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Abstract  27 

The QUADICA version 2 dataset significantly expands upon the first version of QUADICA (water 28 

QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany), by incorporating 29 

more recent data, additional water quality and driver variables, and more stations with concurrent water 30 

quantity data. Specifically, QUADICA v2 extends the time series of the first version up to 2020 and 31 

introduces new water quality variables, including water temperature, oxygen, and chlorophyll-a 32 

concentrations, as well as concentrations of ammonium, sulfate, and geogenic solutes like calcium. These 33 

additions enable a more comprehensive understanding of ecological impacts, including eutrophication 34 

effects, and water quality dynamics across catchments. Furthermore, we have integrated QUADICA with 35 

the hydrological large-sample datasets CAMELS-DE and Caravan-DE, effectively doubling the number 36 

of stations with combined water quality and quantity data to 637 out of the 1386 stations in total. The 37 

inclusion of time series on point and diffuse sources of both nitrogen and phosphorus allows for more 38 

thorough investigations of driver-response relationships and nutrient export from catchments. To facilitate 39 

visualization and exploration of QUADICA, we provide a user-friendly, interactive R application along 40 

the online data repository. This makes QUADICA v2 a comprehensive dataset that spans from driver to 41 

impact variables, offering a valuable resource for researchers and practitioners. 42 

  43 
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1 Introduction 44 

High water quality is critical for the health of aquatic ecosystems and humans. Understanding the spatial 45 

and temporal variability in water quality variables is essential for effective management and conservation 46 

of water resources. Observational data are the key to propelling our understanding of hydrological and 47 

biogeochemical processes and complex interactions. Large-sample hydrology (LSH) addresses the “need 48 

to balance depth and breadth” (Gupta et al., 2014) and has thus become a cornerstone to understand the 49 

generality of patterns and processes across diverse landscape and climate settings. 50 

Creating LSH data sets that include contextual data on catchment attributes and driving forces has gained 51 

recent momentum. Prominent examples for water quantity are the CAMELS data sets available in several 52 

countries (Addor et al., 2017; Alvarez-Garreton et al., 2018; Coxon et al., 2020; Chagas et al., 2020; 53 

Fowler et al., 2021; Loritz et al., 2024) and the follow-up with a global consistent data set Caravan 54 

(Kratzert et al., 2023). For water quality, such comprehensive data sets are less common, but the 55 

momentum is also increasing with the QUADICA (Ebeling et al., 2022) and two recently published 56 

CAMELS-Chem datasets from the US (Sterle et al., 2024) and from Switzerland (Do Nascimento et al., 57 

2025). Here, beside hydroclimatic data, driving forces also include the temporal evolution of pollution 58 

sources, e.g., nitrogen surplus as a diffuse source. 59 

LSH datasets have various applications. They serve data-driven top-down approaches to identify trends 60 

and patterns in water quantity and quality time series, and with contextual data to advance our 61 

understanding of underlying processes and hierarchies. The data serves the forcing, calibration, and 62 

validation of hydrological and water quality models (Nguyen et al., 2022; Van Meter and Basu, 2015). 63 

The increased availability of LSH datasets also propelled data-driven machine learning (ML) models 64 

using them for training, testing, and validation and improving their performance and generalization ability 65 

both in time and space (e.g. ungauged basins). ML models are widely applied and improved for discharge 66 

predictions (e.g., Kratzert et al., 2018; Heudorfer et al., 2025) but also increasingly used for water quality 67 

parameters (Zhi et al., 2023; Zhi et al., 2021; Saha et al., 2023)  68 

Here, we present the second version of QUADICA (water QUAlity, DIscharge and Catchment 69 

Attributes), a significant update to the original dataset (Ebeling et al., 2022). The first version of 70 

QUADICA has supported a wide variety of water quality studies, including the characterisation of 71 
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catchments based on nutrient export processes across different spatial and temporal scales (Ebeling et al., 72 

2021b; Ebeling et al., 2021a; Ehrhardt et al., 2021), effects of hydroclimatic extreme events on the 73 

catchments’ nitrate export (droughts, Saavedra et al., 2024; floods, Saavedra et al., 2022), for nutrient 74 

stoichiometric characterisation (Wachholz et al., 2023), as well as for disentangling catchment processes 75 

using a process-based water quality model (e.g., Nguyen et al., 2022). A particular focus has been the 76 

linkage of observed instream water quality responses to drivers, enabled through provided catchment 77 

attributes and driving forces in the form of diffuse nitrogen sources.  78 

Recent shifts in environmental conditions, particularly hydrological extremes such as droughts, have 79 

substantial impacts on water quality (Saavedra et al., 2024; Winter et al., 2023; Dupas et al., 2025). This 80 

highlights the critical need to extend the QUADICA dataset to include more recent years covering extreme 81 

drought years and additional water quality and driver variables, thereby enhancing our ability to 82 

understand and address the evolving relationship between environmental change and water quality. 83 

Specifically, the update encompasses (1) longer time series up to 2020, capturing recent extreme events 84 

such as the 2018-2020 multi-year drought (e.g., Rakovec et al., 2022) with expected effects on solute 85 

export (e.g., Winter et al., 2023), (2) additional hydroecological time series such as oxygen and 86 

chlorophyll-a concentrations, enabling to move from water quantity and quality to ecological impact 87 

studies, (3) additional time series of driving forces including point sources and phosphorus inputs, 88 

allowing more comprehensive views on input-output (driver-response) relationships, useful e.g. for the 89 

quantification of nutrient legacies or model input data, and (4) larger amount of stations with joint water 90 

quantity and quality by linking to the recently published and widely known CAMELS-DE (Loritz et al., 91 

2024) and Caravan-DE (Dolich et al., 2024) data sets. With this updated version, we aim to enhance the 92 

breadth of the large-sample water quality dataset QUADICA with additional depth, enabling us to address 93 

more research questions and ultimately support water quality management. 94 

  95 
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2 Station and catchment selection 96 

The 1386 stations and corresponding delineated catchments from the original QUADICA data set 97 

(Ebeling et al., 2022) are retained in version 2. Although all stations lie within Germany, 17.9% of the 98 

catchments are transboundary with part of their area in a neighbouring country. Figure 1 shows the study 99 

area with updated information on the data availability. As for version 1, water quality and quantity data 100 

for QUADICA v2 were assembled from the German federal state authorities and merged with the data 101 

from QUADICA v1. This allowed us to extend the time series length as well as add new variables of 102 

water quality.  103 

Similar to version 1, we assessed the data availability after quality control of the water quality time series 104 

data. After homogenization of variables names, units and formats across all federal states, the 105 

preprocessing steps included (1) removal of duplicates and implausible values (i.e. for concentrations 106 

zero and negative values), (2) removal of outliers within each time series (for concentrations, outliers 107 

were considered values above mean and 4 standard deviations in logarithmic space corresponding to a 108 

confidence level above 99.99 %, for oxygen concentrations (O2) and water temperature (T) the same was 109 

applied in normal space), (3) substitution of left-censored values with half of the detection limit, where 110 

applicable (i.e. nutrient and mineral concentrations). We additionally removed total organic carbon (TOC) 111 

concentrations >1000 mg l-1, as we identified implausible plateaus of such high values in three stations, 112 

for which the outlier test failed.  113 
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 114 

Figure 1: Stations and delineated catchments in relation to Germany (black line). Stations with extended water quality data (C) (i.e. 115 
new sample dates added) in version 2 are highlighted as well as stations with newly added continuous discharge data (Q) from 116 
matching with CAMELS-DE (Loritz et al., 2024) and Caravan-DE (Dolich et al., 2024) data sets (for details, refer to Section 3.2). 117 
The rivers displayed are taken from (De Jager and Vogt, 2007). WRTDS (Weighted Regression on Time, Discharge and Season) 118 
available for stations with high data availability (see Section 3.1.2). 119 
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3 Time series 120 

Time series data are provided for 1386 catchments (as in QUADICA v1) for water quality variables 121 

(Section 3.1) and water quantity (Section 3.2), and forcing variables both from meteorological drivers 122 

(Section 3.3) and nutrient (N and P) inputs from diffuse and point sources (Section 3.4).  123 

For water quality, QUADICA version 2 increases the number of variables by adding ammonium (NH4
+-124 

N) to the previously provided nutrient concentrations (NO3
--N, TN, PO4

3--P, TP, DOC, TOC), major ion 125 

concentrations (SO4
2-, Cl-, Ca2+, Mg2+), concentrations of O2 and Chlorophyll-a (Chl-a), and water 126 

temperature (T). In version 2, dissolved inorganic nitrogen (DIN) was calculated as the sum of the 127 

preprocessed time series of inorganic nitrogen forms NO3
--N and NH4

+-N, and, if available, NO2
--N. Note 128 

that, for simplicity, the charges are not always written in the following text. 129 

For water quantity, the number of stations with discharge data from daily observations was increased 130 

from 324 in version 1 to 637 in version 2.  131 

For nutrient inputs, time series of catchment-wise diffuse P inputs and point source inputs of N and P 132 

were added, while diffuse N sources were both updated as well as extracted from a European data source 133 

provided consistently with P. An overview of the provided variables with marked new additions is given 134 

in Table 1. Due to limited data availability, not all water quality and quantity variables can be provided 135 

for all stations. Details are described in the following sections. 136 

 137 

Table 1: Provided time series data, their basis (observed or estimated), aggregation type, temporal resolution and source of original 138 
data, which was used to calculate the aggregated data provided here. Bold font indicates the newly added variables in version 2 of 139 
the QUADICA data set. WRTDS -Weighted Regression on Time, Discharge and Season. 140 

Variable Section Data basis Temporal (Spatial) 

Aggregation 

Temporal 

resolution 

Source 

Concentrations of 

nutrient species 

(NO3-N, NH4-N, 

DIN, TN, PO4-P, 

TP, DOC, TOC), 

major ions (SO4, 

Cl, Ca, Mg), O2 and 

Chl-a, and T 

3.1 

 

observed median annual Musolff (2020); (Ebeling et al., 

2022) 

daily estimated 

using WRTDS 

median monthly Musolff (2020); (Ebeling et al., 

2022) 

observed long-term median monthly  Musolff (2020); (Ebeling et al., 

2022) 
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Discharge 3.2 

 

observed median annual Musolff (2020); (Ebeling et al., 

2022; Loritz et al., 2024; 

Dolich et al., 2024) 

observed median monthly Musolff (2020); (Ebeling et al., 

2022; Loritz et al., 2024; 

Dolich et al., 2024) 

observed long-term median monthly  Musolff (2020); (Ebeling et al., 

2022; Loritz et al., 2024; 

Dolich et al., 2024) 

Precipitation 3.3 observed 

gridded 

sum (average) monthly E-Obs (2018); (Cornes et al., 

2018) 

Potential 

evapotranspiration 

3.3 estimated sum (average) monthly E-Obs (2018); (Cornes et al., 

2018) 

Mean air 

temperature 

3.3 observed 

gridded 

average (average) monthly E-Obs (2018); (Cornes et al., 

2018) 

Diffuse N (from 

two sources) and P 

input as total 

3.4 estimated (average) annual see Section 3.4 

Diffuse N input 

from agricultural 

areas 

3.4 estimated (average) annual see Section 3.4 

Point source N and 

P input 

3.4 estimated (average) annual see Section 3.4 

 141 

3.1 Water quality time series 142 

After quality control of the time series data, different temporal aggregation schemes were implemented 143 

to provide consistent data sets. In QUADICA version 2, we provide the time series of annual medians 144 

(Section 3.1.1), monthly medians for stations with high data availability (Section 3.1.2), and long-term 145 

monthly averages (Section 3.1.3). 146 

3.1.1 Annual median water quality variables 147 

Annual median concentrations are provided based on the preprocessed time series (Section 2) for all 148 

station-compound combinations. Along the median concentrations, the number of samples considered for 149 

https://doi.org/10.5194/essd-2025-450
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

the given value is provided as a control variable for users of the data set, allowing to subset the data based 150 

on data availability. 151 

The time series of annual median concentrations are visualized in Figures S1 and S2, while the 152 

corresponding data density is shown in Figure 2 over the years as well as for the number of years covered 153 

per station. A summary of data availability across all variables is provided in Table 2. 154 

The highest data availability with more than 1370 stations covered is presented for the inorganic nitrogen 155 

(NO3-N, NH4-N, DIN) and phosphorus (PO4-P) compounds, as well as for chloride (Cl), sulfate (SO4), 156 

oxygen (O2) and water temperature (T). The highest temporal coverage stretches from the mid-2000s to 157 

the mid-2010s. Overall, the median time series lengths vary between 13 (for Chl-a) and 24 (O2, T) years. 158 

The median number of samples per station varies between 104 (for Chl-a) and 205 (for T), while the 159 

median average number of samples per year ranges from 10.1 (for DOC) to 11.9 (for NO3-N, PO4-P, and 160 

T) and 12.0 (for Chl-a), i.e. corresponding to a monthly sampling frequency on average. 161 

 162 

 163 

Figure 2: Temporal coverage of water quality and quantity time series data per compound: (a) number of stations with available 164 
annual medians per year and compound and (b) the number of years covered by each station per compound. For visualization 165 
purposes in (a) station counts from 1950 are shown, omitting one sample before 1954.  166 
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Table 2: Summary of stations and data availability for each water quality compound. The table provides the number of stations with 167 
the respective compound reported, the earliest and median start year of time series, median and maximum time series length in 168 
years across stations as well as the number of covered years (i.e. years with available data, with values provided in parenthesis), total 169 
number of grab samples (i.e. data points) for each compound, median number of grab samples per stations and median samples per 170 
year and station, number of outliers removed as the sum across all stations, and maximum fraction of outliers removed at one station. 171 
n - number, max. - maximum, * omitting one sample from 1900. 172 

Variable NO3-

N 

NH4-

N 

DIN TN PO4-

P 

TP DOC TOC Ca Mg Cl SO4 O2 T Chl-a 

Unit mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 °C mg l-1 

n stations 1386 1386 1386 782 1379 1301 1167 1323 1337 1337 1380 1375 1379 1379 271 

Earliest start 

year 

1954* 1954* 1954* 1984 1965 1965* 1976 1979 1964 1964 1954 1964 1954 1954 1982 

Median start year 1995 1997 1997 2005 1995 1996 1995 1999 1997 1997 1994 1997 1993 1993 1996 

Median time 

series length 

(years covered) 

22 

(18) 

20 

(17) 

20 

(17) 

15 

(14) 

21 

(17) 

22 

(17) 

19 

(13) 

20 

(17) 

19 

(14) 

19 

(15) 

23 

(19) 

21 

(17) 

24 

(20) 

24 

(20) 

13 

(10) 

Max. time series 

length in years 

(years covered) 

67* 

(67) 

67* 

(67) 

67* 

(67) 

31 

(31) 

53 

(48) 

53* 

(53) 

44 

(44) 

37 

(36) 

49 

(39) 

49 

(39) 

67 

(67) 

53 

(53) 

67 

(67) 

67 

(67) 

37 

(37) 

Total n samples 

(excl. outliers) 

375,9

90 

364,3

01 

356,2

62 

139,9

48 

350,5

07 

323,5

20 

171,1

23 

291,8

98 

232,9

26 

232,4

12 

372,1

23 

299,4

12 

462,5

08 

396,8

36 

65,63

2 

Median n 

samples per 

station 

194 190 190 168 183 177 130 179 145 144 191 181 203 205 104 

Median n 

samples per 

station and year 

11.9 11.8 11.8 11.4 11.9 11.7 10.1 11.7 11.1 11.0 11.8 11.8 11.8 11.9 12 

n outliers total 88 292 - 74 212 506 339 950 119 228 666 212 219 8 50 

Max. fraction of 

outliers per 

station [%] 

1.9 3.4 - 2.2 5.8 2.9 3.2 7.2 2.4 3.8 2.3 4.0 2.1 1.1 2.6 

 173 

3.1.2 Monthly median concentrations and mean fluxes for stations with high data 174 

availability 175 

As in version 1 of QUADICA, we provide monthly and annually aggregated water quality data for the 176 

subset of stations with high data availability based on Weighted Regression on Time, Discharge and 177 

Season (WRTDS; Hirsch et al., 2010), referred to as ‘WRTDS stations’. To fit WRTDS, we used the R 178 

package EGRET (version 3.0.9; Hirsch and De Cicco, 2015). WRTDS considers long-term trends, 179 
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seasonal components and discharge-dependent variability to estimate daily concentrations from low-180 

frequency observations, e.g., from monthly grab samples (Hirsch et al., 2010). We included station and 181 

compound combinations using the same quality criteria as in QUADICA v1 on the preprocessed 182 

concentration data (Section 2). Accordingly, water quality time series had to cover at least 20 years, at 183 

least 150 samples, and no data gaps larger than 20 % of the total time series length. Discharge time series 184 

with daily temporal resolution are required to run WRTDS, but in contrast to version 1 of QUADICA, 185 

gaps in discharge were allowed with the consequence that no concentration estimate is provided for that 186 

day. The number of WRTDS stations varies between 97 for TN and 322 for Cl (Table 3), while the fraction 187 

of stations with high data availability varies between 12.0 % for TOC and 23.3 % for Cl.  188 

As in QUADICA v1, monthly and annual values were only provided if 80% of the days of the respective 189 

period were covered. The provided water quality time series contain median concentrations, flow-190 

normalized concentration, and mean flux estimates from WRTDS models. We now also added discharge-191 

weighted mean concentrations. Discharge corresponds to the median observed, as WRTDS takes 192 

discharge as input and does not modify it (Section 3.2.2). 193 

The model performance of WRTDS varies across water quality variables and stations with 64.1% of the 194 

station and compound combinations with R2>0.5 and 58.2% with a percent bias <1% and 92.7% below 195 

<5%. Average performances per compound are given in Table 3, while the distribution of performance 196 

values is provided in Figure A3, as well as all individual values provided in the repository. The 197 

performance metrics should allow the users to select suitable catchments and compounds for reliable 198 

analysis. 199 

  200 
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 201 

Table 3: Number of stations with high data availability (WRTDS stations) for each compound and median coefficient of 202 
determination of WRTDS models. The unit of all variables is mg l⁻¹. 203 

Variable Number of WRTDS stations  Median R2 Median bias [%] 

total 347 0.58 -4.9*10-2 

NO3-N 317 0.64 0.20 

NH4-N 302 0.48 0.96 

DIN 303 0.68 0.18 

TN 97 0.71 5.1*10-3 

PO4-P 288 0.62 -0.73 

TP 270 0.48 -0.53 

DOC 140 0.45 -0.65 

TOC 195 0.46 -0.40 

Ca2+ 175 0.62 2.8*10-2 

Mg2+ 174 0.57 -6.6*10-2 

Cl 322 0.53 -3.9*10-2 

SO4 234 0.67 5.5*10-2 

 204 

3.1.3 Monthly long-term median concentrations 205 

To be consistent with QUADICA v1, we provide monthly long-term medians, and 25th and 75th 206 

percentiles (i.e. interquartile range), providing information on the average seasonality patterns of each 207 

respective time series. Figure 3 shows the scaled medians indicating the variability of seasonal timing 208 

across stations for each compound. For example, water temperature and oxygen show very similar 209 

seasonality in terms of timing with summer maxima and summer minima, respectively, in contrast to, 210 

e.g., Ca2+, Mg2+, DOC and TOC, for which seasonal timing varies strongly across stations. The nitrogen 211 

and phosphorus species show dominant seasonal patterns, but still more variability across stations. 212 
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 213 

Figure 3: Median monthly water quality observations inform about seasonal variability. Medians at each station are scaled to a 214 
range between 0 and 1. Note that only time series covering all 12 months are displayed. 215 
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3.2 Water quantity time series 216 

In total, discharge was provided for 637 stations, taking all data sources together. The earliest time series 217 

starts in 1893, the maximum number of stations with 620 stations with available discharge data was in 218 

2011 and the longest time series extends until 2022. 219 

From the QUADICA v1, we updated the discharge time series of 284 out of the 324 stations with daily 220 

data provided from our request to the authorities (232) and from GRDC (52) based on the matches 221 

identified in QUADICA v1. For the remaining stations, no updated data was provided.  222 

In addition, we complemented the QUADICA discharge data from the CAMELS-DE (Loritz et al., 2024) 223 

and Caravan-DE (Dolich et al., 2024) data sets. We found 554 matches (449 from CAMELS, 105 from 224 

Caravan), out of which 313 stations had no matching discharge values in QUADICA yet, while 241 225 

overlapped. We matched stations based on location and by manually checking if they lie on the same 226 

river. We differentiate cases between (1) close stations within a maximum distance of 1km (n=305) and 227 

(2) discharge stations that are further away. In the latter case, discharge stations could be located either 228 

(2i) upstream (n=202) or (2ii) downstream (n=47) of the water quality station. For (2), we accepted 229 

matches only if the relative difference between the intersected area of the CAMELS/Caravan and 230 

QUADICA catchments and the area of the QUADICA catchment was ≤ 30%. For downstream discharge 231 

stations (2ii), in addition, we accepted matches only if the CAMELS area was larger than the QUADICA 232 

area. 233 

We additionally checked the correlations between QUADICA and CAMELS/Caravan time series with a 234 

median correlation coefficient of r>0.9999 and only 5 out of the 241 overlapping stations with r<0.95. 235 

We then used the discharge time series of the matched stations to fill up the QUADICA data. To account 236 

for differences in the locations (and thus catchments’ area) of water quantity and water quality stations, 237 

we scaled the discharge of upstream discharge stations (i.e. case 2i) with the ratio between the QUADICA 238 

catchment area to the intersected area and of downstream stations (i.e. case 2ii) with the ratio between the 239 

QUADICA to CAMELS/Caravan catchment area. In case of several potential matches (because of 240 

identical station locations within CAMELS, n=24), we manually checked the time series to decide for the 241 

more complete one or merged them with priority on the more recent time series (n=2). 242 
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In contrast to QUADICA v1, we provide only continuous Q time series, independent of grab sampling 243 

dates. 244 

3.2.1 Annual median discharge 245 

Similar to version 1, annual median discharge is aggregated from available observed discharge data. As 246 

described above (Section 3.2), daily Q data is available for 637 water quality stations. The data density 247 

distribution is visualised in Figure 2.  248 

3.2.2 Monthly median discharge 249 

Similar to version 1, monthly median discharge is provided for WRTDS stations. Note that we did not 250 

gap-fill the daily discharge time series for the WRTDS models, but instead provide median values only 251 

if at least 80% of the days are covered. This criterion refers both to the monthly and annual discharge data 252 

provided with the WRTDS data tables (as described in Section 3.1.2).  253 

3.2.3 Monthly long-term median discharge  254 

Similar to version 1 of QUADICA and the water quality variables (Section 3.1.3), long-term monthly 255 

median discharge, 25th and 75th percentiles, as well as the corresponding number of samples are provided. 256 

These values can be an indicator of average discharge seasonality across solutes and catchments in the 257 

long term. 258 

3.3 Meteorological time series 259 

As in QUADICA v1, meteorological time series (precipitation, potential evapotranspiration and average 260 

air temperature) are provided as spatial catchment averages on monthly resolution from 1950 to 2020. To 261 

obtain these, we followed the same approach on a newer version from the European Climate Assessment 262 

and Dataset project (E-Obs, 2018; Cornes et al., 2018) for the daily gridded data of climate variables.  263 

Moreover, for the stations for which we identified matches from the CAMELS-DE/Caravan-DE datasets 264 

the users can access daily time series of several hydrometeorological variables and different products 265 

therein (Dolich et al., 2024; Loritz et al., 2024). However, note that the water quality stations are not 266 
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always located at the exact same location, please refer to Section 3.2 and the details provided in the data 267 

repository and data tables about the matches. 268 

3.4 N and P input time series  269 

3.4.1 Net N and P input from diffuse sources 270 

Time series of catchment-scale N and P surplus (kg y-1 ha-1) from diffuse sources are provided as shown 271 

in Figure 4. The catchment-scale surplus corresponds to a soil surface budget and equals the balance 272 

between nutrient inputs minus the output on agricultural and non-agricultural areas at an annual resolution 273 

normalized to the catchment area. Inputs include mineral fertilizer, manure, other organic fertilizers (in 274 

the German N surplus dataset only; such as sewage sludge, compost and biogas digestate), atmospheric 275 

deposition, biological fixation (N surplus only), weathering (P surplus only) and seeds and planting 276 

material (in the German N surplus dataset only). Outputs correspond to crop and pasture removal.  277 

For N surplus, two different data sets were used: 1. A Germany-wide county-scale data set as described 278 

in depth in QUADICA v1 (Ebeling et al., 2022; Behrendt et al., 2003; Häußermann et al., 2020), and 2. 279 

A European gridded data set (Batool et al., 2022).  280 

For the first source of N surplus, the N surplus time series on agricultural areas were updated with the 281 

German data provided by Häußermann et al. (2020) for the period 1995-2021, following Ebeling et al. 282 

(2022). However, we refined the methodology to account for temporarily variant agricultural areas, 283 

following Sarrazin et al. (2022). The data now ranges from 1950-2021 (1950-2015 in the previous 284 

version). We extended the N surplus from non-agricultural areas until 2021 by calculating the sum of 285 

atmospheric deposition and biological N fixation as described in QUADICA v1. Note that the values for 286 

transnational catchments have higher uncertainties as they were calculated for the area within Germany 287 

only (for the corresponding fraction, see f_areaGer).  288 

For the second source of N surplus, N surplus time series were extracted from a gridded, European-scale 289 

dataset (Batool et al., 2022) providing annual estimates of N surplus from 1850 to 2019 at 5 arcmin (~10 290 

km at the equator) resolution. It covers both agricultural and non-agricultural soils. The N surplus time 291 

series across catchments from both sources are compared in Figure 4c, while a comparison of the datasets 292 

can be found in Batool et al. (2022). Overall, there is a correlation with r=0.72 across all catchments, 293 
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which increases to r=0.76 when considering only the catchments with at least 70%, 95% or a 100% of 294 

their catchment area within Germany. Additionally, differences can arise from methodological and scale 295 

differences as well as uncertainties in general.  296 

 297 

Figure 4: Nitrogen and phosphorus input time series from different sources shown as distributions across all catchments. In (a) point 298 
sources data comes from Sarrazin et al. (2024)Sarrazin et al. (2024) corresponds to the ensemble mean from two different spatial 299 
disaggregation approaches based on population density (PointPopulation) and WWTP data (PointWWTP) (Section 3.4.2) and the 300 
ensemble mean of diffuse sources input of N from Batool et al. (2022) and of P from Batool et al. (2025) (DiffuseBatool). In (b) diffuse 301 
source of N from Häußermann et al. (2020) is shown, while in (c) the diffuse N input values for each year and each catchment of the 302 
two data sets (from the German and European data basis) are compared, with the color indicating the fraction of catchment area 303 
within German boundaries (orange - ≥0.95, blue - <0.95). Note that: The boxes of the boxplots show the median, the 25th and 75th 304 
percentiles, while the whiskers extend up to 1.5*interquartile ranges with outliers beyond this range; Y axis scale is different for N 305 
and P. 306 

For P surplus, we used the European-scale dataset (Batool et al., 2025) constructed with the same spatial 307 

and temporal resolution and a similar methodology as the one of N surplus. Both European datasets 308 

quantify uncertainties in key components such as fertilizer use, manure allocation, and crop removal. For 309 

QUADICA, we extracted the ensemble mean of the total N and P surplus estimates to assess diffuse 310 
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nutrient inputs relevant at the catchment scale. For further details on the data uncertainty, please refer to 311 

(Batool et al., 2022; Batool et al., 2025). 312 

3.4.2 N and P input from point sources from wastewater 313 

While in QUADICA v1, point source data are available for only one year (around 2016), QUADICA v2 314 

provides time series of N and P point source inputs from wastewater for each catchment for the period 315 

1950-2019. The data come from the gridded dataset of Sarrazin et al. (2024) for Germany. This data set 316 

provides estimates of N and P point sources, accounting for wastewater emissions that are treated in urban 317 

Wastewater Treatment Plants (WWTPs), including domestic and industrial (indirect) emissions, as well 318 

as untreated domestic emissions collected in the sewer system. These treated and untreated N and P 319 

emissions result from human excreta, with additional emissions for P due to the use of detergents. The 320 

data were constructed combining a modelling approach and observational data of WWTP N and P 321 

emissions. Sarrazin et al. (2024) provides ensemble runs from two methods to spatially disaggregate the 322 

data to grid resolution, that is, one based on population density and the other one based on recent WWTP 323 

outgoing N and P emissions. QUADICA v2 includes, for each catchment, two point source time series 324 

corresponding to the respective ensemble means of the two disaggregation approaches. For further details 325 

including time-dependent uncertainty of the two methods due to the shift in information detail and 326 

corresponding representativeness, please refer to Sarrazin et al. (2024). 327 

4 Catchment attributes 328 

The catchment attributes describe the topography, land cover, nutrient sources, lithology, and soils, and 329 

hydroclimate of the catchments. The attributes provided in QUADICA v1 were partly updated and 330 

complemented. New attributes include the Strahler order, updated land cover fractions from the CORINE 331 

Land cover dataset for 2018, the mean monthly Leaf Area Index (LAI), the soil pH in water and in CaCl2-332 

solution as well as updated average nutrient source and hydroclimatic characteristics. Here, we describe 333 

only updated and complemented characteristics; for a detailed description of the previous characteristics, 334 

please refer to QUADICA v1 (Ebeling et al., 2022). The metadata table of all characteristics in QUADICA 335 

v2 is provided in Appendix B.  336 
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4.1 River network position 337 

In the version 2 of QUADICA, we add the attribute of stream Strahler order, derived from the EU Hydro 338 

data set (EEA, 2020). For each catchment the largest Strahler order of streams intersecting the catchment 339 

were selected and manually checked. The Strahler order provides context of the size and position of the 340 

streams with headwater streams starting with Strahler order 1, going up to the order 8 for the downstream 341 

part of the Elbe river. The highest number of streams classifies as order 3 (n=417) and 2 (n=321), i.e. 342 

small to medium sized rivers. 343 

4.2 Land cover 344 

The fractions of land cover classes were calculated from the CORINE Land cover map (as in QUADICA 345 

v1) but with the newer data set for 2018 (version 2020_20u1; EEA, 2019). We both provide level 1 346 

(artificial, agricultural, forested land, wetland, and surface water cover) as well as level 2 data with refined 347 

classes, as described in APPENDIX B. 348 

For each catchment, the mean monthly LAI across the period 2003-2018 was extracted from MODIS-349 

derived monthly LAI data (Myneni et al., 2015a, b, c). Generally, the LAI is defined as the ratio of green 350 

leaf area to unit ground surface area, which can be estimated from spectral remote sensing data. The LAI 351 

serves as an indicator for e.g. photosynthesis, evapotranspiration and rainfall interception capabilities of 352 

vegetated areas. 353 

4.3 Nutrient sources 354 

Average inputs of nitrogen and phosphorus from diffuse and point sources for each catchment are 355 

provided based on the respective annual time series described in Section 3.4. We calculated the mean 356 

values starting from 1991 (i.e. 1991-2021 in case of Häußermann and 1991-2019 in case of Batool and 357 

Sarrazin), representing long-term average historic inputs since the year the Nitrate Directive was amended 358 

(EC, 1991). In addition, we calculated mean values over the last decade starting in 2010, representing 359 

current nutrient pollution pressures. We also renewed the measure of N source apportionment considering 360 

the data sets covering the same spatial scale for Germany, i.e. using the updated data product of the 361 
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German-wide N surplus data and the newly added N point source data set for both the long-term period 362 

and the recent decade. 363 

In addition, we provide catchment-averages of soil P budget data from the European data set provided by 364 

Panagos et al. (2022). The data set provides maps for P available for crops and P total in agricultural 365 

topsoil (0-20 cm) based on the Land Use and Cover Area frame Survey (LUCAS) as raster data with 366 

500m resolution, as well as the soil P input and output budget components over the period 2011-2019. 367 

The input components inorganic fertilizers and manure are provided as vector data at NUTS 368 

(Nomenclature of Territorial Units for Statistics) 2 level, whereas the atmospheric deposition and 369 

chemical weathering data are in raster format. The extracted output components include the output 370 

through crop harvesting and removal of crop residues, both provided at NUTS2 level. Based on that we 371 

calculated the P surplus as a balance component at the soil level. For raster data we calculated the mean 372 

across each catchment, providing available and total P on agricultural soils, and scaled it to the catchment 373 

area by the fraction of agriculture based on CORINE land cover data (EEA, 2016). To estimate the 374 

catchment-scale values from the data sets at NUTS2 level, we first intersected them with the catchments, 375 

second calculated the fraction of agriculture to scale the input and output components, and finally 376 

calculated area-weighted means for each catchment. 377 

4.4 Soil properties 378 

In addition to average total soil nutrient content in the topsoil (0-20 cm), we added data on average soil 379 

pH. The topsoil pH in water and CaCl2 0.01 M solution was derived from the European soil chemistry 380 

map, which is based on the LUCAS database (Ballabio et al., 2019). Historically, soil pH was often only 381 

measured in water. However, soil pH measured in a salt solution of CaCl₂ or KCl is now preferred, as it 382 

is less affected by electrolyte concentrations in the soil and thus provides a more consistent measurement 383 

of fluctuating salt content (Minasny et al., 2011). For comparability, the mean topsoil pH from the maps 384 

using both methods was extracted for each catchment. 385 
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4.5 Hydroclimatic characteristics 386 

The hydrologic characteristics such as mean discharge and metrics of discharge variability were 387 

calculated from the updated observed daily discharge data for 637 stations (Section 3.2). We calculated 388 

long-term time series characteristics starting in November 1990 (hydrological year of 1991) until October 389 

2020, i.e. covering 30 years if available. The exact starting and ending dates used for calculation are 390 

provided along with the characteristics, as well as information on missing values. For a list of 391 

characteristics, refer to Appendix B and the data repository. For those stations matching with CAMELS-392 

DE/Caravan-DE (Dolich et al., 2024; Loritz et al., 2024), further hydrometeorological characteristics can 393 

be accessed directly from these datasets. 394 

5 Limitations 395 

Although some of the previously discussed limitations have been addressed, other limitations and 396 

uncertainties remain present in QUADICA v2.  397 

We significantly increased the number of stations with discharge from daily time series and thus the 398 

number of stations with high data availability (WRTDS-stations) more than doubled to now 347 in total. 399 

Still, co-located water quantity and quality stations remain limited with less than half of the stations 400 

covered (637 out of 1386 stations).  401 

Unfortunately, one of the main drawbacks related to data policies remains. More specifically, data handed 402 

over by federal state agencies cannot generally be handed over to third parties, so raw data of water quality 403 

and quantity cannot be provided here. We thus adhere to the provision of ready-to-use aggregated data, 404 

which can still serve various purposes, e.g. trend analysis (Ehrhardt et al., 2021) and long-term water 405 

quality modelling (Nguyen et al., 2022). 406 

Uncertainties related to transboundary catchments (beyond the German borders) were reduced for the 407 

diffuse nutrient input time series by integrating the European data sets that have become available. 408 

However, the uncertainty for the point source time series, which only includes German territory, remains 409 

high and such stations may be excluded for certain analysis. For the diffuse N inputs, both time series 410 
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from German as well as European data bases are provided enabling direct comparison to assess reliability 411 

and uncertainty related to the input time series. 412 

6 Data availability 413 

The data set can be accessed under http://www.hydroshare.org/resource/0ec5f43e43c349ff818a8d57699c0fe1 (Ebeling 414 

et al., 2025) [Note: final publication including DOI will be provided on acceptance]. It includes all time 415 

series, catchment attributes and summary data as well as data description files. Additionally, we provide 416 

an interactive R Shiny application with the data set allowing the user to interactively check the coverage 417 

of the data set and visualisation of selected time series. Due to license agreements, the raw data itself 418 

cannot be published but are deposited in a long-term institutional repository (Musolff et al., 2020), for 419 

which metadata are deposited in a freely accessible repository (Musolff, 2020).  420 

7 Conclusions 421 

This paper aims to provide an updated and extended version of the QUADICA data set for Germany 422 

(Ebeling et al., 2022) to enhance both the breadth and the depth (Gupta et al., 2014). Therefore, we focused 423 

on describing the new additions in more detail. The main novelties are: 424 

● Extension of water quality and quantity time series for four years up to 2020, covering severe 425 

drought years and generally longer time series (Section 3.1 and 3.2) 426 

● New water quality parameters were added including those relevant for ecological impact studies 427 

such as oxygen, water temperature and chlorophyll-a concentrations (Section 3.1) 428 

● Linkage to recently published large-sample water quantity data sets for Germany (CAMELS-DE 429 

by Loritz et al. (2024) and Caravan-DE by Dolich et al. (2024)) almost doubled the number of 430 

water quality stations with conjunctive continuous discharge data from 324 (version 1) to 637 431 

(version 2), allowing for more comprehensive studies of water quantity and quality (Section 3.2) 432 

● The increase in stations with daily discharge data has also increased the number of stations with 433 

high data availability (version 2: 347, before: 140) with monthly concentration time series derived 434 

from WRTDS models (Section 3.1.2) 435 
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● Addition of diffuse phosphorus input and nitrogen and phosphorus point source input time series 436 

for German catchments (Section 3.4) 437 

● Addition and update of catchment characteristics (Section 4) 438 

These additions allow for further comprehensive investigations from drivers of nutrient pollution to water 439 

quality responses in streams, including ecological implications, and conjunctive water quality and 440 

quantity assessment. 441 

Appendix A   442 

https://doi.org/10.5194/essd-2025-450
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.



24 

 

 443 

Fig. A1: Annual median concentrations observed at the 1386 water quality stations (described in Table 1, Fig. 1 and Section 3.1). 444 
The colors are gradual from light to dark corresponding to the OBJECTID numbers, the grey line shows the median concentration 445 
across all annual medians. 446 
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 447 

Fig. A2: Annual median O2 concentrations, water temperature, and chlorophyll-a concentration observed at the 1386 water quality 448 
stations (described in Table 1, Fig. 1 and described in Section 3.1). The colors are gradual from light to dark corresponding to the 449 
OBJECTID numbers. 450 

 451 

 452 

Fig. A3: WRTDS-model performances for each compound: (a) coefficient of determination R2 and (b) bias. Boxes highlight the 453 
median and quartiles of each distribution. In (a) the number of time series is given on top for each compound. Colors according to 454 
the substance group, i.e. nitrogen, phosphorus, organic carbon and major ions. Note that in (a) values of R2<0 were omitted, 455 
accounting seven catchments for NH4-N, five for PO4-P, and one for Cl; in (b) values of bias < -30 were omitted, accounting five 456 
values of NH4-N and one value for Cl. The users can define their quality criteria to subset the provided time series. 457 

  458 
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Appendix B 459 

Table B1: Catchment attributes, associated methods and original data sources used for calculating the attributes. It contains both 460 
attributes already calculated for QUADICA v1 and the newly added and updated attributes. For more details see Section 4. 461 

Category Variable Unit Description and method Data source 

General OBJECTID - Unique identifier   

  Station - Station name   

  Area_km2 km² Catchment area   

  f_AreaGer - Fraction of catchment area within Germany   

Topography dem.mean mamsl Mean elevation of catchment, from DEM 

rescaled from 25 to 100 m resolution using 

average 

EEA (2013) 

  dem.median mamsl Median elevation of catchment, from DEM 

rescaled from 25 to 100 m resolution using 

average 

EEA (2013) 

  slo.mean ° Mean topographic slope of catchment, from 

DEM 

EEA (2013) 

  slo.median ° Median topographic slope of catchment, from 

DEM 

EEA (2013) 

  twi.mean - Mean topographic wetness index (TWI, Beven 

& Kirkby, 1979) 

EEA (2013) 

  twi.med - Median topographic wetness index (TWI, Beven 

& Kirkby, 1979) 

EEA (2013) 

  twi.90p - 90th percentile of the TWI as a proxy for riparian 

wetlands (following Musolff et al., 2018) 

EEA (2013) 

  ddhad km-1 Average drainage density of the catchment. 

Gridded drainage density is provided as the 

length of surface waters (rivers and lakes) per 

area from a 75km² circular area around each cell 

centered. 

BMU (2000) 

  

  DrainDens km-1 Average drainage density of the catchment, 

calculated from EU-Hydro River Network and 

intersection with Catchment polygons (contains 

several implausible values (often too small 

values due to coarser resolution of river 

network)) 

EEA (2016b) 

Land cover f_artif, 

f_artif_18 

- Fraction of artificial land cover based on 

CORINE map from 2012 (f_artif) and 2018 

(f_artif_18) 

EEA (2016a), EEA (2019) 
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  f_agric, 

f_agric_18 

- Fraction of agricultural land cover based on 

CORINE map from 2012 (f_agric) and 2018 

(f_agric_18) 

 

EEA (2016a), EEA (2019) 

  f_forest, 

f_forest_18 

- Fraction of forested land cover based on 

CORINE map from 2012 (f_forest) and 2018 

(f_forest_18) 

 

EEA (2016a), EEA (2019) 

  f_wetl, 

f_wetl_18 

- Fraction of wetland cover based on CORINE 

map from 2012 (f_wetl) and 2018 (f_wetl_18) 

 

EEA (2016a), EEA (2019) 

  f_water, 

f_water_18 

- Fraction of surface water cover based on 

CORINE map from 2012 (f_water) and 2018 

(f_water_18) 

 

EEA (2016a), EEA (2019) 

  f_urban, 

f_urban_18 

- Fraction of Class 11 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_industry, 

f_industry_18 

- Fraction of Class 12 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_mine, 

f_mine_18 

- Fraction of Class 13 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_urban_veg, 

f_urban_veg_1

8 

- Fraction of Class 14 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_arable, 

f_arable_18 

- Fraction of Class 21 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_agri_perm, 

f_agri_perm_1

8 

- Fraction of Class 22 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_pastures, 

f_pastures_18 

- Fraction of Class 23 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_agri_hetero, 

f_agri_hetero_

18 

- Fraction of Class 24 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_fores, 

f_fores_18 

- Fraction of Class 31 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_scrub, 

f_scrub_18 

- Fraction of Class 32 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 

  f_open, 

f_open_18 

- Fraction of Class 33 Level 2 CORINE Land 

Cover 

EEA (2016a), EEA (2019) 
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 lai_1, …, lai_12  Monthly mean leaf area index (LAI) as 

catchment average. The number indicates the 

month from 1 for January to 12 for December. 

Myneni 2015a,b,c 

  pdens inhabitants 

km-² 

Mean population density CIESIN (2017) 

Nutrient 

sources 

Nsurp_Hausser

mann_from199

1, 

Nsurp_Hausser

mann_from201

0 

kg N ha-1 y-1 Mean nitrogen (N) surplus per catchment from 

the German wide data set based on Häußermann 

et al. (2020) during the period 1991-2021 

(from1991) and 2010-2021 (from2010). It 

includes the N surplus on agricultural and non-

agricultural areas. Details in Section 3.4. 

Bach et al. (2006); Bach and Frede 

(1998); Bartnicky and 

Benedictow (2017); Bartnicky 

and Fagerli (2006); Behrendt et al. 

(1999); Cleveland et al. (1999); 

Häußermann et al. (2020); Van 

Meter et al. (2017) 

  Nsurp_Batool_

from1991, 

Nsurp_Batool_

from2010 

kg N ha-1 y-1 Mean nitrogen (N) surplus per catchment from 

the European data set (Batool et al., 2022) during 

the period 1991-2021 (from1991) and 2010-

2021 (from2010). It includes the N surplus on 

agricultural and non-agricultural areas. Details in 

Section 3.4. 

Batool et al. 2022 

  Psurp_Batool_f

rom1991, 

Psurp_Batool_f

rom2010 

kg N ha-1 y-1 Mean phosphorus (P) surplus per catchment 

from the European data set (Batool et al., 2024) 

during the period 1991-2021 (from1991) and 

2010-2021 (from2010). It includes the P surplus 

on agricultural and non-agricultural areas. 

Details in Section 3.4. 

Batool et al. 2024 

 Npoint_Pop_fr

om1991, 

Npoint_Pop_fr

om2010 

kg N ha-1 y-1 Mean annual nitrogen (N) input from point 

sources with the population disaggregated 

approach during the period 1991-2021 

(from1991) and 2010-2021 (from2010). 

Sarrazin et al. 2024 

 Ppoint_Pop_fro

m1991, 

Ppoint_Pop_fro

m2010 

kg N ha-1 y-1 Mean annual phosphorus (P) input from point 

sources with the population disaggregated 

approach during the period 1991-2021 

(from1991) and 2010-2021 (from2010). 

Sarrazin et al. 2024 

 Npoint_WWTP

_from1991, 

Npoint_WWTP

_from2010 

kg N ha-1 y-1 Mean annual nitrogen (N) input with the 

wastewater treatment plant disaggregated 

approach during the period 1991-2021 

(from1991) and 2010-2021 (from2010). 

Sarrazin et al. 2024 

 Ppoint_WWTP

_from1991, 

Ppoint_WWTP

_from2010 

kg N ha-1 y-1 Mean annual phosphorus (P) input from point 

sources with the wastewater treatment plant 

disaggregated approach during the period 1991-

2021 (from1991) and 2010-2021 (from2010). 

Sarrazin et al. 2024 

  f_Npoint_Pop_

from1991, 

f_Npoint_Pop_

from2010 

kg N ha-1 y-1 Fraction of point source loads from total N input 

loads based on the population disaggregated 

point source data (Npoint_Pop) during the period 

1991-2021 (from1991) and 2010-2021 

(from2010). 

f_Npoint = Npoint / (Npoint + NsurpHaussermann) 
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  f_Npoint_WW

TP_from1991, 

f_Npoint_WW

TP_from2010 

kg N ha-1 y-1 Fraction of point source loads from total N input 

loads based on the WWTP disaggregated point 

source data (Npoint_Pop) during the period 

1991-2021 (from1991) and 2010-2021 

(from2010). 

 

  N_T_YKM2 t N km-2 y-1 Mean N input from point sources summing all N 

emission values provided in the EU domestic 

waste emissions data base 

Vigiak et al. (2019); Vigiak et al. 

(2020) 

  P_T_YKM2 t P km-2 y-1 Mean P input from point sources summing all P 

emission values provided in the EU domestic 

waste emissions data base 

Vigiak et al. (2019); Vigiak et al. 

(2020) 

  BOD_T_YKM

2 

t O km-2 y-1 Mean five-days biochemical oxygen demand 

(BOD) input from point sources summing all 

BOD emission values provided in the EU 

domestic waste emissions data base 

Vigiak et al. (2019); Vigiak et al. 

(2020) 

  N_T_YEW t N inh-1 y-1 Calculated N input per person (from EU 

domestic waste emissions data base) 

N_T_YEW =N_T_YKM2 / nEW * Area_km2 

Vigiak et al. (2019); Vigiak et al. 

(2020) 

  P_T_YEW t P inh-1 y-1 Calculated P input per person (from EU 

domestic waste emissions data base) 

P_T_YEW =P_T_YKM2 / nEW * Area_km2 

Vigiak et al. (2019); Vigiak et al. 

(2020) 

  nEW - Calculated number of inhabitants, 

nEW=pdens * Area_km2 

CIESIN (2017) 

  n_UWWTP - Number of point sources from European data 

base (UWWTP data base) 

EEA (2017) 

  f_sarea - Fraction of source area in the catchment. Source 

areas were defined as seasonal, perennial 

cropland and grassland land cover classes using 

a highly resolved land use map (Pflugmacher et 

al., 2018) 

Source areas based on 

Pflugmacher et al. (2018) 

  het_h m-1 Slope of relative frequency of source areas in 

classes of flow distances to stream as a proxy for 

horizontal source heterogeneity. For details refer 

to Ebeling, Kumar, et al. (2021) 

Source areas based on 

Pflugmacher et al. (2018) 

  R2_het_h - Coefficient of determination of horizontal source 

heterogeneity het_h 

  

  sdist_mean m Mean lateral flow distance of source areas to 

stream. For details refer to Ebeling, Kumar, et al. 

(2021) 

Source areas based on 

Pflugmacher et al. (2018) 

 het_v - Mean ratio between potential seepage and 

groundwater NO3-N concentrations as proxy for 

vertical concentration heterogeneity. For details 

refer to Ebeling, Kumar, et al. (2021) 

Knoll et al. (2020) 
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 P_available_ag

ri 

kg ha-1 Available P stock in the agricultural topsoil (0-

20 cm) 

Panagos et al. (2022) 

 P_available  Available P stock from agricultural topsoil 

scaled to the whole catchment area, i.e. 

P_available_agri is scaled by the fraction of 

agriculture (f_agric) 

Panagos et al. (2022), EEA (2016) 

Lithology 

and soils 

f_calc - Fraction of calcareous rocks (Lithology level 4) BGR & UNESCO (eds.) (2014) 

  f_calc_sed - Fraction of calcareous rocks and sediments 

(Lithology level 4, coarse and fine sediments 

aggregated) 

BGR & UNESCO (eds.) (2014) 

  f_magma - Fraction of magmatic rocks (Lithology level 4) BGR & UNESCO (eds.) (2014) 

  f_metam - Fraction of metamorphic rocks (Lithology level 

4) 

BGR & UNESCO (eds.) (2014) 

  f_sedim - Fraction of sedimentary aquifer (Lithology level 

4, coarse and fine sediments aggregated) 

BGR & UNESCO (eds.) (2014) 

  f_silic - Fraction of siliciclastic rocks (Lithology level 4) BGR & UNESCO (eds.) (2014) 

  f_sili_sed - Fraction of siliciclastic rocks and sediments 

(Lithology level 4, coarse and fine sediments 

aggregated) 

BGR & UNESCO (eds.) (2014) 

  f_consol - Fraction of consolidated rocks (Lithology Level 

5) 

BGR & UNESCO (eds.) (2014) 

  f_part_consol - Fraction of partly consolidated rocks (Lithology 

Level 5) 

BGR & UNESCO (eds.) (2014) 

  f_unconsol - Fraction of unconsolidated rocks (Lithology 

Level 5) 

BGR & UNESCO (eds.) (2014) 

  f_porous - Fraction of porous aquifer (code 1 and 2 of 

aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_porous1 - Fraction of porous aquifer (code 1 of aquifer 

type) 

BGR & UNESCO (eds.) (2014) 

  f_porous2 - Fraction of porous aquifer (code 2 of aquifer 

type) 

BGR & UNESCO (eds.) (2014) 

  f_fissured - Fraction of fissured aquifer (code 3 and 4 of 

aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_fiss1 - Fraction of fissured aquifer (code 3 of aquifer 

type) 

BGR & UNESCO (eds.) (2014) 

  f_fiss2 - Fraction of fissured aquifer (code 4 of aquifer 

type) 

BGR & UNESCO (eds.) (2014) 
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  f_hard - Fraction of locally aquiferous and non-

aquiferous aquifer (code 5 and 6 of aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_hard1 - Fraction of locally aquiferous rocks (code 5 of 

aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_hard2 - Fraction of non-aquiferous rocks (code 6 of 

aquifer type) 

BGR & UNESCO (eds.) (2014) 

 f_inwater  Fraction of inland water (code 200 of aquifer 

type) 

BGR & UNESCO (eds.) (2014) 

 f_ice  Fraction of snow or ice field (code 300 of aquifer 

type) 

BGR & UNESCO (eds.) (2014) 

  dtb.median cm Median depth to bedrock in the catchment Shangguan et al. (2017) 

  f_gwsoils - Fraction of water-impacted soils in the 

catchment (from soil map 1:250,000), including 

stagnosols, semi-terrestrial, semi-subhydric, 

subhydric and moor soils 

BGR (2018) 

  f_sand 

f_silt 

f_clay 

- Mean fraction of sand in soil horizons of the top 

100 cm 

Mean fraction of silt in soil horizons of the top 

100 cm 

Mean fraction of clay in soil horizons of the top 

100 cm 

FAO/IIASA/ISRIC/ISSCAS/JRC 

(2012) 

 f_clay_agri  Mean fraction of clay in soil horizons of the top 

100 cm on agricultural land use (Class 2 Level 1 

CORINE; see f_clay and f_agric) 

FAO/IIASA/ISRIC/ISSCAS/JRC 

(2012), EEA (2016a) 

  WaterRoots mm Mean available water content in the root zone 

from pedo-transfer functions 

Livneh et al. (2015); Samaniego et 

al. (2010); Zink et al. (2017) 

  thetaS - Mean porosity in catchment from pedo-transfer 

functions 

Livneh et al. (2015); Samaniego et 

al. (2010); Zink et al. (2017) 

  soilN.mean g kg-1 Mean top soil N in catchment Ballabio et al. (2019) 

  soilP.mean mg kg-1 Mean top soil P in catchment Ballabio et al. (2019) 

 soilCN.mean - Mean top soil C/N ratio in catchment Ballabio et al. (2019) 

 soilpH_CaCl - Mean top soil pH from CaCl2 0.01 M solution in 

the catchment 

Ballabio et al. (2019) 

  soilpH_H2O - Mean top soil pH measured in water in the 

catchment 

Ballabio et al. (2019) 

Hydrology Q_StartDate YYYY-

MM-DD 

Starting date of Q time series used for calculating 

hydrological indices (from November 1990, if 

possible and at least 3 years of data (all 637 

stations fulfilled that)) 
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  Q_EndDate YYYY-

MM-DD 

End date of Q time series used for calculating 

hydrological indices (up to October 2020 if 

available) 

  

 Q_gaps boolean If there are missing discharge values (a gap) in 

between Q_StartDate and Q_EndDate, the 

value is 1; without any gap the value is 0. 

 

 Q_nNAs - Number of missing values in between 

Q_StartDate and Q_EndDate. 

 

  Q_mean m³ s-1 Mean discharge (data for the period 

Q_StartDate-Q_EndDate) 

 

  Q_median m³ s-1 Median discharge (data for the period 

Q_StartDate-Q_EndDate) 

 

  Q_spec mm y-1 Mean annual specific discharge (data for the 

period Q_StartDate-Q_EndDate) 

 

  Q_CVQ - Coefficient of variation of time series of daily Q 

(data for the period Q_StartDate-Q_EndDate) 

 

  Q_medSum m³ s-1 Median summer discharge (months May-

October) (data for the period Q_StartDate-

Q_EndDate) 

 

  Q_medWin m³ s-1 Median winter discharge (months November-

April) (data for the period Q_StartDate-

Q_EndDate) 

 

  Q_Sum2Win - Seasonality index of Q, as ratio between median 

summer and median winter Q (data for the period 

Q_StartDate-Q_EndDate) 

 

  BFI - Base flow index calculated according to WMO 

[2008] with lfstat package (version 0.9.4) in R 

(data for the period Q_StartDate-Q_EndDate) 

 

  flashi - Flashiness index of Q as the ratio between 5 % 

percentile and 95 % percentile of Q time series 

(data for the period Q_StartDate-Q_EndDate) 

 

Climate P_mm mm y-1 Mean annual precipitation (period 1986-2015) Cornes et al. (2018) 

  P_SIsw - Seasonality of precipitation as the ratio between 

mean summer (Jun-Aug) and winter (Dec-Feb) 

precipitation (period 1986-2015) 

Cornes et al. (2018) 

  P_SI - Seasonality index of precipitation as the mean 

difference between monthly averages of daily 

precipitation and year average of daily 

precipitation (period 1986-2015) 

Cornes et al. (2018) 
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  P_lambda d-1 Mean precipitation frequency λ as used by Botter 

et al. (2013) with rain days for precipitation 

above 1 mm (period 1986-2015) 

Cornes et al. (2018) 

  P_alpha mm d-1 Mean precipitation depth as used by Botter et al. 

(2013) with rain days for precipitation above 

1 mm (period 1986-2015) 

  

  PET_mm mm y-1 Mean annual potential evapotranspiration 

(period 1986-2015) 

Cornes et al. (2018) 

  AI - Aridity index as AI=PET_mm/P_mm (period 

1986-2015) 

Cornes et al. (2018) 

  T_mean °C Mean annual air temperature (period 1986-2015) Cornes et al. (2018) 

 462 
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