Reviewer #2:

Review of Energy-conservation datasets of global land surface radiation and
heat fluxes from 2000-2020 generated by CoSEB

Summary and recommendation- In this paper, the authors apply a model of
Coordinated estimates of land surface energy balance components (CoSEB) to
generate estimates of surface radiation and heat fluxes from 2000 to 2020. An
advantage of the CoSEB based approach is that estimates of radiation and heat are in
“harmony” as opposed to generating independent estimates of each. The authors
compare their estimates against observations from eddy covariance sites, other
individual estimates and other individual observations. The paper is generally well
written, and the results are presented clearly. However, I had several questions about
the CoSEB framework itself and also the validations applied here in the manuscript.
Hence I recommend major revisions. I have presented major comments and specific
comments below.

Ans: Thank you very much for your thoughtful and constructive comments. We
sincerely appreciate your recognition of the CoSEB model and the datasets,
particularly the advantage of generating global surface radiation and heat fluxes that
adhere to energy conservation. We have carefully considered all the comments and
suggestions from you and another reviewer, especially your concerns regarding the
CoSEB framework and the validation of the datasets, and have made corresponding
modifications and clarifications in the revised manuscript. More detailed information
of our revisions can be found in the item-by-item response as below.

Major comments-

1. Explanation of updates to the CoSEB framework- While reading the
manuscript I realized that it is not only a paper that applies the existing CoSEB
framework that is already published but also updates this framework to estimate
to estimate radiation (previously this model estimated only land surface energy
components and not short wave and long wave radiation). Therefore, authors
need to discuss the effect of the addition of additional predicted variables on the
equations and the results of the random forest. In particular, can the authors
discuss which of the predictors were found to be the most important and also
discuss how this differed with their previous publication? Also, can authors
discuss generic details such as how many splits were generated by the random
forest before and after the updates. Authors should also discuss the directionality
of effects of different predictor variables based on the revised random forest.

Ans: We thank the reviewer for these insightful comments and questions. Indeed, the

renewed CoSEB model extends beyond the original version (Wang et al., 2025) by

jointly estimating both radiation components (SWi, SWour, LW, LWour and Rn)
and heat fluxes (LE, H, G), thereby ensuring that both radiation and energy balance
are simultaneously satisfied.

(1) To illustrate the effect of including additional radiation components (SWy,

SWour, LWy and LWour) in the renewed CoSEB model compared with the original



version by Wang et al. (2025), we have tested the performance of a reconstructed
model that estimated only Rn, LE, H and G using the same independent variables
and samples as those in the renewed CoSEB model. The results (Fig. S5 in the
supplementary material) showed no significant differences from those produced by
the renewed CoSEB model, indicating that the expansion of radiation components
did not compromise the model’s overall performance. We have discussed this in the
second paragraph of Section 5 with the following sentences:

“Furthermore, to better illustrate the effect of including additional radiation
components (SWi, SWour, LW and LWour) in the renewed CoSEB model
compared with the original version by Wang et al. (2025), we have tested the
performance of a reconstructed model that estimated only Rn, LE, H and G using the
same independent variables and samples as those in the renewed CoSEB model. The
results (Fig. S5 in the supplementary material) showed no significant differences in
accuracy compared with those of the renewed CoSEB model, indicating the
expansion of radiation components did not compromise model performance.”
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Fig. S5 Scatter density plots of the site-based 10-fold cross-validation of daily net radiation
(Rn), soil heat flux (G), latent heat flux (LE) and sensible heat flux (H) derived by a
reconstructed model within the CoSEB framework against in-situ observed Rn, G, and

energy imbalance-corrected LE (LE,;; ) and H (H,; ), where the model was designed to

estimate only four of the eight flux components. The EIR in the subfigure (e) represents the
energy imbalance ratio, which are defined as 100% % (Rn - G - LE - H)/Rn. The colorbar
represents the normalized density of data points.

(2) Regarding your concern about the importance of the feature variables to the
renewed CoSEB model, we have added a new table (Table S4 in the Supplementary
Material) to show the importance scores of different feature variables using the built-



in method of the random forests. The results showed that solar radiation reaching the
surface of the earth is the most important variable, which is consistent with the
results from our previous study (Wang et al., 2025). We have discussed this in the
second paragraph of Section 5 with the following sentences:

“The importance scores of the 19 different feature variables are exhibited in Table S4
in the Supplementary Material, and downward solar radiation, the primary source of
the energy at the earth surface, is the most important input variable, consistent with
the results from our previous study (Wang et al., 2025).”

Table S4 Importance scores of the 19 different feature variables in the construction of the
renewed CoSEB model for estimating daily downward shortwave and longwave radiation (SWi
and LW), upward shortwave and longwave radiation (SWour and LWour), net radiation (Rn),
latent heat flux (LE), sensible heat flux (H) and soil heat flux (G).

Types Features Variables Abbreviation Img(;t::ce P;i::;l?aigtel‘g/o)
Climate/meteorology solar radiation reaching the surface of the earth SWERAS 0.5724 57.24
Climate/meteorology 2 m air temperature T, 0.2338 80.62

Vegetation and soil Fractional tree cover FVC 0.0292 83.54
Climate/meteorology net thermal radiation at the surface LWt 0.0241 85.95
Vegetation and soil Leaf area index LAI 0.0241 88.36
Vegetation and soil Percent tree cover PTC 0.0177 90.13
Vegetation and soil soil temperature in surface layer Ts: 0.0107 91.20
Climate/meteorology surface air pressure PA 0.0097 92.17
Topography Surface slope Slope 0.0093 93.10
Climate/meteorology precipitation P, 0.0091 94.01

Others inverse relative distaréce from the Earth to the dr 0.0089 94.9

un

Others latitude Lat 0.0075 96.65
Climate/meteorology Relative air humidity RH 0.0074 96.39

Topography Digital elevation model DEM 0.0072 97.11
Vegetation and soil soil volumetric moisture content in surface layer SM1 0.007 97.81

Others longitude Lon 0.0067 98.48

Climate/meteorology Carbon dioxide concentration CO; 0.0056 99.04
Topography Surface aspect Aspect 0.005 99.54
Climate/meteorology Wind speed WS 0.0046 100

(3) We have added a brief description of the optimization of hyperparameters

for the renewed CoSEB model using the random search method and grid search
method. Specifically, the number of decision trees, the max depth, min samples split,
and min samples leaf of the MRF are set to 281, 21, 8, and 8, respectively, compared
to 295, 20, 12, and 8 in our previous study of Wang et al. (2025). The corresponding
details have been added at the beginning of the third paragraph of Section 3 in the
revised manuscript with the following sentences:
“To enhance model generalization, the renewed CoSEB model was reoptimized
using random and grid search methods, resulting in different hyperparameters of 281
decision trees, a maximum depth of 21, and minimum samples split and leaf of 8§
from those of Wang et al. (2025).”

(4) We would like to emphasize that the main focus of this study was to develop
the data-driven energy-conservation global datasets using multiple input variables
that have certain influences on surface radiation and heat fluxes, rather than to
explore the directionality of effects of each input variable on surface radiation and
heat fluxes. Since directionality analysis does not alter model parameters, affect



model construction, or impact the generation of the CoSEB-based datasets, in almost
no articles (Jung et al., 2019; Mu et al., 2011; Ryu et al., 2018; Xu et al., 2022)
focusing on models and algorithms for surface radiation fluxes and heat fluxes have
we seen anyone conduct directionality analysis; therefore, conducting directionality
analysis is not necessary within the scope of our study.

2. Multi-collinearity amongst predictor variables- Authors should also discuss how
multi-collinearity is handled amongst predictor variables given the large number
of predictors. As far as I understand, random forests do not explicitly deal with
multi collinearity unlike a PCA based approach for example. This can affect
variable importance significantly. I would suggest authors explore this in detail.

Ans: We thank the reviewer for this comment. While random forests do not
explicitly eliminate multi-collinearity among input variables, they randomly select
subsets of input features at each split (Breiman, 2001) and are generally considered
robust in terms of performance even when multi-collinearity exists among some
inputs (Drobni¢ et al., 2020). Besides, in selecting the input variables, prior
knowledge derived from previous studies was employed to identify factors that exert
significant influence on surface radiation and heat flux while maintaining relative
inter-independence. This practice is widely adopted in data-driven models for
estimating land surface water, energy, and carbon fluxes (Bai et al., 2024; Elghawi et
al., 2023; Han et al., 2023; O. & Orth, 2021), and few studies specifically perform
multicollinearity analysis before modeling. Although some of the selected variables
may exhibit a certain degree of multi-collinearity, each carries unique characteristic
information, making it inappropriate to consider only a single dominant variable
during model construction. Moreover, we acknowledge that variable importance
should be interpreted with caution, since the importances may not be accurate in the
presence of multicollinearity. However, we would also like to clarify that the primary
aim of this study was to improve the accuracy of the developed datasets rather than
to interpret the individual contributions of each input variable. We have discussed
this in second paragraph of Section 5 with the following sentence:

“In selecting the 19 input variables to accommodate the additional target variables,

prior knowledge derived from previous studies was employed to identify factors that

exert significant influence on surface radiation and heat flux while maintaining
relative inter-independence as much as possible (Jung et al., 2019; Mohan et al.,

2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted in

data-driven models for estimating land surface water, energy, and carbon fluxes (Bai

et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance
scores of the 19 different feature variables are exhibited in Table S4 in the

Supplementary Material, and downward solar radiation, the primary source of the

energy at the earth surface, is the most important input variable, consistent with the

results from our previous study (Wang et al., 2025). Although some of the selected
variables may exhibit a certain degree of multi-collinearity, each contributes unique
and physically meaningful information, supporting the inclusion of all variables in
model construction. Note that the variable importance, derived from the built-in



method of the random forests and potentially affected by multicollinearity among the
input variables, is presented only as a reference. Retaining all 19 feature variables
ensures the model’s flexibility and generalization capability, enabling future
incorporation of additional representative ground-based observations for further
training and improvement.”

3. Effect of autocorrelation- Given the temporal nature of several predictor
variables, can authors confirm that autocorrelation does not exist or is
minimized in their framework? What tests were performed to check for this? In
particular I would recommend authors add lagged variables to the model to
make sure that this is not the case. I believe several models constructed for earth
system variables tend to ignore aspects such as autocorrelation and therefore this
is an important point to address.

Ans: Thanks for your question and suggestion. We agree that several predictor

variables may exhibit autocorrelation. To investigate the impact of lagged effects of

input variables on model performance, we specifically conducted an experiment by
including lagged air temperature (i.e., the air temperature of the previous day,
because air temperature, identified alongside downward solar radiation as one of the
two most influential variables in the model based on the importance scores in
Supplementary Table S4, exhibits a more pronounced lagged effect than solar
radiation) as additional predictor. The results (Fig. S4 in the Supplementary Material)
showed no noticeable improvement in model accuracy, suggesting that lagged effects
were negligible in the CoSEB framework for estimates of daily surface radiation and
heat fluxes. We speculate that lagged effects may have a more pronounced influence
on flux estimates at higher temporal resolutions (e.g., half-hourly), but this is beyond
the scope of the present study. We have discussed this in the second paragraph of

Section 5 with the following sentence:

“Besides, to investigate the impact of lagged effects of input variables on model

performance, experiments were also conducted by adding lagged variables (e.g., the

air temperature of the previous day) to the 19 input features. The results (Fig. S4 in
the Supplementary Material) showed almost no improvement in model accuracy,
suggesting that lagged effects on model performance were negligible within the

CoSEB framework for estimates of daily surface radiation and heat fluxes.”



RMSE=34.23
MBE=0.04 4
MAE=24.48 oo

Estimated SWy (W/m?)

72 (a) SWiy

Estimated SWoyr (W.

0 200 400
In-situ SWyy (W/m?)

600 RMSE=12.48 7

MBE=0.01 /
MAE=9.25 -
500

R?=0.95
N=250222

Estimated LWoyr (W/m?)

Vi (d) LWour

Estimated LWy (W/m

RMSE=12.24 RMSE=17.75 s
MBE=-0.13 — MBE=-0.48 Z
MAE=8.39 "' MAE=13.70

R?=0.62 R?=0.90

N=2502

N=250222 :

(c) LWiv

—_ [3%3 “
(=1 (=3 (=3
(=3 S

Estimated Rn (W/m?)
S

200 400 600

In-situ LWour (W/m?)

Estimated LE (W/m?)

0 200
In-situ SWoyr (W/m?) In-situ LWy (W/m?)
RMSE=27.86 RMSE=26.82 ¥
MBE=-0.32 MBE=-0.46 P
MAE=20.88 MAE=18.83 o
R?=0.67

300 RMSE=27.00 7

MBE=0.22 ’
MAE=20.01 4
R?=0.59 oo i
N=250222---_i

200

100

Estimated H (W/m?)

-100{ .~
s (g H

0

In-situ Rn (W/m?)

0
In-situ LESO"

(W/m?)

400

wn (=3
=4 <

=3

n
S

Estimated daily G (W/m?)

RMSE=6.53
MBE=-0.08
MAE=4.51
R2=0.42
N=250222

0 200
In-situ H5"" (W/m?)

daily

o
%

I
SN

oS

Probability
=

-50

In-situ daily G (W/m?)

=], EIR
1 RIR

@

-2.5
EIR or RIR (%)

5.0

0.8

10.6

0.0

Fig. S4 Scatter density plots of the site-based 10-fold cross-validation of daily downward

shortwave and longwave radiation (SW;y and LWjy), upward shortwave and longwave
radiation (SWour and LWour), net radiation (Rn), soil heat flux (G), latent heat flux (LE)
and sensible heat flux (H) derived by a reconstructed model within the CoSEB framework
against in situ observed SWin, LWin, SWour, LWour, Rn, G, and energy imbalance-

corrected LE (LE ) and H (H

daily

corr

@iy )» Where the air temperature of the previous day was

additionally added to the 19 input feature variables of the model as the lagged variable.
The EIR and RIR in the subfigure (i) represent the energy imbalance ratio and radiation
imbalance ratio, which are defined as 100% % (Rn - G - LE - H)/Rn and 100% x (SWi —
SWour + LWin - LWourt)/Rn, respectively. The colorbar represents the normalized density of

data points.

4. Effect of downscaling ERAS5- Land datasets- The authors note on lines 195-197
that the ERA 5 land datasets used here have been downscaled from a resolution
of ~9 kms to ~500m. This is a significant level of downscaling performed using
a rather simple cubic convolution method. There are several variables related to
the land cover (such as the LAI for example) that are used as predictor variables
in the author’s framework. Can the authors address the uncertainty caused by



such large downscaling between scales on their results? On the one hand, based

on the results, it seems that the model has produced reliable results compared to

observations and other datasets even after such large downscaling. Is it that the

land cover related variables do not play an important role in the predictions?
Ans: Thanks for your comment and question. We would like to clarify that the
ERAS5-Land datasets used in this study mainly include meteorological reanalysis
variables (e.g., solar radiation, pressure of the atmosphere, wind speed and relative
air humidity), which were downscaled from their original ~9 km spatial resolution to
500 m. In contrast, the land cover-related vegetation variables, including LAI, FVC,
and PTC, were directly obtained from remote sensing products such as MODIS and
GLASS (see Section 2.2), which already have an original spatial resolution of ~500
m and therefore did not require spatial downscaling.

Besides, we acknowledge that downscaling ERA5-Land datasets from ~9 km to
~500 m using a cubic convolution method may introduce certain uncertainties.
However, this resampling was necessary to match the footprint of the site-based
measurements of turbulent heat fluxes, which is a common practice in the generation
of remote sensing products (Mu et al., 2011; Ryu et al., 2018; Senay et al., 2020;
Zhang et al., 2019; Zheng et al., 2022). Moreover, the machine learning framework
of the CoSEB model can partially mitigate such uncertainties introduced by the
downscaling during training by learning complex relationships among multiple
inputs and in situ observed energy components. This is reflected in the good
agreement of the CoSEB-based estimates with both in-situ observations and other
mainstream products. Our previous studies (Wang et al., 2025, the last paragraph of
Section 5.1) also have demonstrated that the differences in meteorological reanalysis
data caused by spatial downscaling have a relatively small impact on the estimates
by the machine-learning-based CoSEB model.

Furthermore, it is also important to note that this does not imply that land-
cover-related variables do not play an important role in the estimations. As shown by
the variable importance scores presented in the newly added Table S4 in the
Supplementary Material, vegetation and surface-related parameters such as FVC and
LAI have high importance scores. These variables can partially compensate for the
spatial heterogeneity and localized variations not captured by the coarse-resolution
ERAS-Land datasets, thereby enhancing the performance of the model.

We have discussed this in the last paragraph of Section 5 with the following

sentence:
“Another potential source of uncertainty arises from differences in meteorological
reanalysis data caused by spatial downscaling, which, as demonstrated in our
previous study (Wang et al., 2025, the last paragraph of Section 5.1), has a relatively
small impact on model estimates by the machine-learning-based CoSEB model
combined with finer-resolution surface-related variables that partially compensate
for the spatial heterogeneity and localized variations not captured by the coarse-
resolution datasets.”

5. In sample vs out of sample testing- While the authors present significant



comparisons with observations and other datasets to validate their model (e.g.
Figure 3, Figure 4 and Figure 5), it seems the authors have not checked for
overfitting of their approach by splitting the dataset into a training vs testing
dataset. This is especially important since as mentioned in Major comment 1.,
the CoSEB framework itself has been updated. Authors should address this in
detail. In fact, looking at Figure 3, it seems that the R squared values for G and
H are on the lower side. I am curious as to what the values look like when out of
sample testing is conducted?
Ans: We appreciate the reviewer’s insightful comments and questions. We would
like to clarify that the out-of-sample testing of the updated CoSEB model has
already been evaluated using site-based 10-fold cross-validation. In this approach, all
sites were divided into ten folds, where the samples from each fold of sites in turn
served as validation datasets while the remaining folds were used for training. This
ensures that the validation datasets are spatially independent from the training
datasets, effectively serving as out-of-sample testing. The results shown in Figure 3,
corresponding to the site-based 10-fold cross-validation, showed that the R? values
for H and G are 0.59 and 0.42, respectively. We have already described the site-
based 10-fold cross-validation in the third paragraph of Section 3 with the following
sentence:
“Site-based 10-fold cross-validation was employed to evaluate the transferability and
generalization of the CoSEB model by randomly dividing all sites into ten folds,
where the samples from each fold of sites in turn served as validation datasets while
the remaining folds were used as training datasets, ensuring that the validation was
conducted on sites spatially independent from the training data.”

Furthermore, to evaluate potential overfitting, the mean RMSE and R? values along
with their standard deviations across the ten folds of the site-based cross-validation
have been presented in Table S3 of the Supplementary Material. Comparisons
between the training results (Table S3) and validation results (Fig. 3) indicate that,
although the CoSEB model performs better on the training datasets than on the
validation datasets, the overall performance remains stable. This stability,
particularly given that the validation is conducted on spatially independent sites,
demonstrates that the model is not affected by overfitting. We have illustrated this in
the first paragraph of Section 4.1.1 with the following sentence:

“Comparisons with the corresponding training results (Table S3 in the
Supplementary Material) indicated that although the CoSEB model performed better
on the training datasets, its overall performance remained stable, suggesting that the
CoSEB model was not affected by overfitting.”



Table S3 The mean root mean square error (RMSE) and coefficient of determination (R?) along
with their standard deviations across the ten folds of the site-based cross-validation for the

renewed CoSEB model.
RMSE (W/m?) R?

SWin 28.56+0.09 0.91+0.001

SWout 9.83+0.10 0.79+0.003

LW 12.41+0.08 0.95+0.001

LWour 8.52+0.07 0.97+0.001

Rn 22.49+0.08 0.85+0.001

LE 19.75+0.15 0.82+0.003

H 19.36+0.12 0.76+0.003

G 5.39+0.04 0.60+0.004

Specific comments-

1. Abstract lines 31-36- The RMSEs presented here do not make any sense at this
point since the reader has no sense of scale of values to expect. I recommend
authors report the R squared values here instead. Also make sure to report
whether the R squared is based on pooled data or just the testing data (See
Major comment 5)

Ans: We appreciate the reviewer’s constructive suggestion. We would like to clarify

that RMSE remains a key metric for evaluating the accuracy of the model and

datasets, particularly for energy flux estimations (Bisht & Bras, 2011; Comini De

Andrade et al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it

directly quantifies prediction errors in physical units (W/m?), making it an indicator

of significant interest to both model developers and product users. However, R?

indeed is another important metric, indicating the degree to which the model

predictions align with the reference truth. Therefore, in the revised Abstract, we have
reported both RMSE and R? values for the CoSEB-based datasets. In addition, we
have clarified that the reported RMSE and R? values of the CoSEB-based datasets
are derived from validation at independent test datasets across 44 sites (see Section

2.1). The revised sentences are as follows:

“(1) the RMSEs (R?) for daily estimates of SWu, SWour, LW, LWour, Rn, LE, H

and G from the CoSEB-based datasets at 44 independent test sites were 37.52 W/m?

(0.81), 1420 W/m? (0.42), 22.47 W/m? (0.90), 13.78 W/m? (0.95), 29.66 W/m?

(0.77), 30.87 W/m? (0.60), 29.75 W/m? (0.44) and 5.69 W/m? (0.44), respectively,”

2. Introduction lines 74-75- Can the authors differentiate the citations between
those for physical vs those for statistical methods.

Ans: Thanks for your valuable suggestion. We have clearly differentiated the
citations between those for physical vs those for statistical methods in the revised
manuscript as follows:

“In past decades, numerous RS-based products/datasets of global surface radiation
and heat fluxes have significantly advanced, which were generally generated by
physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao
et al., 2023; Jung et al., 2019; Peng et al., 2020).”



3. Introduction line 92- “impending” is an awkward word here. I would just say “It
was imperative”.

Ans: We appreciate the reviewer’s suggestion. We have revised this sentence to “It

was imperative to develop global datasets of land surface radiation and heat fluxes

characterized by high accuracies, radiation balance as well as heat balance, to better

meet the requirements in practical applications of various fields.” in the new

manuscript.

4. Data lines 131-132- Why could a simple interpolation not be applied for missing
half hourly data? Is the data extremely sensitive to time? Some clarification is
needed here.

Ans: Thank you for your comments and questions. The half-hourly surface radiation
and heat fluxes are sensitive to short-term temporal variations caused by rapid
changes in meteorological conditions, but their intraday dynamics are often
nonlinear, particularly due to the intermittent effects of cloud cover. Therefore,
applying simple interpolation methods (e.g. linear interpolation) could introduce
considerable uncertainties. To ensure data quality, we only retained directly observed
values (data quality flag=0) and good-quality gap-filled data (data quality flag=1)
provided by the official gap-filling algorithms, and then computed daily averages
only when more than 80% of half-hourly observations were available, as already
described in the first paragraph of Section 2.1 with the following sentence:

“(3) the half-hourly ground-based observations with quality-control flag of 2 or 3

(bad quality) were removed but quality-control flag of 0 and 1 (good quality) were

maintained; (4) a daily average of the half-hour observations was calculated for each

day with greater than 80% good-quality data, further reducing the 472 sites to 355

sites;”

Besides, we have already discussed the uncertainties caused by the daily averages of
surface radiation and heat fluxes in the last paragraph of Section 5 with the following
sentence:

“Specifically, daily averages of surface radiation and heat fluxes for each day were
obtained for analysis from good-quality half-hourly observations when the fraction
of these good-quality half-hourly observations was greater than 80% in a day, due to
the lack of consensus on the method for aggregating gapped half-hourly observations
to daily data (Tang et al., 2024a; Yao et al., 2017; Zheng et al., 2022).”

Following your suggestion, we have also further clarified the simple temporal
interpolation in the last paragraph of Section 5 with the following sentence:

“Simple temporal interpolation of half-hourly in situ observations, which could
therefore introduce substantial uncertainties, was not applied, because surface
radiation and heat fluxes are sensitive to short-term variations in meteorological
conditions and their intraday dynamics are often complex.”



5. Data lines 138-139- Can the authors clarify why this criteria was applied for
screening outliers?

Ans: Thank you for your valuable question. We would like to clarify that the energy
balance ratio (EBR) of 0.2-1.8 and the 1st-99th quantiles of the daily evaporation
fraction was both applied to remove physically implausible measurements, such as
cases where the available surface energy (Rn — G) is close to zero while LE and H
remain comparatively large, where the threshold of 0.2-1.8 was adopted following
our previous study (Wang et al., 2025), which has demonstrated that nearly all
available data fall within this range and that the accuracy of the CoSEB model
showed no significant differences when applying different EBR thresholds, while the
percentile-based screening was employed following common practice in flux and
remote sensing studies (Bartkowiak et al., 2024; Ghorbanpour et al., 2022; Wang et
al., 2023). We have clarified this in the first paragraph of Section 2.1 with the
following sentence:

“(5) the aggregated daily LE and H were corrected for energy imbalance using the
Bowen ratio method when the daily energy balance closure [defined as

(LE +H )/ (Rn—G)] varied between 0.2 and 1.8 following Wang et al. (2025) to

exclude physically implausible measurements; (6) extreme outliers in the daily
evaporative fraction were further removed by excluding values outside the 1st—99th
percentile range, a common practice in flux and remote sensing studies (Bartkowiak
et al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites.”

6. Mainstream datasets/products for inter comparison- I was curious as to why the
authors so not compare their estimates with heat and radiation estimates from
popular earth system modelling systems such as CESM and CTSM
(https://www.cesm.ucar.edu/). In fact, if the authors approach can produce
estimates similar to earth system models, this would be a huge benefit to the
community (since these models are laborious to run)

Ans: Thanks for your comment. The outputs of Earth system models generally have
coarse spatial resolutions (e.g., the CESM Large Ensemble Project has a spatial
resolution of ~1°). Due to the surface heterogeneity, these model outputs cannot be
directly validated using radiation and heat flux observations from ground sites with
limited spatial representativeness. This is the main reason why both we and others
usually do not compare the outputs of Earth system models with remote sensing-
based datasets.

Although we believe that comparing the outputs of Earth system models with
remote sensing-based datasets (including our CoSEB-based datasets and others’
PML V2, MODI6A2, FLUXCOM, BESSV2.0, GLASS) and validating them
against ground-based observations is not appropriate, following the reviewer’s
suggestion, we compared the global spatial distributions of mean annual estimates
from CoSEB-based datasets with the outputs from the CESM Large Ensemble
project. The results (see Section 4.3 and Fig. S8) show that, overall, the global
spatial patterns of the estimated SWiv, LW, LWour, Rn, LE and H are consistent,



though numerical differences exist. Considering the scope and length of the current
manuscript, a more detailed analysis of the spatial-temporal distribution patterns,
trends, and variability between Earth system model outputs and remote sensing-
based datasets could be conducted in future work. We have discussed this in the third
paragraph of Section 5 with the following sentences:

“Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial
patterns consistent with those of mainstream RS-based datasets and Earth system
model outputs (see Fig. S8 in the supplementary material). More detailed analysis
about their similarities and differences can be further conducted in future work.”
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Fig. S8 Spatial patterns of global mean annual downward shortwave radiation (SW;n),
downward longwave radiation (LW;y), upward longwave radiation (LWour), net radiation
(Rn), latent heat flux (LE) and sensible heat flux from 2001 to 2018 by Community Earth
System Model (CESM) Large Ensemble project, where LWoyr and Rn were inferred from

surface radiation balance and heat balance.

7. Methods lines 243-244- Once again the usage of RMSEs here does not make
much sense. Can the authors just report the R squared values instead.

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE
remains an essential metric for evaluating the accuracy of the model and datasets,
particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et
al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly
quantifies prediction errors in physical units (W/m?), making it an indicator of
significant interest to both model developers and product users. Nevertheless, R?
indeed is another important metric, indicating the degree to which the model
predictions align with the reference truth. After careful consideration, we have
additionally reported R? values in the revised manuscript to more comprehensively
demonstrate the model performance. The revised sentence is as follows:

“The CoSEB model was demonstrated to be able to produce high-accuracy estimates
of land surface energy components, with the RMSE of <17 W/m? and R? of > 0.83
for estimating 4-day Rn, LE and H, and the RMSE of <5 W/m? and R? of 0.55 for
estimating 4-day G.”



8. Methods lines 269-270- Just to confirm, the RF based uncoordinated models are
models where only individual variables are estimated rather than the
simultaneous calculation of several variables? This should be clarified.

Ans: Thanks for your valuable question. Your understanding is correct. We have

more clearly clarified this in the third paragraph of Section 3 of the revised

manuscript with the following sentence:

“Furthermore, to benchmark the coordinated estimates from the renewed CoSEB

model, eight RF-based uncoordinated models were constructed, each separately

estimating one of SWi, SWour, LWin, LWour, Rn, LE, H or G using the same inputs
as those in the renewed CoSEB model.”

9. Results Lines 306-309- I was curious looking at Figure 4 whether there were
correlations or relationships between the EIR or RIR values and any of the other
predictor variables? Is the shape of that distribution affected by any particular
variables?

Ans: Thanks for your question. We would like to clarify that our CoSEB model

showed no energy imbalance, with the RIR and EIR of 0, as shown in Figure 3. The

distributions of RIR and EIR in Figure 4 were derived from RF-based uncoordinated
models, which were used only for comparison with our CoOSEB model and were not
the focus of our study.

However, considering your concern about whether the distributions of the RIR

and EIR values are affected by specific predictor variables, we further conducted a

binned statistical analysis, where the three most critical input variables identified in

Table S4 (i.e. SW, T, and FVC) were divided into equal-width bins, and for each

bin the mean and standard deviation for positive and negative RIR conditions were
calculated. Besides, the Pearson correlation coefficients (r) between RIR (EIR) and
each input variable were computed to quantify their overall relationships. The results
showed that lower levels of solar radiation, air temperature, or FVC are associated
with larger RIR (EIR), while the predominance of low values of these three variables
tends to result in decreased kurtosis correspondingly, implying flatter and broader
probability shapes of RIR and EIR. We have also briefly illustrated this in the end of
the second paragraph of Section 4.1.1 with the following sentence:

“Furthermore, the RIR as well as EIR tended to be higher under lower solar radiation,
air temperature, or FVC, with more frequent low values of these three variables
leading to a broader and less peaked distribution of RIR and EIR (see Fig. S1 in the
Supplementary Material).”
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Fig. S1 Relationships between radiation imbalance ratio [RIR, 100% *x (SW;x — SWour +
LWy - LWour)/Rn] and energy imbalance ratio [EIR, 100% X% (Rn - G - LE - H)/Rn]
derived from RF-based uncoordinated models and three critical input variables identified
in Table S4, including solar radiation reaching the surface of the earth from ERAS-Land

(SW i3 | the first column), 2 m air temperature from ERAS-Land (7., the second column)
and fraction vegetation cover from GLASS (FVC, the third column). The mean and
standard deviation were calculated within equal-width bins of SW.**°, T,, and FVC under

positive and negative EIR (RIR) conditions, where the solid lines represent the mean values,
and the shaded area represents the corresponding variation of standard deviations. The r

values in legends indicate the Pearson correlation coefficients.

10. Results Lines 311-312- Can the authors clarify the differences between site-
based validation vs sample-based validation?

Ans: We appreciate the reviewer’s insightful comment. Sample-based 10-fold cross-
validation refers to randomly splitting all available samples from all sites into ten
folds, with each fold in turn serving as the validation dataset while the remaining
folds are used for training. This approach allows samples from the same site to
appear in both the training and validation datasets. In contrast, site-based 10-fold
cross-validation was performed by randomly dividing all sites into ten folds, with the
samples from each fold of sites used for validation in turn. This strategy ensures that
the validation datasets are spatially independent from the training datasets, thereby
providing a more rigorous assessment of the model’s spatial generalization capability.
We have already described the site-based 10-fold cross-validation in the third
paragraph of Section 3 with the following sentences:

“Site-based 10-fold cross-validation was employed to evaluate the transferability and



generalization of the CoSEB model by randomly dividing all sites into ten folds,
where the samples from each fold of sites in turn served as validation datasets while
the remaining folds were used as training datasets, ensuring that the validation was
conducted on sites spatially independent from the training data.”

Furthermore, after careful consideration, site-based 10-fold cross-validation was
deemed to be more suitable for assessing the performance of the model than sample-
based 10-fold cross-validation, as the validation datasets in site-based cross-
validation are spatially independent from the training datasets. To make the main
focus of the manuscript clearer and more concise, we retained only the site-based 10-
fold cross-validation and removed the sample-based 10-fold cross-validation in the
revised manuscript.

11. Results lines 381-382- Once again, the RMSE values don’t make a lot of sense
here. Authors should report the R squared values instead.

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE
remains an essential metric for evaluating the accuracy of the model and datasets,
particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et
al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly
quantifies prediction errors in physical units (W/m?), making it an indicator of
significant interest to both model developers and product users. However, R? indeed
is another important metric, indicating the degree to which the model predictions
align with the reference truth. After careful consideration, we have additionally
incorporated the R? values into the revised manuscript. The revised sentence is as
follows:

“Results indicated that the CoSEB-based datasets could provide good estimates of
SWour, H and G, with the RMSEs (R?) of 14.20 W/m? (0.42), 29.75 W/m? (0.44) and
5.69 W/m? (0.44) at daily scale, respectively, and the RMSE (R?) of 12.19 W/m?
(0.39) and 4.60 W/m? (0.47) for 8-day SWour and G, respectively.”

12. Section 4.2- When discussing the differences between the CoSEB model
estimates vs other estimates, can authors also describe why the differences occur?
A detailed discussion is not warranted here. Rather, I was interested in the
author’s perspective as to why the author’s approach produces some differences
over existing approaches.
Ans: Thanks for your constructive comments. The possible reasons for the
differences between estimates from the CoSEB-based datasets and the mainstream
products/datasets are complex and may arise from differences in both
methodological frameworks and input datasets. Specifically, the discrepancies may
result from the simplification of physical processes and the uncertainties in
parameterization within the physics-based products (e.g., MOD16A1, BESSV2.0,
PML V2, and ETMonitor). In contrast, the differences between the CoSEB-based
datasets and other machine-learning-based products (e.g., BESS-Rad, GLASS, and
FLUXCOM) may be attributed to the limited sample sizes of training data, the



incomplete consideration of influencing factors (e.g., CO> concentration, surface
aspect), and the lack of physical constraints among energy balance components in
existing machine-learning frameworks. We have briefly discussed this in the last
paragraph of Section 4.2 of the revised manuscript with the following sentence:

“The differences between the estimates from the CoSEB-based datasets and
mainstream datasets are likely multifactorial, arising from the simplification and
parameterization uncertainties in physics-based models, as well as the lack of
physical constraints, limited training samples, and incomplete consideration of
influencing factors in other machine-learning-based models.”
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