feature variables for estimating daily surface
radiation and heat fluxes.

Fourthly, we have included new experiments to (1) illustrate the relationship
between the energy (radiation) imbalance ratio derived from RF-based
uncoordinated models and three critical input variables (Fig. S1); (2) investigate the
impact of lagged effects of input variables on model performance (Fig. S4); (3)
demonstrate the effects of incorporating additional radiation components in the
renewed CoSEB model (Fig. S5) compared with the original version by Wang et al.
(2025).

Lastly, in Section 5, we have discussed the selection of 19 input feature
variables, the uncertainty introduced by the downscaling of ERAS5-Land datasets, the
consistent spatial patterns between CoSEB-based datasets and CESM Large
Ensemble Project (Fig. S8) while noting that a more detailed analysis of their spatial-
temporal patterns and variability could be conducted in future work.

Accordingly, the texts, figures, and tables have been updated throughout the
manuscript. We believe our manuscript has been greatly improved by following the

reviewers’ comments and suggestions.



Responses to the Comments and Suggestions

Reviewer #1:

This paper presents an energy conservation datasets of global land surface radiation
and heat fluxes from 2000 to 2020. The dataset is generated by the model of
Coordinated estimates of land Surface Energy Balance components (CoSEB), with a
combination of GLASS and MODIS remote sensing data, ERAS5-Land reanalysis
datasets, topographic data, CO2 concentration data, and observations at 258 eddy
covariance sites worldwide from the AmeriFlux, FLUXNET, EuroFlux, OzFlux,
ChinaFLUX and TPDC. The primary merit of this new model is energy-conservation.
Although the dataset might be useful, this dataset is not the first energy conservation
datasets of global land surface radiation and heat fluxes as claimed by the authors.
Therefore, major revisions are required before the paper is accepted.

Ans: Thank you very much for your valuable comments and suggestions. We
sincerely appreciate your recognition of the dataset and the CoSEB model’s merit in
ensuring energy conservation. We would like to clarify that our initial statement,
which described the datasets as “the first energy-conservation datasets of global land
surface radiation and heat fluxes,” may not have been entirely accurate. After careful
consideration, we have revised the manuscript to more precisely describe the
datasets as “the first data-driven energy-conservation datasets of global land-surface
radiation and heat fluxes”. Besides, we have carefully considered all the comments
and suggestions from you and another reviewer and made corresponding
modifications and clarifications in the revised manuscript. More detailed information
of our revisions can be found in the item-by-item response below.

Specific comments:

1. The authors claim that “This study presents the first energy conservation
datasets of global land surface radiation and heat fluxes”, but reanalysis datasets,
such as ERAS which is used as inputs of this new dataset, also provide energy
conservation surface fluxes for these energy fluxes. Maybe the authors want to
say that this is the first remote sensing-based dataset? But the ERAS radiative
fluxes, which are not remote sensing-based, are used to generate surface fluxes
in this paper, so this dataset is neither the first remote sensing-based dataset.

Ans: We sincerely thank the reviewer for this insightful comment. We acknowledge

that reanalysis datasets, such as ERAS5-Land, can in principle calculate these fluxes

based on surface energy conservation. However, these reanalysis datasets rarely
include all eight flux components directly. For example, ERAS5-Land does not
explicitly provide upward shortwave radiation, upward longwave radiation, net
radiation or soil heat flux. Additionally, we would also like to clarify that the

CoSEB-based datasets were developed by integrating both remote sensing products

(e.g., PTC from MOD44B, LAI and FVC from GLASS, DEM, slope, and aspect

from GMTED2010) and meteorological reanalysis data as inputs. It should be noted

that widely used surface radiation and heat flux products, commonly referred to as
remote sensing-based datasets, generally require meteorological reanalysis data as



inputs, e.g., the MOD16 ET product (Mu et al., 2011), SSEBop ET product (Senay et
al., 2020), and GLASS radiation products (Wang et al., 2015; Xu et al., 2022), rather
than relying solely on remote sensing data. Therefore, although our CoSEB-based
datasets incorporate meteorological data from ERAS5S-Land in addition to remote
sensing data, we believe it appropriate to refer to them as remote sensing-based
datasets.

After careful consideration, we have revised the manuscript to more precisely
describe the datasets as “the first data-driven energy-conservation datasets of global
land-surface radiation and heat fluxes”. We have revised this in the new manuscript
as follows:

Abstract:

“This study presents the first data-driven energy-conservation datasets of global land
surface radiation and heat fluxes from 2000 to 2020 ... The developed CoSEB-based
datasets are strikingly advantageous in that [1] they are the first data-driven global
datasets that satisfy both surface radiation balance (SWin - SWour + LWin - LWour =
Rn) and heat balance (LE + H + G = Rn) among the eight fluxes,...”

5 Discussion

“The main advantages of our CoSEB-based datasets of land surface radiation and
heat fluxes lie in that [1] they are the first data-driven global datasets that satisfy
both surface radiation balance (SWiy - SWour + LW - LWour = Rn) and heat
balance (LE + H + G = Rn) among the eight fluxes, as demonstrated by both the RIR
and EIR of 0, ...”

“Despite these uncertainties, it is worth emphasizing that our work was the first
attempt to innovatively develop data-driven energy-conservation datasets of global
land surface radiation and heat fluxes with high accuracies.”

7 Summary and Conclusion

“This study for the first time developed data-driven energy-conservation
datasets of global land surface radiation and heat fluxes...”

“The CoSEB-based datasets of land surface radiation and heat fluxes are the
first data-driven global datasets that satisfy both surface radiation balance (SWiy -
SWour + LWiv - LWour = Rn) and heat balance (LE + H + G = Rn) among the eight
fluxes.”

2. The merit of this new dataset is still unclear to me. According to Lines 171-180,
ERAS downward solar radiation and net thermal radiation at the surface is used
in this paper, but why not simply use ERAS fluxes if someone need to surface
fluxes? The new dataset might be more accurate than ERAS in places where
ground-based observations are used to generate the new dataset, but the ground
sites are sparce. To solve this problem, the authors should compare in-situ
measurements with both the new data and ERAS data in independent sites (i. e.,
sites that are not used in the generation of the new dataset).



Ans: We sincerely appreciate the reviewer’s insightful comment and suggestion. We
would like to clarify that the ERAS-Land reanalysis datasets do not explicitly
provide upward shortwave radiation, upward longwave radiation, net radiation, or
soil heat flux, although these components can theoretically be computed using
surface radiation and heat balance principles. The purpose of our work was to
innovatively provide energy-conservation surface radiation and heat fluxes based on
data-driven technique. This is motivated by the fact that existing data-driven
products (e.g., FLUXCOM and GLASS) estimate each energy component separately,
leading to obvious energy imbalance among these components (Wang et al., 2025).
To further address the reviewer’s concern, we have compared estimates from
CoSEB-based datasets and ERAS5-Land datasets with in-situ observations from 44
sites (collected from recently published JapanFlux and updated AmeriFlux, see the
sites for “test” in Table S1), which are independent from the 258 sites that are used
for model construction and datasets generation. As demonstrated by the comparison
results (see Figs. S6 and S7), the CoSEB-based datasets exhibit higher accuracy than
the ERAS-Land datasets in estimating surface energy fluxes, especially in estimating
SWour, H and G. We have discussed this in the third paragraph of Section 5 in the
revised manuscript with the following sentences:
“Furthermore, the CoSEB-based datasets outperformed the ERAS5-Land reanalysis
datasets in estimating surface energy fluxes (where SWour, LWour, Rn and G for the
ERA-Land were inferred from surface radiation balance and heat balance),
particularly for SWour, H and G, with RMSE reductions of 0.13-8.15 W/m? when
validated against in situ observations at the 44 test sites (Figs. S6 and S7 in the
Supplementary Material).”
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Fig. S6 Comparison of the daily downward shortwave radiation (SWiy), upward shortwave
radiation (SWour), downward longwave radiation (LW;y), upward longwave radiation
(LWour) and net radiation (Rn) from the CoSEB-based datasets (upper 5 panels) and
ERAS-Land (lower 5 panels) with the in-situ observed SWi, SWour, LWy and LWour at 44
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Fig. S7 Comparison of the daily latent heat flux (LE), sensible heat flux (H) and soil heat
flux (G) from the CoSEB-based datasets (first row) and ERAS5-Land (second row)with the

in-situ energy imbalance-corrected LE (LE;;; ) and H (H_,;, ), as well as observed G at 44

test sites. The colorbar represents the normalized density of data points.

3. The abstract is not well formatted. An abstract usually provides a brief and
comprehensive summary, so trivial details in brackets [including downward
shortwave radiation (SWIN), downward longwave radiation (LWIN), upward
shortwave 15 radiation (SWOUT), upward longwave radiation (LWOUT) and
net radiation (Rn)], [including latent heat flux (LE), soil heat flux (G) and
sensible heat flux (H)], and (SWIN - SWOUT + LWIN - LWOUT = Rn) might
be deleted. Internet links https://doi.org/10.11888/Terre.tpdc.302559 and
citations (Tang et al., 2025a) should be removed from the abstract. On the other
hand, the authors should briefly describe how these data sources are used to
generate the new dataset.

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that the latter

part of the Abstract describes the accuracy of each of the eight surface radiation and

heat flux components, as well as the overall surface radiation balance and energy
balance among them. Therefore, to ensure consistency and readability, we chose to
retain the introduction of all eight fluxes and their corresponding abbreviations at the
beginning of the Abstract. However, the two equations, (SWiv - SWour + LW -

LWour=Rn) and (LE + H + G = Rn), were deleted in the Abstract, as suggested by

the reviewer. Furthermore, the links and citations of the datasets are mandatorily

required by the journal and editors in the Abstract, and therefore cannot be removed.

Besides, following the reviewer’s suggestion, we have briefly explained how

multiple data sources were integrated to generate the CoSEB-based datasets in the

revised manuscript as follows:



“This study presents the first data-driven energy-conservation datasets of global land
surface radiation and heat fluxes from 2000 to 2020, generated by our model of
Coordinated estimates of land Surface Energy Balance components (CoSEB). The
model integrates GLASS and MODIS remote sensing data, ERAS5-Land reanalysis
datasets, topographic data, CO> concentration data as independent variables and in
situ radiation and heat flux observations at 258 eddy covariance sites worldwide as
dependent variables within a multivariate random forest technique to effectively
learn the physics of energy conservation.”



Reviewer #2:

Review of Energy-conservation datasets of global land surface radiation and
heat fluxes from 2000-2020 generated by CoSEB

Summary and recommendation- In this paper, the authors apply a model of
Coordinated estimates of land surface energy balance components (CoSEB) to
generate estimates of surface radiation and heat fluxes from 2000 to 2020. An
advantage of the CoSEB based approach is that estimates of radiation and heat are in
“harmony” as opposed to generating independent estimates of each. The authors
compare their estimates against observations from eddy covariance sites, other
individual estimates and other individual observations. The paper is generally well
written, and the results are presented clearly. However, I had several questions about
the CoSEB framework itself and also the validations applied here in the manuscript.
Hence I recommend major revisions. I have presented major comments and specific
comments below.

Ans: Thank you very much for your thoughtful and constructive comments. We
sincerely appreciate your recognition of the CoSEB model and the datasets,
particularly the advantage of generating global surface radiation and heat fluxes that
adhere to energy conservation. We have carefully considered all the comments and
suggestions from you and another reviewer, especially your concerns regarding the
CoSEB framework and the validation of the datasets, and have made corresponding
modifications and clarifications in the revised manuscript. More detailed information
of our revisions can be found in the item-by-item response as below.

Major comments-

1. Explanation of updates to the CoSEB framework- While reading the
manuscript I realized that it is not only a paper that applies the existing CoSEB
framework that is already published but also updates this framework to estimate
to estimate radiation (previously this model estimated only land surface energy
components and not short wave and long wave radiation). Therefore, authors
need to discuss the effect of the addition of additional predicted variables on the
equations and the results of the random forest. In particular, can the authors
discuss which of the predictors were found to be the most important and also
discuss how this differed with their previous publication? Also, can authors
discuss generic details such as how many splits were generated by the random
forest before and after the updates. Authors should also discuss the directionality
of effects of different predictor variables based on the revised random forest.

Ans: We thank the reviewer for these insightful comments and questions. Indeed, the

renewed CoSEB model extends beyond the original version (Wang et al., 2025) by

jointly estimating both radiation components (SWi, SWour, LW, LWour and Rn)
and heat fluxes (LE, H, G), thereby ensuring that both radiation and energy balance
are simultaneously satisfied.

(1) To illustrate the effect of including additional radiation components (SWy,

SWour, LWy and LWour) in the renewed CoSEB model compared with the original



version by Wang et al. (2025), we have tested the performance of a reconstructed
model that estimated only Rn, LE, H and G using the same independent variables
and samples as those in the renewed CoSEB model. The results (Fig. S5 in the
supplementary material) showed no significant differences from those produced by
the renewed CoSEB model, indicating that the expansion of radiation components
did not compromise the model’s overall performance. We have discussed this in the
second paragraph of Section 5 with the following sentences:

“Furthermore, to better illustrate the effect of including additional radiation
components (SWi, SWour, LW and LWour) in the renewed CoSEB model
compared with the original version by Wang et al. (2025), we have tested the
performance of a reconstructed model that estimated only Rn, LE, H and G using the
same independent variables and samples as those in the renewed CoSEB model. The
results (Fig. S5 in the supplementary material) showed no significant differences in
accuracy compared with those of the renewed CoSEB model, indicating the
expansion of radiation components did not compromise model performance.”
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Fig. S5 Scatter density plots of the site-based 10-fold cross-validation of daily net radiation
(Rn), soil heat flux (G), latent heat flux (LE) and sensible heat flux (H) derived by a
reconstructed model within the CoSEB framework against in-situ observed Rn, G, and

energy imbalance-corrected LE (LE,,; ) and H (H,,; ), where the model was designed to

estimate only four of the eight flux components. The EIR in the subfigure (e) represents the
energy imbalance ratio, which are defined as 100% % (Rn - G - LE - H)/Rn. The colorbar
represents the normalized density of data points.

(2) Regarding your concern about the importance of the feature variables to the
renewed CoSEB model, we have added a new table (Table S4 in the Supplementary
Material) to show the importance scores of different feature variables using the built-



in method of the random forests. The results showed that solar radiation reaching the
surface of the earth is the most important variable, which is consistent with the
results from our previous study (Wang et al., 2025). We have discussed this in the
second paragraph of Section 5 with the following sentences:

“The importance scores of the 19 different feature variables are exhibited in Table S4
in the Supplementary Material, and downward solar radiation, the primary source of
the energy at the earth surface, is the most important input variable, consistent with
the results from our previous study (Wang et al., 2025).”

Table S4 Importance scores of the 19 different feature variables in the construction of the
renewed CoSEB model for estimating daily downward shortwave and longwave radiation (SWi
and LW), upward shortwave and longwave radiation (SWour and LWour), net radiation (Rn),
latent heat flux (LE), sensible heat flux (H) and soil heat flux (G).

Types Features Variables Abbreviation Img(;t::ce P;i::;l?aigtel‘g/o)
Climate/meteorology solar radiation reaching the surface of the earth SWERAS 0.5724 57.24
Climate/meteorology 2 m air temperature T, 0.2338 80.62

Vegetation and soil Fractional tree cover FVC 0.0292 83.54
Climate/meteorology net thermal radiation at the surface LWt 0.0241 85.95
Vegetation and soil Leaf area index LAI 0.0241 88.36
Vegetation and soil Percent tree cover PTC 0.0177 90.13
Vegetation and soil soil temperature in surface layer Ts: 0.0107 91.20
Climate/meteorology surface air pressure PA 0.0097 92.17
Topography Surface slope Slope 0.0093 93.10
Climate/meteorology precipitation P, 0.0091 94.01

Others inverse relative distaréce from the Earth to the dr 0.0089 94.9

un

Others latitude Lat 0.0075 96.65
Climate/meteorology Relative air humidity RH 0.0074 96.39

Topography Digital elevation model DEM 0.0072 97.11
Vegetation and soil soil volumetric moisture content in surface layer SM1 0.007 97.81

Others longitude Lon 0.0067 98.48

Climate/meteorology Carbon dioxide concentration CO; 0.0056 99.04
Topography Surface aspect Aspect 0.005 99.54
Climate/meteorology Wind speed WS 0.0046 100

(3) We have added a brief description of the optimization of hyperparameters

for the renewed CoSEB model using the random search method and grid search
method. Specifically, the number of decision trees, the max depth, min samples split,
and min samples leaf of the MRF are set to 281, 21, 8, and 8, respectively, compared
to 295, 20, 12, and 8 in our previous study of Wang et al. (2025). The corresponding
details have been added at the beginning of the third paragraph of Section 3 in the
revised manuscript with the following sentences:
“To enhance model generalization, the renewed CoSEB model was reoptimized
using random and grid search methods, resulting in different hyperparameters of 281
decision trees, a maximum depth of 21, and minimum samples split and leaf of 8§
from those of Wang et al. (2025).”

(4) We would like to emphasize that the main focus of this study was to develop
the data-driven energy-conservation global datasets using multiple input variables
that have certain influences on surface radiation and heat fluxes, rather than to
explore the directionality of effects of each input variable on surface radiation and
heat fluxes. Since directionality analysis does not alter model parameters, affect



model construction, or impact the generation of the CoSEB-based datasets, in almost
no articles (Jung et al., 2019; Mu et al., 2011; Ryu et al., 2018; Xu et al., 2022)
focusing on models and algorithms for surface radiation fluxes and heat fluxes have
we seen anyone conduct directionality analysis; therefore, conducting directionality
analysis is not necessary within the scope of our study.

2. Multi-collinearity amongst predictor variables- Authors should also discuss how
multi-collinearity is handled amongst predictor variables given the large number
of predictors. As far as I understand, random forests do not explicitly deal with
multi collinearity unlike a PCA based approach for example. This can affect
variable importance significantly. I would suggest authors explore this in detail.

Ans: We thank the reviewer for this comment. While random forests do not
explicitly eliminate multi-collinearity among input variables, they randomly select
subsets of input features at each split (Breiman, 2001) and are generally considered
robust in terms of performance even when multi-collinearity exists among some
inputs (Drobni¢ et al., 2020). Besides, in selecting the input variables, prior
knowledge derived from previous studies was employed to identify factors that exert
significant influence on surface radiation and heat flux while maintaining relative
inter-independence. This practice is widely adopted in data-driven models for
estimating land surface water, energy, and carbon fluxes (Bai et al., 2024; Elghawi et
al., 2023; Han et al., 2023; O. & Orth, 2021), and few studies specifically perform
multicollinearity analysis before modeling. Although some of the selected variables
may exhibit a certain degree of multi-collinearity, each carries unique characteristic
information, making it inappropriate to consider only a single dominant variable
during model construction. Moreover, we acknowledge that variable importance
should be interpreted with caution, since the importances may not be accurate in the
presence of multicollinearity. However, we would also like to clarify that the primary
aim of this study was to improve the accuracy of the developed datasets rather than
to interpret the individual contributions of each input variable. We have discussed
this in second paragraph of Section 5 with the following sentence:

“In selecting the 19 input variables to accommodate the additional target variables,

prior knowledge derived from previous studies was employed to identify factors that

exert significant influence on surface radiation and heat flux while maintaining
relative inter-independence as much as possible (Jung et al., 2019; Mohan et al.,

2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted in

data-driven models for estimating land surface water, energy, and carbon fluxes (Bai

et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance
scores of the 19 different feature variables are exhibited in Table S4 in the

Supplementary Material, and downward solar radiation, the primary source of the

energy at the earth surface, is the most important input variable, consistent with the

results from our previous study (Wang et al., 2025). Although some of the selected
variables may exhibit a certain degree of multi-collinearity, each contributes unique
and physically meaningful information, supporting the inclusion of all variables in
model construction. Note that the variable importance, derived from the built-in



method of the random forests and potentially affected by multicollinearity among the
input variables, is presented only as a reference. Retaining all 19 feature variables
ensures the model’s flexibility and generalization capability, enabling future
incorporation of additional representative ground-based observations for further
training and improvement.”

3. Effect of autocorrelation- Given the temporal nature of several predictor
variables, can authors confirm that autocorrelation does not exist or is
minimized in their framework? What tests were performed to check for this? In
particular I would recommend authors add lagged variables to the model to
make sure that this is not the case. I believe several models constructed for earth
system variables tend to ignore aspects such as autocorrelation and therefore this
is an important point to address.

Ans: Thanks for your question and suggestion. We agree that several predictor

variables may exhibit autocorrelation. To investigate the impact of lagged effects of

input variables on model performance, we specifically conducted an experiment by
including lagged air temperature (i.e., the air temperature of the previous day,
because air temperature, identified alongside downward solar radiation as one of the
two most influential variables in the model based on the importance scores in
Supplementary Table S4, exhibits a more pronounced lagged effect than solar
radiation) as additional predictor. The results (Fig. S4 in the Supplementary Material)
showed no noticeable improvement in model accuracy, suggesting that lagged effects
were negligible in the CoSEB framework for estimates of daily surface radiation and
heat fluxes. We speculate that lagged effects may have a more pronounced influence
on flux estimates at higher temporal resolutions (e.g., half-hourly), but this is beyond
the scope of the present study. We have discussed this in the second paragraph of

Section 5 with the following sentence:

“Besides, to investigate the impact of lagged effects of input variables on model

performance, experiments were also conducted by adding lagged variables (e.g., the

air temperature of the previous day) to the 19 input features. The results (Fig. S4 in
the Supplementary Material) showed almost no improvement in model accuracy,
suggesting that lagged effects on model performance were negligible within the

CoSEB framework for estimates of daily surface radiation and heat fluxes.”
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Fig. S4 Scatter density plots of the site-based 10-fold cross-validation of daily downward

shortwave and longwave radiation (SW;y and LWjy), upward shortwave and longwave
radiation (SWour and LWour), net radiation (Rn), soil heat flux (G), latent heat flux (LE)
and sensible heat flux (H) derived by a reconstructed model within the CoSEB framework
against in situ observed SWin, LWin, SWour, LWour, Rn, G, and energy imbalance-

corrected LE (LE;), ) and H (H,

daily

corr

aily )» Where the air temperature of the previous day was

additionally added to the 19 input feature variables of the model as the lagged variable.
The EIR and RIR in the subfigure (i) represent the energy imbalance ratio and radiation
imbalance ratio, which are defined as 100% % (Rn - G - LE - H)/Rn and 100% x (SWi —
SWour + LWin - LWourt)/Rn, respectively. The colorbar represents the normalized density of

data points.

4. Effect of downscaling ERAS5- Land datasets- The authors note on lines 195-197
that the ERA 5 land datasets used here have been downscaled from a resolution
of ~9 kms to ~500m. This is a significant level of downscaling performed using
a rather simple cubic convolution method. There are several variables related to
the land cover (such as the LAI for example) that are used as predictor variables
in the author’s framework. Can the authors address the uncertainty caused by



such large downscaling between scales on their results? On the one hand, based

on the results, it seems that the model has produced reliable results compared to

observations and other datasets even after such large downscaling. Is it that the

land cover related variables do not play an important role in the predictions?
Ans: Thanks for your comment and question. We would like to clarify that the
ERAS5-Land datasets used in this study mainly include meteorological reanalysis
variables (e.g., solar radiation, pressure of the atmosphere, wind speed and relative
air humidity), which were downscaled from their original ~9 km spatial resolution to
500 m. In contrast, the land cover-related vegetation variables, including LAI, FVC,
and PTC, were directly obtained from remote sensing products such as MODIS and
GLASS (see Section 2.2), which already have an original spatial resolution of ~500
m and therefore did not require spatial downscaling.

Besides, we acknowledge that downscaling ERA5-Land datasets from ~9 km to
~500 m using a cubic convolution method may introduce certain uncertainties.
However, this resampling was necessary to match the footprint of the site-based
measurements of turbulent heat fluxes, which is a common practice in the generation
of remote sensing products (Mu et al., 2011; Ryu et al., 2018; Senay et al., 2020;
Zhang et al., 2019; Zheng et al., 2022). Moreover, the machine learning framework
of the CoSEB model can partially mitigate such uncertainties introduced by the
downscaling during training by learning complex relationships among multiple
inputs and in situ observed energy components. This is reflected in the good
agreement of the CoSEB-based estimates with both in-situ observations and other
mainstream products. Our previous studies (Wang et al., 2025, the last paragraph of
Section 5.1) also have demonstrated that the differences in meteorological reanalysis
data caused by spatial downscaling have a relatively small impact on the estimates
by the machine-learning-based CoSEB model.

Furthermore, it is also important to note that this does not imply that land-
cover-related variables do not play an important role in the estimations. As shown by
the variable importance scores presented in the newly added Table S4 in the
Supplementary Material, vegetation and surface-related parameters such as FVC and
LAI have high importance scores. These variables can partially compensate for the
spatial heterogeneity and localized variations not captured by the coarse-resolution
ERAS-Land datasets, thereby enhancing the performance of the model.

We have discussed this in the last paragraph of Section 5 with the following

sentence:
“Another potential source of uncertainty arises from differences in meteorological
reanalysis data caused by spatial downscaling, which, as demonstrated in our
previous study (Wang et al., 2025, the last paragraph of Section 5.1), has a relatively
small impact on model estimates by the machine-learning-based CoSEB model
combined with finer-resolution surface-related variables that partially compensate
for the spatial heterogeneity and localized variations not captured by the coarse-
resolution datasets.”

5. In sample vs out of sample testing- While the authors present significant



comparisons with observations and other datasets to validate their model (e.g.
Figure 3, Figure 4 and Figure 5), it seems the authors have not checked for
overfitting of their approach by splitting the dataset into a training vs testing
dataset. This is especially important since as mentioned in Major comment 1.,
the CoSEB framework itself has been updated. Authors should address this in
detail. In fact, looking at Figure 3, it seems that the R squared values for G and
H are on the lower side. I am curious as to what the values look like when out of
sample testing is conducted?
Ans: We appreciate the reviewer’s insightful comments and questions. We would
like to clarify that the out-of-sample testing of the updated CoSEB model has
already been evaluated using site-based 10-fold cross-validation. In this approach, all
sites were divided into ten folds, where the samples from each fold of sites in turn
served as validation datasets while the remaining folds were used for training. This
ensures that the validation datasets are spatially independent from the training
datasets, effectively serving as out-of-sample testing. The results shown in Figure 3,
corresponding to the site-based 10-fold cross-validation, showed that the R? values
for H and G are 0.59 and 0.42, respectively. We have already described the site-
based 10-fold cross-validation in the third paragraph of Section 3 with the following
sentence:
“Site-based 10-fold cross-validation was employed to evaluate the transferability and
generalization of the CoSEB model by randomly dividing all sites into ten folds,
where the samples from each fold of sites in turn served as validation datasets while
the remaining folds were used as training datasets, ensuring that the validation was
conducted on sites spatially independent from the training data.”

Furthermore, to evaluate potential overfitting, the mean RMSE and R? values along
with their standard deviations across the ten folds of the site-based cross-validation
have been presented in Table S3 of the Supplementary Material. Comparisons
between the training results (Table S3) and validation results (Fig. 3) indicate that,
although the CoSEB model performs better on the training datasets than on the
validation datasets, the overall performance remains stable. This stability,
particularly given that the validation is conducted on spatially independent sites,
demonstrates that the model is not affected by overfitting. We have illustrated this in
the first paragraph of Section 4.1.1 with the following sentence:

“Comparisons with the corresponding training results (Table S3 in the
Supplementary Material) indicated that although the CoSEB model performed better
on the training datasets, its overall performance remained stable, suggesting that the
CoSEB model was not affected by overfitting.”



Table S3 The mean root mean square error (RMSE) and coefficient of determination (R?) along
with their standard deviations across the ten folds of the site-based cross-validation for the

renewed CoSEB model.
RMSE (W/m?) R?

SWin 28.56+0.09 0.91+0.001

SWout 9.83+0.10 0.79+0.003

LW 12.41+0.08 0.95+0.001

LWour 8.52+0.07 0.97+0.001

Rn 22.49+0.08 0.85+0.001

LE 19.75+0.15 0.82+0.003

H 19.36+0.12 0.76+0.003

G 5.39+0.04 0.60+0.004

Specific comments-

1. Abstract lines 31-36- The RMSEs presented here do not make any sense at this
point since the reader has no sense of scale of values to expect. I recommend
authors report the R squared values here instead. Also make sure to report
whether the R squared is based on pooled data or just the testing data (See
Major comment 5)

Ans: We appreciate the reviewer’s constructive suggestion. We would like to clarify

that RMSE remains a key metric for evaluating the accuracy of the model and

datasets, particularly for energy flux estimations (Bisht & Bras, 2011; Comini De

Andrade et al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it

directly quantifies prediction errors in physical units (W/m?), making it an indicator

of significant interest to both model developers and product users. However, R?

indeed is another important metric, indicating the degree to which the model

predictions align with the reference truth. Therefore, in the revised Abstract, we have
reported both RMSE and R? values for the CoSEB-based datasets. In addition, we
have clarified that the reported RMSE and R? values of the CoSEB-based datasets
are derived from validation at independent test datasets across 44 sites (see Section

2.1). The revised sentences are as follows:

“(1) the RMSEs (R?) for daily estimates of SWu, SWour, LW, LWour, Rn, LE, H

and G from the CoSEB-based datasets at 44 independent test sites were 37.52 W/m?

(0.81), 1420 W/m? (0.42), 22.47 W/m? (0.90), 13.78 W/m? (0.95), 29.66 W/m?

(0.77), 30.87 W/m? (0.60), 29.75 W/m? (0.44) and 5.69 W/m? (0.44), respectively,”

2. Introduction lines 74-75- Can the authors differentiate the citations between
those for physical vs those for statistical methods.

Ans: Thanks for your valuable suggestion. We have clearly differentiated the
citations between those for physical vs those for statistical methods in the revised
manuscript as follows:

“In past decades, numerous RS-based products/datasets of global surface radiation
and heat fluxes have significantly advanced, which were generally generated by
physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao
et al., 2023; Jung et al., 2019; Peng et al., 2020).”



3. Introduction line 92- “impending” is an awkward word here. I would just say “It
was imperative”.

Ans: We appreciate the reviewer’s suggestion. We have revised this sentence to “It

was imperative to develop global datasets of land surface radiation and heat fluxes

characterized by high accuracies, radiation balance as well as heat balance, to better

meet the requirements in practical applications of various fields.” in the new

manuscript.

4. Data lines 131-132- Why could a simple interpolation not be applied for missing
half hourly data? Is the data extremely sensitive to time? Some clarification is
needed here.

Ans: Thank you for your comments and questions. The half-hourly surface radiation
and heat fluxes are sensitive to short-term temporal variations caused by rapid
changes in meteorological conditions, but their intraday dynamics are often
nonlinear, particularly due to the intermittent effects of cloud cover. Therefore,
applying simple interpolation methods (e.g. linear interpolation) could introduce
considerable uncertainties. To ensure data quality, we only retained directly observed
values (data quality flag=0) and good-quality gap-filled data (data quality flag=1)
provided by the official gap-filling algorithms, and then computed daily averages
only when more than 80% of half-hourly observations were available, as already
described in the first paragraph of Section 2.1 with the following sentence:

“(3) the half-hourly ground-based observations with quality-control flag of 2 or 3

(bad quality) were removed but quality-control flag of 0 and 1 (good quality) were

maintained; (4) a daily average of the half-hour observations was calculated for each

day with greater than 80% good-quality data, further reducing the 472 sites to 355

sites;”

Besides, we have already discussed the uncertainties caused by the daily averages of
surface radiation and heat fluxes in the last paragraph of Section 5 with the following
sentence:

“Specifically, daily averages of surface radiation and heat fluxes for each day were
obtained for analysis from good-quality half-hourly observations when the fraction
of these good-quality half-hourly observations was greater than 80% in a day, due to
the lack of consensus on the method for aggregating gapped half-hourly observations
to daily data (Tang et al., 2024a; Yao et al., 2017; Zheng et al., 2022).”

Following your suggestion, we have also further clarified the simple temporal
interpolation in the last paragraph of Section 5 with the following sentence:

“Simple temporal interpolation of half-hourly in situ observations, which could
therefore introduce substantial uncertainties, was not applied, because surface
radiation and heat fluxes are sensitive to short-term variations in meteorological
conditions and their intraday dynamics are often complex.”



5. Data lines 138-139- Can the authors clarify why this criteria was applied for
screening outliers?

Ans: Thank you for your valuable question. We would like to clarify that the energy
balance ratio (EBR) of 0.2-1.8 and the 1st-99th quantiles of the daily evaporation
fraction was both applied to remove physically implausible measurements, such as
cases where the available surface energy (Rn — G) is close to zero while LE and H
remain comparatively large, where the threshold of 0.2-1.8 was adopted following
our previous study (Wang et al., 2025), which has demonstrated that nearly all
available data fall within this range and that the accuracy of the CoSEB model
showed no significant differences when applying different EBR thresholds, while the
percentile-based screening was employed following common practice in flux and
remote sensing studies (Bartkowiak et al., 2024; Ghorbanpour et al., 2022; Wang et
al., 2023). We have clarified this in the first paragraph of Section 2.1 with the
following sentence:

“(5) the aggregated daily LE and H were corrected for energy imbalance using the
Bowen ratio method when the daily energy balance closure [defined as

(LE +H )/ (Rn—G)] varied between 0.2 and 1.8 following Wang et al. (2025) to

exclude physically implausible measurements; (6) extreme outliers in the daily
evaporative fraction were further removed by excluding values outside the 1st—99th
percentile range, a common practice in flux and remote sensing studies (Bartkowiak
et al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites.”

6. Mainstream datasets/products for inter comparison- I was curious as to why the
authors so not compare their estimates with heat and radiation estimates from
popular earth system modelling systems such as CESM and CTSM
(https://www.cesm.ucar.edu/). In fact, if the authors approach can produce
estimates similar to earth system models, this would be a huge benefit to the
community (since these models are laborious to run)

Ans: Thanks for your comment. The outputs of Earth system models generally have
coarse spatial resolutions (e.g., the CESM Large Ensemble Project has a spatial
resolution of ~1°). Due to the surface heterogeneity, these model outputs cannot be
directly validated using radiation and heat flux observations from ground sites with
limited spatial representativeness. This is the main reason why both we and others
usually do not compare the outputs of Earth system models with remote sensing-
based datasets.

Although we believe that comparing the outputs of Earth system models with
remote sensing-based datasets (including our CoSEB-based datasets and others’
PML V2, MODI6A2, FLUXCOM, BESSV2.0, GLASS) and validating them
against ground-based observations is not appropriate, following the reviewer’s
suggestion, we compared the global spatial distributions of mean annual estimates
from CoSEB-based datasets with the outputs from the CESM Large Ensemble
project. The results (see Section 4.3 and Fig. S8) show that, overall, the global
spatial patterns of the estimated SWiv, LW, LWour, Rn, LE and H are consistent,



though numerical differences exist. Considering the scope and length of the current
manuscript, a more detailed analysis of the spatial-temporal distribution patterns,
trends, and variability between Earth system model outputs and remote sensing-
based datasets could be conducted in future work. We have discussed this in the third
paragraph of Section 5 with the following sentences:

“Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial
patterns consistent with those of mainstream RS-based datasets and Earth system
model outputs (see Fig. S8 in the supplementary material). More detailed analysis
about their similarities and differences can be further conducted in future work.”
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Fig. S8 Spatial patterns of global mean annual downward shortwave radiation (SW;n),
downward longwave radiation (LW;y), upward longwave radiation (LWour), net radiation
(Rn), latent heat flux (LE) and sensible heat flux from 2001 to 2018 by Community Earth
System Model (CESM) Large Ensemble project, where LWoyr and Rn were inferred from

surface radiation balance and heat balance.

7. Methods lines 243-244- Once again the usage of RMSEs here does not make
much sense. Can the authors just report the R squared values instead.

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE
remains an essential metric for evaluating the accuracy of the model and datasets,
particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et
al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly
quantifies prediction errors in physical units (W/m?), making it an indicator of
significant interest to both model developers and product users. Nevertheless, R?
indeed is another important metric, indicating the degree to which the model
predictions align with the reference truth. After careful consideration, we have
additionally reported R? values in the revised manuscript to more comprehensively
demonstrate the model performance. The revised sentence is as follows:

“The CoSEB model was demonstrated to be able to produce high-accuracy estimates
of land surface energy components, with the RMSE of <17 W/m? and R? of > 0.83
for estimating 4-day Rn, LE and H, and the RMSE of <5 W/m? and R? of 0.55 for
estimating 4-day G.”



8. Methods lines 269-270- Just to confirm, the RF based uncoordinated models are
models where only individual variables are estimated rather than the
simultaneous calculation of several variables? This should be clarified.

Ans: Thanks for your valuable question. Your understanding is correct. We have

more clearly clarified this in the third paragraph of Section 3 of the revised

manuscript with the following sentence:

“Furthermore, to benchmark the coordinated estimates from the renewed CoSEB

model, eight RF-based uncoordinated models were constructed, each separately

estimating one of SWi, SWour, LWin, LWour, Rn, LE, H or G using the same inputs
as those in the renewed CoSEB model.”

9. Results Lines 306-309- I was curious looking at Figure 4 whether there were
correlations or relationships between the EIR or RIR values and any of the other
predictor variables? Is the shape of that distribution affected by any particular
variables?

Ans: Thanks for your question. We would like to clarify that our CoSEB model

showed no energy imbalance, with the RIR and EIR of 0, as shown in Figure 3. The

distributions of RIR and EIR in Figure 4 were derived from RF-based uncoordinated
models, which were used only for comparison with our CoOSEB model and were not
the focus of our study.

However, considering your concern about whether the distributions of the RIR

and EIR values are affected by specific predictor variables, we further conducted a

binned statistical analysis, where the three most critical input variables identified in

Table S4 (i.e. SWi5, T, and FVC) were divided into equal-width bins, and for each

bin the mean and standard deviation for positive and negative RIR conditions were
calculated. Besides, the Pearson correlation coefficients (r) between RIR (EIR) and
each input variable were computed to quantify their overall relationships. The results
showed that lower levels of solar radiation, air temperature, or FVC are associated
with larger RIR (EIR), while the predominance of low values of these three variables
tends to result in decreased kurtosis correspondingly, implying flatter and broader
probability shapes of RIR and EIR. We have also briefly illustrated this in the end of
the second paragraph of Section 4.1.1 with the following sentence:

“Furthermore, the RIR as well as EIR tended to be higher under lower solar radiation,
air temperature, or FVC, with more frequent low values of these three variables
leading to a broader and less peaked distribution of RIR and EIR (see Fig. S1 in the
Supplementary Material).”
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Fig. S1 Relationships between radiation imbalance ratio [RIR, 100% *x (SW;x — SWour +
LWy - LWour)/Rn] and energy imbalance ratio [EIR, 100% X% (Rn - G - LE - H)/Rn]
derived from RF-based uncoordinated models and three critical input variables identified
in Table S4, including solar radiation reaching the surface of the earth from ERAS-Land

(SW* | the first column), 2 m air temperature from ERAS-Land (7, the second column)
and fraction vegetation cover from GLASS (FVC, the third column). The mean and
standard deviation were calculated within equal-width bins of SW,.“*, T,, and FVC under

positive and negative EIR (RIR) conditions, where the solid lines represent the mean values,
and the shaded area represents the corresponding variation of standard deviations. The r

values in legends indicate the Pearson correlation coefficients.

10. Results Lines 311-312- Can the authors clarify the differences between site-
based validation vs sample-based validation?

Ans: We appreciate the reviewer’s insightful comment. Sample-based 10-fold cross-
validation refers to randomly splitting all available samples from all sites into ten
folds, with each fold in turn serving as the validation dataset while the remaining
folds are used for training. This approach allows samples from the same site to
appear in both the training and validation datasets. In contrast, site-based 10-fold
cross-validation was performed by randomly dividing all sites into ten folds, with the
samples from each fold of sites used for validation in turn. This strategy ensures that
the validation datasets are spatially independent from the training datasets, thereby
providing a more rigorous assessment of the model’s spatial generalization capability.
We have already described the site-based 10-fold cross-validation in the third
paragraph of Section 3 with the following sentences:

“Site-based 10-fold cross-validation was employed to evaluate the transferability and



generalization of the CoSEB model by randomly dividing all sites into ten folds,
where the samples from each fold of sites in turn served as validation datasets while
the remaining folds were used as training datasets, ensuring that the validation was
conducted on sites spatially independent from the training data.”

Furthermore, after careful consideration, site-based 10-fold cross-validation was
deemed to be more suitable for assessing the performance of the model than sample-
based 10-fold cross-validation, as the validation datasets in site-based cross-
validation are spatially independent from the training datasets. To make the main
focus of the manuscript clearer and more concise, we retained only the site-based 10-
fold cross-validation and removed the sample-based 10-fold cross-validation in the
revised manuscript.

11. Results lines 381-382- Once again, the RMSE values don’t make a lot of sense
here. Authors should report the R squared values instead.

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE
remains an essential metric for evaluating the accuracy of the model and datasets,
particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et
al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly
quantifies prediction errors in physical units (W/m?), making it an indicator of
significant interest to both model developers and product users. However, R? indeed
is another important metric, indicating the degree to which the model predictions
align with the reference truth. After careful consideration, we have additionally
incorporated the R? values into the revised manuscript. The revised sentence is as
follows:

“Results indicated that the CoSEB-based datasets could provide good estimates of
SWour, H and G, with the RMSEs (R?) of 14.20 W/m? (0.42), 29.75 W/m? (0.44) and
5.69 W/m? (0.44) at daily scale, respectively, and the RMSE (R?) of 12.19 W/m?
(0.39) and 4.60 W/m? (0.47) for 8-day SWour and G, respectively.”

12. Section 4.2- When discussing the differences between the CoSEB model
estimates vs other estimates, can authors also describe why the differences occur?
A detailed discussion is not warranted here. Rather, I was interested in the
author’s perspective as to why the author’s approach produces some differences
over existing approaches.
Ans: Thanks for your constructive comments. The possible reasons for the
differences between estimates from the CoSEB-based datasets and the mainstream
products/datasets are complex and may arise from differences in both
methodological frameworks and input datasets. Specifically, the discrepancies may
result from the simplification of physical processes and the uncertainties in
parameterization within the physics-based products (e.g., MOD16A1, BESSV2.0,
PML V2, and ETMonitor). In contrast, the differences between the CoSEB-based
datasets and other machine-learning-based products (e.g., BESS-Rad, GLASS, and
FLUXCOM) may be attributed to the limited sample sizes of training data, the



incomplete consideration of influencing factors (e.g., CO> concentration, surface
aspect), and the lack of physical constraints among energy balance components in
existing machine-learning frameworks. We have briefly discussed this in the last
paragraph of Section 4.2 of the revised manuscript with the following sentence:

“The differences between the estimates from the CoSEB-based datasets and
mainstream datasets are likely multifactorial, arising from the simplification and
parameterization uncertainties in physics-based models, as well as the lack of
physical constraints, limited training samples, and incomplete consideration of
influencing factors in other machine-learning-based models.”
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Abstract

Accurately estimating global land surface radiation [including downward
shortwave radiation (SWin), downward longwave radiation (LW), upward shortwave
radiation (SWour), upward longwave radiation (LWour) and net radiation (Rn)] and heat
fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is
essential for quantifying the exchange of radiation, heat and water between the land and
atmosphere under global climate change. This study presents the first data-driven
energy-conservation datasets of global land surface radiation and heat fluxes from 2000
to 2020, generated by our model of Coordinated estimates of land Surface Energy

Balance components (CoSEB). The modelthat integrates GLASS and MODIS remote

sensing data, ERAS5-Land reanalysis datasets, topographic data, CO» concentration data

as independent variables and in situ radiation and heat flux observations at 258 eddy

covariance sites worldwide as dependent variables within a multivariate random forest

technique to effectively learn the physics of energy conservationwas—repewed—with-a
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ChinaFEUX—and—FPDC. The developed CoSEB-based datasets are strikingly
advantageous in that [1] they are the first RS-baseddata-driven global datasets that
satisfy both surface radiation balance-(SWAy—SWovr+E W n—EWour—Ra) and heat

balance(LE—+H+G—=Rn) among the eight fluxes, as demonstrated by both the

radiation imbalance ratio [RIR, defined as 100% % (SWi— SWour+ LWin - LWour)/Rn]
and energy imbalance ratio [EIR, defined as 100% % (Rn - G - LE - H)/Rn] of 0, [2] the
radiation and heat fluxes are characterized by high accuracies, where (1) the RMSEs
(R?) for daily estimates of SWin, SWour, LWin, LWour, Rn, LE, H and G from the

CoSEB-based datasets at 44 independent test sites were 28-5137.52 W/m? (0.81),

10:394.20 W/m?_(0.42), +4-2922.47 W/m?_(0.90), 10:623.78 W/m?_(0.95), 22:409.66

W/m? (0.77), 243830.87 W/m? (0.60), 22-679.75 W/m? (0.44) and 6-775.69 W/m?

(0.44), respectively;-as-well-asfor-8-day-estimates-were 1281 W/m? - 7.08 W/m? 922
WP -8-34- W 1338 W/m? 1999 W/m? 17 44 WoinP-and-4-25- W respeetively

(2) the CoSEB-based datasets, in comparison to the mainstream products/datasets (i.e.
GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MOD16A2, PML V2 and ETMonitor)
that generally separately estimated subsets of the eight flux components, better agreed
with the in situ observations. Our developed datasets hold significant potential for
application across diverse fields such as agriculture, forestry, hydrology, meteorology,
ecology, and environmental science, which can facilitate comprehensive studies on the
variability, impacts, responses, adaptation strategies, and mitigation measures of global
and regional land surface radiation and heat fluxes under the influences of climate
change and human activities. The CoSEB-based datasets are open access and available
through  the  National Tibetan Plateau @ Data  Center (TPDC) at

https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a) and through the Science

Data Bank (ScienceDB) at https://doi.org/10.57760/sciencedb.27228 (Tang et al.,

2025b).

Key words: Surface energy balance; Surface radiation balance; Shortwave/Longwave
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1 Introduction

Land surface radiation balance and heat balance play important roles in Earth's
climate system, representing the physical processes by which the surface-atmosphere
absorbs and redistributes radiation and heat fluxes (Berbery et al., 1999; Betts et al.,
1996; Mueller et al., 2009; Sellers et al., 1997; Xu et al., 2022a), and facilitating the
exchange of water, energy, carbon, and other agents essential to climatic and ecological
systems and human society (Jia et al., 2013; Wang et al., 2012; Wild, 2009; Wild et al.,
2012; Xia et al., 2006). Accurately monitoring the spatial and temporal variations of
global land surface radiation [including downward shortwave radiation (SW),
downward longwave radiation (LWjy), upward shortwave radiation (SWour), upward
longwave radiation (LWour) and net radiation (Rn)] and heat fluxes [including latent
heat flux (LE), soil heat flux (G) and sensible heat flux (H)] is indispensable for
quantifying the exchange of radiation, heat and water between the land and atmosphere
under global climate change (Ersi et al., 2024; Liang et al., 2019; Rios & Ramamurthy,
2022; Tang et al., 2024a; Wang et al., 2021), and for studying solar energy utilization
(Tang et al., 2024b; Zhang et al., 2017), hydrological cycle (Huang et al., 2015; Wild &
Liepert, 2010), ecosystem productivity (Nemani et al., 2003), agricultural management
(De Wit et al., 2005) and ecological protection (Tang et al., 2023). Remote sensing (RS)
technology, with its high spatial-temporal resolution and applicability over large areas,
is considered to be the most effective and economical means for obtaining global land
surface radiation and heat fluxes (Liu et al., 2016; Van Der Tol, 2012; Zhang et al.,
2010).

In past decades, numerous RS-based products/datasets of global surface radiation
and heat fluxes have significantly advanced, which were generally generated by
physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao et
al., 2023; Jung et al., 2019; Peng et al., 2020). However, two key limitations still exist

in these products. Firstly, most available products provide only a single component of
3
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land surface radiation or heat fluxes, e.g. ETMonitor (Zheng et al., 2022) and
MODI16A2 (Mu et al., 2011) only estimating LE, leading to the failure to satisfy surface
radiation balance and heat balance when the single radiation or heat flux is utilized in
conjunction with products containing other radiation and heat components (Wang et al.,
2025), and further posing significant uncertainties to understand the interactions and
redistributions of surface radiation and energy in the Earth-atmosphere system.
Secondly, a few products, e.g.. FLUXCOM (Jung et al., 2019) and GLASS (Jiang et al.,
2015; Zhang et al., 2014), generated datasets for multiple components of surface
radiation and heat fluxes by using independent—separate estimates from the
uncoordinated models, which make them difficult to abide by surface radiation and heat
conservation. These energy-imbalanced and radiation-imbalanced estimates among
multiple components from previous products/datasets severely limit their in-depth
applications in analyzing the spatial and temporal trends, simulating the physical
processes of radiation, heat and water cycles as well as revealing the attributions and
mechanisms in Earth-surface system under global climate change. It was #mpending
and-imperative to develop global datasets of land surface radiation and heat fluxes
characterized by high accuracies, radiation balance as well as heat balance, to better
meet the requirements in practical applications of various fields.

Our proposed data-driven model/framework of Coordinated estimates of land
Surface Energy Balance components (CoSEB) (Wang et al., 2025), which effectively
learns the underlying physical interrelations (i.e., surface energy conservation law)
among multiple targeted variables, provides an unprecedented opportunity to develop
global datasets of land surface radiation and heat fluxes that can not only
simultaneously provide high-accuracy estimates of these components but also adhere
to surface radiation- and heat-conservation laws.

The objectives of this study are twofold: (1) to develop high-accuracy datasets of
global land surface radiation and heat fluxes, which comply with the principles of

radiation balance and heat balance, using our CoSEB model renewed based on in situ
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observations, remote sensing data and reanalysis datasets; (2) to validate the
datasets/model estimates against data from in situ observations, mainstream products
as well as estimates from uncoordinated random forest (RF) techniques. Section 2
introduces the data resources used in this study. Section 3 briefly describes the method
we used to estimate global surface radiation and heat fluxes. Section 4 presents the
evaluation of the datasets/model estimates generated by our renewed CoSEB model.
Section 5 discusses the superiority, potential applications and uncertainties of the
developed datasets. Data availability is given in Section 6, and a summary and

conclusion is provided in Section 7.

2 Data

2.1 Ground-based observations

In this study, the in situ observations of land surface radiation and heat fluxes at
258-302 eddy covariance (EC) sites from the networks of AmeriFlux (+45-174 sites,
2000-2020, https://AmeriFlux.Ibl.gov/Data/, last access: 6 August 2024), EuroFlux (72

sites, 2000-2020, http://www.europe-fluxdata.eu/, last access: 6 August 2024), OzFlux

(5 sites, 2007-2012, https://data.ozflux.org.au/, last access: 6 August 2024), FLUXNET

(108 sites, 2000-2014, https://FLUXNET.org/Data/download-Data/, last access: 6

August 2024), JapanFlux (15 sites, 2001-2020, https://ads.nipr.ac.jp/japan-flux2024/,

last access: 10 October  2025), ChinaFLUX (5 sites, 2005-2020,

http://www.chinaflux.org/, last access: 6 August 2024) and National Tibetan
Plateau/Third Pole Environment Data Center (TPDC, 13 sites, 2012-2020,

https://Data.tpdc.ac.cn/en/Data, last access: 6 August 2024) were used (Fig. 1), where

37,48 and 5 sites in FLUXNET were also shared in AmeriFlux, EuroFlux and OzFlux,
respectively. These 258-302 sites were filtered out from all collected +068-1098 sites
by following the quality-assurance and quality-control steps, including: (1) any site
with a missing component of any of the SWi, SWour, LW, LWour, LE, H and G was

excluded, reducing the +868-1098 sites to 388-472 sites for further analysis; (2) any
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half-hour period with missing data for any of these components was excluded; (3) the
half-hourly ground-based observations with quality-control flag of 2 or 3 (bad quality)
were removed but quality-control flag of 0 and 1 (good quality) were maintained; (4) a
daily average of the half-hour observations was calculated for each day with greater
than 80% good-quality data, further reducing the 388-472 sites to 286-355 sites; (5) the

aggregated daily LE and H were corrected for energy imbalance using the Bowen ratio

method when the daily energy balance closure [defined as (LE +H ) / (Rn—G) ] varied

between 0.2 and 1.8 _following Wang et al. (2025) to exclude physically implausible

measurements; (56) extreme outliers in the daily evaporative fraction were further

removed by excluding values outside the 1st—99th percentile range, a common practice

in flux and remote sensing studies (Bartkowiak et al., 2024; Wang et al., 2023), further

reducing the 355 sites to 337 sites. eutliers-were-disecarded;correspondingto-the 1-and

Besides, the RS data—products/datasets involved in this study collocated at the sites

should not be missing, finally reducing the 268-337 sites to 258-302 sites for analysis.
Note that the Rn at these sites used in this study was calculated from the sum of net
longwave radiation (LW;y minus LWour) and net shortwave radiation (SW;y minus
SWour), rather than using the observed Rn directly, to ensure surface radiation balance
in training datasets.

These 258-302 sites used in this study cover a wide range of global climate regimes
across 14 land cover types, including (1) evergreen needleleaf forests (ENF, 54-55 sites);
(2) evergreen broadleaf forests (EBF, H1-12 sites); (3) deciduous needleleaf forests
(DNF, 1+-7 sites); (4) deciduous broadleaf forests (DBF, 39-40 sites); (5) mixed forests
(MF, 8 sites); (6) closed shrublands (CSH, 5 sites); (7) open shrublands (OSH, 9-11
sites); (8) woody savannas (WSA, 6 sites); (9) savannas (SAV, 10 sites); (10) grasslands
(GRA, 54-62 sites); (11) permanent wetlands (WET, +6-22 sites); (12) croplands (CRO,
43-59 sites); (13) water bodies (WAT, 1 sites); (14) cropland/natural vegetation mosaics

(CVM, H4 sites). Among them, 44 sites (~15% of the total, see Table S1) were isolated

6



167  to serve as spatially independent sites to test the generated datasets and they did not
168  participate in the development of the model/datasets.
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171
172 Fig. 1 Spatial distribution of the 258-302 eddy covariance sites from AmeriFlux, FLUXNET,
173  EuroFlux, OzFlux, JapanFlux, ChinaFLUX and TPDC, and nine radiation sites from

174  SURFRAD involved for analysis in this study.

175 Furthermore, ground-based radiation observations from nine sites that are located
176  in large flat agricultural areas covered by crops and grasses from SURFRAD were also
177  introduced to validate land surface radiation estimates. Similar to the preprocessing
178  performed on the observations of the 258-302 EC sites, the SWin, SWour, LWin, LWour

179  and Rn from the SURFRAD were also quality-controlled and aggregated to daily data.

7



180  Spatial distribution of the 258-302 EC sites and nine radiation sites from SURFRAD
181  are shown in Fig. 1, with site details (latitude, longitude, land cover types, digital

182  elevation model and temporal coverage) provided in Supplementary Tables S1 and S2.

183

184 2.2 Climate/meteorology and remote sensing data
185 To generate global datasets of land surface radiation and heat fluxes from 2000 to
186 2020, five types of climate/meteorology and remote sensing data were used in this study,

187  including:

188 (1) ERAS5-Land reanalysis datasets (https://cds.climate.copernicus.eu/, last access: 6
189 August 2024) with the spatial resolution of ~9 km from 1950 (Mufioz-Sabater et

190 al., 2021). Following our previous work (Wang et al., 2025), this study used
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variables from the ERAS5-Land datasets to drive the model, including near-surface
2 m air temperature (7, ), soil temperature in layer 1 (0-7 cm, T, ), soil volumetric
moisture content in layer 1 (0-7 cm,— SM/-SM), solar radiation reaching the
surface of the earth ( SW,. ), net thermal radiation at the surface (LW, ),
pressure of the atmosphere (P4PA), 10 m wind speed (W SHS-), precipitation (P,
+£-) and the 2 m dewpoint temperature, daily minimum and maximum air

temperature [for calculating relative air humidity (RHRH)].

GLASS datasets (https://glass.bnu.edu.cn/, last access: 6 August 2024), which

provide the 500 m 8-day leaf area index (LA/) and fractional vegetation cover
(FVC) from February 2000 to December 2021.

MOD44B product (https://Ipdaac.usgs.gov/, last access: 6 August 2024), which

offers yearly 250 m percent tree cover (P7TC) since 2000, representing the
percentage (0~100%) of a pixel covered by tree canopy.

NOAA/GML atmospheric carbon dioxide (CO2) concentration data, providing
monthly global marine surface mean data since 1958

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 6

August 2024).—
GMTED2010 topographic data

(https://topotools.cr.usgs.gov/gmted viewer/gmted2010_global_grids.php, last

access: 6 August 2024), providing 500 m digital elevation model (DEM), slope,
and aspect.

The ~9 km ERAS5-Land datasets were spatially interpolated to 500 m using the

cubic convolution method, and the 250 m PTC was resampled to 500 m using the

arithmetic averaging method.

2.3 Mainstream datasets/products for inter-comparison

Mainstream RS-based datasets/products of moderate-resolution global land

surface radiation and heat fluxes were collected for inter-comparison (Table 1),

9
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including (1) the daily 0.05° GLASS SWi, LWin, LWour and Rn products from 2000 to

2018 (https://glass.bnu.edu.cn/, last access: 6 August 2024), (2) the daily 0.05°

Breathing Earth System Simulator Radiation (BESS-Rad) SWv products from 2000 to
2020 (https://www.environment.snu.ac.kr/bess-rad), (3) the daily 0.05° BESS

Version2.0 (BESSV2.0) Rn and LE products from 2000 to 2020

(https://www.environment.snu.ac.kr/bessv2), (4) the 8-day 0.0833° FLUXCOM Rn, LE

and H products from 2001 to 2020 (https://fluxcom.org/, last access: 6 August 2024),

(5) the daily 1 km ETMonitor LE product from 2000 to 2020 (https://data.casearth.cn/,

last access: 6 August 2024), (6) the 8-day 500 m Penman-Monteith-Leuning Version2

(PML_V2, https://www.tpdc.ac.cn/, last access: 6 August 2024) LE product from 2000

to 2020; and (7) the 8-day 500 m MODI16A2 (https://Ipdaac.usgs.gov/, last access: 6

August 2024) LE product from 2000 to 2020.

The GLASS SWn products are derived from a combination of the GLASS
broadband albedo product and the surface shortwave net radiation estimates, where the
surface shortwave net radiation is estimated using linear regression with MODIS top-
of-atmosphere (TOA) spectral reflectance (Wang et al., 2015). The GLASS LWy and
LWour products are generated using densely connected convolutional neural networks,
incorporating Advanced Very High-Resolution Radiometer (AVHRR) TOA reflectance
and ERAS near-surface meteorological data (Xu et al.,, 2022b). The GLASS Rn
products are estimated from the meteorological variables from MERRA2 and surface
variables from GLASS using the multivariate adaptive regression splines model (Jiang
et al., 2015). The BESS-Rad and BESSV2.0 estimate SW;v and Rn using a radiative
transfer model (i.e., Forest Light Environmental Simulator, FLiES) with an artificial
neural network based on MODIS and MERRA?2 reanalysis datasets, and using FLiES
based on MODIS products and NCEP/NCAR reanalysis data, respectively (Li et al.,
2023; Ryu et al., 2018). Moreover, the BESSV2.0 (Li et al., 2023), MOD16A2 (Mu et
al.,2011), PML V2 (Zhang et al., 2019) and ETMonitor (Zheng et al., 2022) generated

global LE by physical models, such as Penman-Monteith equation, Priestley-Taylor

10
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equation and/or Shuttleworth-Wallace two-source scheme. The FLUXCOM Rn, LE and
H datasets are obtained through multiple machine learning methods based on in situ
observations from FLUXNET and remote sensing and meteorological data (Jung et al.,
2019). For better consistency, RF-based 8-day 0.0833° Rn and Bowen ratio-corrected

LE and H for the periods of 2000 to 2020 from the FLUXCOM were used in this study.

Table 1 Summary of mainstream datasets/products for inter-comparison used in this study

Products/ Reso- Time ) )
] Variables Algorithms References
datasets lution coverage
Machine
SWin, ] ] Wang et al. (2015):
0.05°/ 2000- learning, direct
GLASS ] LW, o Xu et al. (2022b);
daily 2018 estimation ]
LWour, Rn ] Jiang et al. (2015)
algorithm
0.05°/ 2000- BESS process
BESS-Rad ] SWin Ryu et al. (2018)
daily 2020 model
0.05°/ 2000- BESS process )
BESSV2.0 ] Rn, LE Liet al. (2023)
daily 2020 model
0.0833°/ 2000- Model tree
FLUXCOM Rn, LE.H Jung et al. (2019)
8-day 2020 ensembles
500 m/ 2000- Modified Penman-
MOD16A2 LE ] ] Mu et al. (2011)
8-day 2020 Monteith equation
Penman Monteith-
Leuning model,
500 m/ 2002- ]
PML_V2 LE Priestly Taylor Zhang et al. (2019)
8-day 2020 ]
equation and Gash
model
Shuttleworth-
Wallace two-
) 1 km/ 2000-
ETMonitor ] LE source scheme, Zheng et al. (2022)
daily 2020

Gash model and

Penman equation

3 Methods
The method used to generate global datasets of land surface radiation and heat

fluxes is based on the CoSEB model/framework, which was developed by our recently

11
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previously published work (Wang et al., 2025), to coordinately estimate global land
surface energy balance components (including Rn, LE, H and G) using the multivariate
random forest technique, with a combination of MODIS and GLASS products, ERAS-
Land reanalysis datasets, and in situ observations at 336 EC sites-from-the FEUXNET;
e e S e b b b e D e e ol The
CoSEB model was demonstrated to be able to produce high-accuracy estimates of land

surface energy components, with the RMSE of <17 W/m? and R’ of > 0.83 for

estimating 4-day Rn, LE and H, and the RMSE of <5 W/m? and R’ of 0.55 for

estimating 4-day G. The most praiseworthy superiority of the CoSEB model lies in its

ability to balance the land surface energy components, with an energy imbalance ratio

[EIR, defined as 100%x(Rn - G - LE - H)/Rnt00%x{Rn—G—LE—H}/-Rn-] of 0.

To coordinately estimate land surface radiation and heat fluxes that comply with

both radiation balance and heat balance, one of the key procedures in the construction
of the CoSEB model was to prepare training datasets that satisfy surface radiation and
heat balance. For this purpose, the energy-imbalance corrections on daily in situ

observed LE and H were conducted by the most widely applied Bowen ratio method

[ corr __ H LE
H+LE H+LE

X (Rn - G) , LE“" = X (Rn — G) , Where H“" and LE“"

represent the sensible heat flux and latent heat flux after energy-imbalance correction,
respectively] with the aid of Rn and G observations, and the in situ Rn was calculated
from the sum of in situ observed net longwave radiation (LW;y minus LWour) and net

shortwave radiation (SWiv minus SWour). The input variables to renew the CoSEB

model include: (1) climate/meteorology: T,, SW,", LW,

net >

WS, PA, P, RH,

CO: concentration; (2) vegetation and soil: LAI, FVC, PTC, Ts/ s, SMI1—SMt; (3)
topography data: DEM, Slope and Aspect, in addition to longitude (Lon), latitude (Lat),

and inverse relative distance from the Earth to the Sun (dr), in which the dr was

calculated as dr =1+0.033xcos

2 x DOY
———— |, where DOY represents the day of year.
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Considering that the footprint of the site-based measurements of turbulent heat fluxes
is generally at a scale of hundreds of meters, to reduce the effect of differences of spatial
scales between ground-based measurements (dependent variables) and remotely
sensed/reanalysis datasets (independent variables), we renewed the CoSEB model at a
spatial scale of 500 m for coordinately estimating global daily land surface radiation

and heat fluxes, which can be expressed as follows:

{SW,N,SWOUT,LW,N, j_ (Lon,Lat,Ta,TSl,SMl,SmﬁRAS,LW

s PAWS, P, dr (1)
Lw, ., Rn,LE,H,G RH,LAI, FVC,PTC,DEM ,Slope, Aspect,CO,

To enhance model generalization, the renewed CoSEB model was reoptimized

using random and grid search methods, resulting in different hyperparameters of 281

decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 from

those of Wang et al. (2025). Site-based 10-fold cross-validation was employed to

evaluate the transferability and generalization of the CoSEB model by randomly

dividing all sites into ten folds, where the samples from each fold of sites in turn served

as validation datasets while the remaining folds were used as training datasets, ensuring

that the validation was conducted on sites spatially independent from the training data.

the—trainingdatasets—Furthermore, to benchmark the coordinated estimates from the

renewed CoSEB model, eight RF-based uncoordinated models were constructed, each

separately estimating one of SWiv, SWour, LW, LWour, Rn, LE, H or G using the same

inputs as those in the renewed CoSEB model. Fig. 2 illustrates the flowchart for

generating global datasets of land surface radiation and heat fluxes by the CoSEB model.
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i Variables

(Cross -) validation Rn, LE, H, G

Fig. 2 Flowchart for generating energy-conservation datasets of global land surface radiation

[including downward shortwave radiation (SWiv), downward longwave radiation (LWjy),
upward shortwave radiation (SWour), upward longwave radiation (LWoyr) and net radiation
(Rn)| and heat fluxes [including latent heat flux (LE), soil heat flux (G) and sensible heat flux
(H)] by the CoSEB model renewed from in situ observations at 258 sites worldwide and

collocated remote sensing and reanalysis datasets.

4 Results

4.1 Validation of the CoSEB model
4.1.1 Site-based 10-fold cross-validations at 258 EC sites

Fig. 3 and Fig. 4 present the scatter density plots of the site-based 10-fold cross-
validation of daily SWi, LW, SWour, LWour, Rn, LE, H and G estimated from the
renewed CoSEB model and the RF-based uncoordinated models, respectively, by using
the validation datasets collected at 258 EC sites worldwide. Results indicated that the
estimates from both the CoSEB model and the RF-based uncoordinated models agreed
well with the in situ observations, with the coefficient of determination (R?) varying
between 0.80 and 0.95 for SWiv, LW, LWour and Rn, and between 0.59 and 0.67 for
SWour, LE and H. The CoSEB model, with the root mean square error (RMSE) of 26.82
to 34.25 W/m? and mean absolute error (MAE) of 18.83 to 24.49 W/m? for SW, Rn,

LE and H, the RMSE of 12.24 to 17.75 W/m? and the MAE of 8.39 to 13.70 W/m? for
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SWour, LW and LWour, demonstrated comparable accuracies to the RF-based models,
with the RMSE of 27.07 to 33.34 W/m? and MAE of 19.29 to 23.64 W/m? for SWy,
Rn, LE and H, the RMSE of 12.12 to 16.93 W/m? and the MAE of 8.68 to 12.99 W/m?
for SWour, LWy and LWour. In the validation of daily G, both the CoSEB and RF-based

models yielded RMSEs below 7 W/m?. Comparisons with the corresponding training

results (Table S3 in the Supplementary Material) indicated that although the CoSEB

model performed better on the training datasets, its overall performance remained stable,

suggesting that the CoSEB model was not affected by overfitting.

Strikingly, the CoSEB model exhibited large superiority in balancing the surface
radiation and heat fluxes, with the radiation imbalance ratio [RIR, defined as 100% x

SWin — SWour + LWin - LWour)/Rn

100% (S AL W —SWos—EWo—Ri}/-R-] and energy imbalance ratio [EIR,
defined as 100% x (Rn - G - LE - H)/Rn—100%x{Rn—G—ELE—H}/-Rn] of 0, while

the RF-based uncoordinated models showed substantial imbalances of the surface

radiation and heat fluxes, with RIR and EIR that were approximately normally
distributed, having absolute mean values of 38.84% and 31.22%, respectively, and

reaching as high as 50% in some cases. Furthermore, the RIR as well as EIR tended to

be higher under lower solar radiation, air temperature, or FVC, with more frequent low

values of these three variables leading to a broader and less peaked distribution of RIR

and EIR (see Fig. S1 in the Supplementary Material).
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Fig. 3 Scatter density plots of the site-based 10-fold cross-validation of daily downward
shortwave and longwave radiation (SW;v and LWjy), upward shortwave and longwave
radiation (SWour and LWour), net radiation (Rn), soil heat flux (G), latent heat flux (LE) and

sensible heat flux (H) derived by the CoSEB model against in situ observed SWiy, LWin, SWour,
LWour, Rn, G, and energy imbalance-corrected LE (LE, ) and H (), ). The EIR and RIR

daily daily

in the subfigure (i) represent the energy imbalance ratio and radiation imbalance ratio, which

are defined as_100% x (Rn - G - LE - H)/Rn 106%>{Rn—G—LE—H)/Rn-and—_100% X
(SW[N — SWOUT + LW[N - LW()UT)/RII M%%%F—EHW%—}M N

respectively. The colorbar represents the normalized density of data points.
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Fig. 4 Same as Fig. 3, but for estimates from RF-based uncoordinated models.

4.1.2 Validation at nine radiation sites from SURFRAD

To further illustrate the generality and transferability of the renewed CoSEB model,
the validation of estimates of the five radiation components (including SWin, SWour,
LW, LWour, Rn) derived from both the CoSEB model and RF-based uncoordinated
models against observations at nine radiation sites from SURFRAD was performed, as
shown in Fig. 5. The results showed that both the CoSEB model and the RF-based
models achieved high accuracy in estimating daily SWin, SWour, LWin, LWour and Rn,
with the RMSE of ~30 W/m? for SW, ~14 W/m? for SWour and LWy, ~12 W/m? for
LWour and ~24 W/m? for Rn, with the R? >0.9 for SWi, LWiv and LWour, ~0.65 for
SWour and ~0.85 for Rn. Compared to the results of the site-based 10-fold cross-

validation at 258 EC sites, the performances at nine radiation sites showed slight
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improvements, with the RMSE decreasing by 0.74 to 4.54 W/m? for SWi, LW, LWour
and Rn in the CoSEB model, but a slight degradation with the RMSE increasing by
~1.05 W/m? for SWour, suggesting the robust performance of the CoSEB model.
Furthermore, the CoOSEB model demonstrated a large superiority in maintaining surface
radiation balance among the five radiation components, with the RIR of 0, in contrast
to the RF-based models, which failed to meet this balance, exhibiting significant RIR

exceeding 50%.

4.2 Validation and inter-comparisons of the CoSEB-based datasets

As demonstrated in Section 4.1, the renewed CoSEB model with a spatial scale of

500 m achieved comparable accuracies to the RF-based uncoordinated models but

outperformed them in balancing surface radiation and heat fluxes. Evidenced by the

validation for its superiority, the renewed CoSEB model was then applied to the

spatially ageregated input datasets to generate our developed global daily datasets with

a spatial resolution of 0.05°. To further assess the performance of the developed

CoSEB-based datasets, in situ observations from another 44 spatially independent test

sites (see Section 2.1), which were not involved in model construction and datasets

generation, were used for validation. Mainstream products (i.e. GLASS, BESS-Rad,

BESSV2.0, FLUXCOM, PML_V2, MOD16A2 and ETMonitor) were also involved for

inter-comparison at the 44 test sites.

Note that due to the lack of moderate-resolution global RS-based products/datasets

of daily and/or 8-day SWour, H and G, the intercomparison between different

products/datasets was impossible. Instead, we conducted a validation of these

components from the CoSEB-based datasets against in situ observations at 44 test sites,

as shown in Figs S2 and S3 in the Supplementary Material. Results indicated that the

CoSEB-based datasets could provide good estimates of SWour, H and G, with the

RMSESs (R?) of 14.20 W/m? (0.42), 29.75 W/m? (0.44) and 5.69 W/m? (0.44) at daily

scale, respectively, and the RMSE (R?) of 12.19 W/m? (0.39) and 4.60 W/m? (0.47) for

8-day SWour and G, respectively.
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Fig. 5 Scatter density plots of the validation of daily downward shortwave and longwave
radiation (SWiv and LWy), upward shortwave and longwave radiation (SWour and LWour)
and net radiation (Rn) from the renewed CoSEB_model (upper two rows) and RF-based

uncoordinated models (lower two rows) -based-datasets-against in situ observations at nine

radiation sites from SURFRAD. The RIR represents the radiation imbalance ratio, defined as

100% X (SWin—SWouvr+ LWin-L Wour)/RHAI-QG%*%—E%—S%—E%—Rﬂ}#RH—-

The colorbar represents the normalized density of data points.
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Fig. 6 and Fig. 7 present the comparison of daily SWin, LWy and LWour, as well
as Rn and LE from the CoSEB-based datasets and mainstream products/datasets
(including GLASS, BESS-Rad, BESSV2.0 and ETMonitor), with in situ observations
at 134-44 EC-test sites, respectively. Overall, the estimates from the CoSEB-based
datasets exhibited a closer agreement with in situ observations than those from
mainstream products/datasets, where the CoSEB-based datasets reduced the RMSE by

4:350.01 W/m? to +H-464.58 W/m? and increased the R2 by 0.04-01 to 0.3-09 compared
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Fig. 6 Comparison of the daily downward shortwave radiation (SWin, the first column),
downward longwave radiation (LW;y, the second column) and upward longwave radiation
(LWour, the third column) from the CoSEB-based datasets, GLASS and BESS-Rad with the
in situ observed SWin, LWin and LWoyr at 134-44 eddy-covarianeetest sites. The colorbar
represents the normalized density of data points.
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sites. The colorbar represents the normalized density of data points.

) at 134-44 eddy-covarianeetest

Figs. 8, 9 and 10 compare the 8-day SWiy, LWy and LWour, Rn and LE, as well as

H from the CoSEB-based datasets and mainstream products, with in situ observations

at 44 testd34-EC sites, respectively. Overall, the CoSEB-based datasets outperformed
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the mainstream products/datasets for all surface radiation and heat fluxes, where the
CoSEB-based datasets reduced the RMSE by 4-620.24 W/m? to 14-640.48 W/m? and
increased the R? by 0.64-01 to 0.41-38 compared to mainstream products. Specifically,
for SWin, LWy and LWour, the RMSE increased from 12-848.54 W/m?,9-2218.50 W/m?
and 8-349.41 W/m? in the CoSEB-based datasets to 21.23-35 W/m?, 45:3720.39 W/m?
and 14.70-48 W/m? in the GLASS, respectively, and for SWy from 12.8118.54 W/m?
in the CoSEB-based datasets to +7-4318.78 W/m? in the BESS-Rad. For Rn, the RMSE

increased from 132-289.12 W/m? in the CoSEB-based datasets to ~23 W/m? in the

FLUXCOM and GLASS and to >27 W/m? in the BESSV2.018-64W/m>in-the GLASS

and-to=23-W/m -inthe FELUXCOM-and BESSV2.0, while the R? decreased from 0.9+

82 in the CoSEB-based datasets to (.75 in the FLUXCOM and GLASS and to 0.82-62

in the GEASS-BESSV2.0and-to<0-72-in-the FEUXCOM-and BESSV2.0. Likewise, for
LE, the RMSE increased from 19992231 W/m® in the CoSEB-based datasets to

~261625 W/m? in the FLUXCOM, PML V2. BESSV2.0 and ETMonitor, and

to >28-1732 W/m? in BESSV2.0.MOD16A2, PML V2 and ETMeniter, while the R?

decreased from 0.8-67 in the CoSEB-based datasets to ~0.65-60 in the FLUXCOM

PML_V2, BESSV2.0 and ETMonitorEEUXEOM, and to <0.6-3 in the remaining

produetsMOD16A 1. For H, the RMSE increased from +7-4421.63 W/m? in the CoSEB-
based datasets to 23-962.64 W/m? in the FLUXCOM.

The differences between the estimates from the CoSEB-based datasets and

mainstream datasets are likely multifactorial, arising from the simplification and

parameterization uncertainties in physics-based models, as well as the lack of physical

constraints, limited training samples, and incomplete consideration of influencing

factors in other machine-learning-based models.
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Fig. 9 Comparison of the 8-day net radiation (Rn, the upper two rows) and latent heat flux
(LE, the lower three rows) from the CoSEB-based datasets, FLUXCOM, BESSV2.0, GLASS,
MOD16A2, PML_V2 and ETMonitor with in situ observed Rn, and energy imbalance-

corrected LE (LEg’”f;,y) at 134-44 testeddy—eovarianee sites. The colorbar represents the

normalized density of data points.
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Fig. 10 Comparison of the 8-day sensible heat flux (H) from the CoSEB-based datasets and
the FLUXCOM with the in situ energy imbalance-corrected H ( [/ gi’f,’ay) at 134-44 eddy

covarianeetest sites. The colorbar represents the normalized density of data points.

4.3 Spatial-temporal patterns of global land surface radiation and heat fluxes

In addition to the validation and inter-comparison of the CoSEB-based datasets at
the glebal-site scales, we further inter-compared the estimates of land surface radiation
and heat fluxes from the CoSEB-based datasets and the mainstream products/datasets,
in terms of their global spatial and temporal patterns.

Figs. 11, 12 and 13 show the spatial distributions (excluding Greenland, Antarctic
continent, deserts, water bodies and permanent snow) and latitudinal profiles of the
global 0.05° mean annual SWin, LWv and LWour, Rn and LE, as well as H from 2001
to 2018, respectively, as derived from the CoSEB-based datasets and mainstream
products/datasets [i.e. GLASS, BESS-Rad, BESSV2.0, FLUXCOM, MODI16A2,
PML V2 and ETMonitor, resampled to 0.05° using arithmetic averaging method or

cubic convolutional method if necessary]. Overall, the spatial patterns of the estimates
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from the CoSEB-based datasets aligned well with those observed in these mainstream
products/datasets, though regional discrepancies were present. Specifically, the mean
annual LWn, LWour, Rn, and LE generally exhibited decreasing trends from the equator
towards higher latitudes, peaking in regions such as the Amazon Rainforest, Congo
Rainforest, and the Malay Archipelago. In contrast, the higher mean annual SW;y and
H were mainly found in the Tibetan Plateau, southwestern U.S., mid-west Australia,
Sahel and Southern Africa, while the lower values were found in high-latitude regions
of >50°N. In the region with efhigh values, the mean annual estimates of SWv from
the CoSEB-based datasets were higher than those from GLASS but lower than those
from BESS-Rad, the estimates of LWy and LWour from the CoSEB-based datasets were
both higher than those from GLASS, the estimates of Rn from the CoSEB-based
datasets were significantly higher than those from BESSV2.0, and comparable to or
slightly higher than those from FLUXCOM and GLASS, the estimates of LE from the
CoSEB-based datasets were close to those from BESSV2.0 and PML V2, but slightly
lower than those from FLUXCOM, MOD16A2 and ETMonitor. Besides, the estimates
of H from the CoSEB-based datasets were higher than those from FLUXCOM in
regions with high values, while lower than those from FLUXCOM in regions with low

values.
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Fig.11 Spatial patterns of global mean annual downward shortwave radiation (SWi, the first
row), downward longwave radiation (LW, the second row) and upward longwave radiation
(LWour, the third row) from 2001 to 2018 by CoSEB-based datasets, GLASS and BESS-Rad.
The rightmost subfigure of each row represents the latitudinal profiles of mean annual SW;y,
LWin and LWoyr from CoSEB-based datasets, GLASS and BESS-Rad, where the shaded area

represents the variation of standard deviation for each product.
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Fig.12 Spatial patterns of global mean annual net radiation (Rn, the first row) and latent heat
flux (LE, the second and third rows) from 2001 to 2018 by CoSEB-based datasets, FLUXCOM,
BESSV2.0, MOD16A2, PML_V2, ETMonitor and GLASS. The last two subfigures of the third
row represent the latitudinal profiles of mean annual Rn and LE from CoSEB-based datasets
and these mainstream products/datasets, where the shaded area represents the variation of

standard deviation for each product.
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Fig.13 Spatial patterns of global mean annual sensible heat flux (H) from 2001 to 2018 by
CoSEB-based datasets and FLUXCOM. The rightmost subfigure represents the latitudinal
profiles of mean annual H from CoSEB-based datasets and FLUXCOM, where the shaded
area represents the variation of standard deviation for each product.

The temporal evolutions of the global (excluding Greenland, Antarctic continent,
deserts, water bodies and permanent snow) land surface radiation and heat fluxes
derived from the CoSEB-based datasets and mainstream products/datasets from 2001
to 2018 were also investigated, as shown in Fig. 14. The results indicated that the
temporal variation of each flux from the CoSEB-based datasets generally agreed well
with those from mainstream products/datasets, exhibiting relatively stable trends. The
global annual mean estimates using area weighting average by the CoSEB-based
datasets from 2001 to 2018 varied between ~185.22 and ~189.50 W/m? with the mean
of ~187.23 W/m? for SWin, between ~32.67 and ~33.20 W/m? with the mean of ~32.96
W/m? for SWour, between ~330.24 and ~334.14 W/m? with the mean of ~331.50 W/m?
for LWy, between ~387.25 and ~390.82 W/m? with the mean of ~388.81 W/m? for
LWour, between ~95.41 and ~99.39 W/m? with the mean of 97.11 W/m? for Rn,
between ~53.24 and ~56.37 W/m? with the mean of ~54.53 W/m? for LE, between
~40.44 and ~41.96 W/m? with the mean of ~41.29 W/m? for H, and between ~1.22 and
~1.52 W/m? with the mean of ~1.33 W/m? for G. For each radiation or heat flux, the
annual mean estimates from the CoSEB-based datasets were overall higher than those
from the mainstream products/datasets. In particular, the annual mean Rn estimates
from the CoSEB-based datasets were higher than those from FLUXCOM, GLASS and
BESSV2.0 sequentially, and the annual mean LE estimates from the CoSEB-based
datasets were marginally higher than those from FLUXCOM, but substantially

exceeded those from ETMonitor, PML V2, MOD16A2 and BESSV2.0 sequentially.
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Fig. 14 Temporal variation of annual mean downward shortwave radiation (SWiv), upward
shortwave radiation (SWour), downward longwave radiation (LWjv), upward longwave
radiation (LWour), net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat
flux (G) from 2001 to 2018 from the CoSEB-based datasets, BESS-Rad, GLASS, FLUXCOM,
BESSV2.0, PML_V2, MOD16A2 and ETMonitor. The shaded area represents the variation of

standard deviation for each product.
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Fig. 15 Spatial distribution of interannual variability (standard deviation) of downward
shortwave radiation (SW;y, the first row), downward longwave radiation (LWn, the second
row) and upward longwave radiation (L Wour, the third row) from 2001 to 2018 by the CoSEB-
based datasets, GLASS and BESS-Rad.

Figs. 15, 16 and 17 show the spatial patterns (excluding Greenland, Antarctic
continent, deserts, water bodies and permanent snow) of interannual variability of SWy,
LWy and LWour, Rn and LE, as well as H from 2001 to 2018, respectively, derived
from the CoSEB-based datasets and mainstream products/datasets. In general, the
estimates from the CoSEB-based datasets displayed similar interannual variability in
space with those from the mainstream products/datasets. Specially, the estimates of
SWin from the CoSEB-based datasets, BESS-Rad, and GLASS exhibited a significant
interannual variability mainly in northeastern Australia, eastern South America,
Southeast China, and Southwest North America. The interannual variability of LWy
and LWour by the CoSEB-based datasets and GLASS displayed high values primarily
at middle-to-high latitudes of the Northern Hemisphere and parts of Africa and
Australia. The interannual variability of Rn observed by the CoSEB-based datasets was
generally lower than that of GLASS, but higher than that of BESSV2.0 and FLUXCOM.
The CoSEB-based datasets missed the strong interannual variability of LE as observed

in MOD16A2, PML V2 and ETMonitor in parts of Africa, Australia and eastern South
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America. Furthermore, FLUXCOM exhibited the weakest interannual variability of LE
in almost all regions. The interannual variability of H derived from the CoSEB-based
datasets was higher than these—that from FLUXCOM, with stronger interannual
variabilities mainly observed in parts of eastern South America, southern Africa, and

northeastern Australia.
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Fig. 16 Spatial distribution of interannual variability (standard deviation) of net radiation (Rn,
the first and second rows) and latent heat flux (LE, the third and fourth row) from 2001 to
2018 by the CoSEB-based datasets, FLUXCOM, BESSV2.0, MOD16A2, PML_V2,
ETMonitor and GLASS.
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Fig. 17 Spatial distribution of interannual variability (standard deviation) of sensible heat flux
(H) from 2001 to 2018 by the CoSEB-based datasets and FLUXCOM.
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5 Discussion

Accurately monitoring the spatial and temporal variations of global land surface
radiation and heat fluxes is crucial for quantifying the exchange of radiation, heat and
water between the land and atmosphere under global climate change (Chen et al., 2020;
Du et al., 2024; Kim et al., 2023; Liang et al., 2006; Wang et al., 2020). However,
although numerous global RS-based products/datasets of land surface radiation and
heat fluxes have been developed using physical and/or statistical methods, they
typically provide either merely a single flux or multiple fluxes (see Table 1) that are
estimated separately from uncoordinated models (Huang et al., 2024; Jung et al., 2019;
Sun et al., 2023; Tang et al., 2019), leading to noticeable radiation imbalance and/or
heat imbalance when these products are combined for practical applications. To address
these limitations, we generated high-accuracy global datasets of land surface radiation
and heat fluxes from 2000 to 2020 that adhere to both radiation and heat conservation
laws, using our proposed CoSEB model (Wang et al., 2025).

Our CoSEB model, integrating underlying physical principles of training datasets
into machine learning technique to effectively learn the interrelations among multiple
targeted outputs, was originally designed for coordinating estimates of global land
surface energy balance components (Rn, LE, H and G) to satisfy the energy
conservation (Wang et al., 2025). Inspired by the idea of constructing the original
CoSEB model, we further incorporated land surface radiation fluxes into our model to
simultaneously consider the physical constraints of both surface radiation and heat
conservation principles, by renewing the CoSEB using multiple remote sensing
preduetsand; reanalysis datasets, as well as in--situ observations of SWi, SWour, LW,

LWour, Rn, LE, H and G. In selecting the 19 input variables to accommodate the

additional target variables, prior knowledge derived from previous studies was

emploved to identify factors that exert significant influence on surface radiation and

heat flux while maintaining relative inter-independence as much as possible (Jung et al.,

2019; Mohan et al., 2020; Wang et al., 2021; Xian et al., 2024). This practice is
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commonly adopted in data-driven models for estimating land surface water, energy, and

carbon fluxes (Bai et al., 2024: Elghawi et al., 2023: Han et al., 2023: O. & Orth, 2021).

The importance scores of the 19 different feature variables are exhibited in Table S4 in

the Supplementary Material, and downward solar radiation, the primary source of the

energy at the earth surface, is the most important input variable, consistent with the

results from our previous study (Wang et al., 2025). Although some of the selected

variables may exhibit a certain degree of multi-collinearity, each contributes unique and

physically meaningful information, supporting the inclusion of all variables in model

2025)Note that the variable importance, derived from the built-in method of the random

forests and potentially affected by multicollinearity among the input variables, is

presented only as a reference. Retaining all 19 feature variables ensures the model’s

flexibility and generalization capability, enabling future incorporation of additional

representative eround-based observations for further training and improvement.

Besides, to investigate the impact of lagged effects of input variables on model

performance, experiments were also conducted by adding lageed variables (e.g.. the air

temperature of the previous day) to the 19 input features. The results (Fig. S4 in the

Supplementary Material) showed almost no improvement in model accuracy,

suggesting that lagged effects on model performance were negligible within the CoSEB

framework for estimates of daily surface radiation and heat fluxes. Furthermore, to

better illustrate the effect of including additional radiation components (SW, SWour,

LW and LWour) in the renewed CoSEB model compared with the original version by

Wang et al. (2025), we have tested the performance of a reconstructed model that
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estimated only Rn, LE. H and G using the same independent variables and samples as

those in the renewed CoSEB model. The results (Fig. S5 in the supplementary material)

showed no significant differences in accuracy compared with those of the renewed

CoSEB model, indicating the expansion of radiation components did not compromise

model performance.

The main advantages of our CoSEB-based datasets of land surface radiation and
heat fluxes lie in that [1] they are the first RS-baseddata-driven global datasets that

satisfy both surface radiation balance (SWiv - SWour + LW - LWour = Rn

SWr— SV - W —EWo7==Rn ) and heat balance (LE + H + G = Rn

+LE+H+6G==Rn") among the eight fluxes, as demonstrated by both the RIR and EIR
of 0, [2] the radiation and heat fluxes are characterized by high accuracies when

validated against in--situ measurements at 134-hemogeneous 44 independent test sites

(see the first-second paragraph in Section 4:22.1), where (1) the RMSEs for daily

estimates of SWi, SWour, LW, LWour, Rn, LE, H and G from the CoSEB-based
datasets were 28-5137.52 W/m?, 10-394.20 W/m?, 14-2922.47 W/m?, 16-623.78 W/m?,
22.409.66 W/m?, 24.3830.87 W/m?, 22.679.75 W/m? and 6-775.69 W/m?, respectively,
as well as for 8-day estimates were 12:818.54 W/m?, 7-0812.19 W/m?, 9:2218.50 W/m?,
834941 W/m?, 12-289.12 W/m?, 19-9922 31 W/m?, 174421.63 W/m? and 4-254.60
W/m?, respectively, (2) the CoSEB-based datasets, in comparison to the mainstream
RS-based products/datasets (i.e. GLASS, BESS-Rad, FLUXCOM, BESSV2.0,
MODI16A2, PML V2 and ETMonitor), better agreed with the in situ observations at
134-ECthe 44 test sites, showing the RMSE reductions ranging from 4-350.01 W/m? to
11-464.58 W/m? for SWiy, LWin, LWour, Rn and LE at daily scale, and 4-620.24 W/m?

to 14-640.48 W/m? for SWin, LW, LWour, Rn, LE and H at 8-day scale. Furthermore

the CoSEB-based datasets outperformed the ERAS5-Land reanalysis datasets in

estimating surface energy fluxes (where SWour, LWour, Rn and G for the ERA-Land

were inferred from surface radiation balance and heat balance), particularly for SWour,

H and G, with RMSE reductions of 0.13-8.15 W/m? when validated against in situ
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observations at the 44 test sites (Figs. S6 and S7 in the Supplementary Material).

Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial patterns

consistent with those of mainstream RS-based datasets and Earth system model outputs

(see Fig. S8 in the supplementary material). More detailed analysis about their

similarities and differences can be further conducted in future work.

Our developed datasets could be potentially applied in many fields, including but
not limited to (1) exploring the spatial-temporal patterns of global land surface radiation
and heat flux (es) and their driving mechanisms over the past decades under global
change (e.g., rising CO2 concentration, greening land surface and increasing air
temperature), (2) investigating the variability of land surface radiation and heat fluxes
caused by extreme events and human activities, e.g. afforestation or deforestation,
wildfire, air pollution, weather extremes and urbanization, (3) assessing the resources
of solar energy, geothermal energy, surface and ground water at regional and global
scales, (4) monitoring natural hazards, e.g. drought in agriculture and forestry.

The uncertainties of our datasets are relevant to (1) the data preprocessing, and (2)
the application of the CoSEB at-model across different spatial scales. Specifically, the
daily averages of surface radiation and heat fluxes for each day wereas obtained for
analysis from good-quality half-hourly observations when the fraction of these good-
quality half-hourly observations was greater than 80% in a day, due to the lack of

consensus on the method for aggregating gapped half-hourly observations to daily data

(Tang et al., 2024a; Yao et al., 2017; Zheng et al., 2022). Simple temporal interpolation

of half-hourly in situ observations, which could therefore introduce substantial

uncertainties, was not applied, because surface radiation and heat fluxes are sensitive

to short-term variations in meteorological conditions and their intraday dynamics are

often complex. Likewise, since there was no agreement on how to correct for the energy

imbalance of turbulent heat fluxes, we adopted the most widely applied Bowen ratio

method to enforce energy closure between Rn—G and LE+ H (Castellietal., 2018;

Twine et al., 2000; Zhang et al., 2021). Another potential source of uncertainty arises
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from differences in meteorological reanalysis data caused by spatial downscaling,

which, as demonstrated in our previous study (Wang et al., 2025, the last paragraph of

Section 5.1), has a relatively small impact on model estimates by the machine-learning-

based CoSEB model combined with finer-resolution surface-related variables that

partially compensate for the spatial heterogeneity and localized variations not captured

- These data preprocessing had an
effect on the construction of the renewed CoSEB model, which may further affect the
global datasets. Moreover, the renewed CoSEB model was constructed at the spatial
scale of 500 m to match the footprints of the in situ EC observations, but applied at the
spatial resolution of 0.05° to generate global datasets, mainly limited by the computing
and storage capabilities #-of our personal computers. However, the CoSEB-based

datasets have also been validated and inter-compared at 134-E€44 independent test sites

to demonstrate that the difference in spatial scale would not much affect the
performance of the datasets. Despite these uncertainties, it is worth emphasizing that
our work was the first attempt to innovatively develop data-driven energy-conservation

datasets of global land surface radiation and heat fluxes with high accuracies.

6 Data availability

The energy-conservation datasets of global land surface radiation and heat fluxes
generated by the CoSEB model with spatial-temporal resolutions of daily and 0.05°
from Feb.26, 2000 to Dec.31, 2020 are freely available through the National Tibetan

Plateau Data Center at https://doi.org/10.11888/Terre.tpdc.302559 (Tang et al., 2025a)

and through the Science Data Bank (ScienceDB) at

https://doi.org/10.57760/sciencedb.27228 (Tang et al., 2025b).
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7 Summary and Conclusion
This study for the first time developed data-driven energy-conservation datasets
of global land surface radiation and heat fluxes using our CoSEB model renewed based
on GLASS and MODIS products, ERA5-Land reanalysis datasets, topographic data,
CO:, concentration data, and observations at 258 EC sites worldwide—from—the
The CoSEB-based datasets of land surface radiation and heat fluxes are the first

RS-baseddata-driven global datasets that satisfy both surface radiation balance (S/W/17y -

SWour+ LWy - LWour = Rn-SWa—SWogm - Ws—EWe77=Rm) and heat balance (LE

+ H + G = Ro£LE+H+G==Rn") among the eight fluxes. Meanwhile, the CoSEB-based
datasets outperformed the mainstream products/datasets in accuracy. Specifically, at

13444EC— independent test sites, the RMSEs (R?) for daily estimates of SWi, SWour,

LW, LWour, Rn, LE, H and G from the CoSEB-based datasets were 37.52 W/m? (0.81),

14.20 W/m? (0.42), 22.47 W/m? (0.90), 13.78 W/m? (0.95), 29.66 W/m? (0.77), 30.87

W/m? (0.60), 29.75 W/m? (0.44) and 5.69 W/m? (0.44), respectivelythe RMSEs—for

datasets-were 2851 W/m?, 1039 W/m? 1420 W/ 10.62 W/m? 22 40 W/m?, 2438
Whn? 22 67 Wi -and 677 W/m® respeetively, as well as for 8-day estimates were
12.8118.54 W/m? (0.87), 7-68€12.19 W/m? (0.39), 9-2218.50 W/m? (0.92), 8-349.41

W/m?2(0.97), 13-389.12 W/m? (0.82), 19:9922.31 W/m?(0.67), +7-4421.63 W/m? (0.39)

and 4-254.60 W/m? (0.47), respectively. Moreover, the estimates from the CoSEB-

based datasets in comparison to those from the mainstream products/datasets reduced
the RMSE by 4:350.01 W/m? to +1-464.58 W/m? and increased the R? by 0.04-01 to 0.3
09 for SWin, LW, LWour, Rn and LE at daily scale, and reduced the RMSE by 4-620.24
W/m? to 14-640.48 W/m? and increased the R? by 0.04-01 to 0.44-38 for SWi, LW,
LWour, Rn, LE and H at 8-day scale, when these estimates were validated against in

situ observations at +34-44 EC-independent test sites. Furthermore, the CoSEB-based

datasets effectively captured the spatial-temporal variability of global land surface
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radiation and heat fluxes, aligning well with those from the mainstream products.

Our developed datasets hold significant potential for application across diverse
fields such as agriculture, forestry, hydrology, meteorology, ecology, and environmental
science. They can facilitate comprehensive studies on the variability, impacts, responses,
adaptation strategies, and mitigation measures of global and regional land surface
radiation and heat fluxes under the influences of climate change and human activities.
These datasets will provide valuable insights and data support for scientific research,
policy-making, and environmental management, advancing global solutions to address

climate change.
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