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Abstract. This study presents a novel machine learning framework (RobustResMLP) for retrieving the 17 

global ice water path (IWP) and cloud ice water path (CIWP) from 2009-2024 via passive microwave 18 

observations from China's Fengyun-3 series satellites' microwave humidity sounders (MWHS-I/II). The 19 

framework employs a lightweight multilayer perceptron architecture enhanced with gated residual units 20 

and hierarchical differential dropout to address the challenges associated with high-noise satellite data. 21 

By establishing rigorous spatiotemporal collocation with CloudSat 2C-ICE products, we generate three 22 

operational products: (1) synoptic type that orbital-resolution IWP/CIWP (15 km; 2009-2024), (2) 23 

climatic type that gridded monthly composites (1°×1°; 2011-2024), and (3) cloud layer mask (CLM) 24 

products. Notably, the 89 GHz channel emerges is the most influential predictor despite theoretical 25 

limitations. This approach achieves a critical compromise between pointwise accuracy and 26 

spatiotemporal completeness, enabling unprecedented decadal-scale cloud feedback analyses. All the 27 

datasets are open available in the netCDF4 format for community sharing. 28 

1 Introduction 29 

The radiative effects of clouds and their feedback processes on global and regional climates are extremely 30 

important and complex, making clouds among the most significant sources of uncertainty in climate 31 
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modeling and projection studies (IPCC, 2023). One crucial parameter in cloud feedback is the ice water 32 

path (IWP), which is defined as the vertical integral of the ice water content (IWC). The ice crystals in 33 

the atmosphere, particularly within clouds, exert substantial impacts on the radiation budget of the Earth's 34 

system, primarily by modulating the cloud phase, and subsequently influencing the cloud optical 35 

thickness (Melia et al., 2016). Climate models exhibit significant discrepancies in IWP simulations, often 36 

differing by orders of magnitude, with considerable spatial heterogeneity (Eliasson et al., 2011a; Waliser 37 

et al., 2009). This highlights the need for high-quality observational constraints on atmospheric ice (Holl 38 

et al., 2014). 39 

 40 

From an observational perspective, space-based remote sensing is currently the only means of providing 41 

continuous, high-resolution global IWP data. However, remote sensing retrievals are often "ill-posed" 42 

(Tarantola, 2005), as the measurements depend on multiple factors, such as the ice particle number 43 

concentration, particle size distribution, particle shape parameters, and ambient environmental properties. 44 

Despite this, retrieving global IWP data via remote sensing remains essential. Microwave radiation can 45 

penetrate dense clouds and interact with ice particles, enabling estimates of ice mass and other bulk 46 

properties (Eliasson et al., 2011b; Wu et al., 2008). Moreover, some studies have validated that key 47 

parameters pertaining to ice crystals in the atmosphere, such as the particle effective diameter, are highly 48 

sensitive to different frequency bands of passive microwaves(Sun and Weng, 2012; Zhao and Weng, 49 

2002). Active remote sensing, which detects backscattered signals from emitted electromagnetic waves, 50 

provides vertical profiles of the IWP and may offer greater accuracy than passive instruments. However, 51 

active sensors typically have narrow swaths, limiting coverage to near-nadir regions (Delanoë and Hogan, 52 

2010; Hong and Liu, 2015). Therefore, using passive microwave instruments to retrieve the atmospheric 53 

ice water content is currently one of the best methods for obtaining large-scale, long-term series of IWP 54 

data. 55 

 56 

At present, the wavelengths of spaceborne passive microwave instruments are mostly concentrated below 57 

200 GHz. This band is sensitive to large ice particles. Representative instruments include the advanced 58 

microwave sounding unit-B (AMSU-B) and the microwave humidity sounder (MHS). The microwave 59 

humidity sensors (MWHS-I and MWHS-II) onboard China's Fengyun-3 series satellites have similar 60 

wavelength settings (89-190 GHz) and accuracies. Moreover, the Fengyun-3 series satellites have long 61 
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time series (2009-2024) and complete orbital coverage via morning satellites (FY-3A, FY-3C, FY-3F), 62 

afternoon satellites (FY-3B, FY-3D), and dawn-dusk orbit satellites (FY-3E) (An et al., 2023; Tan et al., 63 

2019; Wang et al., 2022). However, the application of data from the Fengyun series satellites is still not 64 

sufficient. Therefore, it is possible to use data from the Fengyun-3 series satellites to retrieve the IWP. 65 

 66 

Machine learning methods excel in representing nonlinear relationships. Among these methods, 67 

supervised learning stands as a crucial component of machine learning, and is extensively utilized at 68 

present. It does not require too many empirical assumptions but directly learns the distribution from the 69 

data. Essentially, it fits the target function distribution. The difficulty lies in finding highly accurate 70 

ground truth data. In traditional IWP retrieval methods, a large number of empirical assumptions are first 71 

needed, and it is also necessary to establish a lookup table database on the basis of very complex 72 

scattering models; the process consumes a substantial amount of computational power but has the 73 

advantage of strong physical interpretability. For example, Letu et al. (2016, 2020) developed an ice 74 

crystal scattering database based on an irregular Voronoi model via a combination of the finite-difference 75 

time-domain (FDTD) method, the geometric optimal iterative algorithm (GOIE), and the geometric 76 

optimal method (GOM). This database has been used in the official ice cloud products of the Global 77 

Change Observation Mission - Climate (GCOM-C) and Himawari-8. Several studies have also applied 78 

machine learning methods to the retrieval of IWP. Holl et al. (2014) used infrared data and microwave 79 

humidity sounder data to train an artificial neural network (ANN), resulting in the SPARE-ICE product, 80 

which provides all-weather (day and night) data. Amell (2021) employed quantile regression neural 81 

networks (QRNNs) to retrieve IWPs from geostationary satellite passive observations. Using Himawari-82 

8 infrared observations and CatBoost machine learning, Tana et al. (2025) present the first geostationary-83 

satellite, all-day, high-resolution cloud water path retrieval—outperforming MODIS. Wang et al. (2022) 84 

retrieved IWPs via the MWHS on the FY-3B satellite. They used a deep neural network (DNN) for this 85 

purpose, considering the impact of MWHS polarization channels at 150 GHz on the results. However, 86 

that work did not produce a long-term IWP product, nor did it generate CIWP data. 87 

 88 

In this study, a novel machine learning framework (RobustResMLP) is developed on the basis of passive 89 

instruments, including the MWHS-I and MWHS-II on the Fengyun-3 series satellites, with 2C-ICE data 90 

serving as the ground truth for training. We ultimately obtained orbital IWP data and gridded monthly 91 
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average IWP data from 2009 to the present. Additionally, on the basis of the cloud mask and cloud phase 92 

data from 2B-CLDCLASS data, we extracted the cloud ice content from the IWP for training purposes 93 

and consequently obtained cloud IWP (CIWP) data from 2009-2024. 94 

2 Data 95 

2.1 Passive instrument data 96 

The passive microwave instruments used in this study are the MWHS-I and MWHS-II. The MWHS-I is 97 

carried on the first batch of China's second-generation low-orbit meteorological satellites (FY-3A, FY-98 

3B). The MWHS-II is divided into two batches. The first batch is carried on the second batch of China's 99 

second-generation low-orbit meteorological satellites (FY-3C, FY-3D), and the second batch is carried 100 

on the third batch of these satellites (FY-3E, FY-3F). The MWHS-I has five frequency bands ranging 101 

from 150-190 GHz. The MWHS-II represents a significant upgrade from the MWHS-I, increasing the 102 

number of channels from 5-15. It also adds oxygen absorption channels near 118.75 GHz and a window 103 

at 89 GHz (Wang et al., 2024). The channel settings and basic parameters of the MWHS-I and MWHS-104 

II, as well as the data time spans used for each satellite, are given in Tables S1-S4. Level 1 data were 105 

used in this research to support the synergistic observations of cloud and atmospheric parameters. 106 

2.2 Active instrument data 107 

The active instrument data suite encompasses two pivotal products for atmospheric cloud studies: the 108 

cloud scenario classification product (2B-CLDCLASS) and the CloudSat and CALIPSO ice cloud 109 

property product (2C-ICE). The 2B-CLDCLASS product, derived from CloudSat’s cloud profiling radar 110 

(CPR), delivers high-precision cloud type classifications through a multidimensional framework 111 

integrating hydrometeor vertical/horizontal scales, the CPR-measured maximum radar reflectivity factor 112 

(Ze), precipitation indicators, and ancillary datasets, including ECMWF temperature profiles and surface 113 

topography (Sassen and Wang, 2008). These criteria enable robust cloud climatology analyses, serving 114 

dual roles as an observational truth for cloud detection and as a tool to extract CIWP from the IWP data. 115 

Similarly, the 2C-ICE product synergizes CPR radar reflectivity (from the 2B-GEOPROF dataset) with 116 

CALIPSO’s CALIOP lidar attenuated backscatter at 532 nm to refine ice cloud property retrievals. The 117 

CPR captures vertical backscatter profiles at 240 m resolution with a 1.4 km × 1.8 km footprint, whereas 118 

the combined radar-lidar approach overcomes the limitations of single-instrument retrievals, yielding 119 
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enhanced accuracy in IWC estimates (Deng et al., 2010). In this study, the IWP data from 2C-ICE are 120 

used as the truth value, and the cloud classification data from 2B-CLDCLASS are employed to extract 121 

CIWP from the IWP data, which are also used as training ground truths. 122 

2 Preprocessing 123 

2.1 Quality control 124 

The level 1 data from the Fengyun series satellites include quality-related flags. For the MWHS-II data, 125 

three quality flags are provided: the scan line preprocessing quality flag (QA_Scan_Flag), the channel 126 

data integrity quality flag (QA_Ch_Flag), and the observed brightness temperature quality score 127 

(QA_Score). QA_Scan_Flag is an integer ranging from 0-12113, where 0 indicates successful 128 

preprocessing of the scan line. QA_Ch_Flag is a 16-bit binary code stored as an integer between 0 and 129 

65534, with 0 indicating complete channel data. QA_Score ranges from 0 to 100, with higher values 130 

indicating better brightness temperature quality. This study sets the following quality thresholds: 131 

QA_Scan_Flag = 0, QA_Ch_Flag = 0, and QA_Score ≥ 90. For the MWHS-I data, the following quality 132 

flags are similarly provided: calibration quality flag (cal_qc), pixel quality flag (pixel_qc), and scan line 133 

quality flag (scnlin_qc). All three flags are integers ranging from 0-65535. We exclusively select data 134 

points where all three flags equal 0. 135 

2.2 Collocations 136 

To meet the requirements of machine learning algorithms, passive instrument observations must be 137 

spatiotemporally matched with ground truth data. FY-3D and CloudSat are both afternoon satellites, with 138 

FY-3D crossing the equator at 2:00 PM local time and CloudSat at 1:30 PM. Temporal matching is 139 

straightforward, with a 15-minute window selected to account for typical convective system time scales. 140 

Spatially, multiple 2C-ICE pixels may fall within a single MWHS-II pixel since the latter has a resolution 141 

of 15 km, an order of magnitude coarser than 2C-ICE. On the basis of previous studies (Holl et al., 2010; 142 

Wang et al., 2022), two criteria are used: (1) at least nine 2C-ICE pixels must lie within 7.5 km of an 143 

MWHS-II pixel, and (2) the coefficient of variation (standard deviation divided by the mean) of 2C-ICE 144 

pixels within an MWHS-II pixel must be less than 0.6. These criteria ensure sufficient representativeness 145 

and stability of 2C-ICE pixels within each MWHS-II pixel. Additionally, owing to the frequent 146 

overpasses of polar-orbiting satellites over polar regions, the number of matched points in these areas is 147 
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disproportionately high. To balance the dataset, matched points in polar regions are randomly removed 148 

to achieve a uniform distribution across latitude bands. Finally, a dataset of 807330 matched points is 149 

produced, covering the time span from 2019-August 2020. For the MWHS-I pixels, FY-3B is also an 150 

afternoon satellite with an ascending node local time of 1:40 PM. Therefore, we use its data from 151 

December 2010 to April 2011 and match it with the corresponding 2C-ICE data using the same criteria 152 

that were used for MWHS-II. This process results in 144,740 matched points. Both datasets are then split 153 

into training and testing sets at an 80:20 ratio. For different satellites, the number of points with IWPs 154 

equal to 0 in the training set are appropriately adjusted to ensure a balanced representation. Concurrently, 155 

the calibration of the CIWP training dataset is similar to that of the IWP dataset. We employ the method 156 

of Li et al. (2012). to extract CIWP data from the IWP data of 2C-ICE, which ultimately yields 710903 157 

matched points for the MWHS-II instrument and 93460 matched points for the MWHS-I instrument. 158 

3 Postprocessing 159 

3.1 Gridding, resampling, and averaging 160 

The orbital IWP products retain a spatiotemporal resolution of 15 km. To facilitate climatological studies, 161 

the data are gridded monthly at a 1° × 1° resolution. The orbital products are resampled and averaged 162 

onto each grid cell. 163 

4 Methodology 164 

4.1 IWP retrieval algorithm 165 

To retrieve IWP from passive microwave remote sensing observations, we develop a deep neural network 166 

based on a multilayer perceptron (MLP) named RobustResMLP as the fundamental model. The MLP is 167 

a highly mature deep learning model that is composed primarily of fully connected networks, and it has 168 

the advantages of a simple architecture and resource conservation. The model has a parameter count of 169 

9 M, making it a lightweight model. We make several significant improvements to the RobustResMLP, 170 

which are detailed as follows: 171 

(1) Residual Units with Gating and Learnable Weights: We introduce residual units that incorporate a 172 

gating mechanism and learnable residual weights. This helps mitigate the vanishing gradient 173 

problem in deep networks. 174 
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(2) Lightweight Attention and Adaptive Feature Scaling: We combine lightweight attention 175 

mechanisms with adaptive feature scaling within the MLP architecture. This dual optimization 176 

enhances the model's ability to capture important features. 177 

(3) Hierarchical Differential Dropout Mechanism: We implement a hierarchical differential dropout 178 

mechanism. Specifically, the dropout rate is set at 20% in the input layer and within residual blocks, 179 

while it is increased to 30% in the output layer. Additionally, we employ pre-layer normalization 180 

(Pre-LN) design to form a multi-level regularization defense, effectively suppressing overfitting. 181 

 182 

These technical features collectively form an efficient and robust framework for IWP retrieval. While 183 

maintaining high computational efficiency, the model demonstrates excellent modeling capabilities for 184 

high-noise, nonlinear satellite observation data. Moreover, because the MWHS-II instruments in the two 185 

batches have different window channel settings, we construct a lightweight MLP-based model to map 186 

the 166 GHz window region of the second batch of MWHS-II instruments to the 150 GHz channel of 187 

the first batch. This allows us to use the already registered dataset for training, saving time and 188 

computational resources. 189 

 190 

Furthermore, to prepare for the next step of integrating optical instruments for data fusion, we construct 191 

a cloud detection model based on the MLP to assess the performance on passive microwave observations. 192 

The specific structure of the model is shown in Figure 11. 193 
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194 

Figure 1: Structural diagram of the RobustResMLP model and flowchart of the retrieval algorithm. (a) 195 

Schematic diagram of the RobustResMLP model structure. (b) Flowchart of the IWP product retrieval 196 

process. 197 

4.2 Model hyperparameters 198 

The matched training data are split into two parts, one for training (80%) and the other for validation 199 

(20%). The IWP ground truth values in the training set are log-transformed, and the IWP values are 200 

partitioned into IWP and CIWP values via the 2B-CLDCLASS product. The hyperparameters of the 201 

RobustResMLP model are shown in Table 1. 202 

Table 1: Main hyperparameters for the RobustResMLP Model 203 

Module Hyperparameter Value 

Architecture Input Dimension 19/14* 

 Number of Residual Blocks 8 

Regularization Input Dropout Rate 0.2 

 Residual Block Dropout 1 0.2 

 Residual Block Dropout 2 0.24 

 Output Dropout Rate 0.3 

 LayerNorm Epsilon 1.00E-05 

Training Learning Rate 3.00E-04 
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 Weight Decay 0.01 

 Batch Size 4096 

 Max Epochs 300 

 Early Stopping Patience 30 

Output Layer Intermediate Dimension 256 

 Output Activation Hardswish 

*19 is the input dimension for MWHS-II, and 14 is the input dimension for MWHS-I. 204 

4.4 Evaluation metrics 205 

The performance of the MLP model in retrieving IWP is evaluated via the root mean square error (RMSE), 206 

mean absolute error (MAE), bias (BIAS), and Pearson correlation coefficient (CC), which are calculated 207 

as follows: 208 

RMSE =  √
1

𝑁
∑ (𝑦pred,𝑖 − 𝑦truth,𝑖)

2𝑁
𝑖=1              (1) 209 

BIAS =
1

𝑁
∑ (𝑦pred,𝑖 − 𝑦truth,𝑖)

𝑁
𝑖=1               (2) 210 

MAE =
1

𝑁
∑ |𝑦pred,𝑖 − 𝑦truth,𝑖|

𝑁
𝑖=1               (3) 211 

CC =
1

𝑁
∑ (𝑦pred,𝑖−𝑦pred)(𝑦truth,𝑖−𝑦truth)𝑁

𝑖=1

σpredσtruth
              (4) 212 

Here, 𝑦pred and 𝑦truth represent the model predictions and ground truth, respectively, whereas 𝜎pred and 213 

𝜎truth are the standard deviations. 214 

 215 

For cloud detection, performance is evaluated via a confusion matrix 𝑀 , with metrics including 216 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝐹1_𝑠𝑐𝑜𝑟𝑒, defined as: 217 

𝑀 = (
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

)                 (5) 218 

True positives (𝑇𝑃) correspond to cases where both MWHS and CloudSat detect clouds, whereas true 219 

negatives (𝑇𝑁) occur when neither of them identifies cloud presence. False positives (𝐹𝑃) arise when 220 

MWHS detects ice clouds that CloudSat does not confirm, and false-negatives (𝐹𝑁 ) emerge when 221 

CloudSat identifies clouds that MWHS fails to detect. This framework establishes MWHS as the test 222 

classifier and CloudSat as the validation reference. 223 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 (𝑇𝑃 + 𝑇𝑁) 

 (𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
               (6) 224 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)             (7) 225 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)                (8) 226 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =  2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)        (9) 227 

5 Data records 228 

The file naming convention for the dataset is 229 

FY3X_MWHSX_GBAL_L1_YYYYMMDD_HHmm_015KM_MS_iwp.nc, which includes the 230 

variables IWP, CIWP, and CLM retrieved from both MWHS-I and MWHS-II. The specific file structure 231 

is shown in Figure 2a. The time span of the orbital products ranges from 2009-2024, which is useable 232 

for weather-scale studies, such as studies on the mechanisms of precipitation formation and the structure 233 

and characteristics of clouds. The data are stored in the netCDF4 file format, with a total of approximately 234 

192880 records. The data size is approximately 606 GB. For climate studies, we provide long-term 235 

monthly gridded products (2011-2024) under the naming convention 236 

FY3X_MWHSX_GBAL_L1_YYYY_MEAN.nc (structure shown in Figure 2b). The reason for the 237 

inconsistency in the time series between the gridded and orbital products is that the IWP values retrieved 238 

from the MWHS-I onboard FY-3A showed anomalously low values after gridding, so we excluded them. 239 

We further identify and extract the most temporally stable products from the gridded products to construct 240 

a homogeneous, long-term dataset for climate studies, which is designated “Merged_Global_Mean.nc”. 241 

 242 

Figure 2: Schematic of the data file structure: (a) orbital data file structure; (b) gridded data file structure. 243 
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Table 2: Performance of models using different instruments for retrieving the IWP and CIWP 244 

Instrument variable RMSE(g/m2) BIAS(g/m2) MAE(g/m2) CC 

MWHS-I 
IWP 908.13 -167.89 152.92 0.66 

CIWP 189.11 -37.14 68.61 0.64 

MWHS-II 
IWP 313.39 -24.33 62.50 0.82 

CIWP 190.09 -29.55 67.85 0.76 

MWHS-II* 
IWP 569.73 -57.44 167.65 0.80 

CIWP 192.85 -33.41 68.96 0.76 

* denotes the second-batch MWHS-II instruments onboard the FY-3E/F satellites. 245 

6 Retrieval performance 246 

6.1 IWP retrieval performance 247 

Table 2 demonstrates the performance of the RobustResMLP model for retrieving IWP and CIWP via 248 

MWHS-I and MWHS-II data. The results reveal substantial enhancements in the MWHS-II retrievals 249 

compared with those of the MWHS-I retrievals, which are primarily attributable to the expanded channel 250 

capabilities of the former. Figure 3 comprehensively evaluates model performance: (a) scatter plot of 251 

predicted versus true values; (b)-(g) diagnostic analyses of relative errors, absolute errors, and residual 252 

distributions. The model delivers high accuracy at low IWP concentrations (<10³ g/m²), although errors 253 

scale moderately with increasing IWP values. Critically, given the global mean IWP of approximately 254 

100 g/m² (Xu et al., 2022), the model maintains robust performance across predominant atmospheric 255 

conditions. Table 3 reveals that superior model performance does not necessarily correlate with increased 256 

input channels. Our analysis identifies divergent spatial patterns in MWHS-II bands 2-6 observations 257 

between the 2019-2020 training data and operational scenarios, inducing anomalously high IWP 258 

retrievals. Consequently, we implement a feature selection strategy that excludes bands 2-6 while 259 

maintaining competitive accuracy. Additionally, the inclusion of the 89 GHz band significantly enhances 260 

the retrieval performance, which is also reflected in its SHAP values (Fig. S1, S2). We conduct a SHAP 261 

value analysis of the trained model, and the results reveal that the 89 GHz band ranks first in terms of 262 

input feature importance. Although it is not highly sensitive to ice crystals in theory, this finding is 263 

consistent with the research of Wang et al. (2024). In terms of auxiliary data selection, we include all the 264 

auxiliary data provided by the MWHS L1 data in the training. The results show that it also visibly 265 

improves retrieval performance. We further evaluate the retrieval performance separately over ocean/land 266 

and day/night regimes, with the results detailed in Table 4. 267 
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Table 3 Performance of IWP Retrieval Models with Different Input Combinations 268 

Input 

Channels 
Auxiliaries 

RMSE(

g/m2) 

BIAS(g/

m2) 

MAE(g/

m2) 
CC 

9-15 / 918.63 -311.42 311.44 0.12 

1, 10, 11, 

13, 15 
/ 870.88 -298.94 298.95 0.16 

7-15 / 650.54 -158.85 198.32 0.67 

1-15 

SolarAzimuth, SolarZenith, DEM, 

SensorAzimuth, SensorZenith, LandCover, 

LandSeaMask, lon, lat 

482.06 -48.95 149.47 0.81 

1, 7-15 

SolarAzimuth, SolarZenith, DEM, 

SensorAzimuth, SensorZenith, LandCover, 

LandSeaMask, lon, lat 

313.39 -24.33 62.50 0.82 

 269 

 270 
Figure 3: Performance metrics of the RobustResMLP model on the IWP test dataset. (a) Scatter plot of mode-271 

retrieved IWP values versus true values on MWHS-II; (b) box plot of the relative error distribution across 272 

different IWP ranges; (c) probability density distribution of the relative errors; (d) cumulative density curve 273 

of the absolute errors; (e) QQ plot of predicted values versus true values; (f) scatter plot of the residual 274 

distribution. 275 
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Table 4: Performance of the RobustResMLP model on Land and Ocean Test Datasets in IWP Retrieval (using 276 

the MWHS-II instrument). 277 

 Land Ocean Daytime Nighttime 

RMSE(g/m2) 337.12 294.38 421.3 99.71 

BIAS(g/m2) -27.56 -21.86 -41.03 -5.74 

MAE(g/m2) 60.48 62.44 105.87 14.21 

CC 0.77 0.84 0.80 0.89 

 278 

6.2 Cloud detection retrieval performance 279 

The cloud detection retrieval performance of RobustResMLP on the test set is shown in Table 5. In terms 280 

of performance, MWHS-II shows a significant improvement over MWHS-I. Since this is a preliminary 281 

study for the next step, we did not conduct sensitivity experiments on input features but directly used 282 

input features similar to those of the IWP model for training. 283 

Table 5: The performance of the cloud detection model on the test datasets (using the MWHS-I instrument). 284 

Instrument Condition Precision Recall F1-score Accuracy 

MWHS-I 
Clear 0.77 0.82 0.79 

0.77 
Cloudy 0.76 0.71 0.73 

MWHS-II 
Clear 0.94 0.97 0.95 

0.92 
Cloudy 0.76 0.6 0.67 

 285 

7 Product validation 286 

Four scenarios were used to validate the orbital IWP and annual global gridded IWP products against 287 

other datasets. 288 

7.1 Typhoon events 289 

Figure 4 displays orbital IWP retrievals from the MWHS-IWP product, as well as IWP from the 2C-ICE 290 

product and the ERA5 reanalysis dataset during Typhoon Wutip in 2019 and Typhoon Soulik in 2013. 291 

The IWPs retrieved from both MWHS-I and MWHS-II can accurately capture the high-IWP regions in 292 

the typhoon area, which is consistent with the 2C-ICE data. In contrast, while the ERA5 reanalysis data 293 

can also roughly reproduce the high-IWP regions, the level of detail is significantly less than that of the 294 

retrieval products. 295 
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 296 
Figure 4: Orbital IWP products during typhoon passage: (a) and (b) show the IWP products retrieved from 297 

MWHS-II and MWHS-I, respectively, during the passages of Typhoon Wutip in 2019 and Typhoon Soulik in 298 

2013. (c) is the zoomed-in IWP product retrieved from MWHS-II, which focuses on the area affected by the 299 

typhoon. (d) shows the IWP data from the 2C-ICE for the same period. (e) is the IWP product from the ERA5 300 

reanalysis for the same period. (f) is the zoomed-in IWP product retrieved from MWHS-I, which focuses on 301 

the area affected by the typhoon. (g) and (h) are the same as (d) and (e), respectively, but for the period 302 

coinciding with Typhoon Soulik. 303 

7.2 Global gridded product comparison and zonal mean comparison 304 

Figure 5 presents the multiyear average spatial distribution of the IWP, whereas Figure 6 shows the zonal 305 

mean distribution of the IWP. All the IWP products were resampled to a spatial resolution of (1°×1°). All 306 

the IWP products exhibit fundamentally consistent spatial patterns. Notably, our product demonstrates 307 

closer alignment with active sensor products (particularly the MWHS-II retrieval product). Although the 308 

time series do not overlap, we selected the 2007-2010 period for active instrument comparison because 309 

of CloudSat's superior data completeness before 2011. This selection is necessitated by data constraints 310 

but remains scientifically justified, as both spatial patterns and total magnitudes show minimal variation 311 

in long-term IWP sequences. Additionally, passive optical/infrared instruments (MODIS, VIIRS) and the 312 

ERA5 reanalysis result in significant underestimations of IWP values at low-to-mid latitudes, whereas 313 

the MODIS and VIIRS retrieval products result in substantial overestimations in polar regions. We must 314 

also note an anomalous high-value bias in the MWHS-I-based products across southern mid-high 315 

latitudes. Further analysis reveals that these elevated values stem not only from a systematic high bias in 316 
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the dataset but also from an anomalous summertime peak over the Filchner-Ronne ice shelf and Antarctic 317 

Peninsula during July and August each year; the precise physical mechanism remains to be elucidated. 318 

We address this limitation in future iterations of our retrieval product. For the CIWP, the multiyear 319 

average spatial distribution is shown in Fig. S3, the overall distribution closely resembles that of IWP, 320 

but the values are lower in magnitude. 321 
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 322 

Figure 5: Global average spatial distributions of the IWP compared with those of other satellite products and 323 

reanalysis products. 324 

 325 

Figure 6: Zonal mean IWP compared with other satellite products and the ERA5 reanalysis. 326 

7.3 Long-term analysis of gridded products 327 

Figure 7 shows the global total atmospheric ice mass curve from the gridded retrieval products for the 328 

period of 2011-2024. The orange and blue-green lines represent the IWP data from 2C-ICE and 329 

DARDAR (another IWP product based on active remote sensing instruments (Melia et al., 2016)), 330 

respectively. Owing to battery issues with CloudSat after 2011, which led to the loss of nighttime data, 331 

the time series for the 2C-ICE and DARDAR products are restricted to 2007-2010. Our retrieval products 332 

are closer to 2C-ICE and DARDAR in terms of the total global atmospheric ice mass. In contrast, the 333 

atmospheric ice totals calculated from the passive optical/infrared instruments MODIS and VIIRS, as 334 
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well as the ERA5 reanalysis data, are significantly lower than those from 2C-ICE and DARDAR IWP. 335 

All calculations are weighted by latitudinal area. The global total atmospheric ice mass from our retrieval 336 

products for the period 2011-2024 is 58.66 (58.20, 59.12) Gt, which is close to our previous estimation 337 

using the DARDAR product (Xu et al., 2022). For the CIWP, the long-term global total mass is shown 338 

in Fig. S4.  339 

https://doi.org/10.5194/essd-2025-447
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 

18 
 

 340 

Figure 7: Native time series of the monthly global average of total atmospheric ice and comparison with other 341 

satellite products, along with the ERA5 reanalysis. All calculations of total atmospheric ice consider latitude 342 

area weighting. 343 

8 Conclusion and usage notes 344 

This study developed a machine learning framework to retrieve global IWPs and CIWPs from 2009-345 

2024 via passive microwave observations from the MWHS-I and MWHS-II aboard the Fengyun-3 series 346 

satellites. 347 

Three distinct IWP products were generated: 348 

(1) Orbital-level IWP and CIWP products preserving native sensor resolutions (15 km), with a time 349 

series from 2009-2024. 350 

(2) Monthly gridded global composites (1° × 1°) from individual sensors, with a time series from 2011-351 

2024. 352 

(3) CLM products were generated for both instruments. 353 

 354 

While the retrieval accuracy of neural networks may not surpass that of benchmark products such as 2C-355 

ICE under optimal observational conditions, their superior spatial sampling (enabling complete global 356 

coverage within orbital swaths) and temporal continuity (maintaining consistent retrieval performance 357 

across sensor generations) make them particularly valuable for decadal-scale climate variability analysis. 358 

This trade-off between pointwise accuracy and spatiotemporal completeness represents a strategic 359 
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compromise that aligns with the requirements of climate system monitoring, where long-term 360 

homogeneity often takes precedence over instantaneous retrieval precision. 361 

 362 

We generated two sets of retrieval products. The orbital products include the IWP, CIWP, and cloud layer 363 

mask (CLM) retrieved via FY-3A (2008-2014), FY-3B (2010-2019), FY-3C (2013-2024), FY-3D (2019-364 

2024), FY-3E (2022-2024), and FY-3F (2023-2024). These methods can be used for synoptic scale 365 

studies, such as studies of cloud structure and precipitation mechanisms. Notably, our products achieved 366 

global coverage over both oceanic and land regions, whereas most passive microwave-based IWP 367 

retrievals are limited to oceanic regions. Furthermore, our incorporation of CIWP retrievals represents a 368 

distinctive advancement rarely available in international equivalent products. However, if long-term 369 

trends are investigated, we recommend the use of our gridded products, which provide comprehensive 370 

coverage from 2011-2024. If gridded products are created using our orbital data, please avoid using data 371 

from FY-3A, FY-3B after 2017, and FY-3C after 2019. Owing to potential instrument aging, the retrieved 372 

IWP values during these periods may sometimes be anomalously high. While this does not significantly 373 

affect weather-scale studies, it can impact long-term trend analyses. 374 

 375 

While this study demonstrates the feasibility of IWP retrieval via passive microwave instruments, several 376 

limitations warrant further investigation. Passive microwave instruments are actually more sensitive to 377 

liquid droplets, and are theoretically sensitive only to large ice crystals (especially snowflakes), so they 378 

typically overlook some cirrus clouds. Future work will explore advanced data fusion architectures, 379 

including (1) joint retrievals using optical/infrared remote sensing instruments, which are sensitive to 380 

cloud-top information and can be used to compensate for the lack of sensitivity to cirrus clouds in passive 381 

microwave instruments; (2) joint retrieval frameworks that simultaneously assimilate multispectral 382 

observations within a unified radiative transfer model; and (3) physics-informed neural networks 383 

incorporating cloud microphysical constraints to improve vertical stratification accuracy. 384 

 385 

Current orbital products lack sub-daily temporal resolutions. To address this limitation, forthcoming 386 

research will incorporate FY-4A/B geostationary observations with 15-minute temporal resolutions. 387 

Parallel to this integration, continuous upgrades and maintenance of existing datasets are being 388 

implemented. Furthermore, we have noted rapid advancements in terahertz remote sensing 389 
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instrumentation (Li et al., 2023). We will actively monitor these developments and subsequently employ 390 

terahertz technology to achieve higher-accuracy retrievals of IWP and CIWP. Collectively, these 391 

enhancements significantly increase the product's utility for monitoring rapidly evolving meteorological 392 

phenomena and validating climate model cloud parameterizations. 393 

9 Code and data availability 394 

Data from the Fengyun-3 series satellites' MWHS-I/II Level-1 observations are accessible via the NSMC 395 

data portal (https://data.nsmc.org.cn). CloudSat-CALIOPSO products (2C-ICE and 2B-CLDCLASS) are 396 

available through the CloudSat data processing center (https://www.cloudsat.cira.colostate.edu). 397 

Generated datasets from this study may be cited as https://doi.org/10.11888/Atmos.tpdc.302932 and 398 

https://cstr.cn/18406.11.Atmos.tpdc.302932 (Yang et al., 2025) , with the processing codes available 399 

upon request to the corresponding author. Besides, the code used to create the figures in this paper, 400 

including code for generating the figures and pre- and post-processing the data, is available at 401 

https://doi.org/10.5281/zenodo.16352115 (Yang, 2025).  402 

 403 

Author contributions. YFY conceived the main algorithm, produced the dataset, validated its accuracy, 404 

and drafted the manuscript. GJX and RZ also contributed to parts of the algorithm design. BL, LTHS, 405 

WYW, CDX, and TFD supervised data production and validation, and revised the manuscript. 406 

 407 

Competing interests. The contact author has declared that none of the authors has any competing 408 

interests.   409 

 410 

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional 411 

claims in published maps and institutional affiliations. 412 

 413 

Acknowledgements. The authors acknowledge the National Satellite Meteorological Center (NSMC) 414 

and CloudSat Data Processing Center for providing access to the satellite data utilized in this work. 415 

 416 

Financial support. This research is supported by National Natural Science Foundation of China grant 417 

42222608. 418 

https://doi.org/10.5194/essd-2025-447
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 

21 
 

Reference 419 

Amell, A.: Geostationary passive retrieval of ice water path with quantile regression neural networks, 420 

CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, Sweden, 2021. 421 

An, N., Shang, H., Lesi, W., Ri, X., Shi, C., Tana, G., Bao, Y., Zheng, Z., Xu, N., Chen, L., Zhang, 422 

P., Ye, L., and Letu, H.: A Cloud Detection Algorithm for Early Morning Observations From the 423 

FY-3E Satellite, IEEE Trans. Geosci. Remote Sens., 61, 1–15, 424 

https://doi.org/10.1109/TGRS.2023.3304985, 2023. 425 

Delanoë, J. and Hogan, R. J.: Combined CloudSat‐CALIPSO‐MODIS retrievals of the properties 426 

of ice clouds, J. Geophys. Res. Atmospheres, 115, 2009JD012346, 427 

https://doi.org/10.1029/2009JD012346, 2010. 428 

Deng, M., Mace, G. G., Wang, Z., and Okamoto, H.: Tropical Composition, Cloud and Climate 429 

Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and 430 

CALIPSO lidar, J. Geophys. Res. Atmospheres, 115, 2009JD013104, 431 

https://doi.org/10.1029/2009JD013104, 2010. 432 

Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., and John, V. O.: Assessing observed and 433 

modelled spatial distributions of ice water path using satellite data, Atmospheric Chem. Phys., 11, 434 

375–391, https://doi.org/10.5194/acp-11-375-2011, 2011a. 435 

Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., and John, V. O.: Assessing observed and 436 

modelled spatial distributions of ice water path using satellite data, Atmospheric Chem. Phys., 11, 437 

375–391, https://doi.org/10.5194/acp-11-375-2011, 2011b. 438 

Holl, G., Buehler, S. A., Rydberg, B., and Jiménez, C.: Collocating satellite-based radar and 439 

radiometer measurements – methodology and usage examples, Atmospheric Meas. Tech., 3, 693–440 

708, https://doi.org/10.5194/amt-3-693-2010, 2010. 441 

Holl, G., Eliasson, S., Mendrok, J., and Buehler, S. A.: SPARE‐ICE: Synergistic ice water path from 442 

passive operational sensors, J. Geophys. Res. Atmospheres, 119, 1504–1523, 443 

https://doi.org/10.1002/2013JD020759, 2014. 444 

Hong, Y. and Liu, G.: The Characteristics of Ice Cloud Properties Derived from CloudSat and 445 

CALIPSO Measurements, J. Clim., 28, 3880–3901, https://doi.org/10.1175/JCLI-D-14-00666.1, 446 

2015. 447 

IPCC: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the 448 

Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University 449 

Press, Cambridge, https://doi.org/10.1017/9781009157896, 2023. 450 

Letu, H., Ishimoto, H., Riedi, J., Nakajima, T. Y., C.-Labonnote, L., Baran, A. J., Nagao, T. M., and 451 

Sekiguchi, M.: Investigation of ice particle habits to be used for ice cloud remote sensingfor the 452 

GCOM-C satellite mission, Atmospheric Chem. Phys., 16, 12287–12303, 453 

https://doi.org/10.5194/acp-16-12287-2016, 2016. 454 

https://doi.org/10.5194/essd-2025-447
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 

22 
 

Letu, H., Yang, K., Nakajima, T. Y., Ishimoto, H., Nagao, T. M., Riedi, J., Baran, A. J., Ma, R., 455 

Wang, T., Shang, H., Khatri, P., Chen, L., Shi, C., and Shi, J.: High-resolution retrieval of cloud 456 

microphysical properties and surface solar radiation using Himawari-8/AHI next-generation 457 

geostationary satellite, Remote Sens. Environ., 239, 111583, 458 

https://doi.org/10.1016/j.rse.2019.111583, 2020. 459 

Li, J. ‐L. F., Waliser, D. E., Chen, W. ‐T., Guan, B., Kubar, T., Stephens, G., Ma, H. ‐Y., Deng, M., 460 

Donner, L., Seman, C., and Horowitz, L.: An observationally based evaluation of cloud ice water in 461 

CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data, J. 462 

Geophys. Res. Atmospheres, 117, 2012JD017640, https://doi.org/10.1029/2012JD017640, 2012. 463 

Li, M., Letu, H., Ishimoto, H., Li, S., Liu, L., Nakajima, T. Y., Ji, D., Shang, H., and Shi, C.: 464 

Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly 465 

shaped Voronoi ice scattering models, Atmospheric Meas. Tech., 16, 331–353, 466 

https://doi.org/10.5194/amt-16-331-2023, 2023. 467 

Melia, N., Haines, K., and Hawkins, E.: Sea ice decline and 21st century trans-Arctic shipping routes: 468 

Trans-Arctic shipping in the 21st Century, Geophys. Res. Lett., 43, 9720–9728, 469 

https://doi.org/10.1002/2016GL069315, 2016. 470 

Sassen, K. and Wang, Z.: Classifying clouds around the globe with the CloudSat radar: 1‐year of 471 

results, Geophys. Res. Lett., 35, 2007GL032591, https://doi.org/10.1029/2007GL032591, 2008. 472 

Sun, N. and Weng, F.: Retrieval of Cloud Ice Water Path from Special Sensor Microwave 473 

Imager/Sounder (SSMIS), J. Appl. Meteorol. Climatol., 51, 366–379, 474 

https://doi.org/10.1175/JAMC-D-11-021.1, 2012. 475 

Tan, Z., Ma, S., Zhao, X., Yan, W., and Lu, W.: Evaluation of Cloud Top Height Retrievals from 476 

China’s Next-Generation Geostationary Meteorological Satellite FY-4A, J. Meteorol. Res., 33, 477 

553–562, https://doi.org/10.1007/s13351-019-8123-0, 2019. 478 

Tana, G., Lesi, W., Shang, H., Xu, J., Ji, D., Shi, J., Letu, H., and Shi, C.: A New Cloud Water Path 479 

Retrieval Method Based on Geostationary Satellite Infrared Measurements, IEEE Trans. Geosci. 480 

Remote Sens., 63, 1–10, https://doi.org/10.1109/TGRS.2025.3526262, 2025. 481 

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, Society for 482 

Industrial and Applied Mathematics, https://doi.org/10.1137/1.9780898717921, 2005. 483 

Waliser, D. E., Li, J. F., Woods, C. P., Austin, R. T., Bacmeister, J., Chern, J., Del Genio, A., Jiang, 484 

J. H., Kuang, Z., Meng, H., Minnis, P., Platnick, S., Rossow, W. B., Stephens, G. L., Sun‐Mack, S., 485 

Tao, W., Tompkins, A. M., Vane, D. G., Walker, C., and Wu, D.: Cloud ice: A climate model 486 

challenge with signs and expectations of progress, J. Geophys. Res. Atmospheres, 114, 487 

2008JD010015, https://doi.org/10.1029/2008JD010015, 2009. 488 

Wang, W., Wang, Z., He, Q., and Zhang, L.: Retrieval of ice water path from the Microwave 489 

Humidity Sounder (MWHS) aboard FengYun-3B (FY-3B) satellite polarimetric measurements 490 

based on a deep neural network, Atmospheric Meas. Tech., 15, 6489–6506, 491 

https://doi.org/10.5194/essd-2025-447
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 

23 
 

https://doi.org/10.5194/amt-15-6489-2022, 2022. 492 

Wu, D. L., Jiang, J. H., Read, W. G., Austin, R. T., Davis, C. P., Lambert, A., Stephens, G. L., Vane, 493 

D. G., and Waters, J. W.: Validation of the Aura MLS cloud ice water content measurements, J. 494 

Geophys. Res. Atmospheres, 113, 2007JD008931, https://doi.org/10.1029/2007JD008931, 2008. 495 

Xu G., Dou T., Yang Y., Yue H., Letu H., Ma L., and Xiao C.: The total mass and spatio-temporal 496 

structure of the aerial cryosphere, Chin. Sci. Bull., 67, 4130–4139, https://doi.org/10.1360/TB-497 

2022-0184, 2022. 498 

Yang, Y.: Global Ice Water Path Retrieval Using Fengyun series Satellite Data: A Machine 499 

Learning Approach/generating figures and pre-post- precessing code, , 500 

https://doi.org/10.5281/zenodo.16352116, 2025. 501 

Yang, Y., Dou, T., Zhou, R., Li, B., Husi, L., Wang, W., and Xiao, C.: Fengyun polar-orbiting 502 

satellite total/cloud ice water path retrieval dataset (2009-2024). National Tibetan Plateau / Third 503 

Pole Environment Data Center, https://doi.org/10.11888/Atmos.tpdc.302932., 2025. 504 

Zhao, L. and Weng, F.: Retrieval of Ice Cloud Parameters Using the Advanced Microwave 505 

Sounding Unit, J. Appl. Meteorol., 41, 384–395, https://doi.org/10.1175/1520-506 

0450(2002)041<0384:ROICPU>2.0.CO;2, 2002. 507 

 508 

https://doi.org/10.5194/essd-2025-447
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.


