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Abstract

The QUADICA version 2 dataset significantly expands upon the first version of QUADICA (water
QUAIity, Discharge and Catchment Attributes for large-sample studies in Germany), by incorporating
more recent data, additional water quality and driver variables, and more stations with concurrent water
quantity data. Specifically, QUADICA v2 extends the water quality time series of the first version up to
2020 and introduces new variables, including water temperature, oxygen, and chlorophyll-a
concentrations, as well as concentrations of ammonium, sulfate, and geogenic solutes like calcium. These
additions enable a more comprehensive understanding of ecological impacts, including eutrophication
effects, and water quality dynamics across catchments. Furthermore, the number of stations with both
water quality and quantity data has effectively doubled — now covering 637 out of the total 1386 stations
— by integrating QUADICA with the CAMELS-DE and Caravan-DE datasets. The inclusion of time series
on point and diffuse sources of both nitrogen and phosphorus allows for more thorough investigations of
driver-response relationships and nutrient export from catchments. To facilitate visualization and
exploration of QUADICA, we provide a user-friendly, interactive R application alongside the online data
repository, as well as a browser-based web app for inspecting the dataset. This makes QUADICA v2 a
comprehensive dataset that spans from driver to impact variables, offering a valuable resource for

researchers and practitioners.
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1 Introduction

High water quality is critical for the health of aquatic ecosystems and humans. Understanding the spatial
and temporal variability in water quality variables is essential for effective management and conservation
of water resources. Observational data are the key to propelling our understanding of hydrological and
biogeochemical processes and complex interactions. Large-sample hydrology (LSH) addresses the “need
to balance depth and breadth” (Gupta et al., 2014) and has thus become a cornerstone to understand the
generality of patterns and processes across diverse landscape and climate settings.

LSH data sets that combine stream observations with contextual data on catchment attributes and driving
forces have gained momentum in recent years. For water quantity, the CAMELS data sets available in
several countries (Addor et al., 2017; Alvarez-Garreton et al., 2018; Coxon et al., 2020; Chagas et al.,
2020; Fowler et al., 2021; Loritz et al., 2024) and the globally consistent data set Caravan (Kratzert et al.,
2023) are prominent examples. For water quality, such comprehensive data sets have been less common,
but momentum is increasing with QUADICA (Ebeling et al., 2022) and the recently published CAMELS-
Chem datasets from the US (Sterle et al., 2024) and from Switzerland (Do Nascimento et al., 2025), which
include not only hydroclimatic drivers but also the temporal evolution of pollution sources (e.g.,
atmospheric nitrogen deposition and nitrogen surplus as diffuse sources). In parallel, a number of data
sets now provide large samples of quality-controlled water quality time series (Zarei et al., 2025; Virro et
al., 2021), further complemented by catchment or stream network characteristics (Fernandez et al., 2025;
Minaudo et al., 2025).

Comprehensive LSH datasets have various applications. They support data-driven top-down approaches
to identify trends and patterns in water quantity and quality time series, and when combined with
contextual data help advance our understanding of underlying processes and hierarchies. They also
provide forcing, calibration, and validation data for hydrological and water quality models (Nguyen et al.,
2022; Van Meter and Basu, 2015). The increased availability of LSH datasets also propelled data-driven
machine learning (ML) models using them for training, testing, and validation and improving their
performance and generalization ability both in time and space (e.g. ungauged basins). ML models are

widely applied and improved for discharge predictions (e.g., Kratzert et al., 2018; Heudorfer et al., 2025)
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but also increasingly used for water quality parameters (Zhi et al., 2023; Zhi et al., 2021; Saha et al.,
2023).

Here, we present the second version of QUADICA (water QUAIity, Dlscharge and Catchment
Attributes), a significant update to the original dataset (Ebeling et al., 2022). The first version of
QUADICA has supported a wide variety of water quality studies, including the characterisation of
catchments based on nutrient export processes across different spatial and temporal scales (Ebeling et al.,
2021b; Ebeling et al., 2021a; Ehrhardt et al., 2021), effects of hydroclimatic extreme events on the
catchments’ nitrate export (droughts, Saavedra et al., 2024; floods, Saavedra et al., 2022), for nutrient
stoichiometric characterisation (Wachholz et al., 2023), as well as for disentangling catchment processes
using a process-based water quality model (e.g., Nguyen et al., 2022). A particular focus has been the
linkage of observed instream water quality responses to drivers, enabled through the provided catchment
attributes and driving forces in the form of diffuse nitrogen sources.

Recent shifts in environmental conditions, particularly hydrological extremes such as droughts, have
substantial impacts on water quality (Saavedra et al., 2024; Winter et al., 2023; Dupas et al., 2025). This
highlights the critical need to extend the QUADICA dataset to include more recent years covering extreme
drought years and additional water quality and driver variables, thereby enhancing our ability to
understand and address the evolving relationship between environmental change and water quality.
Specifically, the update encompasses (1) longer time series up to 2020, capturing recent extreme events
such as the 2018-2020 multi-year drought (e.g., Rakovec et al., 2022) with expected effects on solute
export (e.g., Winter et al., 2023), (2) additional hydroecological time series such as oxygen and
chlorophyll-a concentrations, enabling to move from water quantity and quality to ecological impact
studies, (3) additional time series of driving forces including point sources and phosphorus inputs,
allowing more comprehensive views on input-output (driver-response) relationships, useful e.g. for the
quantification of nutrient legacies or model input data, and (4) larger amount of stations with joint water
quantity and quality by linking to the recently published and widely known CAMELS-DE (Loritz et al.,
2024) and Caravan-DE (Dolich et al., 2024) data sets. With this updated version, we aim to enhance the
breadth of the large-sample water quality dataset QUADICA with additional depth, enabling us to address

more research questions and ultimately support water quality management.

4
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2 Station and catchment selection

The 1386 stations and corresponding delineated catchments from the original QUADICA data set
(Ebeling et al., 2022) are retained in version 2. Although all stations lie within Germany, 17.9% of the
catchments are transboundary with part of their area in a neighbouring country. Figure 1 shows the study
area with updated information on the data availability. As for version 1, water quality and quantity data
for QUADICA v2 were assembled from the German federal state authorities and merged with the data
from QUADICA v1. This allowed us to extend the time series length as well as add new variables of
water quality.

Similar to version 1, we assessed the data availability after quality control of the water quality time series
data. After homogenization of variable names, units and formats across all federal states, the
preprocessing steps included: (1) removal of duplicates and implausible values (i.e. zero and negative
concentrations), (2) removal of outliers within each time series using a mean plus 4 standard deviations
threshold (> 99.99 % confidence) in logarithmic space for concentrations and normal space for oxygen
concentrations (O2) and water temperature (T), (3) substitution of left-censored values using half of the
detection limit, where applicable (i.e. nutrient and mineral concentrations). We additionally removed total
organic carbon (TOC) concentrations >1000 mg I, as we identified implausible plateaus of such high

values in three stations, for which the outlier test failed.
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Figure 1: Stations and delineated catchments in relation to Germany (black line). Stations are colored according to their data
availability, with C — concentration (water quality), Q — discharge (water quantity), and WRTDS - Weighted Regression on Time,
Discharge and Season. Stations with extended water quality data (new C data) in version 2 are highlighted as well as stations with
newly added continuous discharge data (new Q match) from matching with CAMELS-DE (Loritz et al., 2024) and Caravan-DE
(Dolich et al., 2024) data sets (for details, refer to Section 3.2). The rivers displayed are taken from (De Jager and Vogt, 2007).
WRTDS is available for stations with high data availability (see Section 3.1.2).
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3 Time series

Time series data are provided for 1386 catchments (as in QUADICA v1) for water quality variables
(Section 3.1) and water quantity (Section 3.2), and forcing variables both from meteorological drivers
(Section 3.3) and nutrient (N and P) inputs from diffuse and point sources (Section 3.4). An overview of
the provided (and newly added) variables is given in the following and in Table 1, while details are
described in the following sections. Appendix B1 provides an overview of data files and respective
metadata tables provided in the data repository. Note that due to limited data availability, not all water
quality and quantity variables can be provided for all stations.

For water quality, QUADICA version 2 increases the number of variables by adding ammonium (NH4"-
N) to the previously provided nutrient concentrations (NOs™-N, TN, PO4>-P, TP, DOC, TOC), major ion
concentrations (SO4%, CI, Ca?*, Mg?"), concentrations of O, and Chlorophyll-a (Chl-a), and water
temperature (T). In version 2, dissolved inorganic nitrogen (DIN) was calculated as the sum of the
preprocessed time series of inorganic nitrogen forms NOs™-N and NH4*-N, and, if available, NO2-N. Note
that, for simplicity, the charges are not always written in the following text. For water quantity, the number
of stations with discharge data from daily observations was increased from 324 in version 1 to 637 in
version 2. For nutrient inputs, time series of catchment-wise diffuse P inputs and point source inputs of
N and P were added, while diffuse N sources were both updated as well as extracted from a European
data source provided consistently with P.

Table 1: Provided time series data, their basis (observed or estimated), aggregation type, temporal resolution and source of original
data, which was used to calculate the aggregated data provided here. Bold font indicates the newly added variables in version 2 of
the QUADICA data set. WRTDS -Weighted Regression on Time, Discharge and Season. Note that detailed metadata are provided
for each data file in the repository, for an overview see Table B1.

Variable Section | Data basis Temporal Temporal | Filein Source
(Spatial) resolution | repository
Aggregation

Concentrations  of | 3.1 observed median annual ¢_annual.csv Musolff (2020);

nutrient species Ebeling et al. (2022)

(NOs-N,  NHa-N,

DIN, TN, PO.-P, daily estimated | median monthly wrtds_monthly. | Musolff (2020);
using WRTDS CsV Ebeling et al. (2022)
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P input

TP, DOC, TOCQC), observed long-term monthly c_g_avg_month | Musolff (2020);
major ions (SO, median S.CsV Ebeling et al. (2022)
Cl, Ca, Mg), Oz and
Chl-a,and T
Discharge 3.2 observed median annual g_annual.csv Musolff (2020);
Ebeling et al. (2022);
Loritz et al. (2024);
Dolich et al. (2024)
observed median monthly wrtds_monthly. | Musolff (2020);
CcsV Ebeling et al. (2022);
Loritz et al. (2024);
Dolich et al. (2024)
observed long-term monthly ¢_g_avg_month | Musolff (2020);
median S.CSV Ebeling et al. (2022);
Loritz et al. (2024);
Dolich et al. (2024)
Precipitation 8.3 observed sum monthly climate_monthl | E-Obs (2018);
gridded (average) y.CSV (Cornes et al., 2018)
Potential &3 estimated sum monthly climate_monthl | E-Obs (2018);
evapotranspiration (average) y.CSV (Cornes et al., 2018)
Mean air | 3.3 observed average monthly climate_monthl | E-Obs (2018);
temperature gridded (average) y.CSV (Cornes et al., 2018)
Diffuse N (from | 3.4 estimated (average) annual input N_P.csv | see Section 3.4
two sources) and P
input as total
Diffuse N input | 3.4 estimated (average) annual input_N_P.csv see Section 3.4
from  agricultural
areas
Point source N and | 3.4 estimated (average) annual input N_P.csv | see Section 3.4

3.1 Water quality time series

After quality control of the time series data, different temporal aggregation schemes were implemented

to provide consistent data sets. In QUADICA version 2, we provide the time series of annual medians
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(Section 3.1.1), monthly medians for stations with high data availability (Section 3.1.2), and long-term

monthly averages (Section 3.1.3).

3.1.1 Annual median water quality variables

Annual median concentrations are provided based on the preprocessed time series (Section 2) for all
station-compound combinations. Along with the median concentrations, the number of samples
considered for the given value is provided as a control variable for users of the data set, allowing to subset
the data based on data availability.

The time series of annual median concentrations are visualized in Figures S1 and S2, while the
corresponding data density is shown in Figure 2 over the years as well as for the number of years covered
per station. A summary of data availability across all variables is provided in Table 2.

The highest data availability with more than 1370 stations covered is presented for the inorganic nitrogen
(NOs-N, NHs-N, DIN) and phosphorus (PO4-P) compounds, as well as for chloride (Cl), sulfate (SOa),
oxygen (O2) and water temperature (T). The highest temporal coverage stretches from the mid-2000s to
the mid-2010s. Overall, the median time series lengths vary between 13 (for Chl-a) and 24 (O, T) years.
The median number of samples per station varies between 104 (for Chl-a) and 205 (for T), while the
median average number of samples per year ranges from 10.1 (for DOC) to 11.9 (for NO3-N, POs-P, and

T) and 12.0 (for Chl-a), i.e. corresponding to a monthly sampling frequency on average.
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Figure 2: Temporal coverage of water quality and quantity time series data per compound: (a) number of stations with available
annual medians per year and compound and (b) the number of years covered by each station per compound. For visualization
purposes in (a) station counts from 1950 are shown, omitting one sample before 1954.
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Table 2: Summary of stations and data availability for each water quality compound. The table provides the number of stations with

the respective compound reported, the earliest and median start year of time series, median and maximum time series length in
years across stations as well as the number of covered years (i.e. years with available data, with values provided in parenthesis), total
number of grab samples (i.e. data points) for each compound, median number of grab samples per stations and median samples per
year and station, number of outliers removed as the sum across all stations, and maximum fraction of outliers removed at one station.
n - number, max. - maximum, * omitting one sample from 1900.
Variable NOs- NH4-  DIN TN PO,- TP DOC TOC Ca Mg Cl S04 0, T Chl-a
N N P
Unit mglt mgl*t mgl* mglt mgl* mgl* mglt mglt mgl? mgl* mglt mglt mglt °C mg I
n stations 1386 1386 1386 782 1379 1301 1167 1323 1337 1337 1380 1375 1379 1379 271
Earliest start | 1954* 1954* 1954* 1984 1965  1965* 1976 1979 1964 1964 1954 1964 1954 1954 1982
year
Median startyear | 1995 1997 1997 2005 1995 1996 1995 1999 1997 1997 1994 1997 1993 1993 1996
Median time 22 20 20 15 21 22 19 20 19 19 23 21 24 24 13
series length (18) 17 (17) (14) (17) (17) (13) (17) (14) (15) (19) an (20) (20) (10)
(years covered)
Max. time series 67* 67* 67* 31 53 538 44 37 49 49 67 53 67 67 37
length in years (67) (67)  (67) (31) (48 (53) (44) (36) (39 (39 (67 (33) (67) (67) (37
(years covered)
Total n samples | 3759 3643  356,2 1399 3505 3235 1711 291,8 2329 2324 3721 2994 4625 3968 65,63
(excl. outliers) 90 01 62 48 07 20 23 98 26 12 23 12 08 36 2
Median n| 194 190 190 168 183 177 130 179 145 144 191 181 203 205 104
samples per
station
Median n| 119 11.8 11.8 11.4 11.9 11.7 10.1 11.7 11.1 11.0 11.8 11.8 11.8 11.9 12
samples per
station and year
n outliers total 88 292 - 74 212 506 339 950 119 228 666 212 219 8 50
Max. fraction of 1.9 34 - 2.2 5.8 2.9 3.2 7.2 2.4 3.8 2.3 4.0 2.1 11 2.6
outliers per

station [%0]
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3.1.2 Monthly median concentrations and mean fluxes for stations with high data

availability

As in version 1 of QUADICA, we provide monthly and annually aggregated water quality data for the

subset of stations with high data availability based on Weighted Regression on Time, Discharge and

Season (WRTDS; Hirsch et al., 2010), referred to as “WRTDS stations’. To fit WRTDS, we used the R

package EGRET (version 3.0.9; Hirsch and De Cicco, 2015). WRTDS considers long-term trends,
11




186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

seasonal components and discharge-dependent variability to estimate daily concentrations from low-
frequency observations, e.g., from monthly grab samples (Hirsch et al., 2010). We included station and
compound combinations using the same quality criteria as in QUADICA v1 on the preprocessed
concentration data (Section 2). Accordingly, water quality time series had to cover at least 20 years, at
least 150 samples, and no data gaps larger than 20 % of the total time series length. Discharge time series
with daily temporal resolution are required to run WRTDS, but in contrast to version 1 of QUADICA,
gaps in discharge were allowed with the consequence that no concentration estimate is provided for that
day. The number of WRTDS stations varies between 97 for TN and 322 for CI (Table 3), while the fraction
of stations with high data availability varies between 12.0 % for TOC and 23.3 % for CI.

As in QUADICA v1, monthly and annual values were only provided if 80% of the days of the respective
period were covered. The provided water quality time series contain median concentrations, flow-
normalized concentration, and mean flux estimates from WRTDS models. We now also added discharge-
weighted mean concentrations. Discharge corresponds to the median observed, as WRTDS takes
discharge as input and does not modify it (Section 3.2.2).

The model performance of WRTDS varies across water quality variables and stations with 64.1% of the
station and compound combinations with R?>0.5 and 58.2% with a percent bias <1% and 92.7% below
<5%. Average performances per compound are given in Table 3, while the distribution of performance
values is provided in Figure A3, as well as all individual values provided in the repository. The
performance metrics should allow the users to select suitable catchments and compounds for reliable

analysis.

12
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Table 3: Number of stations with high data availability (WRTDS stations) for each compound and median coefficient of
determination of WRTDS models. The unit of all variables is mg 1.

Variable Number of WRTDS stations Median R? Median bias [%0]
total 347 0.58 -4,9%1072
NOs-N 317 0.64 0.20
NHs-N 302 0.48 0.96
DIN 303 0.68 0.18
TN 97 0.71 5.1*10°3
PO4-P 288 0.62 -0.73
TP 270 0.48 -0.53
DOC 140 0.45 -0.65
TOC 195 0.46 -0.40
Ca? 175 0.62 2.8%107
Mg?* 174 0.57 -6.6*1072
Cl 322 0.53 -3.9*10?
SO4 234 0.67 5.5*102

3.1.3 Monthly long-term median concentrations

To be consistent with QUADICA v1, we provide monthly long-term medians, and 25" and 75"
percentiles (i.e. interquartile range), providing information on the average seasonality patterns of each
respective time series. Figure 3 shows the scaled medians indicating the variability of seasonal timing
across stations for each compound. For example, water temperature and oxygen show very similar
seasonality in terms of timing with summer maxima and summer minima, respectively, in contrast to,
e.g., Ca**, Mg?*, DOC and TOC, for which seasonal timing varies strongly across stations. The nitrogen

and phosphorus species show dominant seasonal patterns, but still more variability across stations.
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3.2 Water quantity time series

In total, discharge was provided for 637 stations, taking all data sources together. The earliest time series
starts in 1893, the maximum number of stations with 620 stations with available discharge data was in
2011 and the longest time series extends until 2022.

From the QUADICA v1, we updated the discharge time series of 284 out of the 324 stations with daily
data provided from our request to the authorities (232) and from GRDC (52) based on the matches
identified in QUADICA v1. For the remaining stations, no updated data was provided.

In addition, we complemented the QUADICA discharge data from the CAMELS-DE (Loritz et al., 2024)
and Caravan-DE (Dolich et al., 2024) data sets. We found 554 matches (449 from CAMELS, 105 from
Caravan), out of which 313 stations had no matching discharge values in QUADICA vyet, while 241
overlapped. We matched stations based on location and by manually checking if they lie on the same
river. We differentiate cases between (1) close stations within a maximum distance of 1km (n=305) and
(2) discharge stations that are further away. In the latter case, discharge stations could be located either
(2i) upstream (n=202) or (2ii) downstream (n=47) of the water quality station. For (2), we accepted
matches only if the relative difference between the intersected area of the CAMELS/Caravan and
QUADICA catchments and the area of the QUADICA catchment was < 30%. For downstream discharge
stations (2ii), in addition, we accepted matches only if the CAMELS area was larger than the QUADICA
area.

We additionally checked the correlations between QUADICA and CAMELS/Caravan time series with a
median correlation coefficient of r>0.9999 and only 5 out of the 241 overlapping stations with r<0.95.
We then used the discharge time series of the matched stations to fill up the QUADICA data. To account
for differences in the locations (and thus catchments’ area) of water quantity and water quality stations,
we scaled the discharge of upstream discharge stations (i.e. case 2i) with the ratio between the QUADICA
catchment area to the intersected area and of downstream stations (i.e. case 2ii) with the ratio between the
QUADICA to CAMELS/Caravan catchment area. In case of several potential matches (because of
identical station locations within CAMELS, n=24), we manually checked the time series to decide for the

more complete one or merged them with priority on the more recent time series (n=2).

15
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3.2.1 Annual median discharge

Similar to version 1, annual median discharge is aggregated from available observed discharge data. As
described above (Section 3.2), daily Q data is available for 637 water quality stations. The data density

distribution is visualised in Figure 2.

3.2.2 Monthly median discharge

Similar to version 1, monthly median discharge is provided for WRTDS stations. Note that we did not
gap-fill the daily discharge time series for the WRTDS models, but instead provide median values only
if at least 80% of the days are covered. This criterion refers both to the monthly and annual discharge data
provided with the WRTDS data tables (as described in Section 3.1.2).

3.2.3 Monthly long-term median discharge

Similar to version 1 of QUADICA and the water quality variables (Section 3.1.3), long-term monthly
median discharge, 25" and 75" percentiles, as well as the corresponding number of samples are provided.
These values can be an indicator of average discharge seasonality across solutes and catchments in the

long term.

3.3 Meteorological time series

As in QUADICA v1, meteorological time series (precipitation, potential evapotranspiration and average
air temperature) are provided as spatial catchment averages on monthly resolution from 1950 to 2020. To
obtain these, we followed the same approach on a newer version from the European Climate Assessment
and Dataset project (E-Obs, 2018; Cornes et al., 2018) for the daily gridded data of climate variables.
Moreover, for the stations for which we identified matches from the CAMELS-DE/Caravan-DE datasets
the users can access daily time series of several hydrometeorological variables and different products
therein (Dolich et al., 2024; Loritz et al., 2024). However, note that the water quality stations are not
always located at the exact same location, please refer to Section 3.2 and the details provided in the data
repository and data tables about the matches.
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3.4 N and P input time series
3.4.1 Net N and P input from diffuse sources

Time series of catchment-scale N and P surplus (kg y! hat) from diffuse sources as shown in Figure 4
are provided (file: input_N_P.csv). The catchment-scale surplus corresponds to a soil surface budget and
equals the balance between nutrient inputs minus the output on agricultural and non-agricultural areas at
an annual resolution normalized to the catchment area. Inputs include mineral fertilizer, manure, other
organic fertilizers (in the German N surplus dataset only; such as sewage sludge, compost and biogas
digestate), atmospheric deposition, biological fixation (N surplus only), weathering (P surplus only) and
seeds and planting material (in the German N surplus dataset only). Outputs correspond to crop and
pasture removal.

For N surplus, two different data sets were used: 1. A Germany-wide county-scale data set as described
in depth in QUADICA v1 (Ebeling et al., 2022; Behrendt et al., 2003; HaulRermann et al., 2020), and 2.
A European gridded data set (Batool et al., 2022).

For the first source of N surplus, the N surplus time series on agricultural areas were updated with the
German data provided by H&uRRermann et al. (2020) for the period 1995-2021, following Ebeling et al.
(2022). However, we refined the methodology to account for temporarily variant agricultural areas,
following Sarrazin et al. (2022). The data now ranges from 1950-2021 (1950-2015 in the previous
version). We extended the N surplus from non-agricultural areas until 2021 by calculating the sum of
atmospheric deposition and biological N fixation as described in QUADICA v1. Note that the values for
transnational catchments have higher uncertainties as they were calculated for the area within Germany
only (for the corresponding fraction, see f_areaGer).

For the second source of N surplus, N surplus time series were extracted from a gridded, European-scale
dataset (Batool et al., 2022) providing annual estimates of N surplus from 1850 to 2019 at 5 arcmin (~10
km at the equator) resolution. It covers both agricultural and non-agricultural soils. The N surplus time
series across catchments from both sources are compared in Figure 4c, while a comparison of the datasets
can be found in Batool et al. (2022). Overall, there is a correlation with r=0.72 across all catchments,

which increases to r=0.76 when considering only the catchments with at least 70%, 95% or a 100% of
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their catchment area within Germany. Additionally, differences can arise from methodological and scale
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Figure 4: Nitrogen and phosphorus input time series from different sources shown as distributions across all catchments. In (a) point
sources data comes from Sarrazin et al. (2024)Sarrazin et al. (2024) corresponds to the ensemble mean from two different spatial
disaggregation approaches based on population density (Pointpopulation) and WWTP data (Pointwwte) (Section 3.4.2) and the
ensemble mean of diffuse sources input of N from Batool et al. (2022) and of P from Batool et al. (2025) (Diffusesatool). In (b) diffuse
source of N from H&ulRermann et al. (2020) is shown, while in (c) the diffuse N input values for each year and each catchment of the
two data sets (from the German and European data basis) are compared, with the color indicating the fraction of catchment area
within German boundaries (orange - >0.95, blue - <0.95). Note that: The boxes of the boxplots show the median, the 25th and 75th
percentiles, while the whiskers extend up to 1.5*interquartile ranges with outliers beyond this range; Y axis scale is different for N
and P.

For P surplus, we used the European-scale dataset (Batool et al., 2025) constructed with the same spatial
and temporal resolution and a similar methodology as the one of N surplus. Both European datasets
quantify uncertainties in key components such as fertilizer use, manure allocation, and crop removal. For

QUADICA, we extracted the ensemble mean of the total N and P surplus estimates to assess diffuse
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nutrient inputs relevant at the catchment scale. For further details on the data uncertainty, please refer to
(Batool et al., 2022; Batool et al., 2025).

3.4.2 N and P input from point sources from wastewater

While in QUADICA v1, point source data are available for only one year (around 2016), QUADICA v2
provides time series of N and P point source inputs from wastewater for each catchment for the period
1950-2019. The data come from the gridded dataset of Sarrazin et al. (2024) for Germany. This data set
provides estimates of N and P point sources, accounting for wastewater emissions that are treated in urban
Wastewater Treatment Plants (WWTPs), including domestic and industrial (indirect) emissions, as well
as untreated domestic emissions collected in the sewer system. These treated and untreated N and P
emissions result from human excreta, with additional emissions for P due to the use of detergents. The
data were constructed combining a modelling approach and observational data of WWTP N and P
emissions. Sarrazin et al. (2024) provides ensemble runs from two methods to spatially disaggregate the
data to grid resolution, that is, one based on population density and the other one based on recent WWTP
outgoing N and P emissions. QUADICA v2 includes, for each catchment, two point source time series
corresponding to the respective ensemble means of the two disaggregation approaches. For further details
including time-dependent uncertainty of the two methods due to the shift in information detail and

corresponding representativeness, please refer to Sarrazin et al. (2024).

4 Catchment attributes

The catchment attributes describe the topography, land cover, nutrient sources, lithology, and soils, and
hydroclimate of the catchments. The attributes provided in QUADICA v1 were partly updated and
complemented. New attributes include the Strahler order, updated land cover fractions from the CORINE
Land cover dataset for 2018, the mean monthly Leaf Area Index (LAI), the soil pH in water and in CaCl»-
solution as well as updated average nutrient source and hydroclimatic characteristics. Here, we describe
only updated and complemented characteristics; for a detailed description of the previous characteristics,
please refer to QUADICA v1 (Ebeling et al., 2022). The metadata table of all characteristics in QUADICA
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v2 is provided in Appendix B2 and Table S11 in the metadata of the data repository, while the attributes
data can be found in the file attributes.csv (see Appendix B1).

4.1 River network position

In the version 2 of QUADICA, we add the attribute of stream Strahler order, derived from the EU Hydro
data set (EEA, 2020). For each catchment, the largest Strahler order of streams intersecting the catchment
was selected and manually checked. The Strahler order provides context of the size and position of the
streams with headwater streams starting with Strahler order 1, going up to the order 8 for the downstream
part of the Elbe river. Most streams classify as order 3 (n=417) and 2 (n=321), i.e. small to medium sized
rivers.

To further support network analyses, we link each station to its next downstream station in the river
network and count the number of upstream stations, enabling spatially consistent analyses and modelling
of water quality patterns and network connectivity. More than half of the stations (731) have no station

further upstream, while 95 have no further downstream station.

4.2 Land cover

The fractions of land cover classes were calculated from the CORINE Land cover map (as in QUADICA
v1) but with the newer data set for 2018 (version 2020_20ul; EEA, 2019). We both provide level 1
(artificial, agricultural, forested land, wetland, and surface water cover) as well as level 2 data with refined
classes, as described in APPENDIX B.

For each catchment, the mean monthly LAI across the period 2003-2020 was extracted from high-quality
reprocessed MODIS LAI data (Yan et al., 2024). Generally, the LALI is defined as the ratio of green leaf
area to unit ground surface area, which can be estimated from spectral remote sensing data. The LAI
serves as an indicator for e.g. photosynthesis, evapotranspiration and rainfall interception capabilities of

vegetated areas.
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4.3 Nutrient sources

Average inputs of nitrogen and phosphorus from diffuse and point sources for each catchment are
provided based on the respective annual time series described in Section 3.4. We calculated the mean
values starting from 1991 (i.e. 1991-2021 in case of HauBermann and 1991-2019 in case of Batool and
Sarrazin), representing long-term average historic inputs since the year the Nitrate Directive was amended
(EC, 1991). In addition, we calculated mean values over the last decade starting in 2010, representing
current nutrient pollution pressures. We also renewed the measure of N source apportionment considering
the data sets covering the same spatial scale for Germany, i.e. using the updated data product of the
German-wide N surplus data and the newly added N point source data set for both the long-term period
and the recent decade.

In addition, we provide catchment-averages of soil P budget data from the European data set provided by
Panagos et al. (2022). The data set provides maps for P available for crops and P total in agricultural
topsoil (0-20 cm) based on the Land Use and Cover Area frame Survey (LUCAS) as raster data with
500m resolution, as well as the soil P input and output budget components over the period 2011-2019.
The input components inorganic fertilizers and manure are provided as vector data at NUTS
(Nomenclature of Territorial Units for Statistics) 2 level, whereas the atmospheric deposition and
chemical weathering data are in raster format. The extracted output components include the output
through crop harvesting and removal of crop residues, both provided at NUTS2 level. Based on that we
calculated the P surplus as a balance component at the soil level. For raster data we calculated the mean
across each catchment, providing available and total P on agricultural soils, and scaled it to the catchment
area by the fraction of agriculture based on CORINE land cover data (EEA, 2016). To estimate the
catchment-scale values from the data sets at NUTS2 level, we first intersected them with the catchments,
second calculated the fraction of agriculture to scale the input and output components, and finally
calculated area-weighted means for each catchment.

4.4 Soil properties

In addition to average total soil nutrient content in the topsoil (0-20 cm), we added data on average soil

pH. The topsoil pH in water and CaCl, 0.01 M solution was derived from the European soil chemistry
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map, which is based on the LUCAS database (Ballabio et al., 2019). Historically, soil pH was often only
measured in water. However, soil pH measured in a salt solution of CaCl. or KCI is now preferred, as it
is less affected by electrolyte concentrations in the soil and thus provides a more consistent measurement
of fluctuating salt content (Minasny et al., 2011). For comparability, the mean topsoil pH from both

methods was extracted for each catchment.

4.5 Hydroclimatic characteristics

The hydrologic characteristics such as mean discharge and metrics of discharge variability were
calculated from the updated observed daily discharge data for 637 stations (Section 3.2). We calculated
long-term time series characteristics starting in November 1990 (hydrological year of 1991) until October
2020, i.e. covering 30 years if available. The exact starting and ending dates used for calculation are
provided along with the characteristics, as well as information on missing values. For a list of
characteristics, refer to Appendix B and the data repository. For those stations matching with CAMELS-
DE/Caravan-DE (Dolich et al., 2024; Loritz et al., 2024), further hydrometeorological characteristics can

be accessed directly from these datasets.

5 Limitations

Although some of the previously discussed limitations have been addressed, other limitations and
uncertainties remain present in QUADICA v2.

We significantly increased the number of stations with discharge from daily time series and thus the
number of stations with high data availability (WRTDS-stations) more than doubled to now 347 in total.
Still, co-located water quantity and quality stations remain limited with less than half of the stations
covered (637 out of 1386 stations).

Unfortunately, one of the main drawbacks related to data policies remains. More specifically, data handed
over by federal state agencies cannot generally be handed over to third parties, so raw data of water quality
and quantity cannot be provided here. We thus adhere to the provision of ready-to-use aggregated data,
which can still serve various purposes, e.g. trend analysis (Ehrhardt et al., 2021) and long-term water

quality modelling (Nguyen et al., 2022).
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Uncertainties related to transboundary catchments (beyond the German borders) were reduced for the
diffuse nutrient input time series by integrating the European data sets that have become available.
However, the uncertainty for the point source time series, which only includes German territory, remains
high and such stations may be excluded for certain analysis. For the diffuse N inputs, both time series
from German as well as European data bases are provided enabling direct comparison to assess reliability

and uncertainty related to the input time series.

6 Data availability

The data set can be accessed in the data repository under
https://doi.org/10.4211/hs.c2866cd416b94ca386deb5758834311fF (Ebeling et al., 2025). It includes all
time series, catchment attributes and summary data as well as detailed data description files. Alongside
with the repository, we provide an interactive R Shiny application that allows users to check data coverage
and visualise selected time series. In addition, a browser-based web app is available for exploring the data

set through the institutional UFZ GeoData Infrastructure, accessible at https://web.app.ufz.de/gdi/wag-

monitor/en. Due to license agreements, the raw data itself cannot be published but are deposited in a long-
term institutional repository (Musolff et al., 2020), for which metadata are deposited in a freely accessible
repository (Musolff, 2020).

7 Conclusions

This paper aims to provide an updated and extended version of the QUADICA data set for Germany
(Ebeling et al., 2022) to enhance both the breadth and the depth (Gupta et al., 2014). Therefore, we focused
on describing the new additions in more detail. The main novelties are:
e Extension of water quality and quantity time series for four years up to 2020, covering severe
drought years and generally longer time series (Section 3.1 and 3.2)
e New water quality parameters were added including those relevant for ecological impact studies
such as oxygen, water temperature and chlorophyll-a concentrations (Section 3.1)
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e Linkage to recently published large-sample water quantity data sets for Germany (CAMELS-DE
by Loritz et al. (2024) and Caravan-DE by Dolich et al. (2024)) almost doubled the number of
water quality stations with conjunctive continuous discharge data from 324 (version 1) to 637
(version 2), allowing for more comprehensive studies of water quantity and quality (Section 3.2)
e The increase in stations with daily discharge data has also increased the number of stations with
high data availability (version 2: 347, before: 140) with monthly concentration time series derived
from WRTDS models (Section 3.1.2)
e Addition of diffuse phosphorus input and nitrogen and phosphorus point source input time series
for German catchments (Section 3.4)
e Addition and update of catchment characteristics including network position (Section 4)
These additions allow for further comprehensive investigations from drivers of nutrient pollution to water
quality responses in streams, including ecological implications, and conjunctive water quality and

quantity assessment.

Appendix A
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456 Fig. Al: Annual median concentrations observed at the 1386 water quality stations (described in Table 1, Fig. 1 and Section 3.1).
457 The colors are gradual from light to dark corresponding to the OBJECTID numbers, the grey line shows the median concentration
458  across all annual medians.
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Fig. A2: Annual median Oz concentrations, water temperature, and chlorophyll-a concentration observed at the 1386 water quality

stations (described in Table 1, Fig. 1 and described in Section 3.1). The colors are gradual from light to dark corresponding to the
OBJECTID numbers.
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Fig. A3: WRTDS-model performances for each compound: (a) coefficient of determination R? and (b) bias. Boxes highlight the
median and quartiles of each distribution. In (a) the number of time series is given on top for each compound. Colors according to
the substance group, i.e. nitrogen, phosphorus, organic carbon and major ions. Note that in (a) values of R2<0 were omitted,
accounting seven catchments for NH4-N, five for PO4-P, and one for CI; in (b) values of bias < -30 were omitted, accounting five
values of NH4-N and one value for Cl. The users can define their quality criteria to subset the provided time series.
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471 Appendix B

472 Table B1: Overview of files and metadata tables in the description file (Metadata_ QUADICA_v2.pdf) of the data repository.

Table in metadata file Data file in repository Corresponding section in manuscript

S1 metadata_c.csv 3.1 general

S2 metadata_¢.csv 3.2 general

S3 wrtds_summary.csv 312,322

S4 c_annual.csv 311

S5 c_g_avg_months.csv 3.1.3,3.2.3

S6 wrtds_monthly.csv, 312,322
wrtds_annual.csv

S7 g_annual.csv 321

S8 climate_monthly.csv 3.3

S9 input_N_P.csv 34

S10 (same as Table B2) attributes.csv 4

473

474 Table B2: Catchment attributes, associated methods and original data sources used for calculating the attributes. It contains both
475 attributes from QUADICA v1 and the newly added and updated attributes. For more details see Section 4, data file: attributes.csv.

Category Variable Unit Description and method Data source
General OBJECTID - Unique identifier
Station - Station name
Area_km2 km2 Catchment area
f_AreaGer - Fraction of catchment area within Germany
Network strahler_order - Strahler order based on EU Hydro river network EEA (2020)
id_downstream - OBJECTID of next downstream station
n_upstream - Number of upstream stations
Topography dem.mean mamsl Mean elevation of catchment, from DEM EEA (2013)
rescaled from 25 to 100 m resolution using
average
dem.median mamsl Median elevation of catchment, from DEM EEA (2013)
rescaled from 25 to 100 m resolution using
average

27



slo.mean

slo.median

twi.mean

twi.med

twi.90p

ddhad

DrainDens

km1

km1

Mean topographic slope of catchment, from
DEM

Median topographic slope of catchment, from
DEM

Mean topographic wetness index (TWI, Beven
& Kirkby, 1979)

Median topographic wetness index (TWI, Beven
& Kirkby, 1979)

90™ percentile of the TWI as a proxy for riparian
wetlands (following Musolff et al., 2018)

Average drainage density of the catchment.
Gridded drainage density is provided as the
length of surface waters (rivers and lakes) per
area from a 75km2 circular area around each cell
centered.

Average drainage density of the catchment,
calculated from EU-Hydro River Network and
intersection with Catchment polygons (contains
several implausible values (often too small
values due to coarser resolution of river
network))

EEA (2013)

EEA (2013)

EEA (2013)

EEA (2013)

EEA (2013)

BMU (2000)

EEA (2016b)

Land cover

f_artif,
f_artif 18

f_agric,
f_agric_18

f_forest,
f forest_18

f wetl,
f wetl 18

f_water,
f water 18

f_urban,
f_urban_18

Fraction of artificial land cover based on
CORINE map from 2012 (f_artif) and 2018
(f_artif_18)

Fraction of agricultural land cover based on
CORINE map from 2012 (f_agric) and 2018
(f_agric_18)

Fraction of forested land cover based on
CORINE map from 2012 (f_forest) and 2018
(f_forest_18)

Fraction of wetland cover based on CORINE
map from 2012 (f_wetl) and 2018 (f_wetl_18)

Fraction of surface water cover based on
CORINE map from 2012 (f_water) and 2018
(f_water_18)

Fraction of Class 11 Level 2 CORINE Land
Cover
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EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)




f_industry,
f_industry_18

f_mine,
f_mine_18

f_urban_veg,
f_urban_veg_1
8

f_arable,
f_arable_18

f_agri_perm,
f_agri_perm_1
8

f_pastures,
f_pastures_18

f_agri_hetero,
f_agri_hetero_
18

Fraction of Class 12 Level 2 CORINE Land
Cover

Fraction of Class 13 Level 2 CORINE Land
Cover

Fraction of Class 14 Level 2 CORINE Land
Cover

Fraction of Class 21 Level 2 CORINE Land
Cover

Fraction of Class 22 Level 2 CORINE Land
Cover

Fraction of Class 23 Level 2 CORINE Land

Cover

Fraction of Class 24 Level 2 CORINE Land
Cover

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

EEA (2016a), EEA (2019)

f_fores, - Fraction of Class 31 Level 2 CORINE Land EEA (2016a), EEA (2019)
f_fores_18 Cover
f_scrub, - Fraction of Class 32 Level 2 CORINE Land EEA (2016a), EEA (2019)
f scrub_18 Cover
f_open, - Fraction of Class 33 Level 2 CORINE Land EEA (2016a), EEA (2019)
f_open_18 Cover
lai_O1, Monthly mean leaf area index (LAI) as Yanetal. (2024)
lai_12 catchment average. The number indicates the
month from 1 for January to 12 for December.
pdens inhabitants Mean population density CIESIN (2017)
km-2
Nutrient Nsurp_Hausser kg N haty! Mean nitrogen (N) surplus per catchment from Bach et al. (2006); Bach and Frede
sources mann_from199 the German wide data set based on HaufRermann  (1998); Bartnicky and
1, et al. (2020) during the period 1991-2021 Benedictow (2017); Bartnicky
Nsurp_Hausser (from1991) and 2010-2021 (from2010). It and Fagerli (2006); Behrendt et al.
mann_from201 includes the N surplus on agricultural and non- (1999); Cleveland et al. (1999);
0 agricultural areas. Details in Section 3.4. HauRermann et al. (2020); Van
Meter et al. (2017)
Nsurp_Batool_ kg N haly?! Mean nitrogen (N) surplus per catchment from Batool et al. 2022

from1991,
Nsurp_Batool_
from2010

the European data set (Batool et al., 2022) during
the period 1991-2021 (from1991) and 2010-
2021 (from2010). It includes the N surplus on
agricultural and non-agricultural areas. Details in
Section 3.4.
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Psurp_Batool_f
rom1991,
Psurp_Batool_f
rom2010

Npoint_Pop_fr
om1991,
Npoint_Pop_fr
om2010

Ppoint_Pop_fro
m1991,
Ppoint_Pop_fro
m2010

Npoint. WWTP
_from1991,
Npoint WWTP
_from2010

Ppoint_ WWTP
_from1991,
Ppoint WWTP
_from2010

f_Npoint_Pop_
from1991,
f_Npoint_Pop_
from2010

f_Npoint WW
TP_from1991,
f_Npoint WW
TP_from2010

N_T_YKM2

P_T_YKM2

BOD_T_YKM
2

N_T_YEW

kg N haty?

kg N haty?

kg N haty?

kg N haty?

kg N haty?

kg N haty?

kg N haty?

tN km2y?

tP km2y?

tO km2y?

tNinhty?

Mean phosphorus (P) surplus per catchment
from the European data set (Batool et al., 2024)
during the period 1991-2021 (from1991) and
2010-2021 (from2010). It includes the P surplus
on agricultural and non-agricultural areas.
Details in Section 3.4.

Mean annual nitrogen (N) input from point
sources with the population disaggregated
approach during the period 1991-2021
(from1991) and 2010-2021 (from2010).

Mean annual phosphorus (P) input from point
sources with the population disaggregated
approach  during the period 1991-2021
(from1991) and 2010-2021 (from2010).

Mean annual nitrogen (N) input with the
wastewater treatment plant disaggregated
approach  during the period 1991-2021
(from1991) and 2010-2021 (from2010).

Mean annual phosphorus (P) input from point
sources with the wastewater treatment plant
disaggregated approach during the period 1991-
2021 (from1991) and 2010-2021 (from2010).

Fraction of point source loads from total N input
loads based on the population disaggregated
point source data (Npoint_Pop) during the period
1991-2021  (from1991) and  2010-2021
(from2010).

f_Npoint = Npoint / (Npoint + NSUIPHaussermann)

Fraction of point source loads from total N input
loads based on the WWTP disaggregated point
source data (Npoint_Pop) during the period
1991-2021  (from1991) and  2010-2021
(from2010).

Mean N input from point sources summing all N
emission values provided in the EU domestic
waste emissions data base

Mean P input from point sources summing all P
emission values provided in the EU domestic
waste emissions data base

Mean five-days biochemical oxygen demand
(BOD) input from point sources summing all
BOD emission values provided in the EU
domestic waste emissions data base

Calculated N input per person (from EU
domestic waste emissions data base)
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Batool et al. 2024

Sarrazin et al. 2024

Sarrazin et al. 2024

Sarrazin et al. 2024

Sarrazin et al. 2024

Vigiak et al. (2019); Vigiak et al.
(2020)

Vigiak et al. (2019); Vigiak et al.
(2020)

Vigiak et al. (2019); Vigiak et al.
(2020)

Vigiak et al. (2019); Vigiak et al.
(2020)




P T _YEW

neEw
n_UWWTP

f _sarea

het_h

R2_het_h

sdist_mean

het_v

P_available_ag
ri

tPinhty?

kg ha-1

N_T_YEW =N_T_YKM2 /nEW * Area_km2

Calculated P input per person (from EU
domestic waste emissions data base)
P_T_YEW =P_T_YKM2/nEW * Area_km2

Calculated number of inhabitants,
nEW=pdens * Area_km2

Number of point sources from European data
base (UWWTP data base)

Fraction of source area in the catchment. Source
areas were defined as seasonal, perennial
cropland and grassland land cover classes using
a highly resolved land use map (Pflugmacher et
al., 2018)

Slope of relative frequency of source areas in
classes of flow distances to stream as a proxy for
horizontal source heterogeneity. For details refer
to Ebeling, Kumar, et al. (2021)

Coefficient of determination of horizontal source
heterogeneity het_h

Mean lateral flow distance of source areas to
stream. For details refer to Ebeling, Kumar, et al.
(2021)

Mean ratio between potential seepage and
groundwater NO3-N concentrations as proxy for
vertical concentration heterogeneity. For details
refer to Ebeling, Kumar, et al. (2021)

Available P stock in the agricultural topsoil (0-
20 cm)

Vigiak et al. (2019); Vigiak et al.

(2020)

CIESIN (2017)

EEA (2017)

Source areas based

Pflugmacher et al. (2018)

Source areas based
Pflugmacher et al. (2018)

Source areas based
Pflugmacher et al. (2018)

Knoll et al. (2020)

Panagos et al. (2022)

on

on

on

P_available Available P stock from agricultural topsoil Panagos etal. (2022), EEA (2016)
scaled to the whole catchment area, i.e.
P_available_agri is scaled by the fraction of
agriculture (f_agric)
Lithology f_calc - Fraction of calcareous rocks (Lithology level 4)  BGR & UNESCO (eds.) (2014)
and soils
f_calc_sed - Fraction of calcareous rocks and sediments BGR & UNESCO (eds.) (2014)
(Lithology level 4, coarse and fine sediments
aggregated)
f_magma - Fraction of magmatic rocks (Lithology level 4)  BGR & UNESCO (eds.) (2014)
f_metam - Fraction of metamorphic rocks (Lithology level BGR & UNESCO (eds.) (2014)

4)
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f_sedim

f_silic

f_sili_sed

f_consol

f_part_consol

f_unconsol

f_porous

f_porousl

f_porous2

f_fissured

f_fissl

f_fiss2

f_hard

f_hardl

f_hard2

f_inwater

f_ice

dth.median

f_gwsoils

cm

Fraction of sedimentary aquifer (Lithology level
4, coarse and fine sediments aggregated)

Fraction of siliciclastic rocks (Lithology level 4)

Fraction of siliciclastic rocks and sediments
(Lithology level 4, coarse and fine sediments
aggregated)

Fraction of consolidated rocks (Lithology Level
5)

Fraction of partly consolidated rocks (Lithology
Level 5)

Fraction of unconsolidated rocks (Lithology
Level 5)

Fraction of porous aquifer (code 1 and 2 of
aquifer type)

Fraction of porous aquifer (code 1 of aquifer
type)

Fraction of porous aquifer (code 2 of aquifer
type)

Fraction of fissured aquifer (code 3 and 4 of
aquifer type)

Fraction of fissured aquifer (code 3 of aquifer
type)

Fraction of fissured aquifer (code 4 of aquifer
type)

Fraction of locally aquiferous and non-
aquiferous aquifer (code 5 and 6 of aquifer type)

Fraction of locally aquiferous rocks (code 5 of
aquifer type)

Fraction of non-aquiferous rocks (code 6 of
aquifer type)

Fraction of inland water (code 200 of aquifer

type)

Fraction of snow or ice field (code 300 of aquifer

type)
Median depth to bedrock in the catchment

Fraction of water-impacted soils in the
catchment (from soil map 1:250,000), including
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BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

BGR & UNESCO (eds.) (2014)

Shangguan et al. (2017)

BGR (2018)




stagnosols, semi-terrestrial, ~semi-subhydric,
subhydric and moor soils

f_sand - Mean fraction of sand in soil horizons of the top  FAO/IIASA/ISRIC/ISSCAS/IRC
f_silt 100 cm (2012)
f_clay Mean fraction of silt in soil horizons of the top
100 cm
Mean fraction of clay in soil horizons of the top
100 cm
f_clay_agri Mean fraction of clay in soil horizons of the top FAO/IIASA/ISRIC/ISSCAS/IRC
100 c¢cm on agricultural land use (Class 2 Level 1 (2012), EEA (2016a)
CORINE; see f_clay and f_agric)
WaterRoots mm Mean available water content in the root zone Livnehetal. (2015); Samaniego et
from pedo-transfer functions al. (2010); Zink et al. (2017)
thetaS - Mean porosity in catchment from pedo-transfer  Livneh et al. (2015); Samaniego et
functions al. (2010); Zink et al. (2017)
soilN.mean g kgt Mean top soil N in catchment Ballabio et al. (2019)
soilP.mean mg kgt Mean top soil P in catchment Ballabio et al. (2019)
s0ilCN.mean - Mean top soil C/N ratio in catchment Ballabio et al. (2019)
soilpH_CaCl - Mean top soil pH from CaCl2 0.01 M solution in  Ballabio et al. (2019)
the catchment
soilpH_H20 - Mean top soil pH measured in water in the Ballabio etal. (2019)
catchment
Hydrology = Q_StartDate YYYY- Starting date of Q time series used for calculating
MM-DD hydrological indices (from November 1990, if
possible and at least 3 years of data (all 637
stations fulfilled that))
Q_EndDate YYYY- End date of Q time series used for calculating
MM-DD hydrological indices (up to October 2020 if
available)
Q_gaps boolean If there are missing discharge values (a gap) in
between Q_StartDate and Q_EndDate, the
value is 1; without any gap the value is 0.
Q_nNAs - Number of missing values in between
Q_StartDate and Q_EndDate.
Q_mean m3 st Mean discharge (data for the period
Q_StartDate-Q_EndDate)
Q_median m3 st Median discharge (data for the period

Q_StartDate-Q_EndDate)
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Q_spec

Q_CVQ

Q_medSum

Q_medWin

Q_Sum2Win

BFI

flashi

mm y?!

m3 st

m3 st

Mean annual specific discharge (data for the
period Q_StartDate-Q_EndDate)

Coefficient of variation of time series of daily Q
(data for the period Q_StartDate-Q_EndDate)

Median summer discharge (months May-
October) (data for the period Q_StartDate-
Q_EndDate)

Median winter discharge (months November-
April) (data for the period Q_StartDate-
Q_EndDate)

Seasonality index of Q, as ratio between median
summer and median winter Q (data for the period
Q_StartDate-Q_EndDate)

Base flow index calculated according to WMO
[2008] with Ifstat package (version 0.9.4) in R
(data for the period Q_StartDate-Q_EndDate)

Flashiness index of Q as the ratio between 5 %
percentile and 95 % percentile of Q time series
(data for the period Q_StartDate-Q_EndDate)

Climate P_mm

P_Slsw

P SI

P_lambda

P_alpha

PET_mm

Al

T_mean

mm y?!

d-l

mm d-1

mm yt

°C

Mean annual precipitation (period 1986-2015)

Seasonality of precipitation as the ratio between
mean summer (Jun-Aug) and winter (Dec-Feb)
precipitation (period 1986-2015)

Seasonality index of precipitation as the mean
difference between monthly averages of daily
precipitation and year average of daily
precipitation (period 1986-2015)

Mean precipitation frequency A as used by Botter
et al. (2013) with rain days for precipitation
above 1 mm (period 1986-2015)

Mean precipitation depth as used by Botter et al.
(2013) with rain days for precipitation above
1 mm (period 1986-2015)

Mean annual potential evapotranspiration
(period 1986-2015)

Aridity index as AI=PET_mm/P_mm (period
1986-2015)

Mean annual air temperature (period 1986-2015)

Cornes et al. (2018)

Cornes et al. (2018)

Cornes et al. (2018)

Cornes et al. (2018)

Cornes et al. (2018)

Cornes et al. (2018)

Cornes et al. (2018)
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