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Abstract. This study introduces FYAI, a global, long-term atmospheric Ice Water Path (IWP) and18

Suspended Ice Water Path (SIWP) dataset spanning 2010-2024, derived from passive microwave19

observations (MWHS-I/II) onboard China’s Fengyun-3 series satellites. The dataset is generated using20

a machine learning framework featuring a lightweight multilayer perceptron architecture enhanced with21

gated residual units. This design robustly handles the inherent uncertainties in satellite brightness22

temperatures and the spatial mismatch between passive microwave footprints and active radar/lidar23

training data. By establishing rigorous spatiotemporal collocation with CloudSat 2C-ICE products,24

FYAI provides two operational product levels adhering to standard Earth observation data processing25

definitions: (1) Level-2 (L2) products, offering instantaneous orbital-resolution IWP and SIWP at a26

nominal 15 km nadir resolution (2010-2024); and (2) Level-3 (L3) products, comprising monthly27

global gridded composites at 1° × 1° resolution (2010-2024). FYAI bridges the gap between28

instantaneous pixel-level precision and broad spatiotemporal coverage, offering a comprehensive,29

decadal-scale record of global atmospheric ice content. This dataset, specifically designed to support30

long-term climate analysis and model validation, is openly available in netCDF4 format for community31

use.32
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1 Introduction33

Ice crystals play a pivotal role in cloud and precipitation processes, thereby significantly modulating34

the hydrological cycle, thermodynamics, and radiative transfer (Gultepe et al., 2017). Consequently, the35

reliable quantification of atmospheric ice content is critical for elucidating latent heat distribution and36

precipitation mechanisms (Amell et al., 2022). The primary metric used to describe this ice content is37

the ice water path (IWP), defined as the vertical integral of the ice water content (IWC). IWP is38

composed of both suspended ice and falling ice (also referred to as precipitation ice), although the39

criteria distinguishing these components remain ill-defined (Eliasson et al., 2011; Waliser et al., 2009).40

However, current climate models exhibit widespread inconsistencies and pronounced spatial41

heterogeneity in simulating IWP (Eriksson et al., 2025; Wang, 2022). Indeed, as highlighted in the42

Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6), these cloud and43

precipitation processes remain primary sources of uncertainty in climate modeling and projections44

(IPCC, 2023). This underscores the critical need for high-quality observational constraints on45

atmospheric ice (Holl et al., 2014).46

47

From an observational perspective, space-based remote sensing is the primary means of providing48

global IWP data, yet existing products face limitations. Visible and infrared sensors, such as MODIS49

and AIRS, have provided valuable long-term records. However, their measurements are often50

constrained by signal saturation in optically thick clouds, and they are primarily sensitive to upper51

cloud layers rather than probing the full depth of deep convective systems (Eliasson et al., 2011).52

Conversely, limb sounders like the Microwave Limb Sounder (MLS), while offering vertical profiles,53

are constrained by extremely sparse horizontal sampling, making them unsuitable for continuous54

regional monitoring (Wu et al., 2006). Active sensors (e.g., CloudSat/CALIPSO) offer high accuracy55

but represent only a “needle-thin” curtain of the atmosphere (Delanoë and Hogan, 2010; Hong and Liu,56

2015). Consequently, passive microwave instruments remain the optimal solution for retrieving57

large-scale, long-term, and all-weather IWP data due to their ability to penetrate dense clouds and58

interact directly with ice mass (Evans and Stephens, 1995; Wu et al., 2008).59

60

Currently, microwave humidity sounders operating below 200 GHz (e.g., AMSU-B, MHS) are standard61

for ice detection. However, despite carrying Microwave Humidity Sounder (MWHS), the potential of62



3

China’s Fengyun-3 (FY-3) series satellites remains largely untapped in producing global climate63

datasets. The FY-3 series offers a unique advantage unmatched by other operational systems: a64

complete three-orbit constellation comprising morning (FY-3A/C/F), afternoon (FY-3B/D), and the65

distinct dawn-dusk (FY-3E) orbit satellites (An et al., 2023; Tan et al., 2019; Wang et al., 2022). This66

configuration allows for substantially improved temporal sampling, filling critical gaps in the diurnal67

cycle of IWP that are missed by sun-synchronous satellites restricted to fixed crossing times,68

particularly with the inclusion of FY-3E observations starting in 2023. By leveraging this 15-year69

continuous archive (2010-2024), there is an opportunity to construct a coherent, long-term IWP climate70

data record that overcomes the spatiotemporal limitations of existing datasets.71

72

While traditional physical retrieval methods offer interpretability, they rely heavily on complex73

scattering databases and microphysical assumptions (e.g., particle shape and size distribution) that are74

often difficult to constrain globally. (Letu et al., 2016, 2020). Machine learning (ML) has emerged as a75

powerful alternative for handling the non-linear relationships in passive microwave retrieval. Previous76

efforts, such as SPARE-ICE (Holl et al., 2014) or geostationary retrievals (Amell et al., 2022, 2024;77

Tana et al., 2025), have demonstrated the efficacy of NN-based approaches. Similarly, recent studies78

involving co-authors of this paper have explored ML applications on IWP retrieval using polar-orbiting79

FY-3 satellites (Wang et al., 2022, 2024). However, a dedicated, long-term IWP dataset derived80

specifically from the advanced capabilities of the FY-3 constellation—which also incorporates a81

distinction between total ice and suspended ice—is currently absent from the community.82

83

To address these gaps, this study presents “FYAI” (Fengyun Satellite-Based Dataset for Atmospheric84

Ice Water Path), a novel global dataset generated using a NN-based framework. By training on 2C-ICE85

active remote sensing data and applying it to the MWHS-I/II records from the entire FY-3 family, FYAI86

provides a seamless 15-year record (2010-2024) of both Level-2 (L2) and Level-3 (L3) monthly87

gridded IWP. A unique feature of FYAI, achieved by integrating 2B-CLDCLASS product, is its ability88

to provide a separate product specifically for Suspended IWP (SIWP), distinguishing it from falling ice.89

This distinction offers additional observational constraints for climate models. FYAI offers a unique90
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combination of all-sky capability, dense spatial coverage, and the first-ever inclusion of dawn-dusk91

microwave observations, offering new insights into the global atmospheric ice content.92

2 Data93

2.1 Input data94

The primary passive microwave instruments utilized in this study are the MWHS-I and MWHS-II,95

onboard China’s second-generation polar-orbiting FY-3 series meteorological satellites. The MWHS-I96

is carried on the initial batch of these satellites (FY-3A and FY-3B). The MWHS-II represents a97

significant upgrade and was deployed in two successive batches: the first batch aboard the second98

satellite group (FY-3C, FY-3D), and the second batch aboard the third group (FY-3E, FY-3F). It99

expands the channel count from 5 to 15, adding new oxygen absorption channels near 118.75 GHz and100

a window channel at 89 GHz (Wang et al., 2024). Both MWHS-I and MWHS-II operate as cross-track101

scanners. The MWHS-I offers a nadir resolution of approximately 15 km across all its channels. For the102

MWHS-II, all channels also have a nadir resolution of about 15 km, with the exception of the 89 GHz103

and 118 GHz channels, which have a coarser nadir resolution of approximately 25 km. Detailed104

channel specifications, instrument parameters, and the data temporal coverage for each satellite are105

provided in Supplementary Tables S1-S4.106

For input into our retrieval model, we selected not only the Level-1 (L1) brightness temperature data107

from these instruments but also a suite of auxiliary geographical and geometric parameters. These108

additional features include the Digital Elevation Model (DEM), solar zenith angle, satellite zenith angle,109

land-sea mask etc. A comprehensive list of all input variables is presented in Table 1.110

Table 1 All input variables111

Brightness Temperature data Auxiliary data

Model for
MWHS

BT1 (150 GHz (V)), BT2 (150 GHz (H)),
BT3 (183.31±1GHz), BT4 (183.31±3GHz),
BT5 (183.31±7GHz),

SensorAzimuth, SensorZenith,
SolarAzimuth, SolarZenith,
LandSeaMask, DEM, Longitude,
Latitude

Model for
MWHS-II

BT1 (89GHz), BT11 (183.31±1GHz), BT12

(183.31±1.8GHz), BT13 (183.31±3GHz),
BT14 (183.31±4.5GHz), BT15

(183.31±7GHz)

SensorAzimuth, SensorZenith,
SolarAzimuth, SolarZenith,
LandSeaMask, LandCover, DEM,
Longitude, Latitude
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2.2 Reference data112

2.2.1 2C-ICE113

The CloudSat and CALIPSO ice cloud property product (2C-ICE) is developed by synergistically114

integrating measurements from the CloudSat Cloud Profile Radar (CPR) and the CALIPSO CALIOP115

lidar. Specifically, it utilizes CPR radar reflectivity (from the 2B-GEOPROF dataset) alongside116

CALIOP attenuated backscatter at 532 nm. By combining the penetration capability of the radar with117

the high sensitivity of the lidar to tenuous ice, this joint approach effectively overcomes the limitations118

of single-instrument retrievals, yielding IWC estimates with enhanced accuracy (Deng et al. 2010). The119

base CPR data provides vertical profiles at a 240 m resolution with a 1.4 km × 1.8 km footprint. In this120

work, the 2C-ICE product is specifically employed to be the IWP reference value.121

2.2.2 2B-CLDCLASS122

The 2B-CLDCLASS product, based on CloudSat CPR observations, utilizes a multidimensional123

approach to categorize clouds with high precision. The classification framework integrates key124

parameters, including hydrometeor dimensions (vertical/horizontal scales) and the maximum radar125

reflectivity factor (Ze), alongside crucial ancillary data such as precipitation flags and ECMWF126

temperature profiles, which aid in phase determination (Sassen and Wang, 2008). While enabling127

robust cloud climatology studies, in this work, the 2B-CLDCLASS product is specifically employed to128

distinguish and extract the SIWP component from the IWP.129

2.3 Validation data130

To ensure comprehensive evaluation, multiple validation datasets are utilized alongside 2C-ICE. These131

include satellite-derived retrievals from active and passive remote sensing instruments, as well as132

independent reanalysis products.133

2.3.1 DARDAR (raDAR/liDAR) IWP134

DARDAR (raDAR/liDAR) is a synergistic ice-cloud retrieval that combines CloudSat radar and135

CALIPSO lidar measurements within a variational framework to yield profiles of extinction coefficient,136

ice water content and effective radius (Re) (Delanoë and Hogan, 2008, 2010; Hogan et al., 2006). The137

algorithm adopts the “unified” particle-size distribution of Field et al. (2005) and employs138

in-situ-derived mass–and area–dimension relations for non-spherical ice particles (Brown and Francis,139
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1995; Li et al., 2012).140

2.3.2 CCIC IWP141

The Chalmers Cloud Ice Climatology (CCIC) is a long-term climate data record of global Total Ice142

Water Path (TIWP). It is generated by a deep learning model using geostationary satellite infrared143

window channel observations and provides continuous, all-sky (day and night) TIWP estimates from144

1983 to the present within 70°S-70°N, whuch has been demonstrated to agree well with other in-situ145

and active radar observations (Amell et al., 2024; Pfreundschuh et al., 2025).146

2.3.3 MODIS and VIIRS IWP147

This study utilizes operational IWP data derived from MODIS and VIIRS instruments, obtained148

through the CERES SSF1deg product suite.149

150

The IWP is retrieved via a bispectral algorithm from imager radiances and represents the total column151

ice mass. The native high-resolution retrievals are aggregated to CERES footprints and subsequently152

averaged onto a 1° global grid. Daily and monthly means are generated after temporal interpolation of153

instantaneous values (Platnick et al., 2017).154

2.3.4 ERA5 IWP155

ERA5 is the fifth-generation global atmospheric reanalysis from the European Centre for156

Medium-Range Weather Forecasts (ECMWF). It provides globally complete, hourly estimates of157

atmospheric variables from 1940 onward at a horizontal resolution of 0.25° . The dataset is produced158

using a fixed version of the ECMWF’s Integrated Forecasting System (CY41R2) and a 4D-Var159

assimilation system, which incorporates over 200 diverse observation sources to ensure physical160

consistency (Hersbach et al., 2020). In this study, the ERA5 variable “Total column cloud ice water” is161

used as SIWP, while the sum of “Total column cloud ice water” and “Total column snow water”162

represents the total IWP.163



7

3 Methodology164

3.1 Preprocessing165

3.1.1 Quality control166

The L1 data from the Fengyun series satellites include quality-related flags. For the MWHS-II data,167

three quality flags are provided: the scan line preprocessing quality flag (QA_Scan_Flag), the channel168

data integrity quality flag (QA_Ch_Flag), and the observed brightness temperature quality score169

(QA_Score). QA_Scan_Flag is an integer ranging from 0-12113, where 0 indicates successful170

preprocessing of the scan line. QA_Ch_Flag is a 16-bit binary code stored as an integer between 0 and171

65534, with 0 indicating complete channel data. QA_Score ranges from 0 to 100, with higher values172

indicating better brightness temperature quality. This study sets the following quality thresholds:173

QA_Scan_Flag = 0, QA_Ch_Flag = 0, and QA_Score ≥ 90. For the MWHS-I data, the following174

quality flags are similarly provided: calibration quality flag (cal_qc), pixel quality flag (pixel_qc), and175

scan line quality flag (scnlin_qc). All three flags are integers ranging from 0-65535. We exclusively176

select data points where all three flags equal 0. Additionally, for the 2C-ICE product, we excluded data177

points where the ‘Data_quality’ variable was non-zero, as a value of 0 indicates good data quality.178

3.2 Collocations179

To meet the requirements of machine learning algorithms, passive instrument observations must be180

spatiotemporally matched with reference data. FY-3D and CloudSat are both satellites in afternoon181

orbits. FY-3D crosses the equator at approximately 2:00 PM local time, while CloudSat crosses at 1:30182

PM. Due to CloudSat’s orbital drift during operation, the time difference between it and FY-3D is183

mostly within 15 minutes. Consequently, temporal matching is straightforward, and a 15-minute time184

window was selected to account for typical convective system time scales.185

186

Spatially, matching is more complex because MWHS-II has a coarser resolution than 2C-ICE, resulting187

in multiple 2C-ICE pixels falling within a single MWHS-II field of view (FOV). Based on previous188

studies (Holl et al., 2010; Wang et al., 2022), two criteria were initially adopted to ensure sufficient189

representativeness and homogeneity of the 2C-ICE pixels within each MWHS-II FOV: (1) at least nine190

2C-ICE pixels must lie within a 7.5 km radius of the MWHS-II FOV center, and (2) the coefficient of191

variation (standard deviation divided by the mean) of these 2C-ICE pixels must be less than 0.6.192
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193

However, two critical limitations regarding this spatial matching approach must be acknowledged. First,194

using a fixed 7.5 km distance threshold is imprecise because MWHS-II spatial resolution varies by195

frequency: approximately 15 km at 150/183 GHz, but 25 km at 89/118 GHz. Since channels near 118196

GHz are not included in our model input, only the 89 GHz channel differs in resolution from the others.197

Although the 89 GHz channel has a coarser resolution (25 km) and is crucial for IWP retrieval (Wang198

et al., 2024), we prioritized the matching accuracy for the 183 GHz channels (15 km), which constitute199

the majority of the input features. Therefore, the 7.5 km threshold is a compromise to ensure the200

highest fidelity for the sounding channels, despite the partial spatial mismatch at 89 GHz. Second,201

MWHS instruments are cross-track scanners, meaning their spatial resolution degrades as the scan202

angle increases away from nadir (Fig. S1). The stated resolutions of 15/25 km represent the nadir203

resolution (the theoretical maximum). This further indicates that using a fixed 7.5 km threshold across204

the entire swath is not entirely accurate. While we plan to introduce a scan-angle-dependent variable205

threshold in future updates, the fixed 7.5 km threshold was retained in the current version to maintain206

algorithmic simplicity and consistency across the swath matched with the nadir resolution baseline.207

208

Ultimately, using FY-3D data from October 2018 to October 2020, we generated a dataset containing209

2,667,945 matched points. For the MWHS-I instrument, FY-3B is also an afternoon satellite with an210

ascending node local time of 1:40 PM. We thus used its data from December 2010 to April 2011 and211

matched them with corresponding 2C-ICE data following the same criteria applied for MWHS-II. This212

process yielded 426,761 matched points. Both the MWHS-I and MWHS-II datasets were then split into213

training and testing sets. Subsequently, the training set was further divided, with 80% used for model214

training and the remaining 20% reserved for validation.215

216

The calibration process for the SIWP training dataset followed an approach similar to that used for the217

IWP dataset. Based on the FLAG methodology described by Li et al. (2012), we isolated the suspended218

component of the ice water path. This involved applying strict filtering criteria: all retrievals identified219

as surface precipitation were discarded. Furthermore, to minimize convective influence, we excluded220

data points classified as ‘deep convection’ or ‘cumulus’ according to the 2B-CLDCLASS product.221
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Similarly, the final dataset consisted of 2,667,945 matched points for MWHS-II and 426,761 matched222

points for MWHS-I.223

224

3.3 Postprocessing225

The L2 IWP product maintains a native spatial resolution of nominal 15 km at nadir. To support226

climatological analysis, we generate monthly L3 products on a uniform 1° × 1° global grid. This is227

achieved by resampling and averaging all available L2 data points within each grid cell for each228

calendar month.229

230

3.4 IWP retrieval algorithm231

To retrieve IWP from passive microwave remote sensing observations, we developed a NN-based232

model built upon the framework of Quantile Regression Neural Networks (QRNNs). QRNNs synergize233

the non-linear representation learning capabilities of neural networks with the statistical framework of234

quantile regression. Unlike traditional regression models that estimate only the conditional mean of a235

response variable, QRNNs are designed to estimate multiple conditional quantiles of the target236

distribution simultaneously. This approach provides a comprehensive probabilistic view of the237

prediction, quantifying the aleatoric uncertainty inherent in the data, which is particularly valuable in238

remote sensing retrievals where robust uncertainty assessment is crucial. Previous studies have239

demonstrated QRNNs to be a high-performance and readily deployable model in this field (Amell et al.,240

2022; Pfreundschuh et al., 2018; Wang et al., 2024). Furthermore, to enhance model performance, we241

implemented a deep residual network architecture combined with attention mechanisms (He et al.,242

2016; Vaswani et al., 2017). This design allows the model to automatically focus on the most critical243

feature channels in the input satellite data while maintaining high training stability. To enable the244

prediction of this uncertainty range, our model employs the specialized Quantile Loss, also known as245

the Pinball Loss, instead of the traditional Mean Squared Error (MSE) loss function. The formula for246

the Quantile Loss is expressed as follows:247

Lτ xτ,x = τ x − xτ xτ ≤ x
1 − τ x − xτ otherwise (1)248

xτ = inf x: F x ≥ τ (2)249
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L x = 1
N i=0

N Lτi
(xi� , x)� (3)250

251

Based on the fundamental assumption in deep learning that the training set, test set, and inference data252

are independent and identically distributed (i.i.d.), we calibrated our point estimation strategy using the253

test set statistics. Specifically, the deterministic point estimate was defined as the quantile associated254

with the mode of the optimal quantile distribution, calculated using 50 bins on the test set.255

Consequently, the optimal quantile was determined to be 47.87% for the MWHS-I model and 40% for256

the MWHS-II model. Additionally, the 5th and 95th percentiles were employed to define the257

uncertainty bounds for the IWP estimates. The matched dataset is partitioned into training and258

validation subsets. Prior to model training, the IWP reference values within the training set are259

log-transformed. To handle zero values in this transformation, they are replaced with a small positive260

value of 1×10-6. Analogous procedures were applied to the SIWP retrieval model. The specific structure261

of the model is shown in Figure 1, and the detailed hyperparameters are listed in Table S5.262

263
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264

265
Figure 1: Structural diagram of the QRNN model and flowchart of the retrieval algorithm.266

3.5 Evaluation metrics267

The performance of the QRNN model in retrieving IWP is evaluated via the root mean square error268

(RMSE) and Pearson correlation coefficient (R), which are calculated as follows:269

RMSE = 1
N i=1

N ypred,i − yref,i
2

� (4)270

R =
1
N i=1

N ypred,i−ypred yref,i−yref�

σpredσref
(5)271

Here, ypred and yref represent the model predictions and reference values, respectively, whereas σpred272

and σref are the standard deviations.273

274
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For low IWP values regime detection, performance is evaluated via a confusion matrix M, with metrics275

including FAR and CSI, defined as:276

M = TP FP
FN TN (6)277

True positives (TP) correspond to cases where both MWHS-I/II and CloudSat detect a low-IWP regime,278

whereas true negatives (TN) occur when neither of them identifies such a regime. False positives (FP)279

arise when MWHS-I/II detects a low-IWP regime that CloudSat does not confirm, and false negatives280

(FN) occur when CloudSat identifies a low-IWP regime that MWHS-I/II fails to detect.281

FAR = FP / (TP + FP) (7)282

CSI = TP / (TP + FN + FP) (8)283

4 Data Records284

We have ultimately generated L2 IWP and SIWP products, as well as monthly gridded L3 IWP and285

SIWP products, based on MWHS-I L1 data from the FY-3A/B satellites and MWHS-II L1 data from286

the FY-3C/D/E/F satellites. The L2 products have a nadir spatial resolution of 15 km, while the L3287

products are provided on a 1° × 1° grid.288

289

The L2 products adhere to the file naming convention290

“FY3X_MWHSX_GBAL_L2_YYYYMMDD_HHMM_015KM_FYAI.nc”, where “YYYYMMDD”291

and “HHMM” denote the date and start time (UTC) of the observation, respectively. Correspondingly,292

the L3 gridded products are designated as “FY3X_L3 _Gridded_YYYY-YYYY_FYAI.nc”.293

Additionally, for the L3 products derived from FY-3E and FY-3F, the naming convention distinguishes294

orbital direction, taking the form “FY3X_L3_Gridded_YYYY-YYYY_FYAI_ascend.nc” or295

“FY3X_L3_Gridded_YYYY-YYYY_FYAI_descend.nc”, where “ascend” and “descend” denote the296

ascending and descending orbits, respectively. Detailed variable specifications for both product levels297

are provided in Table 2, while the internal data structure and organization are visually depicted in298

Figure 2. The temporal coverage for these datasets extends from 2010 to 2024.299

300
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301
Figure 2: Schematic of the data file structure: (a) L2 data file structure; (b) L3 data file structure.302

Figure 3 shows the monthly count of FY-3 L1 data inputs to the model. Due to operational anomalies,303

hardware upgrades, and other mission-related factors, data availability dropped below 50% in certain304

months. The 50% data-availability criterion is not meant as a benchmark for climate-grade accuracy;305

whether it suffices depends on the study’s objectives and the natural variability of the target region306

(Bertrand et al., 2024; Kotarba et al., 2021). Nevertheless, we recommend that users exercise caution307

when utilizing data from months where availability falls below 50%.308

309
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310
Figure 3: MWHS-I and MWHS-II L1 data availability onboard the FY-3 series satellites.311

312

Table 2: Data variables in FYAI L2 and L3 products.313

Variable Name Dimensions Type Description

L2
product

IWP (scanline, pixel) float32 Ice Water Path
SIWP (scanline, pixel) float32 Suspended Ice Water

Path
IWP_uncertainty_upper (scanline, pixel) float32 95th quantile value of Ice

Water Path
IWP_uncertainty_lower (scanline, pixel) float32 5th quantile value of Ice

Water Path
SIWP_uncertainty_upper (scanline, pixel) float32 95th quantile value of

Suspended Ice Water
Path

SIWP_uncertainty_lower (scanline, pixel) float32 5th quantile value of
Suspended Ice Water
Path

lon (scanline, pixel) float32 Longitude
lat (scanline, pixel) float32 Latitude
time (scanline) dateti

me64
The UTC time of
scanline

L3
product

IWP_Annual_Mean (year, lat, lon) float32 Annual Mean Ice Water
Path from L2
observations

IWP_Annual_Uncertainty (year, lat, lon) float32 Uncertainty (Standard
Error of the Mean ,
SEM) of Annual Ice
Water Path
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IWP_Total_Annual_Count (year, lat, lon) float64 Total number of valid L2
Ice Water
Patobservations

SIWP_Annual_Mean (year, lat, lon) float32 Annual Mean Suspended
Ice Water Path from L2
observations

SIWP_Annual_Uncertainty (year, lat, lon) float32 Uncertainty (SEM) of
Annual Suspended Ice
Water Path

SIWP_Total_Annual_Count (year, lat, lon) float64 Total number of valid L2
Suspended Ice Water
Path observations

IWP_Monthly_Mean (year, month,
lat, lon)

float32 Monthly Mean Ice Water
Path

IWP_Monthly_Uncertainty (year, month,
lat, lon)

float32 Uncertainty (SEM) of
Monthly Ice Water Path

IWP_Monthly_Count (year, month,
lat, lon)

float64 Number of valid L2 Ice
Water Path observations
per month

SIWP_Monthly_Mean (month, lat, lon) float32 Monthly Mean
Suspended Ice Water
Path

SIWP_Monthly_Uncertainty (month, lat, lon) float32 Uncertainty (SEM) of
Monthly Suspended Ice
Water Path

SIWP_Monthly_Count (year, month,
lat, lon)

float64 Number of valid L2
Suspended Ice Water
Path observations per
month

lon (lon,) float32 Longitude
lat (lat,) float32 Latitude
month (month,) int32 Month of year
year (year) Int32 year

314

5 IWP retrieval performance315

It is important to acknowledge that since the QRNN model was trained and tested based on the 2C-ICE316

dataset, it inevitably inherits the systematic biases of the 2C-ICE product. Previous studies have317

indicated that assumptions regarding the lidar ratio, particle size distribution (PSD), and particle shape318

in the 2C-ICE retrieval algorithm introduce systematic uncertainties. Comparisons with in-situ319

observations suggest an uncertainty of approximately 30% in 2C-ICE retrieved IWC (Deng et al., 2010,320
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2013).321

322

Figure 4 illustrates the comparison of IWP retrieval performance between the two satellite sensors. In323

terms of quantitative regression metrics, the model performance on FY-3D is significantly superior to324

that on FY-3B. Specifically, the scatter plot for FY-3D (Figure 4a) shows a high consistency between325

predicted and reference values, with a correlation coefficient (R) of 0.833 and a RMSE of 450.78 g/m².326

In contrast, the scatter distribution for FY-3B (Figure 4d) is more dispersed, yielding a lower R of327

0.620 and a larger RMSE (871.40 g/m ²). This disparity highlights the substantial contribution of the328

rich channel information provided by MWHS-II to the quantitative retrieval of IWP.329

330

Regarding statistical distribution, we analyzed both the Quantile-Quantile (Q-Q) plots (Figure 4b and331

Figure 4e) and the Probability Density Functions (PDFs, Figure 5) based on an independent test dataset.332

As shown in the PDF analysis, the retrieved IWP distribution exhibits remarkable agreement with the333

reference distribution across nearly six orders of magnitude (ranging from 10-2 to 104 g/m2). This334

confirms that the model successfully reproduces the climatological statistics without suffering from335

significant mean-reversion. Both the PDFs and Q-Q plots indicate that the model robustly captures the336

data distribution characteristics. Critically, given the global mean IWP of approximately 100 g/m² (Xu337

et al., 2022), the model maintains robust performance across predominant atmospheric conditions.338

However, deviations are observed in the extremely low-value region in the Q-Q plots. This is likely339

attributable to the inherent physical limitations of passive microwave remote sensing, which is340

sensitive to large scatterers (e.g., snowflakes) but lacks sensitivity to small ice crystals.341

342

To further investigate model performance in the low-IWP value range, we performed a binary343

classification assessment on the test set using a threshold of 0.5 g/m². The results (Figure 4c and Figure344

4f) reveal distinct characteristics for the two sensors. Although FY-3D achieves higher quantitative345

retrieval accuracy, its confusion matrix (Figure 4c) indicates a relatively high False Alarm Ratio (FAR346

= 0.76) and a lower Critical Success Index (CSI = 0.23). This is primarily due to a large number of347

background pixels (low values) being misclassified as exceeding the threshold (FP = 257,474).348

Conversely, while FY-3B (Figure 4f) has lower regression accuracy, it exhibits a better balance in349
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classification metrics, with a lower FAR (0.51) and a relatively higher CSI (0.48). While this difference350

may be partially influenced by the varying sample sizes in the test sets, it suggests that the FY-3D351

model, while accurate in estimating IWP magnitude, tends to be over-sensitive at the boundary between352

weak signals and background noise.353

354

The performance analysis for SIWP yields similar conclusions to those for IWP and is detailed in the355

Supplementary Material (Fig. S2, Text S2).356

357

358
Figure 4: Performance metrics of the QRNN model on the IWP test dataset. (a) scatter plot of359
mode-retrieved IWP values versus reference values on MWHS-II; (b) Q-Q plot of predicted values versus360
reference values on MWHS-II; (c) confusion matrix for MWHS-II using an IWP threshold of 0.5 g/m²; (d)361
analogous to (a) but for MWHS-I; (e) analogous to (b) but for MWHS-I; (f) analogous to (c) but for362
MWHS-I.363

364
365
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366
Figure 5: Probability Density Functions (PDFs) of Ice Water Path (IWP) for the training dataset, testing367
dataset, and model retrievals. (a) FY-3D (MWHS-II model); (b) FY-3B (MWHS-I model). The histograms368
are calculated using logarithmically spaced bins to capture the wide dynamic range.369

6 Product validation370

6.1 Typhoon events371

Figure 6 presents the FYAI L2 IWP retrievals, alongside IWP estimates from the 2C-ICE product, the372

CCIC dataset, and ERA5 reanalysis data, capturing the case of Tropical Cyclone CILIDA over the373

South Indian Ocean on December 24, 2018. The retrievals from both MWHS-I and MWHS-II374

effectively capture the spatial distribution of high-IWP regions within the cyclone’s convective core, a375

feature that is also accurately characterized by the CCIC product. In contrast, while the ERA5376

reanalysis dataset broadly reproduces the macroscopic structure of these high-IWP regions, it exhibits377

significantly lower spatial detail compared to the satellite retrieval products.378

379

To further evaluate performance against the CCIC product and the narrow-swath 2C-ICE observations,380

we performed spatiotemporal collocation and generated scatter plots for quantitative analysis. As381

illustrated in the scatter plots, the retrievals from MWHS-II demonstrate a higher degree of agreement382

with both the CCIC and 2C-ICE benchmarks compared to MWHS-I. This indicates a substantial383

improvement in retrieval capability and performance for the second-generation instrument relative to384

its predecessor.385
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386
Figure 6: Comparison of FYAI L2 IWPs from MWHS-I and MWHS-II retrieval, CCIC, 2C-ICE and ERA5387
in a case study of tropical cyclone. UTC time is used.388

389

6.2 Global gridded product comparison and zonal mean comparison390

Figure 7 presents the multiyear average spatial distribution of the IWP, whereas Figure 8 shows the391

zonal mean distribution of the IWP. All the IWP products were resampled to a spatial resolution of392

(1°×1°). All the IWP products exhibit fundamentally consistent spatial patterns. Notably, FYAI393

demonstrates closer alignment with active sensor products than passive ones. However, it is important394

to point out that compared to the 2C-ICE and DARDAR active remote sensing baselines, the IWP395

retrieved from MWHS-II shows a slight overestimation in the equatorial region. In contrast, the396

MWHS-I retrievals align more closely with active observations at these latitudes. Meanwhile, both397
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MWHS-I and MWHS-II exhibit a notable underestimation in the mid-to-high latitudes of the Southern398

Hemisphere. Although the time series do not overlap, we selected the 2007-2010 period for active399

instrument comparison because of CloudSat’s superior data completeness before 2011. This selection is400

necessitated by data constraints but remains scientifically justified, as both spatial patterns and total401

magnitudes show minimal variation in IWP sequences. Additionally, passive optical/infrared402

instruments (MODIS, VIIRS) and the ERA5 reanalysis result in significant underestimations of IWP403

values at low-to-mid latitudes, whereas the MODIS and VIIRS retrieval products result in substantial404

overestimations in polar regions. For the SIWP, the multiyear average spatial distribution and zonal405

mean are shown in Figure 9 and Figure 10 ; the overall distribution closely resembles that of IWP, but406

the values are lower in magnitude. Notably, the SIWP derived from FYAI MWHS-II shows a closer407

agreement with 2C-ICE.408

409

410
Figure 7: Global average spatial distributions of the IWP compared with those of other satellite products411
and reanalysis products.412

413
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414
Figure 8: Zonal mean IWP compared with other satellite products and the ERA5 reanalysis.415

416

417
Figure 9 : Analogous to Figure 7 but for SIWP.418

419
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420
Figure 10 : Analogous to Figure 8 but for SIWP.421

6.3 Long-term analysis of gridded products422

Figure 11 presents the time series of global total atmospheric ice mass derived from our gridded423

retrieval products for the period of 2011 – 2024. For comparison, the orange and blue-green lines424

represent IWP data from 2C-ICE and DARDAR (another IWP product based on active remote sensing425

instruments; Delanoë and Hogan, 2008), respectively. Due to battery anomalies with CloudSat after426

2011, which resulted in the loss of nighttime data, the time series for both 2C-ICE and DARDAR are427

restricted to the 2007–2010 period.428

429

In terms of magnitude, our retrieval products align closely with 2C-ICE and DARDAR. In contrast,430

estimates from passive optical/infrared instruments (MODIS and VIIRS) and ERA5 reanalysis are431

significantly lower than the active radar-based baselines. Note that all mass calculations are432

area-weighted by latitude.433

434

However, the time series reveals that the FYAI product exhibits larger interannual variability compared435

to the 2C-ICE baseline. This variability is not uniform over time; it is most pronounced during the436

FY-3B era. While variability decreases in the later period, the fluctuations in the early record likely437

reflect sensitivity differences inherent to the first-generation instrument. The mean global total438
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atmospheric ice mass from our products for 2011–2024 is 57.62 ± 2.32 Gt (calculated as the mean ±439

one standard deviation based on a t-distribution; this also applies to the SIWP discussed below), which440

is consistent with our previous estimation using the DARDAR product (Xu et al., 2022).441

Regarding SIWP, retrievals from both MWHS-I and MWHS-II align closely with ERA5 and exhibit442

strong consistency with the 2007–2010 2C-ICE baseline (Figure 12). The estimated global suspended443

ice mass for the 2011–2024 period is 10.78 ± 0.99 Gt.444

445

446
Figure 11: Native time series of the monthly global average of total atmospheric ice and comparison with447
other satellite products, along with the ERA5 reanalysis. All calculations of total atmospheric ice consider448
latitude area weighting.449

450

451
Figure 12: Analogous to Figure 11. but for SIWP.452
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453

7 Uncertainty Analysis454

Although the uncertainty in IWC from 2C-ICE is approximately 30%, it remains one of the most455

reliable remote sensing IWP retrieval datasets currently available. As the FYAI dataset is generated456

using 2C-ICE as reference data for training machine learning models, it inevitably inherits uncertainty457

from 2C-ICE. This section outlines the uncertainty characterization for both FYAI L2 and L3 products.458

7.1 L2 Product Uncertainty459

The QRNN model employed in FYAI outputs an approximation of the quantile function (i.e., the460

inverse cumulative distribution function, or inverse CDF) of the conditional distribution. Consequently,461

the model implicitly models a conditional probability distribution, allowing for the retrieval of specific462

percentiles of the estimated variable. We have selected the 5th and 95th percentiles of the predicted463

distribution to represent the lower and upper bounds of uncertainty, respectively.464

7.2 L3 Product Uncertainty465

The uncertainty of the FYAI L3 product is calculated in two distinct stages. The first stage defines the466

uncertainty when aggregating L2 instantaneous observations into L3 monthly mean products, using the467

SEM as the metric. Based on the 5th/95th percentile bounds derived from the L2 products, and468

assuming errors follow a normal distribution, the variance for individual pixels is first estimated. Then,469

following the law of propagation of uncertainty (assuming independent errors among pixels within a470

grid cell), the variance of the grid mean is calculated (as the sum of individual variances divided by the471

square of the total number of observations falling within that grid). Finally, the square root of this472

variance is taken to obtain the monthly SEM.473

474

The second stage addresses the uncertainty when aggregating L3 monthly means into L3 annual means.475

To avoid underestimating the final uncertainty, a conservative estimation strategy is adopted: assuming476

highly correlated errors between months (e.g., potential systematic errors), the annual mean uncertainty477

is defined simply as the arithmetic mean of the uncertainties of the 12 months in that year.478

8 Conclusion and usage notes479

A global IWP and SIWP dataset spanning 2010 – 2024 was produced using a machine-learning480
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framework derived from passive-microwave observations (MWHS-I/II) onboard the FY-3 satellite481

series. Three distinct product levels were generated: (1) L2 IWP and SIWP preserving native sensor482

resolution (15 km at nadir); and (2) L3 monthly gridded global composites (1° × 1°) for individual483

sensors.484

485

Prioritizing global representativeness and long-term homogeneity over instantaneous pixel-level486

precision was a deliberate strategy in this study. While our passive microwave retrievals provide the487

wide-swath coverage essential for decadal climate analysis, they may not match the instantaneous488

accuracy of active sensors. We acknowledge that relying on 2C-ICE for training inevitably imparts the489

reference product’s systematic biases to our dataset. Furthermore, representativeness errors arise from490

the spatial mismatch between the coarse MWHS footprint (~15 km) and the narrow 2C-ICE track.491

Although the deep neural network effectively filters label noise by leveraging substantial data volumes492

—capturing robust statistical relationships even under beam-filling constraints—it must be noted that493

the reported error metrics likely underestimate the actual uncertainty in highly heterogeneous scenes.494

495

Specific limitations regarding variable definition and instrument stability must be acknowledged. First,496

the partition of SIWP from total IWP represents an exploratory effort. Since no single instrument497

currently distinguishes suspended from falling ice reliably, this separation serves primarily to facilitate498

model-observation comparisons. Second, regarding temporal stability, specific subsets of the FYAI499

dataset require cautionary usage (summarized in Table 3 Summary of FYAI dataset components500

requiring cautionary usage or having specific limitations). The larger interannual variability501

observed in the FY-3B era reflects a necessary trade-off: lacking the 89 GHz channels available on502

MWHS-II, we incorporated the 150 GHz channel to ensure sensitivity to ice clouds (Wang et al., 2022).503

Unlike the opaque 183 GHz band, this window channel is susceptible to surface emissivity variations,504

introducing background noise into the time series—a stability issue largely resolved in the post-2014505

MWHS-II era. Additionally, L3 products derived from FY-3B show anomalous positive deviations506

during 2017–2019, attributed to potential instrument aging. Conversely, FY-3A products (2010–2013)507

exhibit a slight underestimation. While FY-3A and FY-3B form a valuable morning-afternoon508

constellation, users should be aware of these calibration nuances when conducting long-term trend509
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analyses. We are actively working to address these issues in future updates through physics-based510

constraints and close collaboration with instrument specialists.511

512

Based on this methodology, we generated comprehensive retrieval products spanning FY-3A through513

FY-3F. A distinctive advancement of this dataset is its global applicability over both land and ocean—514

surpassing the ocean-only limitation of many existing passive microwave products.515

516

Table 3 Summary of FYAI dataset components requiring cautionary usage or having specific limitations517

Satellite/Sensor
Name

Time
Product
Level

Note

FY-3A (MWHS-I) 2010-2013 L3
Use with caution for long-term
time series analysis.

FY-3B (MWHS-I) 2017-2019 L3
Use with caution for long-term
time series analysis.

FY-3C (MWHS-II) 2015/5/31-2015/7/31 L2, L3
FY-3C operational service has
been suspended since 31 May
2015 due to technical reasons.

518

Looking ahead, we will explore advanced data fusion architectures to address current limitations. Our519

future work will prioritize three key directions: (1) Synergetic retrievals combining passive microwave520

with optical/infrared observations, utilizing cloud-top information to compensate for the microwave521

spectrum’s insensitivity to cirrus clouds; (2) Joint retrieval frameworks that simultaneously assimilate522

multispectral observations within a unified radiative transfer model; and (3) Physics-Informed Neural523

Networks (PINNs) that incorporate cloud microphysical constraints to enhance the accuracy of vertical524

stratification.525

526

In particular, the deployment of next-generation observation missions, such as EarthCARE and DQ-1,527

will provide superior reference benchmarks. Integrating these high-fidelity datasets will allow us to528

mitigate label noise and further refine retrieval accuracy. Furthermore, recognizing the rapid529

advancements in terahertz remote sensing instrumentation (Li et al., 2023), we plan to leverage530
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terahertz technology to achieve higher-precision retrievals of IWP and SIWP. Collectively, these531

enhancements will significantly bolster the product’s utility for monitoring rapidly evolving532

meteorological phenomena and validating climate model cloud parameterizations.533

9 Code and data availability534

The datasets generated in this study are available for download at535
https://doi.org/10.11888/Atmos.tpdc.303143 and https://cstr.cn/18406.11.Atmos.tpdc.303143, and536
should be cited as (Yang et al., 2025). Additionally, the code and model weights have been deposited at537
(Yang, 2025). Regarding the public source data used in this work, the FY-3 MWHS-I/II Level-1538
observations are accessible via the National Satellite Meteorological Center (NSMC) data portal539
(https://data.nsmc.org.cn); the CloudSat-CALIPSO products (2C-ICE and 2B-CLDCLASS) can be540
obtained from the CloudSat Data Processing Center (https://data.nsmc.org.cn); the ERA5 reanalysis541
data are available via the Copernicus Climate Change Service (C3S) Climate Data Store542
(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview) under the543
dataset “ERA5 hourly data on single levels from 1940 to present”; and the CCIC product is hosted on544
the Amazon Web Services (AWS) Open Data Registry (https://registry.opendata.aws/ccic/.545
AmazonWebSevicesOpenData).546
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