
Reviewer #2:  

Review of Energy-conservation datasets of global land surface radiation and 

heat fluxes from 2000-2020 generated by CoSEB 

 

Summary and recommendation- In this paper, the authors apply a model of 

Coordinated estimates of land surface energy balance components (CoSEB) to 

generate estimates of surface radiation and heat fluxes from 2000 to 2020. An 

advantage of the CoSEB based approach is that estimates of radiation and heat are in 

“harmony” as opposed to generating independent estimates of each. The authors 

compare their estimates against observations from eddy covariance sites, other 

individual estimates and other individual observations. The paper is generally well 

written, and the results are presented clearly. However, I had several questions about 

the CoSEB framework itself and also the validations applied here in the manuscript. 

Hence I recommend major revisions. I have presented major comments and specific 

comments below. 

Ans: Thank you very much for your thoughtful and constructive comments. We 

sincerely appreciate your recognition of the CoSEB model and the datasets, 

particularly the advantage of generating global surface radiation and heat fluxes that 

adhere to energy conservation. We have carefully considered all the comments and 

suggestions from you and another reviewer, especially your concerns regarding the 

CoSEB framework and the validation of the datasets, and have made corresponding 

modifications and clarifications in the revised manuscript. More detailed information 

of our revisions can be found in the item-by-item response as below. 

 

Major comments- 

1. Explanation of updates to the CoSEB framework- While reading the 

manuscript I realized that it is not only a paper that applies the existing CoSEB 

framework that is already published but also updates this framework to estimate 

to estimate radiation (previously this model estimated only land surface energy 

components and not short wave and long wave radiation). Therefore, authors 

need to discuss the effect of the addition of additional predicted variables on the 

equations and the results of the random forest. In particular, can the authors 

discuss which of the predictors were found to be the most important and also 

discuss how this differed with their previous publication? Also, can authors 

discuss generic details such as how many splits were generated by the random 

forest before and after the updates. Authors should also discuss the directionality 

of effects of different predictor variables based on the revised random forest. 

Ans: We thank the reviewer for these insightful comments and questions. Indeed, the 

renewed CoSEB model extends beyond the original version (Wang et al., 2025) by 

jointly estimating both radiation components (SWIN, SWOUT, LWIN, LWOUT and Rn) 

and heat fluxes (LE, H, G), thereby ensuring that both radiation and energy balance 

are simultaneously satisfied.  

(1) To illustrate the effect of including additional radiation components (SWIN, 

SWOUT, LWIN and LWOUT) in the renewed CoSEB model compared with the original 



version by Wang et al. (2025), we have tested the performance of a reconstructed 

model that estimated only Rn, LE, H and G using the same independent variables 

and samples as those in the renewed CoSEB model. The results (Fig. S5 in the 

supplementary material) showed no significant differences from those produced by 

the renewed CoSEB model, indicating that the expansion of radiation components 

did not compromise the model’s overall performance. We have discussed this in the 

second paragraph of Section 5 with the following sentences: 

“Furthermore, to better illustrate the effect of including additional radiation 

components (SWIN, SWOUT, LWIN and LWOUT) in the renewed CoSEB model 

compared with the original version by Wang et al. (2025), we have tested the 

performance of a reconstructed model that estimated only Rn, LE, H and G using the 

same independent variables and samples as those in the renewed CoSEB model. The 

results (Fig. S5 in the supplementary material) showed no significant differences in 

accuracy compared with those of the renewed CoSEB model, indicating the 

expansion of radiation components did not compromise model performance.” 

 

Fig. S5 Scatter density plots of the site-based 10-fold cross-validation of daily net radiation 

(Rn), soil heat flux (G), latent heat flux (LE) and sensible heat flux (H) derived by a 

reconstructed model within the CoSEB framework against in-situ observed Rn, G, and 

energy imbalance-corrected LE (
corr

dailyLE ) and H (
corr

dailyH ), where the model was designed to 

estimate only four of the eight flux components. The EIR in the subfigure (e) represents the 

energy imbalance ratio, which are defined as 100% × (Rn - G - LE - H)/Rn. The colorbar 

represents the normalized density of data points. 

 

(2) Regarding your concern about the importance of the feature variables to the 

renewed CoSEB model, we have added a new table (Table S4 in the Supplementary 

Material) to show the importance scores of different feature variables using the built-



in method of the random forests. The results showed that solar radiation reaching the 

surface of the earth is the most important variable, which is consistent with the 

results from our previous study (Wang et al., 2025). We have discussed this in the 

second paragraph of Section 5 with the following sentences: 

“The importance scores of the 19 different feature variables are exhibited in Table S4 

in the Supplementary Material, and downward solar radiation, the primary source of 

the energy at the earth surface, is the most important input variable, consistent with 

the results from our previous study (Wang et al., 2025).” 

 

Table S4 Importance scores of the 19 different feature variables in the construction of the 

renewed CoSEB model for estimating daily downward shortwave and longwave radiation (SWIN 

and LWIN), upward shortwave and longwave radiation (SWOUT and LWOUT), net radiation (Rn), 

latent heat flux (LE), sensible heat flux (H) and soil heat flux (G). 

Types Features Variables Abbreviation 
Importance 

Score 

Cumulative 

Percentage (%) 

Climate/meteorology solar radiation reaching the surface of the earth SWIN
ERA5 0.5724 57.24 

Climate/meteorology 2 m air temperature Ta 0.2338 80.62 

Vegetation and soil Fractional tree cover FVC 0.0292 83.54 

Climate/meteorology net thermal radiation at the surface LWnet 0.0241 85.95 
Vegetation and soil Leaf area index LAI 0.0241 88.36 

Vegetation and soil Percent tree cover PTC 0.0177 90.13 

Vegetation and soil soil temperature in surface layer TS1 0.0107 91.20 
Climate/meteorology surface air pressure PA 0.0097 92.17 

Topography Surface slope Slope 0.0093 93.10 

Climate/meteorology precipitation Pr 0.0091 94.01 

Others 
inverse relative distance from the Earth to the 

Sun 
dr 0.0089 94.9 

Others latitude Lat 0.0075 96.65 
Climate/meteorology Relative air humidity RH 0.0074 96.39 

Topography Digital elevation model DEM 0.0072 97.11 

Vegetation and soil soil volumetric moisture content in surface layer SM1 0.007 97.81 
Others longitude Lon 0.0067 98.48 

Climate/meteorology Carbon dioxide concentration CO2 0.0056 99.04 

Topography Surface aspect Aspect 0.005 99.54 
Climate/meteorology Wind speed WS 0.0046 100 

 

(3) We have added a brief description of the optimization of hyperparameters 

for the renewed CoSEB model using the random search method and grid search 

method. Specifically, the number of decision trees, the max depth, min samples split, 

and min samples leaf of the MRF are set to 281, 21, 8, and 8, respectively, compared 

to 295, 20, 12, and 8 in our previous study of Wang et al. (2025). The corresponding 

details have been added at the beginning of the third paragraph of Section 3 in the 

revised manuscript with the following sentences: 

“To enhance model generalization, the renewed CoSEB model was reoptimized 

using random and grid search methods, resulting in different hyperparameters of 281 

decision trees, a maximum depth of 21, and minimum samples split and leaf of 8 

from those of Wang et al. (2025).” 

 

(4) We would like to emphasize that the main focus of this study was to develop 

the data-driven energy-conservation global datasets using multiple input variables 

that have certain influences on surface radiation and heat fluxes, rather than to 

explore the directionality of effects of each input variable on surface radiation and 

heat fluxes. Since directionality analysis does not alter model parameters, affect 



model construction, or impact the generation of the CoSEB-based datasets, in almost 

no articles (Jung et al., 2019; Mu et al., 2011; Ryu et al., 2018; Xu et al., 2022) 

focusing on models and algorithms for surface radiation fluxes and heat fluxes have 

we seen anyone conduct directionality analysis; therefore, conducting directionality 

analysis is not necessary within the scope of our study. 

 

2. Multi-collinearity amongst predictor variables- Authors should also discuss how 

multi-collinearity is handled amongst predictor variables given the large number 

of predictors. As far as I understand, random forests do not explicitly deal with 

multi collinearity unlike a PCA based approach for example. This can affect 

variable importance significantly. I would suggest authors explore this in detail. 

Ans: We thank the reviewer for this comment. While random forests do not 

explicitly eliminate multi-collinearity among input variables, they randomly select 

subsets of input features at each split (Breiman, 2001) and are generally considered 

robust in terms of performance even when multi-collinearity exists among some 

inputs (Drobnič et al., 2020). Besides, in selecting the input variables, prior 

knowledge derived from previous studies was employed to identify factors that exert 

significant influence on surface radiation and heat flux while maintaining relative 

inter-independence. This practice is widely adopted in data-driven models for 

estimating land surface water, energy, and carbon fluxes (Bai et al., 2024; Elghawi et 

al., 2023; Han et al., 2023; O. & Orth, 2021), and few studies specifically perform 

multicollinearity analysis before modeling. Although some of the selected variables 

may exhibit a certain degree of multi-collinearity, each carries unique characteristic 

information, making it inappropriate to consider only a single dominant variable 

during model construction. Moreover, we acknowledge that variable importance 

should be interpreted with caution, since the importances may not be accurate in the 

presence of multicollinearity. However, we would also like to clarify that the primary 

aim of this study was to improve the accuracy of the developed datasets rather than 

to interpret the individual contributions of each input variable. We have discussed 

this in second paragraph of Section 5 with the following sentence: 

“In selecting the 19 input variables to accommodate the additional target variables, 

prior knowledge derived from previous studies was employed to identify factors that 

exert significant influence on surface radiation and heat flux while maintaining 

relative inter-independence as much as possible (Jung et al., 2019; Mohan et al., 

2020; Wang et al., 2021; Xian et al., 2024). This practice is commonly adopted in 

data-driven models for estimating land surface water, energy, and carbon fluxes (Bai 

et al., 2024; Elghawi et al., 2023; Han et al., 2023; O. & Orth, 2021). The importance 

scores of the 19 different feature variables are exhibited in Table S4 in the 

Supplementary Material, and downward solar radiation, the primary source of the 

energy at the earth surface, is the most important input variable, consistent with the 

results from our previous study (Wang et al., 2025). Although some of the selected 

variables may exhibit a certain degree of multi-collinearity, each contributes unique 

and physically meaningful information, supporting the inclusion of all variables in 

model construction. Note that the variable importance, derived from the built-in 



method of the random forests and potentially affected by multicollinearity among the 

input variables, is presented only as a reference. Retaining all 19 feature variables 

ensures the model’s flexibility and generalization capability, enabling future 

incorporation of additional representative ground-based observations for further 

training and improvement.” 

 

3. Effect of autocorrelation- Given the temporal nature of several predictor 

variables, can authors confirm that autocorrelation does not exist or is 

minimized in their framework? What tests were performed to check for this? In 

particular I would recommend authors add lagged variables to the model to 

make sure that this is not the case. I believe several models constructed for earth 

system variables tend to ignore aspects such as autocorrelation and therefore this 

is an important point to address. 

Ans: Thanks for your question and suggestion. We agree that several predictor 

variables may exhibit autocorrelation. To investigate the impact of lagged effects of 

input variables on model performance, we specifically conducted an experiment by 

including lagged air temperature (i.e., the air temperature of the previous day, 

because air temperature, identified alongside downward solar radiation as one of the 

two most influential variables in the model based on the importance scores in 

Supplementary Table S4, exhibits a more pronounced lagged effect than solar 

radiation) as additional predictor. The results (Fig. S4 in the Supplementary Material) 

showed no noticeable improvement in model accuracy, suggesting that lagged effects 

were negligible in the CoSEB framework for estimates of daily surface radiation and 

heat fluxes. We speculate that lagged effects may have a more pronounced influence 

on flux estimates at higher temporal resolutions (e.g., half-hourly), but this is beyond 

the scope of the present study. We have discussed this in the second paragraph of 

Section 5 with the following sentence: 

“Besides, to investigate the impact of lagged effects of input variables on model 

performance, experiments were also conducted by adding lagged variables (e.g., the 

air temperature of the previous day) to the 19 input features. The results (Fig. S4 in 

the Supplementary Material) showed almost no improvement in model accuracy, 

suggesting that lagged effects on model performance were negligible within the 

CoSEB framework for estimates of daily surface radiation and heat fluxes.” 



 

Fig. S4 Scatter density plots of the site-based 10-fold cross-validation of daily downward 

shortwave and longwave radiation (SWIN and LWIN), upward shortwave and longwave 

radiation (SWOUT and LWOUT), net radiation (Rn), soil heat flux (G), latent heat flux (LE) 

and sensible heat flux (H) derived by a reconstructed model within the CoSEB framework 

against in situ observed SWIN, LWIN, SWOUT, LWOUT, Rn, G, and energy imbalance-

corrected LE (
corr

dailyLE ) and H (
corr

dailyH ), where the air temperature of the previous day was 

additionally added to the 19 input feature variables of the model as the lagged variable. 

The EIR and RIR in the subfigure (i) represent the energy imbalance ratio and radiation 

imbalance ratio, which are defined as 100% × (Rn - G - LE - H)/Rn and 100% × (SWIN – 

SWOUT + LWIN - LWOUT)/Rn, respectively. The colorbar represents the normalized density of 

data points. 

 

4. Effect of downscaling ERA5- Land datasets- The authors note on lines 195-197 

that the ERA 5 land datasets used here have been downscaled from a resolution 

of ~9 kms to ~500m. This is a significant level of downscaling performed using 

a rather simple cubic convolution method. There are several variables related to 

the land cover (such as the LAI for example) that are used as predictor variables 

in the author’s framework. Can the authors address the uncertainty caused by 



such large downscaling between scales on their results? On the one hand, based 

on the results, it seems that the model has produced reliable results compared to 

observations and other datasets even after such large downscaling. Is it that the 

land cover related variables do not play an important role in the predictions? 

Ans: Thanks for your comment and question. We would like to clarify that the 

ERA5-Land datasets used in this study mainly include meteorological reanalysis 

variables (e.g., solar radiation, pressure of the atmosphere, wind speed and relative 

air humidity), which were downscaled from their original ~9 km spatial resolution to 

500 m. In contrast, the land cover-related vegetation variables, including LAI, FVC, 

and PTC, were directly obtained from remote sensing products such as MODIS and 

GLASS (see Section 2.2), which already have an original spatial resolution of ~500 

m and therefore did not require spatial downscaling. 

Besides, we acknowledge that downscaling ERA5-Land datasets from ~9 km to 

~500 m using a cubic convolution method may introduce certain uncertainties. 

However, this resampling was necessary to match the footprint of the site-based 

measurements of turbulent heat fluxes, which is a common practice in the generation 

of remote sensing products (Mu et al., 2011; Ryu et al., 2018; Senay et al., 2020; 

Zhang et al., 2019; Zheng et al., 2022). Moreover, the machine learning framework 

of the CoSEB model can partially mitigate such uncertainties introduced by the 

downscaling during training by learning complex relationships among multiple 

inputs and in situ observed energy components. This is reflected in the good 

agreement of the CoSEB-based estimates with both in-situ observations and other 

mainstream products. Our previous studies (Wang et al., 2025, the last paragraph of 

Section 5.1) also have demonstrated that the differences in meteorological reanalysis 

data caused by spatial downscaling have a relatively small impact on the estimates 

by the machine-learning-based CoSEB model. 

Furthermore, it is also important to note that this does not imply that land-

cover-related variables do not play an important role in the estimations. As shown by 

the variable importance scores presented in the newly added Table S4 in the 

Supplementary Material, vegetation and surface-related parameters such as FVC and 

LAI have high importance scores. These variables can partially compensate for the 

spatial heterogeneity and localized variations not captured by the coarse-resolution 

ERA5-Land datasets, thereby enhancing the performance of the model.  

We have discussed this in the last paragraph of Section 5 with the following 

sentence: 

“Another potential source of uncertainty arises from differences in meteorological 

reanalysis data caused by spatial downscaling, which, as demonstrated in our 

previous study (Wang et al., 2025, the last paragraph of Section 5.1), has a relatively 

small impact on model estimates by the machine-learning-based CoSEB model 

combined with finer-resolution surface-related variables that partially compensate 

for the spatial heterogeneity and localized variations not captured by the coarse-

resolution datasets.” 

 

5. In sample vs out of sample testing- While the authors present significant 



comparisons with observations and other datasets to validate their model (e.g. 

Figure 3, Figure 4 and Figure 5), it seems the authors have not checked for 

overfitting of their approach by splitting the dataset into a training vs testing 

dataset. This is especially important since as mentioned in Major comment 1., 

the CoSEB framework itself has been updated. Authors should address this in 

detail. In fact, looking at Figure 3, it seems that the R squared values for G and 

H are on the lower side. I am curious as to what the values look like when out of 

sample testing is conducted? 

Ans: We appreciate the reviewer’s insightful comments and questions. We would 

like to clarify that the out-of-sample testing of the updated CoSEB model has 

already been evaluated using site-based 10-fold cross-validation. In this approach, all 

sites were divided into ten folds, where the samples from each fold of sites in turn 

served as validation datasets while the remaining folds were used for training. This 

ensures that the validation datasets are spatially independent from the training 

datasets, effectively serving as out-of-sample testing. The results shown in Figure 3, 

corresponding to the site-based 10-fold cross-validation, showed that the R² values 

for H and G are 0.59 and 0.42, respectively. We have already described the site-

based 10-fold cross-validation in the third paragraph of Section 3 with the following 

sentence: 

“Site-based 10-fold cross-validation was employed to evaluate the transferability and 

generalization of the CoSEB model by randomly dividing all sites into ten folds, 

where the samples from each fold of sites in turn served as validation datasets while 

the remaining folds were used as training datasets, ensuring that the validation was 

conducted on sites spatially independent from the training data.” 

 

Furthermore, to evaluate potential overfitting, the mean RMSE and R2 values along 

with their standard deviations across the ten folds of the site-based cross-validation 

have been presented in Table S3 of the Supplementary Material. Comparisons 

between the training results (Table S3) and validation results (Fig. 3) indicate that, 

although the CoSEB model performs better on the training datasets than on the 

validation datasets, the overall performance remains stable. This stability, 

particularly given that the validation is conducted on spatially independent sites, 

demonstrates that the model is not affected by overfitting. We have illustrated this in 

the first paragraph of Section 4.1.1 with the following sentence: 

“Comparisons with the corresponding training results (Table S3 in the 

Supplementary Material) indicated that although the CoSEB model performed better 

on the training datasets, its overall performance remained stable, suggesting that the 

CoSEB model was not affected by overfitting.”  



Table S3 The mean root mean square error (RMSE) and coefficient of determination (R2) along 

with their standard deviations across the ten folds of the site-based cross-validation for the 

renewed CoSEB model. 

 RMSE (W/m2) R2 

SWIN 28.56±0.09 0.91±0.001 

SWOUT 9.83±0.10 0.79±0.003 

LWIN 12.41±0.08 0.95±0.001 

LWOUT 8.52±0.07 0.97±0.001 

Rn 22.49±0.08 0.85±0.001 

LE 19.75±0.15 0.82±0.003 

H 19.36±0.12 0.76±0.003 

G 5.39±0.04 0.60±0.004 

 

Specific comments- 

1. Abstract lines 31-36- The RMSEs presented here do not make any sense at this 

point since the reader has no sense of scale of values to expect. I recommend 

authors report the R squared values here instead. Also make sure to report 

whether the R squared is based on pooled data or just the testing data (See 

Major comment 5) 

Ans: We appreciate the reviewer’s constructive suggestion. We would like to clarify 

that RMSE remains a key metric for evaluating the accuracy of the model and 

datasets, particularly for energy flux estimations (Bisht & Bras, 2011; Comini De 

Andrade et al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it 

directly quantifies prediction errors in physical units (W/m2), making it an indicator 

of significant interest to both model developers and product users. However, R2 

indeed is another important metric, indicating the degree to which the model 

predictions align with the reference truth. Therefore, in the revised Abstract, we have 

reported both RMSE and R2 values for the CoSEB-based datasets. In addition, we 

have clarified that the reported RMSE and R2 values of the CoSEB-based datasets 

are derived from validation at independent test datasets across 44 sites (see Section 

2.1). The revised sentences are as follows: 

“(1) the RMSEs (R2) for daily estimates of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H 

and G from the CoSEB-based datasets at 44 independent test sites were 37.52 W/m2 

(0.81), 14.20 W/m2 (0.42), 22.47 W/m2 (0.90), 13.78 W/m2 (0.95), 29.66 W/m2 

(0.77), 30.87 W/m2 (0.60), 29.75 W/m2 (0.44) and 5.69 W/m2 (0.44), respectively,” 

 

2. Introduction lines 74-75- Can the authors differentiate the citations between 

those for physical vs those for statistical methods. 

Ans: Thanks for your valuable suggestion. We have clearly differentiated the 

citations between those for physical vs those for statistical methods in the revised 

manuscript as follows: 

“In past decades, numerous RS-based products/datasets of global surface radiation 

and heat fluxes have significantly advanced, which were generally generated by 

physical (Li et al., 2023; Mu et al., 2011; Yu et al., 2022) or statistical methods (Jiao 

et al., 2023; Jung et al., 2019; Peng et al., 2020).” 



 

3. Introduction line 92- “impending” is an awkward word here. I would just say “It 

was imperative”. 

Ans: We appreciate the reviewer’s suggestion. We have revised this sentence to “It 

was imperative to develop global datasets of land surface radiation and heat fluxes 

characterized by high accuracies, radiation balance as well as heat balance, to better 

meet the requirements in practical applications of various fields.” in the new 

manuscript. 

 

4. Data lines 131-132- Why could a simple interpolation not be applied for missing 

half hourly data? Is the data extremely sensitive to time? Some clarification is 

needed here. 

Ans: Thank you for your comments and questions. The half-hourly surface radiation 

and heat fluxes are sensitive to short-term temporal variations caused by rapid 

changes in meteorological conditions, but their intraday dynamics are often 

nonlinear, particularly due to the intermittent effects of cloud cover. Therefore, 

applying simple interpolation methods (e.g. linear interpolation) could introduce 

considerable uncertainties. To ensure data quality, we only retained directly observed 

values (data quality flag=0) and good-quality gap-filled data (data quality flag=1) 

provided by the official gap-filling algorithms, and then computed daily averages 

only when more than 80% of half-hourly observations were available, as already 

described in the first paragraph of Section 2.1 with the following sentence: 

“(3) the half-hourly ground-based observations with quality-control flag of 2 or 3 

(bad quality) were removed but quality-control flag of 0 and 1 (good quality) were 

maintained; (4) a daily average of the half-hour observations was calculated for each 

day with greater than 80% good-quality data, further reducing the 472 sites to 355 

sites;” 

 

Besides, we have already discussed the uncertainties caused by the daily averages of 

surface radiation and heat fluxes in the last paragraph of Section 5 with the following 

sentence: 

“Specifically, daily averages of surface radiation and heat fluxes for each day were 

obtained for analysis from good-quality half-hourly observations when the fraction 

of these good-quality half-hourly observations was greater than 80% in a day, due to 

the lack of consensus on the method for aggregating gapped half-hourly observations 

to daily data (Tang et al., 2024a; Yao et al., 2017; Zheng et al., 2022).” 

 

Following your suggestion, we have also further clarified the simple temporal 

interpolation in the last paragraph of Section 5 with the following sentence: 

“Simple temporal interpolation of half-hourly in situ observations, which could 

therefore introduce substantial uncertainties, was not applied, because surface 

radiation and heat fluxes are sensitive to short-term variations in meteorological 

conditions and their intraday dynamics are often complex.” 

 



5. Data lines 138-139- Can the authors clarify why this criteria was applied for 

screening outliers? 

Ans: Thank you for your valuable question. We would like to clarify that the energy 

balance ratio (EBR) of 0.2-1.8 and the 1st-99th quantiles of the daily evaporation 

fraction was both applied to remove physically implausible measurements, such as 

cases where the available surface energy (Rn − G) is close to zero while LE and H 

remain comparatively large, where the threshold of 0.2-1.8 was adopted following 

our previous study (Wang et al., 2025), which has demonstrated that nearly all 

available data fall within this range and that the accuracy of the CoSEB model 

showed no significant differences when applying different EBR thresholds, while the 

percentile-based screening was employed following common practice in flux and 

remote sensing studies (Bartkowiak et al., 2024; Ghorbanpour et al., 2022; Wang et 

al., 2023). We have clarified this in the first paragraph of Section 2.1 with the 

following sentence: 

“(5) the aggregated daily LE and H were corrected for energy imbalance using the 

Bowen ratio method when the daily energy balance closure [defined as 

( ) / ( )LE H Rn G+ − ] varied between 0.2 and 1.8 following Wang et al. (2025) to 

exclude physically implausible measurements; (6) extreme outliers in the daily 

evaporative fraction were further removed by excluding values outside the 1st–99th 

percentile range, a common practice in flux and remote sensing studies (Bartkowiak 

et al., 2024; Wang et al., 2023), further reducing the 355 sites to 337 sites.” 

 

6. Mainstream datasets/products for inter comparison- I was curious as to why the 

authors so not compare their estimates with heat and radiation estimates from 

popular earth system modelling systems such as CESM and CTSM 

(https://www.cesm.ucar.edu/). In fact, if the authors approach can produce 

estimates similar to earth system models, this would be a huge benefit to the 

community (since these models are laborious to run) 

Ans: Thanks for your comment. The outputs of Earth system models generally have 

coarse spatial resolutions (e.g., the CESM Large Ensemble Project has a spatial 

resolution of ~1°). Due to the surface heterogeneity, these model outputs cannot be 

directly validated using radiation and heat flux observations from ground sites with 

limited spatial representativeness. This is the main reason why both we and others 

usually do not compare the outputs of Earth system models with remote sensing-

based datasets.  

Although we believe that comparing the outputs of Earth system models with 

remote sensing-based datasets (including our CoSEB-based datasets and others’ 

PML_V2, MOD16A2, FLUXCOM, BESSV2.0, GLASS) and validating them 

against ground-based observations is not appropriate, following the reviewer’s 

suggestion, we compared the global spatial distributions of mean annual estimates 

from CoSEB-based datasets with the outputs from the CESM Large Ensemble 

project. The results (see Section 4.3 and Fig. S8) show that, overall, the global 

spatial patterns of the estimated SWIN, LWIN, LWOUT, Rn, LE and H are consistent, 



though numerical differences exist. Considering the scope and length of the current 

manuscript, a more detailed analysis of the spatial-temporal distribution patterns, 

trends, and variability between Earth system model outputs and remote sensing-

based datasets could be conducted in future work. We have discussed this in the third 

paragraph of Section 5 with the following sentences: 

“Preliminary analysis indicates that the CoSEB-based datasets exhibit spatial 

patterns consistent with those of mainstream RS-based datasets and Earth system 

model outputs (see Fig. S8 in the supplementary material). More detailed analysis 

about their similarities and differences can be further conducted in future work.” 

 

 

Fig. S8 Spatial patterns of global mean annual downward shortwave radiation (SWIN), 

downward longwave radiation (LWIN), upward longwave radiation (LWOUT), net radiation 

(Rn), latent heat flux (LE) and sensible heat flux from 2001 to 2018 by Community Earth 

System Model (CESM) Large Ensemble project, where LWOUT and Rn were inferred from 

surface radiation balance and heat balance. 

 

7. Methods lines 243-244- Once again the usage of RMSEs here does not make 

much sense. Can the authors just report the R squared values instead. 

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE 

remains an essential metric for evaluating the accuracy of the model and datasets, 

particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et 

al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly 

quantifies prediction errors in physical units (W/m2), making it an indicator of 

significant interest to both model developers and product users. Nevertheless, R2 

indeed is another important metric, indicating the degree to which the model 

predictions align with the reference truth. After careful consideration, we have 

additionally reported R2 values in the revised manuscript to more comprehensively 

demonstrate the model performance. The revised sentence is as follows: 

“The CoSEB model was demonstrated to be able to produce high-accuracy estimates 

of land surface energy components, with the RMSE of <17 W/m2 and R2 of > 0.83 

for estimating 4-day Rn, LE and H, and the RMSE of <5 W/m2 and R2 of 0.55 for 

estimating 4-day G.” 

 



8. Methods lines 269-270- Just to confirm, the RF based uncoordinated models are 

models where only individual variables are estimated rather than the 

simultaneous calculation of several variables? This should be clarified. 

Ans: Thanks for your valuable question. Your understanding is correct. We have 

more clearly clarified this in the third paragraph of Section 3 of the revised 

manuscript with the following sentence: 

“Furthermore, to benchmark the coordinated estimates from the renewed CoSEB 

model, eight RF-based uncoordinated models were constructed, each separately 

estimating one of SWIN, SWOUT, LWIN, LWOUT, Rn, LE, H or G using the same inputs 

as those in the renewed CoSEB model.” 

 

9. Results Lines 306-309- I was curious looking at Figure 4 whether there were 

correlations or relationships between the EIR or RIR values and any of the other 

predictor variables? Is the shape of that distribution affected by any particular 

variables? 

Ans: Thanks for your question. We would like to clarify that our CoSEB model 

showed no energy imbalance, with the RIR and EIR of 0, as shown in Figure 3. The 

distributions of RIR and EIR in Figure 4 were derived from RF-based uncoordinated 

models, which were used only for comparison with our CoSEB model and were not 

the focus of our study.  

However, considering your concern about whether the distributions of the RIR 

and EIR values are affected by specific predictor variables, we further conducted a 

binned statistical analysis, where the three most critical input variables identified in 

Table S4 (i.e. 5ERA

INSW , Ta and FVC) were divided into equal-width bins, and for each 

bin the mean and standard deviation for positive and negative RIR conditions were 

calculated. Besides, the Pearson correlation coefficients (r) between RIR (EIR) and 

each input variable were computed to quantify their overall relationships. The results 

showed that lower levels of solar radiation, air temperature, or FVC are associated 

with larger RIR (EIR), while the predominance of low values of these three variables 

tends to result in decreased kurtosis correspondingly, implying flatter and broader 

probability shapes of RIR and EIR. We have also briefly illustrated this in the end of 

the second paragraph of Section 4.1.1 with the following sentence: 

“Furthermore, the RIR as well as EIR tended to be higher under lower solar radiation, 

air temperature, or FVC, with more frequent low values of these three variables 

leading to a broader and less peaked distribution of RIR and EIR (see Fig. S1 in the 

Supplementary Material).” 



 

Fig. S1 Relationships between radiation imbalance ratio [RIR, 100% × (SWIN – SWOUT + 

LWIN - LWOUT)/Rn] and energy imbalance ratio [EIR, 100% × (Rn - G - LE - H)/Rn] 

derived from RF-based uncoordinated models and three critical input variables identified 

in Table S4, including solar radiation reaching the surface of the earth from ERA5-Land 

(
5ERA

INSW , the first column), 2 m air temperature from ERA5-Land (Ta, the second column) 

and fraction vegetation cover from GLASS (FVC, the third column). The mean and 

standard deviation were calculated within equal-width bins of 
5ERA

INSW , Ta, and FVC under 

positive and negative EIR (RIR) conditions, where the solid lines represent the mean values, 

and the shaded area represents the corresponding variation of standard deviations. The r 

values in legends indicate the Pearson correlation coefficients. 

 

10. Results Lines 311-312- Can the authors clarify the differences between site-

based validation vs sample-based validation? 

Ans: We appreciate the reviewer’s insightful comment. Sample-based 10-fold cross-

validation refers to randomly splitting all available samples from all sites into ten 

folds, with each fold in turn serving as the validation dataset while the remaining 

folds are used for training. This approach allows samples from the same site to 

appear in both the training and validation datasets. In contrast, site-based 10-fold 

cross-validation was performed by randomly dividing all sites into ten folds, with the 

samples from each fold of sites used for validation in turn. This strategy ensures that 

the validation datasets are spatially independent from the training datasets, thereby 

providing a more rigorous assessment of the model’s spatial generalization capability. 

We have already described the site-based 10-fold cross-validation in the third 

paragraph of Section 3 with the following sentences: 

“Site-based 10-fold cross-validation was employed to evaluate the transferability and 



generalization of the CoSEB model by randomly dividing all sites into ten folds, 

where the samples from each fold of sites in turn served as validation datasets while 

the remaining folds were used as training datasets, ensuring that the validation was 

conducted on sites spatially independent from the training data.” 

 

Furthermore, after careful consideration, site-based 10-fold cross-validation was 

deemed to be more suitable for assessing the performance of the model than sample-

based 10-fold cross-validation, as the validation datasets in site-based cross-

validation are spatially independent from the training datasets. To make the main 

focus of the manuscript clearer and more concise, we retained only the site-based 10-

fold cross-validation and removed the sample-based 10-fold cross-validation in the 

revised manuscript. 

 

11. Results lines 381-382- Once again, the RMSE values don’t make a lot of sense 

here. Authors should report the R squared values instead. 

Ans: We appreciate the reviewer’s suggestion. We would like to clarify that RMSE 

remains an essential metric for evaluating the accuracy of the model and datasets, 

particularly for energy flux estimations (Bisht & Bras, 2011; Comini De Andrade et 

al., 2024; Kalma et al., 2008; Ryu et al., 2008; Zhang et al., 2019), as it directly 

quantifies prediction errors in physical units (W/m2), making it an indicator of 

significant interest to both model developers and product users. However, R2 indeed 

is another important metric, indicating the degree to which the model predictions 

align with the reference truth. After careful consideration, we have additionally 

incorporated the R² values into the revised manuscript. The revised sentence is as 

follows: 

“Results indicated that the CoSEB-based datasets could provide good estimates of 

SWOUT, H and G, with the RMSEs (R2) of 14.20 W/m2 (0.42), 29.75 W/m2 (0.44) and 

5.69 W/m2 (0.44) at daily scale, respectively, and the RMSE (R2) of 12.19 W/m2 

(0.39) and 4.60 W/m2 (0.47) for 8-day SWOUT and G, respectively.” 

 

12. Section 4.2- When discussing the differences between the CoSEB model 

estimates vs other estimates, can authors also describe why the differences occur? 

A detailed discussion is not warranted here. Rather, I was interested in the 

author’s perspective as to why the author’s approach produces some differences 

over existing approaches.   

Ans: Thanks for your constructive comments. The possible reasons for the 

differences between estimates from the CoSEB-based datasets and the mainstream 

products/datasets are complex and may arise from differences in both 

methodological frameworks and input datasets. Specifically, the discrepancies may 

result from the simplification of physical processes and the uncertainties in 

parameterization within the physics-based products (e.g., MOD16A1, BESSV2.0, 

PML_V2, and ETMonitor). In contrast, the differences between the CoSEB-based 

datasets and other machine-learning-based products (e.g., BESS-Rad, GLASS, and 

FLUXCOM) may be attributed to the limited sample sizes of training data, the 



incomplete consideration of influencing factors (e.g., CO2 concentration, surface 

aspect), and the lack of physical constraints among energy balance components in 

existing machine-learning frameworks. We have briefly discussed this in the last 

paragraph of Section 4.2 of the revised manuscript with the following sentence:  

“The differences between the estimates from the CoSEB-based datasets and 

mainstream datasets are likely multifactorial, arising from the simplification and 

parameterization uncertainties in physics-based models, as well as the lack of 

physical constraints, limited training samples, and incomplete consideration of 

influencing factors in other machine-learning-based models.” 

 

 

Reference: 

Bai, Y., Mallick, K., Hu, T., Zhang, S., Yang, S. and Ahmadi, A.: Integrating machine learning 

with thermal-driven analytical energy balance model improved terrestrial 

evapotranspiration estimation through enhanced surface conductance, Remote Sens. 

Environ., 311, 114308. 10.1016/j.rse.2024.114308, 2024. 

Bartkowiak, P., Ventura, B., Jacob, A. and Castelli, M.: A Copernicus-based evapotranspiration 

dataset at 100 m spatial resolution over four Mediterranean basins, Earth Syst. Sci. Data, 

16, 4709-4734. 10.5194/essd-16-4709-2024, 2024. 

Bisht, G. and Bras, R. L.: Estimation of Net Radiation From the Moderate Resolution Imaging 

Spectroradiometer Over the Continental United States, IEEE Trans. Geosci. Remote 

Sensing, 49, 2448-2462. 10.1109/tgrs.2010.2096227, 2011. 

BREIMAN, L.: Random forests, Mach. Learn., 45, 5-32. 2001. 

Comini de Andrade, B., Laipelt, L., Fleischmann, A., Huntington, J., Morton, C., Melton, F., 

Erickson, T., Roberti, D. R., de Arruda Souza, V., Biudes, M., Gomes Machado, N., 

Antonio Costa dos Santos, C., Cosio, E. G. and Ruhoff, A.: geeSEBAL-MODIS: 

Continental-scale evapotranspiration based on the surface energy balance for South 

America, ISPRS-J. Photogramm. Remote Sens., 207, 141-163. 

10.1016/j.isprsjprs.2023.12.001, 2024. 

Drobnič, F., Kos, A. and Pustišek, M.: On the Interpretability of Machine Learning Models and 

Experimental Feature Selection in Case of Multicollinear Data, Electronics, 9. 

10.3390/electronics9050761, 2020. 

ElGhawi, R., Kraft, B., Reimers, C., Reichstein, M., Körner, M., Gentine, P. and Winkler, A. J.: 

Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances 

using combined physics-based and machine learning, Environ. Res. Lett., 18, 034039. 

10.1088/1748-9326/acbbe0, 2023. 

Ghorbanpour, A. K., Kisekka, I., Afshar, A., Hessels, T., Taraghi, M., Hessari, B., Tourian, M. J. 

and Duan, Z.: Crop Water Productivity Mapping and Benchmarking Using Remote 

Sensing and Google Earth Engine Cloud Computing, Remote Sens., 14. 

10.3390/rs14194934, 2022. 

Han, Q., Zeng, Y., Zhang, L., Wang, C., Prikaziuk, E., Niu, Z. and Su, B.: Global long term daily 

1 km surface soil moisture dataset with physics informed machine learning, Sci. Data, 

10, 101. 10.1038/s41597-023-02011-7, 2023. 

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., 



Tramontana, G. and Reichstein, M.: The FLUXCOM ensemble of global land-

atmosphere energy fluxes, Sci. Data, 6, 74. 10.1038/s41597-019-0076-8, 2019. 

Kalma, J. D., McVicar, T. R. and McCabe, M. F.: Estimating Land Surface Evaporation: A 

Review of Methods Using Remotely Sensed Surface Temperature Data, Surveys in 

Geophysics, 29, 421-469. 10.1007/s10712-008-9037-z, 2008. 

Mu, Q., Zhao, M. and Running, S. W.: Improvements to a MODIS global terrestrial 

evapotranspiration algorithm, Remote Sens. Environ., 115, 1781-1800. 

10.1016/j.rse.2011.02.019, 2011. 

O., S. and Orth, R.: Global soil moisture data derived through machine learning trained with in-

situ measurements, Sci. Data, 8. 10.1038/s41597-021-00964-1, 2021. 

Ryu, Y., Jiang, C., Kobayashi, H. and Detto, M.: MODIS-derived global land products of 

shortwave radiation and diffuse and total photosynthetically active radiation at 5 km 

resolution from 2000, Remote Sens. Environ., 204, 812-825. 10.1016/j.rse.2017.09.021, 

2018. 

Ryu, Y., Kang, S., Moon, S.-K. and Kim, J.: Evaluation of land surface radiation balance derived 

from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and 

heterogeneous landscape on clear sky days, Agric. For. Meteorol., 148, 1538-1552. 

10.1016/j.agrformet.2008.05.008, 2008. 

Senay, G. B., Kagone, S. and Velpuri, N. M.: Operational Global Actual Evapotranspiration: 

Development, Evaluation and Dissemination, Sensors (Basel), 20. 10.3390/s20071915, 

2020. 

Wang, J., Tang, R., Liu, M., Jiang, Y., Huang, L. and Li, Z.-L.: Coordinated estimates of 4-day 

500 m global land surface energy balance components, Remote Sens. Environ., 326, 

114795. 10.1016/j.rse.2025.114795, 2025. 

Wang, Y., Hu, J., Li, R., Song, B. and Hailemariam, M.: Remote sensing of daily 

evapotranspiration and gross primary productivity of four forest ecosystems in East Asia 

using satellite multi-channel passive microwave measurements, Agric. For. Meteorol., 

339, 109595. 10.1016/j.agrformet.2023.109595, 2023. 

Xu, J., Liang, S., Ma, H. and He, T.: Generating 5 km resolution 1981–2018 daily global land 

surface longwave radiation products from AVHRR shortwave and longwave 

observations using densely connected convolutional neural networks, Remote Sens. 

Environ., 280, 113223. 10.1016/j.rse.2022.113223, 2022. 

Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q. and Yang, Y.: Coupled 

estimation of 500 m and 8-day resolution global evapotranspiration and gross primary 

production in 2002–2017, Remote Sens. Environ., 222, 165-182. 

10.1016/j.rse.2018.12.031, 2019. 

Zheng, C., Jia, L. and Hu, G.: Global land surface evapotranspiration monitoring by ETMonitor 

model driven by multi-source satellite earth observations, J. Hydrol., 613, 128444. 

10.1016/j.jhydrol.2022.128444, 2022. 

 


