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Abstract. Aviation’s climate impact includes not only CO, emissions but also significant non-CO, effects, especially from
contrails. These ice clouds can alter Earth’s radiative balance, potentially rivalling the warming effect of aviation CO,. Physics-
based models provide useful estimates of contrail formation and climate impact, but their accuracy depends heavily on the
quality of atmospheric input data and on assumptions used to represent complex processes like ice particle formation and
humidity-driven persistence. Observational data from remote sensors, such as satellites and ground cameras, could be used to
validate and calibrate these models. However, existing datasets don’t explore all aspect of contrail dynamics and formation: they
typically lack temporal tracking, and do not attribute contrails to their source flights. To address these limitations, we present
the Ground Visible Camera Contrail Sequences, a new open data set of contrails recorded with a ground-based all-sky camera
in the visible range. Each contrail is individually labelled and tracked over time, allowing a detailed analysis of its lifecycle. The
dataset contains 122 video sequences (24,228 frames) and includes flight identifiers for contrails that form above the camera.
As reference, we also propose a unified deep learning framework for contrail analysis using a panoptic segmentation model
that performs semantic segmentation (contrail pixel identification), instance segmentation (individual contrail separation), and
temporal tracking in a single architecture. By providing high-quality, temporally resolved annotations and a benchmark for
model evaluation, our work supports improved contrail monitoring and will facilitate better calibration of physical models.

This sets the groundwork for more accurate climate impact understanding and assessments.

1 Introduction

Aviation contributes to global climate change not only through carbon dioxide (CO,) emissions but also through a variety of
non-CO, effects, including nitrogen oxides (NOy), water vapour and aerosols. Among these, condensation trails (contrails),
ice-crystal clouds formed by aircraft at typical cruising altitudes, stand out for their potentially large, yet uncertain, radiative
impact. Though they often appear as ephemeral white streaks in the sky, persistent contrails can spread into extensive cirrus-like
cloud formations that trap outgoing long-wave radiation, warming the planet. Recent studies suggest that the climate forcing
due to contrail cirrus clouds is of the same order of magnitude as aviation CO, emissions (Lee et al., 2021; Teoh et al., 2023),

although this depends on the metric used (Borella et al., 2024).
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Yet, accurately assessing the climate impact of contrails remains a significant challenge for both aviation and climate sci-
entists. The lifecycle of the contrails depends on complex interrelated processes, such as ice nucleation, crystal growth, wind-
driven dispersion, and interaction with natural clouds, that are sensitive to ambient atmospheric conditions. Small variations
in temperature and humidity, particularly relative humidity with respect to ice, can determine whether a contrail dissipates
quickly or persists and spreads. This sensitivity, combined with the diurnal variability in radiative forcing (cooling when re-
flecting sunlight during the day; warming when trapping infrared radiation at night), makes the net effect of contrails both
context-dependent and extremely difficult to model reliably.

While contrail impacts have traditionally been studied using physical models, recent advances in remote sensing and com-
puter vision now offer a valuable observational perspective. Physics-based models, such as the Contrail Cirrus Prediction model
(CoCiP) (Schumann, 2012) or Aviation Particle Composition and Evolution Model for Microphysics (APCEMM) (Fritz et al.,
2020) simulate the lifecycle of a contrail by solving complex equations that describe the interaction between aircraft emissions
and atmospheric conditions. These models provide valuable theoretical insights, but their accuracy is heavily dependent on
the quality of the input data (Gierens et al., 2020). Key parameters, such as atmospheric temperature, humidity, and aircraft
engine characteristics, are often uncertain and these uncertainties propagate through the calculations, affecting the reliability of
the results. Moreover, detailed simulations of contrail microphysics and radiative effects can be computationally demanding,
particularly when applied to global-scale analyses.

Observational methods, using satellite and ground-based imagery, offer a direct and data-driven way to study contrails, com-
plementing theoretical models. Advances in high-resolution remote sensing and computer vision have made these methods
increasingly effective (Meijer et al., 2022; McCloskey et al., 2021; Ng et al., 2023; Chevallier et al., 2023). Beyond detec-
tion, observational data should play an increasing role in the future in refining physics-based models by providing empirical
validation and calibrating the uncertain parameters mentioned above.

Integrating observational data with air traffic information like Automatic Dependent Surveillance-Broadcast (ADS-B) and
meteorological data holds significant promise for advancing our understanding of the contrail lifecycle and climate impact.
Linking contrails to specific flights, for which detailed parameters (e.g., engine type, altitude, and atmospheric conditions) are
known, will allow for a better understanding of the role of these parameters into contrail formation and dynamics. However,
achieving this integration requires addressing foundational challenges: accurately identifying contrails in images and/or videos,
distinguishing them from natural clouds (semantic segmentation), detecting individual instances (instance segmentation), and
tracking their evolution over time. This paper focuses on these critical first steps, developing robust methods for contrail
segmentation and tracking in both individual ground camera images and videos. While attribution remains a very challenging
task to perform at scale using in particular geostationary satellites (Chevallier et al., 2023; Riggi-Carrolo et al., 2023; Geraedts
et al., 2024; Sarna et al., 2025) our work provide the necessary tools to reliably detect and track contrails locally, laying the
groundwork for subsequent integration with flight and meteorological data.

Despite growing interest in observational contrail analysis, publicly available datasets are still limited in scope. The most
universally used resource, Google’s OpenContrails, offers instance-level masks only on the central GOES-16 frame, with

surrounding images left unannotated, hindering contrail tracking across time. In contrast, Sarna et al. (2025) introduced Syn-
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thOpenContrails, which overlays synthetic contrails and annotations onto real scenes, providing full per-frame localization,
tracking, and flight attribution, demonstrating that richly annotated data exists, even if confined to synthetic contrail over-
lays rather than human annotation. An ideal scenario would be a fully annotated video dataset where every frame is humanly
labelled and each contrail is assigned a persistent identifier.

To advance research in this area, this paper present the Ground Visible Camera Contrail Sequences (GVCCS), an open
dataset (Jarry et al., 2025) with instance-level annotations, derived from ground-based video recordings in Brétigny-sur-Orge,
France (Réuniwatt CamVision visible ground-based camera). Our dataset includes 122 videos (of duration between 20 min
to five hours) with a total frame number of around 24,200, each annotated with instance-level labels. By making this dataset
openly available, this paper provides a valuable benchmark for both the atmospheric and aviation research communities.

To support future performance comparisons, we introduce here a deep learning-based model for contrail segmentation and
tracking. Instead of relying on separate models for these tasks, an approach that often requires complex, ad-hoc combinations
of techniques, we adopt a unified framework based on Mask2Former, a state-of-the-art computer vision model. Mask2Former
is designed for panoptic segmentation, which combines semantic segmentation (labelling each pixel with a class, e.g., contrail
or sky) and instance segmentation (distinguishing between individual objects, e.g., different contrails). In addition to separating
contrails from clear sky, it could handle complex backgrounds, such as low-altitude cloud layers that partially or fully obscure
contrails, by assigning appropriate cloud labels while still maintaining unique instance identities. For example, in a single
image, panoptic segmentation can identify all visible contrail pixels, correctly label intervening clouds, and assign consistent
instance masks to each contrail, even when they overlap, intersect, appear fragmented, or are seen through thin cloud cover.
In fact, contrails often break into multiple disconnected components due to atmospheric conditions and natural dissipation
processes. A robust monitoring system must not only identify these fragments, but also associate them with the correct contrail
instance.

It is worth noting that, fragmentation poses a significant challenge for contrail analysis based solely on images or videos:
visually disjointed segments from the same flight must be grouped without external data. Moreover, low-altitude cloud obscu-
ration and sun glare can further interrupt or mask contrail continuity, producing multi-polygon annotations even for a single
physical contrail. In operational settings, however, it is possible to first perform single-polygon instance segmentation and then
associate multiple instances with the same flight using auxiliary data such as aircraft trajectories and wind fields. This post-
processing step enables grouping across time and space based on flight identity rather than visual continuity. In this work, we
restrict ourselves to purely image-based analysis and defer the integration of external data sources to future work.

Mask2Former, originally designed for individual images, can be easily extended to video data to improve the consistency
of panoptic segmentation across frames. By leveraging temporal information, Mask2Former for videos performs semantic
segmentation, instance segmentation, and tracking in an integrated manner. In this paper, we study both the frame-based and
video-based versions of Mask2Former, comparing their performance on our dataset.

The remainder of this paper is structured as follows. Section 2 provides the necessary background on contrail formation and
computer vision techniques, establishing the foundation for the challenges addressed in this work. Section 3 reviews related

work on contrail datasets and segmentation models, highlighting current limitations and motivating our approach. Section 4
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introduces our newly developed video-based dataset, detailing its annotation methodology and unique instance-level structure.
Section 5 describes our panoptic segmentation framework based on the Mask2Former architecture. Section 6 presents and

analyses the experimental results. Finally, Section 7 summarises our main contributions and outlines future research directions.

2 Background

This section introduces the key concepts necessary to understand the challenges addressed in this work. We begin by outlining
the physical processes behind contrail formation and the implications for climate, focusing on why contrails are particularly
difficult to detect and track. We then review relevant computer vision techniques, specifically object detection and image

segmentation, and assess their suitability for analysing contrails.
2.1 The science of contrails

Contrails are artificial clouds that form behind aircraft when hot, humid engine exhaust mixes with the cold, low-pressure air
at cruising altitudes, typically in the range 8-12 km. If the atmospheric conditions are right, specifically, if the temperature
falls below -40 °C and the air is sufficiently humid, the water vapour in the exhaust condenses and freezes into ice crystals.
This process, modelled and quantified by the Schmidt-Appleman criterion (Appleman, 1953), produces the familiar thin, white
trails visible in the sky. Some contrails dissipate rapidly, while others persist and spread, eventually forming larger ice cloud
structures known as contrail cirrus.

Like natural clouds, contrails influence the Earth’s radiation budget: they trap outgoing long-wave radiation, leading to warm-
ing, while also reflecting incoming solar radiation, which has a cooling effect. The net result depends on the contrail’s altitude,
optical properties, lifespan, and the time of day. The precise relative impact depends on the climate metric chosen (Borella
et al., 2024); however, contrails are thought to warm the climate at a level of the same order of magnitude as aviation’s CO,
emissions (Lee et al., 2021; Teoh et al., 2023). This makes the monitoring and characterization of contrails an essential part
of understanding aviation’s full environmental footprint (Teoh et al., 2023) and developing mitigation strategies (Teoh et al.,
2020).

As mentioned above, the observational viewpoint offers an alternative perspective that focuses on detecting and analysing
contrails directly in atmospheric imagery. However, detecting and tracking contrails presents several technical challenges,
which helps explain the growing research interest in the topic. Satellite imagery often lacks the spatial and temporal resolution
needed to detect contrails in their early stages (Ng et al., 2023). Geostationary satellites have a nominal spatial resolution of
about 0.5-2 km and a temporal resolution of 5-15 min, which is often insufficient to capture the narrow, faint, and short-lived
nature of freshly formed contrails unless they persist and grow. Even when contrails do spread into detectable cloud structures,
they are difficult to distinguish from natural cirrus, particularly in scenes with complex cloud layers. Moreover, by the time a
contrail is visible in satellite images, it has often drifted and deformed, complicating the attribution to the flight that produced

it (Chevallier et al., 2023; Sarna et al., 2025). This linkage is crucial, as identifying the originating flight enables researchers to
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retrieve essential details such as aircraft type and engine model, key inputs for assessing contrails’ environmental impact and
improving physical models through comparison with empirical observations.

Ground-based cameras (Schumann et al., 2013; Low et al., 2025) offer a complementary perspective with critical advan-
tages. Positioned beneath flight paths, these systems can capture high-resolution images and video with far greater spatial and
temporal fidelity than satellites. Crucially, they can detect contrails immediately after formation, while they are still thin, linear,
and visually distinct. This early visibility simplifies the task of associating observed contrails with the specific flight responsi-
ble, especially when combined with precise trajectory data. The main drawback is, naturally, their restricted coverage, which
hinders the ability to monitor contrails from their formation to dissipation.

While not the focus of this paper, one promising direction involves combining ground-based and satellite observations into a
unified monitoring framework. In such a system, contrails would first be detected in high-resolution ground-based imagery and
attributed to specific flights using trajectory and weather data providing access to key aircraft and engine parameters. Crucially,
to enable continuous tracking beyond the limited field of view of the ground-based camera, these contrails would then need
to be reliably linked to their evolving counterparts in satellite imagery as they drift, expand, and age. Successfully associating
contrails across these two modalities, ground and satellite, would allow monitoring of their full lifecycle from formation to

dissipation while preserving information about the specific aircraft and flight responsible for creating them.
2.2 Computer vision techniques for contrail monitoring

Contrails are visually challenging targets for computer vision due to their thin, elongated shapes, variable curvature, and
tendency to fragment or fade over time. These characteristics make them fundamentally different from the objects typically
addressed in standard object detection benchmarks, such as vehicles and animals in datasets like the Common Objects in
Context (COCO) dataset, which features well-defined, discrete objects.

Traditionally, object detection methods localise targets using bounding boxes, usually axis-aligned rectangles. This approach
works well for objects like cars or animals, which are compact and roughly rectangular, but performs poorly for contrails. A
single axis-aligned bounding box may inadvertently include multiple contrail segments or large amounts of background sky,
while missing parts of curved or fragmented trails. Oriented bounding boxes offer some improvement by allowing rotation,
which better fits the geometry of elongated contrails. However, they still fall short in capturing fine-grained shapes, gaps, or
fading segments. Figure 1 shows the limitations of axis-aligned and oriented bounding boxes for object detection on contrails.

Instance segmentation provides a more precise solution by predicting pixel-level masks for each individual object. This
approach is particularly beneficial for contrails, as it can delineate each trail accurately even when they intersect, overlap, or
dissipate unevenly. For instance, two overlapping contrails that fade at different rates can still be assigned to distinct instances.

Semantic segmentation, in contrast, labels each pixel by class, e.g., contrail or sky, but does not distinguish between indi-
vidual contrails. This is insufficient when studying temporal evolution or interactions between specific contrails, since it treats
all contrails as a single undifferentiated class.

Panoptic segmentation combines the strengths of both approaches: it assigns a class label to every pixel (semantic seg-

mentation) and an instance identifier where appropriate (instance segmentation). In this framework, things such as individual
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(a) Axis-aligned bounding boxes (b) Oriented bounding boxes

Figure 1. Illustration of bounding box detection on contrails. Each detected contrail is highlighted with a distinct colour. It should be noted

that elongated or fragmented contrails challenge bounding box alignment and separation.

contrails are assigned unique instance labels, while stuff like the background sky or natural clouds is labelled only by class.
160 This unified view is well-suited to contrail monitoring, enabling fine-grained analysis of individual contrails within the broader
atmospheric context. Moreover, the framework can be readily extended to additional classes (e.g., cirrus, cumulus) for more
comprehensive scene understanding, provided, of course, that these classes have been effectively and consistently labelled
during dataset creation, which introduces an additional layer of complexity to the annotation campaign. Figure 2 illustrates the

instance, semantic and panoptic segmentation methods.

(a) Instance (b) Semantic (c) Panoptic

Figure 2. Comparison of segmentation methods applied to illustrative contrails. Distinct colours indicate different contrail instances or

classes, depending on the method.
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An important but often overlooked issue in the literature is how contrails are geometrically represented. In reality, a single
contrail may consist of several disconnected segments, for example, due to fading or occlusion, making it a multi-polygon
shape. See, for instance, the green contrail in Figs. 2a and 2c. However, the most natural approach is to simplify this by treating
each segment as a separate, independent polygon, effectively assuming that each fragment belongs to a different contrail.

While this simplification avoids the complexity of handling multi-polygons directly, it introduces a significant challenge: to
reconstruct the full contrail, one must find a way to link fragmented pieces together. This requires ad-hoc linking strategies,
which vary in complexity and accuracy. Some methods rely purely on the geometric properties of the fragments, such as their
proximity or alignment, while others incorporate external data, such as aircraft flight paths or meteorological information, to
make more informed associations.

In this work, we adopt panoptic segmentation as the foundation for segmenting and tracking contrails. This choice is mo-
tivated by its ability to simultaneously achieve instance-level precision and maintain contextual awareness of the surrounding
scene. Moreover, by explicitly addressing the issue of fragmented contrails, our method enables instance-level identification
of contrails without requiring external sources of information, such as flight or weather data. This is particularly valuable in
scenarios where such data may be unavailable or incomplete. However, we also explore an alternative version of the model
that treats each contrail fragment as an independent instance, under the assumption that a downstream algorithm, leveraging
external traffic and meteorological data, will later associate these segments with their corresponding flights. The comparative
evaluation of these two strategies, self-contained instance identification versus externally supported post-association, will be

presented in future publications. In this paper, we focus solely on presenting the contrail segmentation models themselves.

3 State of the art

This section presents an overview of prior work in contrail segmentation and analysis, focusing first on the datasets that have
been developed to support this research, and then on the computational models used for contrail segmentation and flight attri-
bution. The scope and key features of existing datasets are outlined, with particular attention given to the limited availability of
temporal annotations and flight attribution ground truth. Subsequently, we examine state-of-the-art segmentation and tracking
methods, particularly deep learning-based approaches, assessing their applicability and performance in contrail analysis. This

review highlights gaps in current research and motivates the contributions presented in this paper.
3.1 Datasets

Recent advances in contrail detection have been supported by the development of annotated datasets, primarily based on satel-
lite imagery. These datasets have facilitated the application of computer vision techniques for contrail identification, although
aspects such as temporal continuity and integration with flight metadata remain limited in most cases. In this section, we review
the most relevant publicly available datasets and place our contributions within this context.

Kulik (2019) and Meijer et al. (2022) are to our knowledge the first studies to leverage a modern, data-driven, deep learning

framework for large-scale contrail segmentation. The authors developed and applied convolutional neural networks, which
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were trained using a manually curated dataset comprising over 100 manually annotated geostationary GOES satellite images
with instance segmentation.

One of the first large-scale labelling efforts in contrail detection was led by Google Research, beginning with the development
of a contrail dataset based on high-resolution Sentinel satellite imagery (McCloskey et al., 2021). Human experts manually
annotated the images using structured guidelines, producing polygonal masks for each visible contrail segment. Multiple
annotators independently labelled each image, and the dataset includes all individual annotations, with the option to filter
results by majority consensus. This methodology improved both the spatial precision and overall quality of the labels.

Building on this work, Google released the OpenContrails dataset (Ng et al., 2023), which is based on images from the
GOES-16 Advanced Baseline Imager (ABI). Thanks to the 10-minute temporal resolution provided by the geostationary orbit
of GOES-16, the dataset is well suited to study contrails at large scales. OpenContrails offers temporal context by including
short sequences of unlabelled images surrounding each annotated frame, providing valuable information to annotators for more
accurate labelling. Only the central frame in each sequence is annotated, therefore not allowing a direct comparison of contrail
dynamics with physical models. Notably, a 2025 update introduced instance-level labels, enabling the use of the dataset for
instance-based models and expanding its potential for more advanced contrail analysis.

Gourgue et al. (2025) introduce an open-access corpus of around 1,600 polygon- annotated hemispheric sky images acquired
at the SIRTA atmospheric laboratory, near Paris, offering class labels that distinguish young, old, and very old contrails as well
as several confounding artefacts. By capturing high-resolution ground views minutes after formation, the dataset fills the
temporal—spatial gap left by satellite benchmarks.

Rather than creating a dataset for training modern convolutional networks on segmentation tasks, Low et al. (2025) manually
annotated the correspondence between contrail waypoints, derived from the application of the CoCiP model and observations
from their wide-angle ground camera system. This approach is particularly well-suited for directly assessing and parametrizing
physical models.

Meijer et al. (2024) is to our knowledge the first example of dataset collocating images on two different remote sensors:
they assembled a dataset specifically for contrail altitude-altitude estimation, comprising over 3,000 cases over the contigu-
ous United States (2018-2022). Contrails were first located via automated detection in GOES-16 ABI infrared imagery, then
precisely collocated, correcting for parallax and wind advection, with CALIOP lidar cross-sections. The team then conducted
manual inspections of the matched imagery to verify and validate alignment. This benchmark dataset linking geostationary con-
trail signatures to high-resolution vertical profiles enables supervised deep-learning approaches to predict contrail top heights
from ABI data.

A significant advance in contrail detection has been the development of synthetically labelled datasets. Chevallier et al.
(2023) generated a synthetic dataset using CoCiP (Schumann, 2012) to overlay contrail polygons onto GOES-16 imagery,
enabling the first instance segmentation pipeline for contrail detection. The performance of flight assignment algorithms was
validated using actual GOES data, through manual inspection rather than synthetic reference ground truth. Building on this
synthetic foundation, Sarna et al. (2025) introduced a benchmark dataset, SynthOpenContrails, with sequences of synthetic

contrail detections tied to known flight metadata, providing the first opportunity to quantitatively evaluate and improve con-
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trail-flight attribution algorithms. To our knowledge, this is the only dataset providing localized and tracked contrails with
attributable ground truth, albeit synthetic. While the use of synthetic datasets represents a modern and cutting-edge technique
for training algorithms, the use of manually labelled data as test sets is still theoretically preferable to objectively assess algo-
rithmic performance. However, obtaining such datasets on geostationary satellite images, with their coarse resolution, remains
very difficult at this stage, which motivates the approach adopted by the authors. As mentioned by Sarna et al. (2025), obtaining
such a reference dataset with ground truth for flight attribution based on human annotations is definitely feasible in principle
with higher resolution low orbit satellites or ground-based cameras, which is the focus of the present work.

Overall, while existing datasets have contributed valuable resources there is a lack of comprehensive, human-labelled data
containing temporally resolved, instance-level and flight-attributed annotations. Our work addresses this issue by introducing

a dataset designed to provide these annotations, collected using our ground camera system.
3.2 Models

Contrail monitoring with computer vision was first pioneered in the early nineties (Forkert et al., 1993; Mannstein et al., 1999),
using non-data-driven image-analysis techniques. Their work applied linear-kernel methods, direct thresholding of brightness
temperature difference channels, and early Hough-transform operators (Pratt, 2007) optimized for linear shape detection, to
identify contrails in AVHRR satellite imagery. This approach was further improved by Vazquez-Navarro et al. (2010) and Duda
etal. (2013).

To the best of our knowledge, Kulik (2019); Meijer et al. (2022) represent the earliest applications of modern convolutional
networks to pixel-level classification and semantic segmentation. Building on the OpenContrails dataset, Ng et al. (2023)
employed semantic segmentation algorithms, specifically DeepLabV3 (Chen et al., 2017, 2018), to identify contrails in ash-rgb
composites using brightness temperature differences. Their work demonstrated that adding temporal context via a 3D encoder,
incorporating the time dimension, led to improved performance. Moreover, results from the subsequent Kaggle competition
showed that UNet models (Ronneberger et al., 2015) equipped with modern transformer backbones, such as MaxViT (Tu et al.,
2022) and CoatNet (Dai et al., 2021), achieved even stronger results (Jarry et al.).

Using an ensemble approach, Ortiz et al. (2025) combined six neural networks, including U-Net, DeepLab, and transformer
architectures, and applied optical-flow-based corrections to maintain temporal consistency across consecutive satellite frames.
Meanwhile, Sun and Roosenbrand (2025) introduced a Hough-space line-aware loss for few-shot scenarios, supplementing
Dice loss with a global alignment term to encourage predictions to align with linear structures.

Shifting from pixel-level masks to instance-level contrail segmentation and making use of synthetic data Chevallier et al.
(2023) introduced the first algorithmic pipeline focused on instance segmentation for contrail detection, utilizing the Mask
R-CNN algorithm (He et al., 2017). Similarly, Van Huffel et al. (2025) adopted Mask R-CNN to process images captured by
their wide-angle ground camera system.

The difficult task of attributing detected contrails to individual flights (typically using ADS-B information) in geostationary
satellite imagery has been the focus of several recent studies. Chevallier et al. (2023) introduced a pipeline that combines

contrail detection, tracking, and matching with aircraft using geometric criteria and wind-corrected trajectories. Riggi-Carrolo
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et al. (2023) proposed an probabilistic matching methods that account for uncertainties in flight data and atmospheric condi-
tions leveraging as well on Hough-based line detection. Geraedts et al. (2024) presented a scalable system designed to assign
contrails to flights on a large scale, enabling routine monitoring of contrail formation and supporting climate assessments. Sarna
et al. (2025) systematically benchmarked and refined these attribution algorithms, highlighting common challenges and propos-
ing improved association metrics, building on the release of the synthetically generated SynthOpenContrails dataset

By contrast, our work targets ground-based imagery, capturing contrails immediately after formation and enabling near-
instantaneous flight attribution via ADS-B data. We harness panoptic segmentation using Mask2Former, trained on high-
resolution video, to extract pixel-accurate masks of individual contrails and track them over time. This fills the gap in early-

stage contrail detection and provides richer spatial and temporal detail than existing satellite-based models.

4 Dataset

The primary contribution of this paper is the introduction of a new dataset designed to support contrail detection, tracking and
attribution. This section provides a detailed overview of the dataset. Section 4.1 describes the data collection and labelling

campaign. Section 4.2 summarizes the structure and content of the dataset.
4.1 Data collection and labelling campaign

To support the development of machine learning models for contrail detection, we conducted an extensive labelling campaign
as part of the ContrailNet project. Visible-spectrum image sequences were acquired using a all-sky ground-based camera
installed on the roof of the EUROCONTROL Innovation Hub, capturing the sky every 30 s at a resolution of 1,976 x 2,032
pixels.

Our camera provider, Reuniwatt, has delivered a dual all-sky camera system: the first unit, CamVision, operates in the visible
spectrum, capturing high-resolution fisheye images every 30 s with on-board processing and self-calibration, ensuring reliable
daytime operation even in dusty or wet conditions. The second unit, SkyInsight, uses long-wave infrared (8-13 pm) imaging
via a chrome-coated hemispherical mirror and will be used in future research.

The raw all-sky images were first geometrically projected onto a square grid. This projection process, uses camera-specific
calibration files to associate each pixel with its corresponding azimuth and zenith angles, effectively removing lens distortions
and re-mapping the sky onto a uniform Cartesian representation. A 75 x 75 km grid of georeferenced points was computed at
a fixed cloud altitude (10 km), and a linear interpolation scheme was used to assign raw pixel values to the projected frame.
The output is a square image of size 1,024 x 1,024 pixels that preserves the spatial geometry of the sky above the camera.

To improve the visual clarity and consistency of the sequences, each projected image then undergoes a three-step enhance-
ment process. First, brightness is increased using a linear scaling operation. Second, local contrast is enhanced via CLAHE
(Contrast Limited Adaptive Histogram Equalization), which boosts features like contrails without overexposing the image.

Finally, colour warmth is reduced by rebalancing the blue and red channels, improving contrail visibility in high-sunlight con-

10
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(a) Raw image from the ground-based camera with visible contrails. (b) Geometrically projected and enhanced image used for annotation.

Figure 3. Side-by-side comparison of the raw ground-based camera image and the geometrically projected version used for annotation.

Projection corrects perspective distortions and enhances contrast for better segmentation.

ditions. This preprocessing pipeline proved essential in highlighting fine contrail structures, especially in complex atmospheric
scenes. Both raw and enhanced projected images are displayed in Fig. 3.

The process of labelling was applied to video sequences, each sequence comprised between 60 and 480 images, corre-
sponding to durations of 30 min to 4 h, enabling the temporal tracking of contrails throughout their formation and dissipation
phases.

The labelling process was carried out using a dedicated annotation tool developed by Encord, who also provided a profes-
sional team of annotators. We maintained close collaboration with this team through regular coordination meetings, during
which the annotation guide was developed and iteratively refined. The labelling platform was specifically configured to overlay
flight trajectory data above the camera’s field of view, assisting annotators in identifying new contrails, those forming above the
camera and visibly associated with a known aircraft trajectory. In contrast, old contrails were defined as those already present
at the start of a sequence or likely formed outside the camera’s field of view, making flight association impossible.

Each contrail was annotated using high-precision polygons that tracked its spatial extent throughout its visible evolution,
from early linear stages to advanced spreading phases. When contrails became fragmented or partially obstructed by clouds,
multiple polygons were used and linked using relational attributes (fragmented contrail and cloud obstruction) to preserve
temporal continuity.

To ensure the highest annotation quality, the campaign incorporated a multi-stage review protocol. An initial calibration

phase was conducted using a sample dataset to harmonise interpretation and identify edge cases. Each labelled sequence then
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Table 1. Descriptive statistics of the annotated contrail dataset

Metric Value
Total sequences (labelled) 122

Total images 24,228
Average sequence duration 96.6 min
Images per sequence (minimum / maximum / mean) 41/600/198.6
Total annotated contrail instances 4,651
Total unique flight IDs assigned 3,354
Total polygons annotated 176,234
Contrail duration (minimum / maximum / mean) 0.5/142.5/14.6 min
Polygons per contrail (minimum / maximum / mean) 1/589/37.8
Polygons per frame per contrail (minimum / maximum / mean) 1/45/1.2

underwent a two-step quality control process: a technical review made by the labelling team, followed by an expert review

made by EUROCONTROL to ensure final quality. In total 4,536 h of labelling and 431 h or reviewing were performed.
4.2 Dataset Description

The GVCCS dataset Jarry et al. (2025) is the first open-access, instance-level annotated video dataset designed for contrail
detection, segmentation, and tracking from visible ground-based sky camera imagery. It consists of 122 high-resolution video
sequences (totalling 24,228 images) captured at the EUROCONTROL Innovation Hub in Brétigny-sur-Orge, France, using
Réuniwatt’s CamVision sensor. Each sequence has been carefully annotated with temporally consistent polygon masks for
visible contrails, including multi-instance tracking and, where possible, attribution to specific flights using aircraft trajectory
data.

In total, the annotation team labelled 4,651 individual contrails with a total of 176,194 polygons. The sequences cover a wide
range of durations (from 0.5 to 142.5 min per contrail), with each contrail comprising between 1 and 589 polygons (mean: 37.8).
On average, each video sequence spans 96.6 min and contains approximately 193 annotated images. About 3,346 contrails are
associated with unique flight identifiers derived from synchronized flight trajectory data filtered above 15,000 ft.

The GVCCS dataset is structured into train/ and test/ folders, each containing a folder with images/, annotations.json in
COCO format, and associated flight data in parquet format. The dataset supports a range of research tasks including semantic
and panoptic segmentation, temporal tracking, lifecycle analysis, and contrail-flight attribution, and is released under the CC
BY 4.0 license.

12
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5 Segmentation models

This section reviews the segmentation models evaluated for identifying, and for some also tracking, contrails. We focus on two
model families: Mask2Former, a state-of-the-art transformer-based segmentation model, and a U-Net using a discriminative
embedding loss. Both are evaluated on individual images, while only Mask2Former is additionally evaluated on videos.

We also explore two problem formulations: in the single-polygon case, each visible contrail fragment is treated as an in-
dependent instance; in the multi-polygon case, all fragments of a given contrail are labelled as a single instance, even if they
are spatially disconnected. The single-polygon setting assumes that a subsequent linking algorithm, not implemented in this
work, could later group fragments into full contrails. The multi-polygon formulation, in contrast, expects the model to infer

such groupings implicitly.
5.1 Mask2Former

Mask2Former is a universal segmentation architecture that unifies semantic, instance, and panoptic segmentation within a
single model. It is built around a hierarchical encoder-decoder structure comprising three main components: a convolutional
backbone for multi-scale feature extraction, a pixel decoder that generates dense spatial embeddings, and a transformer decoder
with learnable mask queries that iteratively refines segmentation predictions.

A central innovation in Mask2Former is its use of the so-called masked attention in the transformer decoder. Unlike standard
cross-attention, which considers the entire image, masked attention limits attention to regions surrounding the current predicted
masks. This localized focus enables more precise refinement of object boundaries, which is particularly beneficial for thin, high-
aspect-ratio structures like contrails. The model’s learnable queries act as object proposals and are refined through multiple
decoding layers to generate final instance masks and class labels in an end-to-end manner.

An important aspect of Mask2Former’s effectiveness lies in its loss function (i.e., the training objective), which guides the
model to learn accurate segmentation masks and their corresponding classes. The loss function used by Mask2Former combines
several components. First, it uses a classification loss that helps the model assign the correct class to each predicted mask (e.g.,
contrail vs. sky). Second, it includes a mask loss, which measures how closely the predicted mask matches the ground-truth
mask for that object, commonly using a pixel-wise binary cross-entropy or Dice loss. Finally, Mask2Former incorporates a
matching step based on the Hungarian algorithm to align predictions with ground truth in an optimal, one-to-one way. This
ensures that each predicted mask is evaluated against the most appropriate reference object, avoiding duplicate assignments.

A detailed technical description of the model is beyond the scope of this paper, as our focus is on applying Mask2Former
to contrail segmentation; we refer the reader to the original work by Cheng et al. (2022) for a comprehensive overview of the
architecture and performance on popular datasets.

To capture temporal dynamics inherent in contrail evolution, we extend Mask2Former to process short video sequences.
Although designed for single images, the model can handle multiple consecutive frames as a 3D spatio-temporal volume by

treating time as an additional axis alongside spatial dimensions, following the extension introduced by Cheng et al. (2021a).
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Compared to traditional segmentation models, Mask2Former offers substantial architectural advantages. Mask R-CNN (He
et al., 2017), while effective, performs detection and segmentation as separate stages, which can introduce spatial misalign-
ment and inefficiencies, especially when segmenting long, disconnected objects. DETR (DEtection TRansformer) (Carion
et al., 2020), though end-to-end and transformer-based, primarily focuses on object detection and lacks the fine-grained spatial
modelling needed for precise mask prediction. MaskFormer (Cheng et al., 2021b) introduces transformer-based decoding for
segmentation, but relies on global attention, which can dilute spatial precision. Mask2Former refines this approach with masked
attention and iterative refinement, leading to improved accuracy, especially in challenging tasks where objects are often thin,

faint, and visually ambiguous.
5.2 U-Net with Discriminative Loss

As a baseline, we implement a two steps instance segmentation model. First, we use a classical U-net architecture (Jarry et al.)
for segmentation. U-Net is designed specifically for image segmentation tasks and features a symmetrical encoder-decoder
structure. The encoder part of the network gradually reduces the spatial size of the input image, extracting high-level features
that capture the overall context. The decoder then progressively restores the spatial resolution by upsampling these features to
produce a segmentation map that matches the original image size. Importantly, U-Net uses skip connections that directly link
corresponding layers in the encoder and decoder. These connections allow fine-grained spatial details lost during downsampling
to be recovered, improving the quality and precision of segmentation outputs.

Second, we use a similar architecture that learns a unique feature representation, or embedding, for each pixel in an image
by using a discriminative loss function. In this model, the final head of the U-Net does not produce a typical segmentation map
with class labels. Instead, it produces an embedding for each pixel; a vector in a high-dimensional feature space. The goal is
for pixels that belong to the same object instance to have similar embeddings (meaning they are close together in this feature
space), while pixels belonging to different instances have embeddings that are far apart. This way, the model effectively learns
to group pixels based on their learned features.

The process of identifying individual instances is performed in two separate steps. The first step is to generate these pixel em-
beddings with the U-Net, and the second step is to group or cluster these embeddings into individual instances. For clustering,
we use the HDBSCAN algorithm, to find the clusters and a final k-means to associate outliers with closest cluster.

The discriminative loss used to train the model is composed of three parts. The first part, known as the pull term, encourages
embeddings of pixels that belong to the same instance to be close together, making the cluster compact. The second part,
called the push term, forces embeddings of different instances to be sufficiently separated from each other, preventing clusters
from overlapping. The third part is a regularization term that prevents the embeddings from growing too large in magnitude,
which stabilizes the training process and embedding space. This combination allows the model to learn meaningful and well-
separated pixel embeddings without relying on explicit object bounding boxes or pre-defined region proposals. For readers
interested in the mathematical formulation and detailed rationale behind the discriminative loss, we refer to the original paper
by Brabandere et al. (2017).
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It is important to note that this model operates only on single images. Unlike models such as Mask2Former for videos
mentioned in the previous section, it does not incorporate any temporal or sequential information, nor does it include recurrent
layers or mechanisms to handle videos. Extending this approach to process video sequences and incorporate temporal consis-
tency would require significant changes to both the architecture and the algorithms used, which is outside the scope of this
work.

The embedding-based approach is well suited to segmenting objects that may not be spatially continuous, such as contrails
with fragmented shapes. Since the model does not require spatial continuity, it can learn to embed separate, disconnected parts
of the same contrail into a similar region of the feature space if they share common visual characteristics and belong to the same
label. However, this approach has its challenges. If parts of the same contrail differ significantly in appearance, due to factors
like changes in lighting, atmospheric conditions, or variations in the background texture. They may be embedded differently
and incorrectly assigned to separate clusters. Conversely, visually similar but unrelated contrail fragments could be mistakenly
grouped together, as the model relies solely on the learned embeddings for clustering.

Figure 4 illustrates a qualitative result of the instance discriminative segmentation model. On the left, the ground truth
labels are displayed, highlighting the pixel-wise assignment to contrail instances. On the right, we show the corresponding
discriminative embedding space, reduced to two dimensions using Principal Component Analysis (PCA) for visualization
purposes. Each point represents a pixel embedding, and colours indicate the instance it belongs to. This visualization provides
insight into how the model, trained with a discriminative loss, learns to embed pixels from the same instance close together in
the feature space, while separating those from different instances. The separation observed in the embedding space confirms
the model’s ability to cluster fragmented contrail structures, although visually similar but unrelated segments may still partially

overlap in the embedding due to shared appearance features.

6 Results

This section presents the performance of the models introduced in Section 5 on contrail segmentation tasks. Our primary goal
is not to achieve state-of-the-art results but to establish clear examples of application and meaningful baseline performances.
By doing so, we highlight the unique opportunities offered by this dataset and provide a foundation for the research community

to build upon, encouraging rapid progress in the critical field of aviation’s climate impact.
6.1 Training

All models were initialised from existing pre-trained checkpoints. We trained two versions of the Mask2Former architecture
for the single image segmentation task. Both models share the same core architecture but differ in the size of their transformer
backbone: one uses the Swin-Base (Swin-B) configuration and the other uses the larger Swin-Large (Swin-L). The main
difference between these two lies in model capacity, Swin-L has significantly more parameters, which enables it to learn richer

representations at the cost of higher computational requirements.
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Figure 4. The true label is displayed on the left and the discriminative embedding on the right. The latter was created using Principal

Component Analysis (PCA). The colours reflect contrail instances.

Both image models were initialized from publicly available pretrained checkpoints in the Mask2Former Model Zoo'. Each
model was first pretrained on the ImageNet-21k (IN21k) (Ridnik et al., 2021) classification dataset and then fine-tuned on the
COCO panoptic segmentation dataset. While COCO (Lin et al., 2014) does not include contrails, it spans a wide range of
natural (including clouds and sky) and man-made objects, offering useful general-purpose segmentation features. This two-
stage pre-training, IN21k followed by COCO, has been widely validated in the literature and provides a strong initialization
for fine-tuning on contrail imagery.

Both the Swin-B and Swin-L variants were trained on individual image frames using 200 learnable object queries. Given
our hardware setup, two NVIDIA RTX 6000 GPUs, each with 48 GB of memory, we were able to train both variants on the
image dataset without significant memory limitations.

For video segmentation, we used the video-specific variant of Mask2Former, which extends the original architecture to
handle temporal sequences. Like the image-based model, it also uses 200 object queries and Swin Transformer backbones, and
it is initialized from a checkpoint pretrained on the YouTubeVIS 2019 dataset (Yang et al., 2019). Although YouTubeVIS does
not contain contrails, its emphasis on learning temporally consistent object masks across frames makes it well suited to capture
the dynamics of contrails in video data. Due to GPU memory constraints we limited both training and inference to short video
clips composed of a small number of consecutive frames. While this restriction was necessary to fit within available hardware
resources, particularly for memory-intensive architectures, it also shaped our training strategy. During training, these clips
are randomly sampled from longer video sequences to introduce temporal diversity into the training process. By varying the

starting points of the sampled clips, the model is exposed to contrails at different stages of their lifecycle, formation, elongation,

Thttps://github.com/facebookresearch/Mask2Former/blob/main/MODEL_Z00.md
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dissipation, and in diverse atmospheric contexts. This stochastic sampling encourages the model to learn more generalizable
temporal representations.

To support this setup, we trained the video Mask2Former model using both Swin-Base (Swin-B) and Swin-Large (Swin-L)
backbones. However, the number of frames per clip had to be adjusted based on model capacity and memory availability.
With the more lightweight Swin-B variant, we were able to train on 5-frame clips, while the higher-capacity Swin-L model
could only be trained on 3-frame clips due to its significantly larger memory footprint. This reflects a trade-off between
temporal context and model expressiveness: longer clips may better capture the dynamic evolution of contrails, whereas larger
models like Swin-L provide richer per-frame representations. Training both configurations allows us to explore how these two
dimensions, temporal depth and model capacity, interact in the context of contrail segmentation.

For the U-Net model, we used a backbone based on MaxViT-B, a hybrid vision transformer architecture that combines
convolutional layers with self-attention mechanisms for efficient and scalable visual representation learning. This backbone
was pre-trained on ImageNet-21k and subsequently fine-tuned on ImageNet-1k, providing robust feature representations to
support the discriminative loss function employed during contrail segmentation training.

The training procedure for each model involved several epochs of supervised learning, with early stopping applied based on
performance on a validation set.

We did not perform exhaustive hyper-parameter tuning for any of the models. Instead, our goal with this experimental
setup was to establish baseline results and to analyse model performance both qualitatively and quantitatively under realistic
computational and data constraints. All models were trained using the default hyper-parameters reported in their original
publications. Tables 2 and 3 summarize the most important training parameters for each model. Note that the models differ
in the specific hyper-parameters relevant to their architecture and training setup. Future work will focus on exploring more
sophisticated modelling strategies, systematic hyper-parameter optimization, and additional training refinements.

Remember that each model was trained and evaluated on two distinct formulations of the instance segmentation task. The
first formulation treats a contrail as a single object, even if it is composed of multiple disconnected regions or fragmented
segments. In this setup, the model must learn to group visually and spatially separated regions that correspond to the same
physical contrail. The second task simplifies the problem by treating each visible polygon as an independent instance. In this
formulation, the model is not required to group disjoint segments belonging to the same contrail; instead, it simply detects and
segments each distinct region. This approach corresponds to a modular processing pipeline where instance merging and flight

attribution occur at a later stage, as will be discussed in future work.
6.2 Evaluation

We evaluate both semantic and instance-level segmentation performance using a combination of standard and task-adapted
metrics. For semantic segmentation, we report pixel-wise scores such as mean intersection over union and the Dice coefficient.
For instance segmentation, we adopt the COCO evaluation protocol with modifications to better reflect the thin, elongated

structure of contrails. All metrics are computed globally over the full test set. In the sections that follow, we describe our
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Hyper-parameter

Default value

Notes / Differences

Training iterations
Learning rate

Batch size

Image size

Class weight

Mask weight

Dice weight
Importance sample ratio
Oversample ratio

Augmentations

20,000

1,024 x 1,024
2

5

5

0.75

3

Rotation (90°), vertical flip, horizontal flip

Same for image and video

3.75e — 5 (Image), 1.25e — 5 (Video)
6 (Image), 2 (Video)

Same for image and video

Same for image and video

Same for image and video

Same for image and video

Same for image and video

Same for image and video

Applied at image level (Image); applied at clip level (Video)

Table 3. Default hyper-parameters for the U-Net model trained with discriminative loss.

Hyper-parameter

Default value

Architecture

Backbone

Input image size

Precision

Epochs

Batch size

Gradient accumulation steps
Learning rate

Optimizer

Scheduler

Augmentations

U-Net
tu-maxvit_base_tf 512.inlk
1,024 x 1,024

16-mixed

100

1

32

5e — 6

AdamW (weight decay = le — 4)

Cosine with warm-up

Rotation (90°), vertical flip, horizontal flip

evaluation procedure, sliding window inference strategy for video models, and the rationale behind our choice of metrics. The

presentation and interpretation of the results are provided at the end.

Model performance is evaluated using both semantic and instance-level segmentation metrics. All metrics are computed

globally by aggregating predictions and ground truths across the entire test set before applying the metric calculations. This

global computation prevents biases that can arise from averaging metrics computed independently on each observation (i.e.,

frame), which is particularly important in settings with imbalanced or sparse data such as contrail segmentation.
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For semantic segmentation, we report the mean Intersection over Union (mloU) and the Dice coefficient. The mloU measures
the overlap between the predicted and ground truth binary masks by calculating the ratio of the intersection area to the union
area of the masks, thus penalizing both false positives and false negatives. The Dice coefficient, defined as twice the area of
overlap divided by the total size of the predicted and ground truth masks, emphasizes the correct overlap and is especially
sensitive to thin or fragmented structures, making it a suitable metric for evaluating contrails.

Instance segmentation performance is assessed using COCO-style metrics computed globally over the dataset. To accom-
modate the specific challenges posed by contrails, we adapt the IoU threshold range and denote metrics with the following
notation: AP@[IoU range | size category | max detections], where IoU range specifies the range of loU thresholds over which
Average Precision (AP) or Average Recall (AR) is computed, size category indicates the object size subset considered, and max
detections is the maximum number of detections per image considered. For example, AP@[0.25:0.75 | all | 100] denotes the
mean average precision calculated over IoU thresholds from 0.25 to 0.75, considering all object sizes and up to 100 detections
per image. Object size categories follow the standard definitions used in COCO-style metrics: small objects have an area less
than 322; medium objects range between 322 and 96 pixels; large objects exceed 962 pixels. Metrics such as AP@[0.25:0.75 |
small | 100] then reflect the performance specifically on small-sized objects, under the specified IoU and detection constraints.

We restrict the IoU threshold range to [0.25, 0.75], rather than the standard COCO range of [0.50, 0.95], to better accommo-
date the elongated and thin geometry of contrails, where very high IoU thresholds are overly strict. Contrails are thin, irregular,
and may extend across large image portions, making exact mask overlap challenging. Under typical COCO metrics, a predic-
tion with partial but semantically correct overlap might be unfairly penalized. For example, a predicted mask overlapping only
30% of a contrail would be ignored under COCO’s default minimum IoU of 0.5, but counted as a true positive under our more
lenient thresholds.

By adjusting the IoU range, the metrics better reflect practical segmentation quality for contrails, balancing sensitivity to
spatial accuracy with tolerance for slight misalignments and fragmentations inherent to this domain. It is important to note that
these adapted metrics are not directly comparable to standard COCO scores but are specifically tailored to provide meaningful
evaluation in the context of contrail segmentation.

This evaluation framework, combining semantic and instance segmentation metrics computed globally with appropriate loU
thresholds and size categories, offers a comprehensive and interpretable means of assessing model performance. It facilitates
fair comparisons across models and supports future benchmarking on our contrail dataset.

Tables 4 and 5 summarize the results for the semantic and instance segmentation tasks, respectively. All results are reported
for both single-image and video-based models. Instance segmentation results are further disaggregated by annotation style
(multi and single-polygon). For Mask2Former models, values without parentheses correspond to the Swin-B backbone, while
those in parentheses refer to Swin-L.

In the semantic segmentation task, performance remains consistent across all models and variants, with Dice and mloU
scores showing little variation. This stability is expected, as semantic segmentation only requires classifying each pixel as

either contrail or sky, without distinguishing between separate contrail instances. The U-Net model achieves results on par
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Table 4. Semantic segmentation metrics. For the Mask2Former variants, values without parentheses refer to Swin-B; values in parentheses

refer to Swin-L.

Single Images Videos

Metric Mask2Former U-Net Mask2Former

Dice 0.56 (0.60) 0.59 0.57 (0.59)
mloU 0.38 (0.43) 0.42 0.40 (0.42)

with the more advanced Mask2Former models, indicating that per-pixel contrail detection is largely driven by local visual
features, such as shape, brightness, and texture, which U-Net captures effectively.

These results also reflect the quality and consistency of our dataset: although based on ground-level imagery, the segmenta-
tion performance is in line with results reported in previous studies using satellite data (Jarry et al.; Ortiz et al., 2025). Although
differences in imaging modality and scene geometry preclude direct comparisons, the consistency in results suggests that se-
mantic contrail segmentation is a well-posed task for modern architectures, with strong performance achievable across diverse
data sources.

Instance segmentation results reveal clear differences between model architectures. These differences are more substan-
tial than those observed in the semantic segmentation task, highlighting the added complexity introduced by instance-level
reasoning. Mask2Former, which is designed for panoptic segmentation through object-level queries and global spatial rea-
soning, consistently outperforms U-Net across all instance metrics. The performance gap is particularly pronounced in the
multi-polygon setting, where contrails appear fragmented and must be correctly grouped into coherent instances. These results
highlight the value of architectures specifically built for instance-aware tasks: Mask2Former’s ability to reason globally and
associate disjoint segments makes it better suited for detecting and tracking individual contrails.

A more nuanced comparison emerges when evaluating image-based versus video-based Mask2Former models. For the
Swin-B backbone, the image-based model achieves higher instance segmentation performance, while the video-based model
slightly outperforms it on semantic segmentation metrics. This suggests that although video models benefit from temporal
consistency and motion cues, the added complexity of enforcing cross-frame coherence may introduce challenges that slightly
hinder instance-level prediction accuracy, particularly when using a lower-capacity backbone like Swin-B.

In the Swin-L setting, the image-based model performs best overall. It achieves both the highest instance segmentation score
and slightly superior semantic segmentation performance. These results indicate that temporal modelling does not always
yield performance improvements, especially when the temporal context is limited (e.g., 3-frame clips) or when the spatial
representation capacity of the model is already high. The image-based model benefits from pretraining on COCO, which may
favour precise spatial delineation, while the video-based variant relies on pretraining on YouTubeVIS, which is more focused
on temporal coherence. However, it is important to note that the video-based model performs an additional task: tracking. By

maintaining consistent instance identities across frames, it enables temporally coherent segmentation that is not achievable with
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Table 5. Instance segmentation metrics. For the Mask2Former variants, values without parentheses refer to Swin-B; values in parentheses

refer to Swin-L.

Single Images Videos
Type Metric Mask2Former U-Net Mask2Former
AP@[0.25:0.75 | all | 100] 0.34 (0.34) 0.05 0.31(0.33)
AP@]0.25:0.75 | small | 100] 0.21 (0.21) 0.01 0.14 (0.17)
AP@[0.25:0.75 | medium | 100] 0.39 (0.40) 0.13 0.37 (0.38)
AP@[0.25:0.75 | large | 100] 0.44 (0.47) 0.12 0.46 (0.47)
AR@[0.25:0.75 l all | 1] 0.10 (0.10) 0.03 0.09 (0.09)
Multi-polygon
AR@[0.25:0.75 | all | 10] 0.41 (0.41) 0.18 0.38 (0.40)
AR@[0.25:0.75 1 all | 100] 0.44 (0.44) 0.22 0.43 (0.44)
AR@[0.25:0.75 | small | 100] 0.30 (0.30) 0.14 0.26 (0.29)
AR@[0.25:0.75 | medium | 100] 0.50 (0.50) 0.25 0.49 (0.50)
AR@[0.25:0.75 | large | 100] 0.55 (0.55) 0.22 0.57 (0.56)
AP@[0.25:0.75 | all | 100] 0.35(0.37) 0.06 0.31(0.34)
AP@[0.25:0.75 | small | 100] 0.24 (0.26) 0.03 0.17 (0.21)
AP@[0.25:0.75 | medium | 100] 0.44 (0.45) 0.14 0.41 (0.43)
AP@[0.25:0.75 | large | 100] 0.37 (0.43) 0.11 0.46 (0.47)
AR@[0.25:0.75  all | 1] 0.08 (0.08) 0.03 0.07 (0.08)
Single-polygon
AR@[0.25:0.75 I all | 10] 0.37 (0.38) 0.18 0.35(0.37)
AR@][0.25:0.75 | all | 100] 0.44 (0.45) 0.21 0.42 (0.45)
AR@[0.25:0.75 | small | 100] 0.33 (0.34) 0.15 0.28 (0.32)
AR@[0.25:0.75 | medium | 100] 0.53 (0.53) 0.26 0.52 (0.55)
AR@[0.25:0.75 | large | 100] 0.54 (0.56) 0.25 0.58 (0.60)

image-based models. All in all, the metrics reported here are computed on a per-frame basis and do not account for flickering
or instance identity consistency over time. These temporal aspects are particularly important in video applications and are not
captured by the conventional frame-level evaluation scores presented herein.

Overall, Swin-L outperforms Swin-B across all setups, reinforcing the benefit of increased model capacity for fine-grained
spatial understanding and instance-level reasoning. Nonetheless, this comes at the cost of higher computational requirements,
particularly in the video setting, underscoring a trade-off between performance and scalability.

Another important trend observed in the evaluation is that model performance is strongly influenced by contrail size and de-
tection caps. Generally speaking, larger contrails are segmented more accurately due to their higher pixel counts and lower am-

biguity, while allowing more predicted instances (e.g., increasing the detection limit) improves recall by removing constraints
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on how many objects can be reported. These trends are consistent with general findings in object detection and reinforce the
shared challenges between contrail segmentation and broader instance segmentation tasks.

Comparing the multi-polygon and single-polygon formulations reveals a difference in task difficulty: the single-polygon
setting is inherently easier. Across all models and data modalities, instance segmentation metrics are consistently higher when
using the single-polygon formulation. This is because the task removes the need to group fragmented or spatially disjoint
contrail segments into separate instances. Instead, all parts of a contrail, regardless of their separation, are treated as a single
mask, greatly simplifying the model’s objective. The model is no longer required to learn complex grouping strategies or
reason over spatial and temporal discontinuities. Note that semantic segmentation metrics remain virtually unchanged between
the two formulations, indicating that identifying contrail pixels is equally feasible in both cases. The difference lies solely in
how those pixels are grouped into instances. This distinction confirms that the main challenge in the multi-polygon task is not
pixel classification but instance association.

These results have important practical implications for different contrail detection scenarios. For older contrails, such as
those typically observed in satellite imagery or in ground-based images when the contrail formed outside the camera’s field
of view, it is extremely difficult to associate the contrail with its source flight. In these cases, the only viable option is to
group visible fragments into instances based solely on visual information. This makes multi-polygon instance segmentation
essential, as it allows models to detect and associate disjoint contrail segments without relying on external data. Our dataset
and Mask2Former-based models are specifically designed for this setting, enabling effective instance-level detection even when
contrails are fragmented, occluded, or spatially disconnected.

In contrast, when a contrail forms directly above the camera and additional data such as aircraft trajectories and wind fields
are available, a different approach becomes feasible. In these situations, one can perform single-polygon instance segmentation,
where contrail fragments are grouped into a single instance using post-hoc association based on flight paths and advection. This
formulation is simpler from a computer vision perspective and is commonly used in the literature (Ortiz et al., 2025; Chevallier
et al., 2023; Van Huffel et al., 2025), mainly because multi-polygon annotated datasets have not been available until now.
However, this method depends on access to external data and is only applicable to contrails formed during the observation
window, after the aircraft has entered the scene.

By supporting both the multi- and single-polygon formulations, our dataset enables training and evaluation across a broader
set of operational use cases. The multi-polygon task is essential for vision-only detection of older contrails or those in satel-
lite imagery, while the single-polygon formulation may be more suitable when additional metadata enables contrail-to-flight

attribution. This distinction will be further explored in future work focused on linking contrails to their source aircraft.
6.3 Illustrative examples

We present two test-set examples to illustrate the challenges of the multi-polygon contrail segmentation task. In both cases, we
compare predictions from image-based and video-based versions of the Mask2Former model, trained from pretrained Swin-
L backbones. These examples highlight how temporal context affects instance predictions and expose typical failure modes,

including contrail fragmentation, occlusion by clouds, and confusion between contrails and visually similar cloud structures.
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Figure 5 shows a frame from 25 April 2024 at 05:51:00, under clear-sky conditions. The background is uniformly blue, pro-
viding favourable conditions for both human and machine segmentation. The corresponding ground-truth annotations include
several contrails labelled as fragmented (e.g., identifiers 0, 1, and 5), based on known flight trajectories available to annotators
during the labelling process. This makes the example suitable for evaluating instance-level understanding in the multi-polygon

setting.

(a) Raw image. (b) Ground truth annotations.

Figure 5. Raw image and ground truth annotations for 25 April 2024 at 05:51:00.

Despite the favourable background, both models exhibit instance-level errors. The image-based model correctly infers that
contrail 1 is fragmented, but detects just one segment of contrail 0, missing the other entirely. It completely misses contrail
4 and erroneously merges contrails 5 and 6 into a single prediction. The video-based model makes similar mistakes: it also
merges contrails 5 and 6, and fails to detect contrail 4. Additionally, it predicts the second fragment of contrail 0 but assigns it
to a different instance, and it incorrectly splits contrail 1 into two separate instances.

From a semantic segmentation perspective, both models perform relatively well, as expected in a high-contrast scene. The
image-based model achieves a Dice score of (.76 and a mean IoU of 0.64, while the video-based model slightly outperforms it
with a Dice of 0.79 and mean IoU of 0.67. However, due to the instance grouping errors, the image model achieves a slightly
higher AP@[0.25:0.75 | all | 100] (0.62) than the video model (0.55).

Figure 7 shows a more challenging frame captured on 19 November 2023 at 08:49:30. Here, several cirrus clouds are present
in the background, which introduces ambiguity, as some of these cloud structures resemble contrails. This scene also includes
multiple contrails that are spatially aligned and fragmented, increasing the complexity of the instance segmentation task.

This scene illustrates a common failure mode: fragmentation and miss-grouping of visually aligned but semantically distinct

contrails. Contrail 6 is split into two segments with contrail O lying in between; although they appear collinear, contrail 0 is
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Figure 6. Predicted instances for the frame shown in Fig. 5, using Swin-L models with image and video inputs.

(a) Raw image. (b) Ground truth annotations.

Figure 7. Raw image and ground truth annotations for 19 November 2023 at 08:49:30.

a distinct instance generated by a separate flight. Contrail 7 appears shortly after and may be miss-associated with contrails 6

and O in the absence of flight metadata. The image-based model correctly separates contrail O from 6, but incorrectly merges
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10
2 2

(a) Image-based model prediction. (b) Video-based model prediction.

Figure 8. Predicted instances for the frame shown in Fig. 7, using Swin-L models with image and video inputs.

contrails 6 and 7. The video model groups all three, 6, 0, and 7, into a single prediction. Interestingly, this error reflects a
plausible human interpretation without flight context, highlighting the challenge of the task.

Both models fail to detect contrails 1 and 8, which are partially occluded by clouds. They also produce a false positive
(labelled as contrail 9), segmenting a cirrus structure that resembles a contrail. While the dataset is of high quality and was
carefully annotated with access to flight information, some visually ambiguous cases, such as the one discussed, remain inher-
ently difficult to label with certainty. In this example, the predicted region resembles a contrail in both structure and intensity,
making it unclear whether the false positive stems from a model error or an understandable omission in the ground truth. These
rare edge cases highlight the potential influence of mild label noise in visually complex scenes. Future work could benefit
from complementary strategies such as confident learning (Northcutt et al., 2021) to further refine annotations and improve
robustness in borderline cases.

Semantic segmentation performance in this scene is lower than in the previous one, reflecting increased difficulty. The image
model achieves a Dice score of 0.61 and mIoU of 0.43, while the video model scores 0.70 and 0.54, respectively. Instance-level
AP@[0.25:0.75 | all | 100]s are 0.35 and 0.37, respectively, similar to the average metrics, making this a representative case.

These examples illustrate several key challenges in multi-polygon contrail segmentation: (1) correct grouping of fragmented
contrail segments from the same flight; (2) visual ambiguity due to clouds that resemble contrails; (3) occlusion; and (4) spatial
overlap of contrails from different flights. While video-based models benefit from temporal information, they may over-group
distinct instances. Image-based models avoid this but often fail to connect fragmented segments. Overall, these examples

demonstrate the inherent difficulty of the task and the limitations of current models.
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7 Conclusions

This work introduces a new dataset (Jarry et al., 2025) and baseline models for contrail segmentation from ground-based
camera imagery. Our experiments show that modern computer vision methods, particularly panoptic segmentation models like
Mask2Former, can be effectively applied to this task, especially when using large pre-trained models and temporal information.
However, performance gains often come at the cost of increased computational and memory demands, highlighting a trade-off
between accuracy and practicality.

The main contribution of this study is the release of the first video annotated dataset specifically designed for instance-level
contrail segmentation, tracking and flight attribution in the visual spectrum. Along with detailed evaluation metrics, including
average precision and recall across multiple intersection-over-union thresholds and object size bins, this benchmark provides a
reproducible baseline for further research in this emerging field.

A key limitation of our current setup is that the visible-light camera restricts observations to daytime conditions. Yet contrails
often have their greatest radiative impact at night, when they trap outgoing long wave radiation and contribute to atmospheric
warming. To address this, we are deployed a co-located infrared imaging system that enables continuous, day-and-night mon-
itoring. This may also allow us to begin estimating the radiative forcing of individual contrails under real atmospheric condi-
tions.

In parallel, we are working on a contrail-to-flight attribution algorithm that links observed contrails to specific aircraft
using automatic dependent surveillance-broadcast (ADS-B) trajectory data. This tool, and the associated data and code, will
be openly released in a future publication. Attribution is of utmost importance because it allows each contrail to be linked
to detailed aircraft and engine parameters, such as aircraft type, engine model, fuel burn rate, flight altitude, and ambient
conditions. These inputs are necessary to reproduce the contrail using physical models like CoCiP, assess its expected properties
(e.g., ice crystal number, optical depth, lifetime), and ultimately validate or refine these models using real-world observations.

We are also extending this work by annotating a new dataset of contrails in satellite imagery, with instance-level and
sequence-based labels. This dataset will allow us to test and evaluate the full multi-scale tracking pipeline proposed in this
paper: starting from high-resolution, ground-based detection, followed by attribution to flights, and finally linking to the same
contrails as they evolve in satellite imagery. This approach offers a unique opportunity to study contrail formation, spreading,
and dissipation over time and at scale. We also plan to use our ground-based dataset to evaluate the predictions of physical
models such as CoCiP. Direct comparisons between observed and simulated contrail evolution will help assess model accuracy
and potentially inform improvements in contrail forecasting and climate modelling.

Ideally, contrail detection, tracking, and attribution should be addressed by a single deep learning architecture capable of
jointly processing video, flight trajectory data, and meteorological fields. A model such as a variant of Mask2Former could
be adapted for this purpose. Integrating these tasks into one architecture would enable end-to-end learning and exploit the
complementary nature of the inputs, weather conditions and aircraft traffic data are highly informative for both detecting and
tracking contrails. However, this integration is not straightforward. It requires careful design of input data representations

to handle spatio-temporal and multi-modal inputs, the creation of aligned and consistent annotations for all tasks, and the
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development of loss functions that balance competing objectives across detection, segmentation, tracking, and attribution.
Despite these challenges, we encourage the research community to explore this unified approach.

More broadly, we hope this work encourages the development of similar ground-based contrail monitoring systems in other
regions. A collaborative, open-science approach, sharing datasets, models, and observational infrastructure, will be essential
to building a geographically diverse and temporally continuous picture of contrail behaviour. We view this paper as a first step
toward a data-driven ecosystem for contrail research: one that integrates physical modelling with observational data, spans

spatial and temporal scales, and supports long-term efforts to better understand and reduce aviation’s impact on the climate.

8 Data availability

The dataset used and analysed during this study is available in the GVCCS: Ground Visible Camera Contrail Sequences
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Jarry, G., Very, P., Ballerini, F., and Dalmau, R.: GVCCS : Ground Visible Camera Contrail Sequences, https://doi.org/10.
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