
Graphical Abstract
GVCCS: A Dataset for Contrail Identification and Tracking on
Visible Whole Sky Camera Sequences

Gabriel Jarry, Ramon Dalmau, Philippe Very, Franck Ballerini, Stefania-
Denisa Bocu



Highlights
GVCCS: A Dataset for Contrail Identification and Tracking on
Visible Whole Sky Camera Sequences

Gabriel Jarry, Ramon Dalmau, Philippe Very, Franck Ballerini, Stefania-
Denisa Bocu

• Dataset with instance-level and temporally resolved annotations of con-
trails from ground-based videos.

• Unified contrail segmentation and tracking model using Mask2Former.

• Robust tracking of individual contrails over time, enabling analysis of
their full lifecycle.
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Abstract

Aviation’s climate impact includes not only CO2 emissions but also significant
non-CO2 effects, especially from contrails. These ice clouds can alter Earth’s
radiative balance, potentially rivaling the warming effect of aviation CO2.
Physics-based models provide useful estimates of contrail formation and cli-
mate impact, but their accuracy depends heavily on the quality of atmo-
spheric input data and on assumptions used to represent complex processes
like ice particle formation and humidity-driven persistence. Observational
data from remote sensors, such as satellites and ground cameras, could be
used to validate and calibrate these models. However, existing datasets don’t
explore all aspect

::
do

::::
not

::::::::
explore

:::
all

:::::::::
aspects of contrail dynamics and forma-

tion: they typically lack temporal tracking, and do not attribute contrails
to their source flights. To address these limitations, we present the Ground
Visible Camera Contrail Sequences (GVCCS), a new open data set of con-
trails recorded with a ground-based all-sky camera in the visible range. Each
contrail is individually labeled and tracked over time, allowing a detailed
analysis of its lifecycle. The dataset contains 122 video sequences (24,228
frames) and includes flight identifiers for contrails that form above the cam-
era. As reference, we also propose a unified deep learning framework for con-
trail analysis using a panoptic segmentation model that performs semantic
segmentation (contrail pixel identification), instance segmentation (individ-
ual contrail separation), and temporal tracking in a single architecture. By
providing high-quality, temporally resolved annotations and a benchmark for
model evaluation, our work supports improved contrail monitoring and will
facilitate better calibration of physical models. This sets the groundwork for
more accurate climate impact understanding and assessments.
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1. Introduction1

Aviation contributes to global climate change not only through carbon2

dioxide (CO2) emissions but also through a variety of non-CO2 effects, in-3

cluding nitrogen oxides (NOx), water vapour
:
,
:
and aerosols. Among these,4

condensation trails (contrails), ice-crystal clouds formed by aircraft at typi-5

cal cruising altitudes, stand out for their potentially large , yet uncertain ,
:::
yet6

::::::::::
uncertain

:
radiative impact. Though they often appear as ephemeral white7

streaks in the sky, persistent contrails can spread into extensive cirrus-like8

cloud formations that trap
:::::::
reduce

:
outgoing long-wave radiation, warming the9

planet. Recent studies suggest that the climate forcing due to contrail cirrus10

clouds
:::::
from

:::::::::
contrail

:::::::
cirrus is of the same order of magnitude as

::::
that

::::::
from11

aviation CO2 emissions (Lee et al., 2021; Teoh et al., 2023), although this12

::::::::::::
comparison depends on the metric used (Borella et al., 2024).13

Yet, accurately
:::::::::::
Accurately

:
assessing the climate impact of contrails re-14

mains a significant challenge for both aviation and climate scientists. The15

lifecycle of the contrails depends
::::::::
Contrail

::::::::::
lifecycles

:::::::::
depend on complex in-16

terrelated processes, such as
:::::::::
including

:
ice nucleation, crystal growth, wind-17

driven dispersion, and interaction with natural clouds, that are sensitive18

to ambient atmospheric conditions. Small variations in temperature and19

humidity, particularly relative humidity with respect to ice, can determine20

whether a contrail dissipates quickly or persists and spreads. This sensi-21

tivity, combined with the diurnal variability in radiative forcing (cooling22

when reflecting sunlight during the day; warming when trapping infrared23

radiationat night
::::::::
daytime

::::::::
cooling

::::::
from

::::::::::
reflected

::::::::::
sunlight

:::::::
versus

:::::::::::
nighttime24

:::::::::
warming

::::::
from

:::::::::
trapped

:::::::::
infrared

::::::::::
radiation), makes the net

::::::::
climate

:
effect of25

contrails both context-dependent and extremely difficult to modelreliably
::::::
highly26

::::::::
variable

:::::
and

::::::::::::
challenging

:::
to

:::::::
model.27

While contrail impacts have traditionally been studied using physical28

models, recent advances in remote sensing and computer vision now offer29

a valuable observational perspective. Physics-based models, such as the Con-30

trail Cirrus Prediction model (CoCiP) (Schumann, 2012) or APCEMM (Fritz et al., 2020)31

simulate the lifecycle of a contrail
::::
and

:::
the

:::::::::
Aircraft

:::::::
Plume

::::::::::::
Chemistry,

:::::::::::
Emissions,32

::::
and

::::::::::::::
Microphysics

:::::::
Model

::::::::::::::
(APCEMM)

::::::::::::::::::::
(Fritz et al., 2020)

:
,
:::::::::
simulate

:::::::::
contrail33

:::::::::
lifecycles

:
by solving complex equations that describe the interaction

::::::::::::
interactions34
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between aircraft emissions and atmospheric conditions. These models pro-35

vide valuable theoretical insights, but their accuracy is heavily dependent36

::::::::
depends

::::::::
heavily

:
on the quality of the input data (Gierens et al., 2020). Key37

parameters, such as atmospheric temperature, humidity, and aircraft en-38

gine characteristics, are often uncertain
:
,
:
and these uncertainties propagate39

through the calculations, affecting the reliabilityof the results
::::::
result

::::::::::
reliability.40

Moreover, detailed simulations of contrail microphysics and radiative effects41

can be computationally demanding, particularly when applied to global-scale42

analyzes
::::::::
analyses.43

Observational methods , using satellite and ground-based imagery , offer44

a directand ,
:
data-driven way to study contrails , complementing

:::::::::
approach45

::
to

::::::::::
studying

::::::::::
contrails

:::::
that

::::::::::::::
complements

:
theoretical models.

:::::::::::::::
Satellite-based46

::::::::
contrail

::::::::::
detection

::::
has

:
a
:::::
long

::::::::
history,

:::::::::::
beginning

:::::
with

:::::
early

::::::::::::
automated

:::::::::
methods47

::::
that

:::::::::::
leveraged

:::::::::::
brightness

::::::::::::::
temperature

:::::::::::
differences

:::::
and

:::::::
Hough

::::::::::::
transforms

:::
in48

::::::::::::::::
NOAA-AVHRR

:::::::::
imagery

:::::::::::::::::::::::::
(Mannstein et al., 1999)

:
.
::::::::::::
Subsequent

::::::
work

::::::::::
extended49

:::::
these

:::::::::::
techniques

:::
to

::::::
study

:::::::::
regional

:::::::::
radiative

::::::::
forcing

:::::::::::::::::::::
(Meyer et al., 2002),

:::::::::
contrail50

:::::::::
coverage

::::
and

:::::::::::
properties

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Minnis et al., 2005; Palikonda et al., 2005; Mannstein and Schumann, 2005)51

:
,
::::
and

:::::::
global

::::::::
contrail

:::::::::::::
distributions

:::::::::::::::::::::
(Meyer et al., 2007)

:
.
:
Advances in high-resolution52

remote sensing and computer vision have made these methods increasingly53

effective (Meijer et al., 2022; McCloskey et al., 2021; Ng et al., 2023; Chevallier et al., 2023)54

. Beyond detection , observational data should play an increasing role in the55

future in refining physics-based models by providing empirical validation and56

calibrating the uncertain parameters mentioned above.57

Integrating observational data with air traffic information like Automatic58

Dependent Surveillance-Broadcast (ADS-B) and meteorological data holds59

significant promise for advancing our understanding of the contrail lifecycle60

and climate impact. Linking contrails to specific flights, for which detailed61

parameters (e.g., engine type, altitude, and atmospheric conditions) are62

known, will allow for a better understanding of the role of these parameters63

into contrail formation and dynamics. However, achieving this integration64

requires addressing foundational challenges: accurately identifying contrails65

in images and
::::::
sensor

::::::::::::
technology,

::::::::::::
particularly

::::::
with

:::::
MSG/or videos, distinguishing66

them from natural clouds (semantic segmentation), detecting individual instances67

(instance segmentation), and tracking their evolution over time. This paper68

focuses on these critical first steps, developing robust methods for contrail69

segmentation and tracking in both individual ground camera images and70

videos. While attribution remains a very challenging task to perform at scale71

using in particular geostationary satellites (Chevallier et al., 2023; Riggi-Carrolo et al., 2023; Geraedts et al., 2024; Sarna et al., 2025)72
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our work provide the necessary tools to reliably detect and track contrails73

locally, laying the groundwork for subsequent integration with flight and74

meteorological data
:::::::::
SEVIRI,

::::::::
enabled

::::::::::::
rapid-scan

:::::::::::::
observations

:::::
that

:::::::::::
facilitated75

:::::::::::
automated

::::::::
contrail

:::::::::
tracking

::::::::::::::::::::::::::::::::
(Vázquez-Navarro et al., 2010)

:
,
::::::::
lifecycle

:::::::::
analysis

::::::::::::::::::::::::::::::::
(Vázquez-Navarro et al., 2015)76

:
,
::::
and

::::::::::
improved

::::::::::
detection

:::::::::::
algorithms

:::::::::::::::::::::::::::::::::::::::::::::
(Ewald et al., 2013; Mannstein et al., 2012)77

:
.
:::::::::::::::
Ground-based

:::::::::::
validation

:::::::::::
campaigns

::::::::::::::::::::::::::::::::::::::::::::::::::
(Mannstein et al., 2010; Schumann et al., 2013)78

:::::::::
provided

:::::::::
essential

:::::::::::::
verification

:::
of

:::::::::::::::::
satellite-derived

::::::::
contrail

::::::::::::
properties.

:::::::
More79

:::::::::
recently,

::::::::::::::::
high-resolution

::::::::
remote

:::::::::
sensing

:::::::::::
combined

:::::
with

:::::::::
modern

:::::::::::
computer80

::::::
vision

::::
and

:::::
deep

:::::::::
learning

::::
has

::::::::
further

::::::::::
enhanced

::::::::::
detection

::::::::::::
capabilities

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Meijer et al., 2022; McCloskey et al., 2021; Ng et al., 2023; Chevallier et al., 2023)81

.82

Despite growing interest in observational contrail analysis, publicly avail-83

able datasets are still
:::::::
remain

:
limited in scope. The most universally used84

resource, Google’
::::::::
Existing

::::::::::
datasets

:::
of

::::::::::
contrails

:::::::::::
annotated

:::
in

:::::::::::::::
observational85

:::::
data,

::::::
such

::
as

:::::::::
Google’s OpenContrails,

::
do

:::::
not

::::::
track

:::::::::::
individual

:::::::::
contrails

:::::
over86

:::::
time

:::
or

::::::::
provide

:::::::::::::
information

::::
on

::::
the

:::::::
flights

:::::
that

:::::::::
formed

::::::
them.

::::::::::::::
Specifically,87

:::::::::::::::
OpenContrails offers instance-level masks only on the central GOES-16

:::::::::
GOES-1688

frame, with surrounding images left unannotated, hindering contrail tracking89

across time. In contrast,(Sarna et al., 2025)
:::::::::::::::::::::
Sarna et al. (2025) introduced90

SynthOpenContrails, which overlays synthetic contrails and annotations onto91

real scenes, providing full per-frame localization, tracking, and flight attribu-92

tion, demonstrating .
::::::
This

::::::::::::::
demonstrates

:
that richly annotated data exists

::::
can93

:::::
exist, even if confined to synthetic contrail overlays rather than human an-94

notation. An ideal scenario would be a fully annotated video dataset where95

every frame is humanly labelled
:::::::
labeled

:
and each contrail is assigned a per-96

sistent identifier
::::::
across

::::::
time.97

To advance research in this area, this paper
::
we

:
present the Ground Visible98

Camera Contrail Sequences (GVCCS), an open dataset
:
(Jarry et al., 2025)99

with instance-level annotations, derived from ground-based video recordings100

in Brétigny-sur-Orge, France (Réuniwatt CamVision visible ground-based101

camera). Our dataset includes 122 videos (of duration between 20 minutes102

to
:::
and

:
5 hours) with a total frame number of around

::
of

:::::::::::::::
approximately 24,200103

:::::::
frames, each annotated with instance-level labels. By making this dataset104

openly available, this paper provides
:::
we

::::::::
provide

:
a valuable benchmark for105

both the atmospheric and aviation research communities.106

To support future performance comparisons, we introduce here a deep107

learning-based model for contrail segmentation and tracking. Instead of re-108

lying on separate models for these tasks, an approach that often requires com-109

plex, ad-hoc combinations of techniques, we adopt a unified framework based110
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on Mask2Former
:::::::::::::::::::::::
(Cheng et al., 2021b), a state-of-the-art computer vision111

model. Mask2Former is designed for panoptic segmentation, which combines112

semantic segmentation (labeling each pixel with a class, e.g., “contrail” or113

“
::::::::::
"contrail"

:::
or

::
"sky") and instance segmentation (distinguishing between in-114

dividual objects, e.g., different contrails). In addition to separating contrails115

from clear sky, it could
::::
can

:
handle complex backgrounds, such as low-altitude116

::::::::::::
low-altitude

:
cloud layers that partially or fully obscure contrails, by assign-117

ing appropriate “cloud”
::::::::
"cloud"

:
labels while still maintaining unique instance118

identities. For example, in a single image, panoptic segmentation can iden-119

tify all visible contrail pixels, correctly label intervening clouds, and assign120

consistent instance masks to each contrail, even when they overlap, intersect,121

appear fragmented, or are seen through thin cloud cover. In fact, contrails122

often break into multiple disconnected components due to atmospheric con-123

ditions and natural dissipation processes. A robust monitoring system must124

not only identify these fragments , but also associate them with the correct125

contrail instance.126

It
::
is

:
worth noting that , fragmentation poses a significant challenge for127

contrail analysis based solely on images or videos: visually disjointed seg-128

ments from the same flight must be grouped without external data. More-129

over, low-altitude
::::::::::::
low-altitude

:
cloud obscuration and sun glare can further130

interrupt or mask contrail continuity, producing multi-polygon
::::::::::::::
multi-polygon131

annotations even for a single physical contrail. In operational settings, how-132

ever, it is possible to first perform single-polygon instance segmentation and133

then associate multiple instances with the same flight using auxiliary data134

such as aircraft trajectories and wind fields. This post-processing step en-135

ables grouping across time and space based on flight identity rather than136

visual continuity. In this work, we restrict ourselves to purely image-based137

analysis and defer the integration of external data sources to future work.138

Mask2Former, originally designed for individual images, can be easily ex-139

tended to video data to improve the consistency of panoptic segmentation140

across frames
:::::::::::::::::::::::
(Cheng et al., 2021a). By leveraging temporal information,141

Mask2Former for videos performs semantic segmentation, instance segmen-142

tation, and tracking in an integrated manner. In this paper, we study both143

the frame-based and video-based versions of Mask2Former, comparing their144

performance on our dataset.145

The remainder of this paper is structured as follows. Section 2 provides146

the necessary background on contrail formation and computer vision tech-147

niques, establishing the foundation for the challenges addressed in this work.148
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Section 3 reviews related work on contrail datasets and segmentation mod-149

els, highlighting current limitations and motivating our approach. Section 4150

introduces our newly developed video-based dataset, detailing its annotation151

methodology and unique instance-level structure. Section 5 describes our152

panoptic segmentation framework based on the Mask2Former architecture.153

Section 6 presents and analyses the experimental results. Finally, Section 7154

summarises our main contributions and outlines future research directions.155

2. Background156

This section introduces the key concepts necessary to understand the chal-157

lenges addressed in this work. We begin by outlining the physical processes158

behind contrail formation and the
:::::
their

:
implications for climate, focusing on159

why contrails are particularly difficult to detect and track. We then review160

relevant computer vision techniques, specifically object detection and image161

segmentation, and assess their suitability for analysing contrails.162

2.1. The Science of Contrails163

Contrails are artificial clouds that form behind aircraft when hot, humid164

engine exhaust mixes with the cold, low-pressure air at cruising altitudes, typ-165

ically between 8 and 12
:
km. If the atmospheric conditions are right,

::::::::
suitable166

::
—

:
specifically, if the temperature falls below -40 ◦Cand

:
a

::::::::
critical

::::::::::
threshold167

::::::::::
(typically

:::::::
around

:::::::::
−40 ◦C,

:::::::::::
depending

:::
on

:::::::::
pressure

:::::
and

::::::::::
humidity)

:::::
and the air is168

sufficiently humid ,
::
—

:
the water vapour in the exhaust condenses and freezes169

into ice crystals. This process , modelled and quantified by
::::
The

:::::::::
physical170

:::::::::::
mechanism

::::::::::::
underlying

:::::
this

::::::::
process

:::::
was

:::::
first

:::::::::::
explained

::::
by

::::::::::::::::
Schmidt (1941)

:
,171

::::
who

::::::::::::
recognized

:::::
that

:::::::::
contrails

:::::
form

::::::
when

:::::::::
ambient

::::::::::::::
temperature

::
is

::::
low

::::::::
enough172

::
to

:::::::
cause

::::
the

::::::::::
humidity

:::::::
inside

:::::
the

:::::::::
aircraft

:::::::
plume

:::
to

:::::::
reach

:::::::::::
saturation

::::::
with173

:::::::
respect

:::
to

:::::::
liquid

:::::::
water,

:::::::::::
triggering

:::::::::::::::
condensation.

:::::::::::::::::::
Appleman (1953)

:::::::::
provided174

:::::::
further

::::::::::::::
quantitative

::::::::::
analysis,

::::::::
though

:::::::::
without

::::::
fully

::::::::::::
accounting

::::
for

::::::::
engine175

:::::::::::::::
characteristics.

::::::::::::::::::::
Schumann (1996)

::::
later

:::::::::::
developed

::
a

:::::::::::::::
comprehensive

:::::::::::
treatment176

::::::::::::::
incorporating

:::::::
engine

::::::::::
efficiency

::::
and

:::::::::
practical

::::::::::::
application

::::::::::
methods,

::::::::::::
formalizing177

:::::
what

:::
is

:::::
now

:::::::
known

:::
as

:
the Schmidt–Appleman criterion (Appleman, 1953),178

:
.
::::::

This
:::::::::
process

:
produces the familiar thin, white trails visible in the sky.179

Some contrails dissipate rapidly, while others persist and spread, eventually180

forming larger ice cloud structures known as contrail cirrus.181

Like natural clouds, contrails influence the Earth’s radiation budget: they182

trap
:::::::
reduce

:
outgoing long-wave radiation, leading to warming, while also183
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reflecting incoming solar radiation, which has a cooling effect. The net184

result depends on the contrail’
:
’s altitude, optical properties, lifespan, and185

the time of day. The precise relative impact
:::::::::::
magnitude

:::
of

:::::::::
contrail

::::::::
climate186

:::::::
forcing

:::::::::
relative

:::
to

::::::::::
aviation’s

::::::
CO2 ::::::::::

emissions
:
depends on the climate metric187

chosen (Borella et al., 2024); however, contrails are thought to warm the188

climate at a level of the same order of magnitude as aviation’’s CO2 emis-189

sions (Lee et al., 2021; Teoh et al., 2023). This makes the monitoring and190

characterization of contrails an essential part of understanding aviation’s full191

environmental footprint (Teoh et al., 2023) and developing mitigation strate-192

gies (Teoh et al., 2020).193

::::::::::::
Quantifying

:::::
this

::::::::::
radiative

::::::::
forcing

:::::::::
requires

:::::::::::::::
understanding

::::::
both

:::::::::
contrail194

:::::::
optical

:::::::::::
properties

::::
and

:::::
their

::::::::
spatial

::::
and

::::::::::
temporal

:::::::::::::
distribution.

::::::
Early

:::::::::::::::
satellite-based195

:::::::
studies

:::::::::
provided

:::::
first

::::::::::
estimates

:::
of

::::::::
regional

::::::::
contrail

::::::::::
radiative

:::::::
effects

:::::::::::::::::::::
(Meyer et al., 2002)196

::::
and

:::::::::::
developed

::::::::::::
parametric

:::::::::
models

::::::::
linking

:::::::::
contrail

:::::::::::
properties

::::
to

::::::::::
radiative197

:::::::
forcing

:::::::::::::::::::::::::
(Schumann et al., 2009)

:
.
:::::::::::::::
Climatological

:::::::::
analyses

:::
of

::::::::::
persistent

:::::::::
contrails198

::::::::
revealed

::::::::::::::
dependencies

:::
on

:::::::::::::
atmospheric

:::::::::::
conditions

::::
and

:::::::::
aircraft

::::::
traffic

:::::::::
patterns

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Iwabuchi et al., 2012; Mannstein and Schumann, 2005)199

:
,
::::::
while

::::::::::::::
ground-based

:::::::::::::
observations

:::::::
offered

:::::::::::
validation

::
of

:::::::::::::::::
satellite-derived

::::::::
contrail200

::::::::::
properties

::::::::::::::::::::::::::
(Mannstein et al., 2010).

:
201

As mentioned above, the observational viewpoint offers an alternative202

perspective that focuses on detecting and analysing contrails directly in203

atmospheric imagery
:::::
using

:::::::::
satellite

::::
and

:::::::::::::::
ground-based

:::::::
remote

::::::::
sensing

:::::::::::::
instruments.204

However, detecting and tracking contrails presents several technical chal-205

lenges, which helps explain the growing research interest in the topic. Satel-206

lite imagery often lacks the spatial and temporal resolution needed to detect207

contrails in their early stages(Ng et al., 2023)
:::::::::::::::::::::::::::::::::::::::::
(Ng et al., 2023; Mannstein et al., 2010)208

. Geostationary satellites have a nominal spatial resolution of about 0.5 to209

2
:
km and a temporal resolution of 5 to 15

:
min, which is often insufficient to210

capture the narrow, faint, and short-lived nature of freshly formed contrails211

unless they persist and grow. Even when contrails do spread into detectable212

cloud structures, they are difficult to distinguish from natural cirrus, partic-213

ularly in scenes with complex cloud layers. Moreover, by the time a contrail214

is visible in satellite images, it has often drifted and deformed, complicating215

the attribution to the flight that produced it
:
(Chevallier et al., 2023; Sarna216

et al., 2025). This linkage is crucial, as identifying the originating flight217

enables researchers to retrieve essential details such as aircraft type and en-218

gine model, key inputs for assessing contrails’
:
’
:
environmental impact and219

improving physical models through comparison with empirical observations.220

Ground-based cameras
:
(Schumann et al., 2013; Low et al., 2025) offer221
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a complementary perspective with critical advantages. Positioned beneath222

flight paths, these systems can capture high-resolution images and video with223

far greater spatial and temporal fidelity than satellites. Crucially, they can224

detect contrails immediately after formation, while they are still thin, linear,225

and visually distinct. This early visibility simplifies the task of associating226

observed contrails with the specific flight responsible, especially when com-227

bined with precise trajectory data. The main drawback is, naturally, their228

restricted
:::::::
spatial

:
coverage, which hinders the ability to monitor contrails229

from their formation to dissipation.230

::::
This

::::::::::::
attribution

:::::::::::
advantage

::
is

::::::::::::
particularly

:::::::::::
significant

:::::::::::
compared

::
to

:::::::::::::::
satellite-based231

::::::::::::
approaches.

:::::::::::::::::
Geostationary

::::::::::
satellites

:::::
face

::::::::
several

::::::::::::
challenges:

:::::::
their

:::::::
coarse232

:::::::
spatial

::::::::::
resolution

:::::::::
(∼0.5–2

:::::::::::
km/pixel)

:::::::
means

:::::::::
contrails

::::::
must

:::::::
persist

:::::
and

:::::::
spread233

::::::
before

:::::::::::
becoming

::::::::::::
detectable,

::::
by

:::::::
which

::::::
time

::::::
wind

:::::::::::
advection

::::
has

:::::::::::
displaced234

:::::
them

::::::::::::::
substantially

::::::
from

::::::
their

::::::::::
formation

::::::::::
location;

::::::
their

::::::::::
temporal

:::::::::::
resolution235

::::::
(5–15

::::::::::
minutes)

:::::::
means

::::
the

:::::::::::::
originating

::::::::
aircraft

::::::
may

:::
be

::::
far

::::::
away

:::::::
when

::::
the236

::::::::
contrail

::::
first

:::::::::
appears;

:::::
and

:::::::::
multiple

::::::::
aircraft

:::::
may

:::::
have

::::::::::
traversed

:::::::
similar

:::::::::
airspace237

:::::::
during

:::::
this

:::::::::
window,

::::::::::
creating

::::::::::::
ambiguity.

::::::::::::::
Attribution

::::::
from

:::::::::
satellite

::::::
data238

:::::::::
therefore

:::::::::
requires

:::::::::::::
sophisticated

::::::::::::
algorithms

:::::::::::
accounting

::::
for

:::::
wind

:::::::
fields,

:::::::::
parallax,239

::::
and

:::::::::::::
probabilistic

::::::::::
matching

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chevallier et al., 2023; Riggi-Carrolo et al., 2023; Geraedts et al., 2024; Sarna et al., 2025)240

:
.
::::

In
::::::::::
contrast,

:::::::::::::::
ground-based

:::::::::
cameras

:::::::::
observe

::::::::::
contrails

:::
at

:::::::::::
formation

::::::
with241

::::
high

::::::::
spatial

:::::::::::
resolution

::::::
(∼73

:::::::::
m/pixel

:::
at

:::
10

::::
km

:::::::::
altitude

:::
in

::::
our

:::::::::
system)

:::::
and242

::::::::::
30-second

:::::::::::
sampling,

::::::::::
enabling

:::::::::::::::::
straightforward

::::::::::::::::::
contrail-to-flight

::::::::::::
attribution243

::::::::
without

::::
the

::::::::::::
ambiguities

::::::::::
inherent

::
in

::::::::::::::::
satellite-based

::::::::::::
approaches.

::
244

While not the focus of this paper, one promising direction involves com-245

bining ground-based and satellite observations into a unified monitoring246

framework. In such a system, contrails would first be detected in high-247

resolution ground-based imagery and attributed to specific flights using tra-248

jectory and weather data
:
,
:
providing access to key aircraft and engine param-249

eters. Crucially, to enable continuous tracking beyond the limited field of250

view of the ground-based camera, these contrails would then need to be re-251

liably linked to their evolving counterparts in satellite imagery as they drift,252

expand, and age. Successfully associating contrails across these two modali-253

ties ,
:::
— ground and satellite ,

::
—

:
would allow monitoring of their full lifecycle254

from formation to dissipation while preserving information about the specific255

aircraft and flight responsible for creating them.256
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2.2. Computer Vision Techniques for Contrail Monitoring257

Contrails are visually challenging targets for computer vision due to their258

thin, elongated shapes, variable curvature, and tendency to fragment or fade259

over time. These characteristics make them fundamentally different from260

the objects typically addressed in standard object detection benchmarks,261

such as vehicles and animals in datasets like the Common Objects in Con-262

text (COCO) dataset
::::::::::::::::::
(Lin et al., 2014), which features well-defined, discrete263

objects.264

Traditionally, object detection methods localise targets using bounding265

boxes, usually axis-aligned rectangles.
:::::::::
Standard

::::::::::::
approaches

::::::
such

:::
as

:::::::
Faster266

::::::::
R-CNN

::::::::::::::::::::
(Ren et al., 2017)

:::
and

::::::::
YOLO

::::::::::::::::::::::::
(Redmon et al., 2016)

::::::::::
exemplify

:::::
this267

::::::::::
paradigm.

::
This approach works well for objects like cars or animals, which268

are compact and roughly rectangular, but performs poorly for contrails. A269

single axis-aligned bounding box may inadvertently include multiple contrail270

segments or large amounts of background sky, while missing parts of curved271

or fragmented trails. Oriented bounding boxes offer some improvement by272

allowing rotation, which better fits the geometry of elongated contrails. How-273

ever, they still fall short in capturing fine-grained shapes, gaps, or fading seg-274

ments. Figure 1 shows the limitations of axis-aligned and oriented bounding275

boxes for object detection on contrails.276

(a) Axis-aligned bounding boxes (b) Oriented bounding boxes

Figure 1: Illustration of bounding box detection on contrails. Each detected contrail
is highlighted with a distinct color. Note how elongated or fragmented trails challenge
bounding box alignment and separation.

Instance segmentation provides a more precise solution by predicting277

pixel-level masks for each individual object. This approach is particularly278

beneficial for contrails, as it can delineate each trail accurately even when279
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they intersect, overlap, or dissipate unevenly. For instance, two overlapping280

contrails that fade at different rates can still be assigned to distinct instances.281

:
It

:::
is

:::::::::::
important

::
to

::::::
note

:::::
that

:::::::::
instance

::::::::::::::
segmentation

::::
has

::::::
been

::::::::::
addressed

:::
in282

::::::::::::
atmospheric

::::::::
science

::::
for

:::::::::
decades

::::::
using

:::::::::
classical

:::::::::::
computer

:::::::
vision

::::::::::::
techniques.283

::::::
Early

:::::
work

::::
by

:::::::::::::::::::::::::
Mannstein et al. (1999)

:::::::::
detected

:::::::::
contrail

::::::
pixels

:::::
and

:::::::::
grouped284

:::::::::
spatially

::::::::::
connected

::::::::
regions

:::::
into

::::::::
distinct

::::::::
objects.

:::::::::::
Similarly,

:::::::::::::::::::::::::
Schumann et al. (2013)285

:::::
used

::::::::::::::
ground-based

::::::::::
cameras

:::::
with

::::::::::::
automated

::::::::::::
algorithms

::::
to

:::::::::
identify,

:::::::
track,286

::::
and

:::::::::::::
characterize

:::::::::::
individual

::::::::::
contrails.

:::::::
These

:::::::::
methods

::::::::::
achieved

::::::::::::::
instance-level287

::::::::
contrail

:::::::::::
separation

::::::::::
through

::::::::::::::
feature-based

::::::::::::
detection,

:::::::::::::
connectivity

::::::::::
analysis,288

::::
and

:::::::::::
trajectory

:::::::::::
matching.

::::::
Our

::::::
work

:::::::
builds

:::
on

:::::
this

::::::::::::
foundation

:::
by

::::::::::
applying289

::::::::
modern

:::::
deep

:::::::::
learning

:::::::::::::
architectures

:::::
that

:::::::::
perform

:::::::::
instance

::::::::::::::
segmentation

::::::::
through290

:::::::
learned

::::::::
feature

:::::::::::::::::
representations

:::::::
rather

:::::
than

::::::::::::::
hand-crafted

::::::
rules.

:
291

Semantic segmentation, in contrast, labels each pixel by class ,
:
(e.g.,292

"contrail" or "sky",
:
)
:
but does not distinguish between individual contrails.293

This is insufficient when studying temporal evolution or interactions between294

specific contrails, since it treats all contrails as a single undifferentiated class.295

Panoptic segmentation combines the strengths of both approaches: it as-296

signs a class label to every pixel (semantic segmentation) and an instance297

identifier where appropriate (instance segmentation). In this framework,298

"things" such as individual contrails are assigned unique instance labels,299

while "stuff" like the background sky or natural clouds is labelled only by300

class. This unified view is well-suited to contrail monitoring, enabling fine-301

grained analysis of individual contrails within the broader atmospheric con-302

text. Moreover, the framework can be readily extended to additional classes303

(e.g., cirrus, cumulus) for more comprehensive scene understanding, provided304

, of course, that these classes have been effectively and consistently labelled305

during dataset creation, which introduces an additional layer of complexity306

to the annotation campaign. Figure 2 illustrates the instance, semantic,
:
and307

panoptic segmentation methods.308

An important but often overlooked issue in the literature is how contrails309

are geometrically represented. In reality, a single contrail may consist of310

several disconnected segments ,
::
—

:
for example, due to fading or occlusion311

,
::
—

:
making it a multi-polygon shape. See, for instance, the green contrail312

in Figs. 2a and 2c. However, the most natural approach is to simplify this313

by treating each segment as a separate, independent polygon, effectively314

assuming that each fragment belongs to a different contrail.315

While this simplification avoids the complexity of handling multi-polygons316

directly, it introduces a significant challenge: to reconstruct the full contrail,317
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(a) Instance (b) Semantic (c) Panoptic

Figure 2: Comparison of segmentation methods applied to illustrative contrails. Distinct
colours indicate different

::
(a)

::::::::
Instance

::::::::::::
segmentation

:::::::
assigns

:::::::
unique

:::::::::
identifiers

:::::::
(colors)

:::
to

::::
each contrailinstances or classes, depending on the method

::::::::
enabling

:::::::::
individual

::::::::
tracking

:::
but

:::::::
without

:::::::::
classifying

::::::::::::
non-contrail

::::::
regions.

:::
(b)

::::::::
Semantic

::::::::::::
segmentation

:::::::::
identifies

:::
all

:::::::
contrail

:::::
pixels

::
as

::
a
::::::
single

::::
class

::::::::
(white)

::::::
versus

::::::::::
background

:::::::
(blue),

:::::::
without

:::::::::::::
distinguishing

::::::::
between

:::::::::
individual

::::::::
contrails.

::::
(c)

::::::::
Panoptic

:::::::::::::
segmentation

::::::::
combines

:::::
both

:::::::::::
approaches:

:::::
each

:::::::
contrail

:::::::
receives

::
a

::::::
unique

:::::::::
identifier

:::::
while

:::
all

::::::
pixels

:::
are

:::::::::
classified

:::::::::
(contrails

::
in

::::::
color,

:::::::::::
background

::
in

:::::
blue).

:::::
This

:::::::
unified

:::::::::::::
representation

:::::::
enables

:::::
both

::::::::::::
instance-level

::::::::
tracking

::::
and

::::::::::
scene-level

:::::::::::::
understanding.

one must find a way to link fragmented pieces together. This requires ad-hoc318

linking strategies, which vary in complexity and accuracy. Some methods rely319

purely on the geometric properties of the fragments, such as their proximity320

or alignment, while others incorporate external data, such as aircraft flight321

paths or meteorological information, to make more informed associations.322

In this work, we adopt panoptic segmentation as the foundation for seg-323

menting and tracking contrails. This choice is motivated by its ability to si-324

multaneously achieve instance-level precision and maintain contextual aware-325

ness of the surrounding scene. Moreover, by explicitly addressing the issue326

of fragmented contrails, our method enables instance-level identification of327

contrails without requiring external sources of information, such as flight or328

weather data. This is particularly valuable in scenarios where such data329

may be unavailable or incomplete. However, we also explore an alternative330

version of the model that treats each contrail fragment as an independent331

instance, under the assumption that a downstream algorithm, leveraging ex-332

ternal traffic and meteorological data, will later associate these segments with333

their corresponding flights. The comparative evaluation of these two strate-334

gies ,
::
—

:
self-contained instance identification versus externally supported335
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post-association ,
::
—

:
will be presented in future publications. In this paper,336

we focus solely on presenting the contrail segmentation models themselves.337

3. State of the Art338

This section presents an overview of prior work in contrail segmenta-339

tion and analysis, focusing first on the datasets that have been developed340

to support this research, and then on the computational models used for341

contrail segmentation and flight attribution. The scope and key features of342

existing datasets are outlined, with particular attention given to the lim-343

ited availability of temporal annotations and flight attribution ground truth.344

Subsequently, we examine state-of-the-art segmentation and tracking meth-345

ods, particularly deep learning-based approaches, assessing their applicability346

and performance in contrail analysis. This review highlights gaps in current347

research and motivates the contributions presented in this paper.348

3.1. Datasets349

Recent advances in contrail detection have been supported by the devel-350

opment of annotated datasets, primarily based on satellite imagery. These351

datasets have facilitated the application of computer vision techniques for352

contrail identification, although aspects such as temporal continuity and in-353

tegration with flight metadata remain limited in most cases. In this section,354

we review the most relevant publicly available datasets and place our contri-355

butions within this context.356

(Kulik, 2019) and (Meijer et al., 2022) are
::::::::::::::
Kulik (2019)

::::
and

:::::::::::::::::::::
Meijer et al. (2022)357

::::
are,

:
to our knowledge,

:
the first studies to leverage a modern, data-driven,358

deep learning framework for large-scale contrail segmentation. The authors359

developed and applied convolutional neural networks, which were trained360

using a manually curated dataset comprising over 100 manually annotated361

geostationary GOES satellite images with instance segmentation.362

One of the first large-scale labelling efforts in contrail detection was led by363

Google Research, beginning with the development of a contrail dataset based364

on high-resolution Sentinel satellite imagery (McCloskey et al., 2021). Hu-365

man experts manually annotated the images using structured guidelines, pro-366

ducing polygonal masks for each visible contrail segment
::::::
masks

:::::
that

:::::::::
identify367

::::::::
contrail

:::::::
pixels

:::
at

::::
the

:::::::::::
semantic

::::::::::::::
segmentation

:::::::
level,

:::::::::::::::
distinguishing

:::::::::
contrail368

:::::
from

:::::::::::::
non-contrail

:::::::
regions

:::::::::
without

:::::::::
tracking

::::::::::
individual

:::::::::
contrail

::::::::::
instances. Mul-369

tiple annotators independently labelled each image, and the dataset includes370
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all individual annotations, with the option to filter results by majority con-371

sensus. This methodology improved both the spatial precision and overall372

quality of the labels.373

Building on this work, Google released the OpenContrails dataset (Ng374

et al., 2023), which is based on images from the GOES-16 Advanced Base-375

line Imager (ABI). Thanks to the 10-minute temporal resolution provided376

by the geostationary orbit of GOES-16, the dataset is well suited to study377

contrails at large scales. OpenContrails offers temporal context by including378

short sequences of unlabelled images surrounding each annotated frame, pro-379

viding valuable information to annotators for more accurate labelling. Only380

the central frame in each sequence is annotated, therefore not allowing a di-381

rect comparison of contrail dynamics with physical models. Notably, a 2025382

update introduced instance-level labels, enabling the use of the dataset for383

instance-based models and expanding its potential for more advanced contrail384

analysis.385

::
In

::::
the

:::::::::
domain

:::
of

:::::::::::::::
ground-based

::::::
data

::::
for

:::::::::
contrail

::::::::::
research,

::::::::::::
significant386

:::::::::
resources

::::::
have

::::::
been

:::::::::::
developed

:::
to

:::::::::
support

::::::::::
computer

:::::::
vision

:::::::
tasks. Gourgue387

et al. (2025) introduce an open-access
::::::::::::
open-access

:
corpus of around 1,600388

polygon- annotated
:::::::::::::::::::
polygon-annotated

:
hemispheric sky images acquired at389

the SIRTA atmospheric laboratory, near Paris, offering class labels that dis-390

tinguish “young,” “old,” and “very old”
:::::::::
"young,"

:::::::
"old,"

::::
and

:::::::
"very

:::::
old"

:
con-391

trails as well as several confounding artefacts. By capturing high-resolution392

:::::::::::::::
high-resolution

:
ground views minutes after formation, the dataset fills the393

::::
this

::::::::
dataset

::::
fills

::
a temporal–spatial gap left by satellite benchmarks.

::::::::::::::::
Complementary394

::
to

::::
this

:::::
data

:::::::::::
provision,

::::::::::::::::::::::
Pertino et al. (2024)

:::::
focus

:::
on

::::
the

::::::::::::::
development

::
of

::::::::::
detection395

::::::::::::::
methodology,

::::::::::
providing

::
a

:::::::::::::::
comprehensive

::::::::::::
comparison

:::
of

::::::::::
computer

::::::
vision

::::::::
models396

:::::::
applied

:::
to

::::::
both

:::::::
visible

:::::
and

::::::::
infrared

:::::::::
images.

:
397

Rather than creating a dataset for training modern convolutional net-398

works on segmentation tasks,(Low et al., 2025)
::::::::::::::::::::
Low et al. (2025) manually399

annotated the correspondence between contrail waypoints , derived from400

the application of the CoCiP model and observations from their wide-angle401

ground camera system. This approach is particularly well-suited for directly402

assessing and parametrizing physical models.403

Meijer et al. (2024) is
:::::::
Earlier

::::::::
studies

:::::
have

::::::::::::
successfully

:::::::::::
collocated

:::::::::
contrails404

:::::
using

::::::::
various

:::::::::::::::
combinations

::
of

:::::::::
sensors,

::::::::::
including

:::::::::::::::
ground-based

::::::::::::::
observations,405

::::::::
satellite

:::::::::
imagery,

::::
and

::::::
lidar

:::::
data

::::::::::::::::::::::::::::::::::::::::::::::::
(Iwabuchi et al., 2012; Mannstein et al., 2010)406

:
.
::::
For

::::::::::
example,

::::::::::::::::::::::::::::::::
Vázquez-Navarro et al. (2010)

::::::::::::::
demonstrated

:::::::::
tracking

:::::::::
contrails407

::::
first

::::::::::
identified

:::
in

::::::::::::::::
high-resolution

:::::::::
MODIS

:::::::::
imagery

::::::::
through

::::::
time

::::::::::
sequences

:::
of408
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:::::::::
Meteosat

:::::::
data,

:::::::::::
leveraging

:::::::::::::::::
complementary

:::::::
spatial

:::::
and

::::::::::
temporal

::::::::::::
resolution.409

:::::::::
Building

:::
on

:::::
this

:::::::::::::
foundation,

:::::::::::::::::::::
Meijer et al. (2024)

:::
is,

:
to our knowledge

:
,
:
the410

first example of dataset collocating images on two different
:
a
::::::::
dataset

::::::::::::
specifically411

:::::::::
designed

::::
for

:::::::::
contrail

:::::::::
altitude

::::::::::::
estimation

::::
by

::::::::::::
collocating

::::::::
images

::::::
from

:::::
two412

::::::::
distinct

:
remote sensors: they assembled a dataset specifically for contrail413

altitude-altitude estimation, comprising over 3000
:::::::::::
comprising

:::::
over

::::::
3,000 cases414

over the contiguous United States (2018–2022). Contrails were first lo-415

cated via automated detection in GOES-16
::::::::::
GOES-16

:
ABI infrared imagery,416

then precisely collocated, correcting for parallax and wind advection, with417

CALIOP lidar cross-sections
::::::::::::::
cross-sections. The team then conducted man-418

ual inspections of the matched imagery to verify and validate alignment. This419

benchmark dataset linking geostationary contrail signatures to high-resolution420

:::::::::::::::
high-resolution

:
vertical profiles enables supervised deep-learning

::::::::::::::
deep-learning421

approaches to predict contrail top heights from ABI data.422

A significant advance in contrail detection has been the development of423

synthetically labeled datasets.(Chevallier et al., 2023)
::::::::
labelled

::::::::::
datasets.

:::::::::::::::::::::::::
Chevallier et al. (2023)424

generated a synthetic dataset using CoCiP
:
(Schumann, 2012) to overlay con-425

trail polygons onto GOES-16 imagery, enabling the first instance segmen-426

tation pipeline for contrail detection. The performance of flight assignment427

algorithms was validated using actual GOES data , through manual inspec-428

tion rather than synthetic reference ground truth. Building on this synthetic429

foundation,(Sarna et al., 2025)
:::::::::::::::::::::
Sarna et al. (2025) introduced a benchmark430

dataset, SynthOpenContrails, with sequences of synthetic contrail detections431

tied to known flight metadata, providing the first opportunity to quantita-432

tively evaluate and improve contrail–flight attribution algorithms. To our433

knowledge, this is the only dataset providing localized and tracked contrails434

with attributable ground truth, albeit synthetic. While the use of synthetic435

datasets represents a modern and cutting-edge technique for training algo-436

rithms, the use of manually labelled data as test sets is still theoretically437

preferable to objectively assess algorithmic performance. However, obtaining438

such datasets on geostationary satellite images, with their coarse resolution,439

remains very difficult at this stage, which motivates the approach adopted by440

the authors. As mentioned in(Sarna et al., 2025)
:::::::::::::::::::
Sarna et al. (2025), obtain-441

ing such a reference dataset with ground truth for flight attribution based on442

human annotations is definitely feasible in principle with higher resolution443

low orbit
:::::::::
low-orbit

:
satellites or ground-based cameras, which is the focus of444

the present work.445

Overall, while existing datasets have contributed valuable resources,
:
there446
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is a lack of comprehensive, human-labelled data containing temporally re-447

solved, instance-level
:
,
:
and flight-attributed annotations. Our work addresses448

this issue by introducing a dataset designed to provide these annotations,449

collected using our ground camera system.450

3.2. Models451

Contrail monitoring with computer vision was first pioneered in the early452

nineties
:
(Forkert et al., 1993; Mannstein et al., 1999), using non-data-driven453

:::::::::::
traditional image-analysis techniques. Their work applied linear-kernel

::::::::::::
linear-kernel454

methods, direct thresholding of brightness temperature difference channels,455

and early Hough-transform operators (Pratt, 2007) optimized for linear shape456

detection , to identify contrails in AVHRR satellite imagery. This approach457

was further improved by (Vázquez-Navarro et al., 2010)and (Duda et al., 2013)458

.
::::::::::::
foundational

::::::
work

::::
was

::::::::::
extended

:::::::::
through

::::::::::
improved

:::::::::
detection

::::::::::::
algorithms

:::::::::::::::::::::::::::
(Meyer et al., 2002, 2007)459

:
,
:::::::::::
automated

:::::::::
tracking

::::::::::
methods

::::::::::::::::::::::::::::::::
(Vázquez-Navarro et al., 2010),

:::::
and

::::::::::
enhanced460

::::::
cirrus

::::::::::
detection

::::::::::::
capabilities

:::::::::::::::::::::::::::::::::::::::::::::
(Ewald et al., 2013; Mannstein et al., 2012)

:
.
::::::::
Parallel461

:::::::::
advances

:::
in

::::::
cloud

:::::::::
property

:::::::::
retrieval

:::::
from

::::::::::::::
geostationary

::::::::::
satellites

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bugliaro et al., 2012; Hamann et al., 2014; Kox et al., 2014)462

::::
and

:::::::
neural

::::::::::::::::
network-based

::::::::::::::
classification

::::::::::::::::::::::::::::::
(Strandgren et al., 2017b,a)

:::::::
further463

:::::::
refined

::::::::
contrail

:::::
and

::::::
cirrus

:::::::::::::::::
characterization.

::::::::::::::::
Ground-based

::::::::::
validation

::::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::
(Mannstein et al., 2010; Schumann et al., 2013)464

:::::::::
provided

:::::::::
essential

::::::::::::
verification

::
of

::::::
these

:::::::::::::::
satellite-based

::::::::::
methods.

:::::::
These

:::::::::
classical465

::::::::::
computer

::::::
vision

::::::::::::
approaches

:::::
were

:::::
later

::::::::::::::::
complemented

:::
by

::::::::::::::
improvements

::::::
from

::::::::::::::::::::
Duda et al. (2013)466

::::
and

:::::::::::
eventually

:::
by

:::::::::
modern

:::::
deep

:::::::::
learning

::::::::::::
techniques.

::
467

To the best of our knowledge, Kulik (2019); Meijer et al. (2022)
::::::::::::::
Kulik (2019)468

::::
and

:::::::::::::::::::::
Meijer et al. (2022) represent the earliest applications of modern con-469

volutional networks to pixel-level classification and semantic segmentation.470

Building on the OpenContrails dataset,
:
Ng et al. (2023) employed semantic471

segmentation algorithms, specifically DeepLabV3 (Chen et al., 2017, 2018),472

to identify contrails in ash-rgb
:::::::::
ash-RGB

:
composites using brightness tem-473

perature differences. Their work demonstrated that adding temporal context474

via a 3D encoder, incorporating the time dimension, led to improved perfor-475

mance. Moreover, results from the subsequent Kaggle competition showed476

that UNet
::::::
U-Net

:
models (Ronneberger et al., 2015) equipped with modern477

transformer backbones, such as MaxViT (Tu et al., 2022) and CoatNet (Dai478

et al., 2021), achieved even stronger results (Jarry et al., 2024).479

Using an ensemble approach,
:
Ortiz et al. (2025) combined six neural480

networks, including U-Net, DeepLab, and transformer architectures, and ap-481

plied optical-flow-based corrections to maintain temporal consistency across482
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consecutive satellite frames. Meanwhile,
:
Sun and Roosenbrand (2025) intro-483

duced a Hough-space line-aware loss for few-shot scenarios, supplementing484

Dice loss with a global alignment term to encourage predictions to align with485

linear structures.486

Shifting from pixel-level masks to instance-level contrail segmentation and487

making use of synthetic data(Chevallier et al., 2023) ,
:::::::::::::::::::::::::
Chevallier et al. (2023)488

introduced the first algorithmic pipeline focused on instance segmentation489

for contrail detection, utilizing the Mask R-CNN algorithm (He et al., 2017).490

Similarly,
:
Van Huffel et al. (2025) adopted Mask R-CNN to process images491

captured by their wide-angle ground camera system.492

The difficult
:::::::::::
challenging

:
task of attributing detected contrails to individ-493

ual flights (typically using ADS-B information) in geostationary satellite im-494

agery,
::::::::::
typically

::::::
using

:::::::::::
automatic

::::::::::::
dependent

:::::::::::::::::::::::
surveillance-broadcast

::::::::::
(ADS-B)495

:::::
data,

:
has been the focus of several recent studies.(Chevallier et al., 2023)496

:::::::::::::::::::::::::
Chevallier et al. (2023) introduced a pipeline that combines contrail detec-497

tion, tracking, and matching with aircraft using geometric criteria and wind-498

corrected trajectories.Riggi-Carrolo et al. (2023) proposed an probabilistic matching499

methods that account
:::::::::::::::::::::::::::::
Riggi-Carrolo et al. (2023)

:::::::::
proposed

::
a
::::::::::::::
probabilistic500

:::::::::
matching

:::::::::
method

::::::
that

:::::::::
accounts

:
for uncertainties in flight data and atmo-501

spheric conditionsleveraging as well on Hough-based line detection . (Geraedts et al., 2024)502

:
,
::::::::::::::
incorporating

:::::::::
features

::::::::
derived

::::::
from

::::::::::::::
Hough-based

::::
line

::::::::::
detection

:::
to

:::::::::
improve503

:::::::::::
alignment.

::::::::::::::::::::::::
Geraedts et al. (2024) presented a scalable system designed to504

assign contrails to flights on a large scale, enabling routine monitoring of505

contrail formation and supporting climate assessments.(Sarna et al., 2025)506

:::::::::::::::::::::
Sarna et al. (2025) systematically benchmarked and refined these attribu-507

tion algorithms, highlighting common challenges and proposing improved508

association metrics, building on the release of the synthetically generated509

SynthOpenContrails dataset
:
.
:

510

By contrast, our work targets ground-based imagery, capturing contrails511

immediately after formation and enabling near-instantaneous flight attri-512

bution via ADS-B
:::::::
ADS-B

:
data. We harness panoptic segmentation using513

Mask2Former, trained on high-resolution video, to extract pixel-accurate514

masks of individual contrails and track them over time. This fills the gap in515

early-stage contrail detection and provides richer spatial and temporal detail516

than existing satellite-based models.517
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4. Dataset518

The primary contribution of this paper is the introduction of a new519

dataset designed to support contrail detection, tracking
:
,
:
and attribution.520

This section provides a detailed overview of the dataset. Section 4.1 de-521

scribes the data collection and labelling campaign. Section 4.2 summarizes522

the structure and content of the dataset.523

4.1. Data collection and labelling campaign524

To support the development of machine learning models for contrail detec-525

tion, we conducted an extensive labelling campaign as part of the ContrailNet526

project. Visible-spectrum image sequences were acquired using a
::
an

:
all-sky527

ground-based camera installed on the roof of the EUROCONTROL Innova-528

tion Hub , capturing
:::::::::::
(Location:

::::::::::::
48◦36′1.87′′

::::
N,

::::::::::::
2◦20′48.46′′

::::
E).

:::::
The

::::::::
camera529

:::::::::
captured

:
the sky every 30 seconds at a resolution of 1976× 2032 pixels.530

Our camera provider, Reuniwatt, has delivered a dual all-sky
::::::
all-sky

:
cam-531

era system: the first unit, CamVision, operates in the visible spectrum, cap-532

turing high-resolution
::::::::::::::::
high-resolution

:
fisheye images every 30 seconds with533

on-board processing and self-calibration, ensuring reliable daytime operation534

even in dusty or wet conditions. The second unit, SkyInsight, uses long-535

wave infrared (8–13 µm
::::
8–13

::::
µm) imaging via a chrome-coated

:::::::::::::::
chrome-coated536

hemispherical mirror and will be used in future research.537

The raw all-sky images were first geometrically projected onto a square538

grid. This projection process , uses camera-specific calibration files to asso-539

ciate each pixel with its corresponding azimuth and zenith angles, effectively540

removing lens distortions and re-mapping the sky onto a uniform Cartesian541

representation. A 75km× 75km
:::::::::::::::
75 km× 75 km

:
grid of georeferenced points542

was computed at a fixed cloud altitude (10
:
km), and a linear interpolation543

scheme was used to assign raw pixel values to the projected frame. The out-544

put is a square image of size 1024 × 1024 pixels that preserves the spatial545

geometry of the sky above the camera.546

To improve the visual clarity and consistency of the sequences, each547

projected image then undergoes a three-step enhancement process. First,548

brightness is increased using a linear scaling operation
::
to

:::::::::::::
compensate

::::
for549

:::::::::::::::
underexposure

:::
in

::::::::
certain

:::::::::::::
atmospheric

::::::::::::
conditions. Second, local contrast is550

enhanced via CLAHE (Contrast Limited Adaptive Histogram Equalization),551

which boosts features like
::::
fine

:::::::::
features

::::
like

:::::
faint

:::
or

::::::::::::
fragmented contrails with-552

out overexposing the image
::::::
bright

::::::::
regions. Finally, colour warmth is reduced553
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(a) Raw
::::
all-sky

::
image from the

ground-based camera with visible
contrails.

::::::
showing

:::::::
severe

::::::::
fisheye

:::::::
distortion

(b) Geometrically projected
and enhanced image used
for annotation.

:::::::
Geometric

::::::::
projection

:::
onto

::
a
:::::
square

::::
grid

(c) Side-by-side comparison of
the raw ground-based camera
image and the geometrically
projected version used for
annotation. Projection corrects
perspective distortions and
enhances contrast for better
segmentation.

::::
Final

:::::::::
three-step

::::::::::
enhancement

::::::
process

Figure 3:
::::::
Impact

::
of

:::::::::::::
preprocessing

:::::::
pipeline

:::
on

:::::::
contrail

:::::::::
visibility.

by rebalancing the blue and red channels,
:::::::::::
mitigating

::::
the

:::::::
effects

::
of

:::::
high

::::::
solar554

:::::
glare

:::::
and

:
improving contrail visibility in high-sunlight

:::::::::::
challenging

:::::::::
lighting555

conditions. This preprocessing pipeline proved essential in highlighting fine556

contrail structures, especially in complex atmospheric scenes. Both raw557

and enhanced projected images are displayed in Figure3.
:::
for

:::::
two

:::::::::
reasons:558

::
it

::::::::
enables

::::::::::::
annotators

:::
to

:::::::::
identify

::::
and

::::::::::
delineate

::::::::::
contrails

:::::::::::::
consistently

:::::::
across559

:::::::
diverse

:::::::::::::
atmospheric

::::::::
scenes,

:::::
and

::
it

:::::::::::
simplifies

::::
the

:::::::::
learning

:::::
task

:::
for

:::::::::::
computer560

::::::
vision

::::::::
models

::::
by

::::::::::
removing

:::::::::::::::::
camera-specific

::::::::::::
distortions

:::::
and

::::::::::::
enhancing

::::
the561

:::::::
natural

:::::::
linear

::::::::::
structure

::
of

::::::::::
contrails.

:::::::
Figure

::
3
:::::::::::
illustrates

:::
the

::::::::
impact

::
of

:::::::::::
geometric562

::::::::::
projection

:::::
and

::::::::::::::
enhancement,

::::::::::::::::
demonstrating

::::
how

::::
the

:::::::::
pipeline

:::::::
reveals

:::::::::
contrails563

::::
that

::::::::
would

::::::::::
otherwise

::::
be

:::::::::
difficult

:::
or

::::::::::::
impossible

:::
to

::::::::::
annotate

::::::::::
reliably.

:::::
All564

:::::::
models

::::::::::
presented

:::
in

::::
this

::::::
work

:::
are

::::::::
trained

::::
and

:::::::::::
evaluated

:::::::::::
exclusively

:::
on

::::::::::::::
preprocessed565

::::::::
images.

:
566

The process of labelling
:::::
video

:::::::::::
sequences

::::::::::
included

:::
in

:::::
the

::::::::
dataset

::::::
were567

:::
not

:::::::::::
randomly

::::::::::
sampled

:::::
from

:::::
the

::::
full

:::::::::
archive.

::::
To

::::::::
ensure

::::::::::
sufficient

:::::::::
contrail568

:::::::::
instances

::::
for

::::::::
effective

:::::::
model

:::::::::
training

::::::
while

::::::::::::
maintaining

:::::::::
seasonal

:::::
and

:::::::::::::
atmospheric569

:::::::::
diversity,

::::
we

:::::::::
applied

::
a
:::::::::::
two-stage

::::::::::
selection

::::::::::
strategy.

::::::::
First,

:::::
the

::::::::::
complete570

:::::::::
year-long

::::::::
archive

::::
was

:::::::::::
processed

::::::
using

:
a
::::::::::::
lightweight

:::::::
binary

:::::::::
classifier

:::
to

::::::::::::
distinguish571

::::::::::::::::
contrail-present

:::::
from

::::::::::::::::
contrail-absent

::::::::
images.

::::::
This

:::::::::::
automated

:::::::::
filtering

::::::::::
efficiently572

:::::::::
identified

::::::::::::
candidate

::::::::
periods

::::
by

:::::::::::
excluding

::::::::::
extended

::::::::::
intervals

:::
of

::::::
clear

:::::
sky573
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::
or

:::::::
heavy

:::::::::::::
low-altitude

:::::::
cloud

::::::
cover.

::::::::::
Second,

::::::
video

:::::::::::
sequences

::::::
were

::::::::::
manually574

::::::::
selected

:::::
from

::::::
these

::::::::
filtered

:::::::::
periods,

::::::::::::
prioritizing

:::::::
scenes

:::::
with

:::::::
visible,

:::::::::::
persistent575

:::::::::
contrails

::::::::
suitable

::::
for

::::::::
detailed

::::::::::
temporal

::::::::::::
annotation.

::::::
This

::::::::::
approach

::::::::::::
deliberately576

::::::::::::
oversamples

:::::::::::::::::
contrail-positive

:::::::
cases,

::::::::::
enhancing

::::
the

::::::::::
dataset’s

:::::::
utility

:::
for

::::::::::::::
segmentation577

::::
and

:::::::::
tracking

::::
but

::::::::::::
introducing

::
a
::::::::::
selection

::::
bias

:::::
that

::::::::
should

:::
be

:::::::::::
considered

::::::
when578

:::::::::::
evaluating

:::::::
model

::::::::::::::
performance

::::
on

:::::::::::
unfiltered

::::::::::::
operational

:::::::
data.

::::::
The

::::::
final579

:::::::
dataset

:::::::
spans

::::
the

:::::
full

:::::::::
calendar

::::::
year,

::::::::::
ensuring

::::::::::
coverage

:::
of

::::::::
diverse

:::::::::
seasonal580

::::
and

:::::::::::::
atmospheric

::::::::::::
conditions.

:
581

::::
The

:::::::::
labelling

:::::::::
process

:
was applied to video sequences, ;

:
each sequence582

comprised between 60 and 480 images, corresponding to durations of 30583

minutes to 4 hours, enabling the temporal tracking of contrails throughout584

their formation and dissipation phases.585

The labelling process was carried out using a dedicated annotation tool586

developed by Encord, who also provided a professional team of annotators.587

We maintained close collaboration with this team through regular coordina-588

tion meetings, during which the annotation guide was developed and itera-589

tively refined. The labelling platform was specifically configured to overlay590

flight trajectory data above the camera’’s field of view, assisting annota-591

tors in identifying “new” contrails,
:::::::
"new"

::::::::::::
contrails—those forming above the592

camera and visibly associated with a known aircraft trajectory. In contrast,593

“old”
:::::
"old"

:
contrails were defined as those already present at the start of a594

sequence or likely formed outside the camera’’s field of view, making flight595

association impossible.596

Each contrail was annotated using high-precision polygons that tracked597

its spatial extent throughout its visible evolution, from early linear stages to598

advanced spreading phases. When contrails became fragmented or partially599

obstructed by clouds, multiple polygons were used and linked using relational600

attributes (Fragmented contrail and Cloud obstruction
::::::::::::
"fragmented

::::::::::
contrail"601

::::
and

:::::::
"cloud

::::::::::::::
obstruction") to preserve temporal continuity.602

To ensure the highest annotation quality, the campaign incorporated a603

multi-stage review protocol. An initial calibration phase was conducted us-604

ing a sample dataset to harmonise interpretation and identify edge cases.605

Each labelled sequence then underwent a two-step quality control process: a606

technical review made
:::::::::
technical

:::::::
review

:
by the labelling team, followed by607

an expert review made
:::::::
expert

:::::::
review

:
by EUROCONTROL to ensure final608

quality. In total
:
,
:
4

:
,536 hours of labelling and 431 hours or

::
of

:
reviewing were609

performed.610
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4.2. Dataset Description611

The GVCCS datasetJarry et al. (2025)
::::::::::::::::::::::
(Jarry et al., 2025) is the first612

open-access, instance-level annotated video dataset designed for contrail de-613

tection, segmentation, and tracking from visible ground-based sky camera614

imagery. It consists of 122 high-resolution video sequences (totaling 24,228615

images) captured at the EUROCONTROL Innovation Hub in Brétigny-sur-616

Orge, France, using Réuniwatt’’s CamVision sensor. Each sequence has been617

carefully annotated with temporally consistent polygon masks for visible con-618

trails, including multi-instance tracking and, where possible, attribution to619

specific flights using aircraft trajectory data.620

In total, the annotation team labelled 4651
:::::
4,651

:
individual contrails621

with a total of 176,194
::::::::
176,194 polygons. The sequences cover a wide range622

of durations (from 0.5 to 142.5 minutes per contrail), with each contrail com-623

prising between 1 and 589 polygons (mean: 37.8). On average, each video624

sequence spans 96.6 minutes and contains approximately 193 annotated im-625

ages. About 3346
::::::
3,346 contrails are associated with unique flight identifiers626

derived from synchronized flight trajectory data filtered above 15,000
:
ft.627

The GVCCS dataset is structured into train/ and test/ folders, each628

containing images, annotations.json (COCO format), and associated flight629

data in parquet format. The dataset supports a range of research tasks630

including semantic and panoptic segmentation, temporal tracking, lifecycle631

analysis, and contrail–flight attribution, and is released under the CC BY632

4.0 license.633

5. Segmentation Models634

This section reviews the segmentation models evaluated for identifying,635

and for some also tracking, contrails.
:::
As

::::::::::::
established

:::
in

:::::::::
Section

::::
2.2,

:::::
our636

::::::::
primary

::::::::::
objective

:::
is

::::::::::
instance

::::::::::::::
segmentation

::::::::::::
(detecting

:::::::::::
individual

::::::::::
contrails637

::::
and

::::::::::
assigning

:::::
them

::::::::
unique

:::::::::::
identifiers)

:::::::
which

::
is

:::::::::
essential

:::
for

::::::::::
temporal

:::::::::
tracking638

::::
and

::::::
flight

:::::::::::::
attribution.

:::::
The

:::::::::
models

::::::::::
presented

::::::
here

::::
are

::::::::
capable

:::
of

::::::::::
panoptic639

::::::::::::::
segmentation

::::::::
(jointly

:::::::::
handling

:::::::::
instance

::::::::::::::
identification

::::
and

::::::
scene

:::::::::::::::
classification),640

:::::::
though

::::
our

::::::::::::
evaluation

::::::::
focuses

::::::::::
primarily

::::
on

:::::::::
contrail

:::::::::
instance

::::::::
quality

:::::::
rather641

:::::
than

:::::::::::
exhaustive

::::::
scene

:::::::::
parsing.

:
642

We focus on two model families: Mask2Former, a state-of-the-art transformer-643

based segmentation model, and a U-Net using a discriminative embedding644

loss. Both are evaluated on individual images, while only Mask2Former is645

additionally evaluated on videos.646
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Table 1: Descriptive statistics of the annotated contrail dataset

Metric Value

Total sequences (labelled) 122
Total images 24,228
Average sequence duration in minutes

::::::::::
(minutes)

:
96.6

Images per sequence (min / max / mean) 41 / 600 / 198.6

Total annotated contrail instances 4651
:::::
4,651

:

Total unique flight IDs assigned 3354
:::::
3,346

:

Total polygons annotated 176,234
Contrail duration in minutes (min / max / mean) 0.5 / 142.5 / 14.6
Polygons per contrail (min / max / mean) 1 / 589 / 37.8
Polygons per frame per contrail (min / max / mean) 1 / 4.5 / 1.2

We also explore two problem formulations: in the single-polygon case,647

each visible contrail fragment is treated as an independent instance; in the648

multi-polygon case, all fragments of a given contrail are labelled as a single649

instance, even if they are spatially disconnected. The single-polygon setting650

assumes that a subsequent linking algorithm, not implemented in this work,651

could later group fragments into full contrails. The multi-polygon formula-652

tion, in contrast, expects the model to infer such groupings implicitly.653

5.1. Mask2Former654

Mask2Former is a universal segmentation architecture that unifies seman-655

tic, instance, and panoptic segmentation within a single model. It is built656

around a hierarchical encoder-decoder structure comprising three main com-657

ponents: a convolutional backbone for multi-scale feature extraction, a pixel658

decoder that generates dense spatial embeddings, and a transformer decoder659

with learnable mask queries that iteratively refines segmentation predictions.660

A central innovation in Mask2Former is its use of the so-called masked661

attention in the transformer decoder. Unlike standard cross-attention, which662

considers the entire image, masked attention limits attention to regions sur-663

rounding the current predicted masks. This localized focus enables more pre-664

cise refinement of object boundaries, which is particularly beneficial for thin,665

high-aspect-ratio structures like contrails. The model’s learnable queries act666

as object proposals and are refined through multiple decoding layers to gen-667
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erate final instance masks and class labels in an end-to-end manner.668

An important aspect of Mask2Former’
:
’s effectiveness lies in its loss func-669

tion (i.e., the training objective ), which guides the model to learn accurate670

segmentation masksand their corresponding classes
:::
—

::::
the

::::::::::::::
mathematical

::::::::::
objective671

::::
that

::::
the

:::::::
model

::::::
seeks

:::
to

::::::::::
minimize

::::::::
during

:::::::::
training.

:::
A

::::
loss

:::::::::
function

:::::::::::
quantifies672

:::
the

:::::::::::
difference

::::::::::
between

::::::::::
predicted

::::::::::
outputs

::::::
(e.g.,

:::::::::::::::
segmentation

::::::::
masks)

:::::
and673

:::::::
ground

::::::
truth

::::::::::::::
annotations,

::::::::::
providing

::::
the

:::::::::
learning

:::::::
signal

:::::
that

:::::::
guides

:::::::::
iterative674

::::::::::
parameter

:::::::::
updates. The loss function used by Mask2Former combines sev-675

eral components. First, it uses a classification loss that helps the model676

assign the correct class to each predicted mask (e.g., contrail vs.
:
sky). Sec-677

ond, it includes a mask loss, which measures how closely the predicted mask678

matches the ground-truth mask for that object, commonly using a pixel-679

wise binary cross-entropy or Dice loss. Finally, Mask2Former incorporates680

a matching step based on the Hungarian algorithmto align predictions with681

ground truth in an optimal ,
:::::::::::::::
(Kuhn, 1955)

:::
—a

:::::::::::::::
combinatorial

::::::::::::::
optimization682

::::::::
method

:::::
that

:::::::
solves

:::::
the

::::::::::::
assignment

::::::::::
problem

::::
by

::::::::
finding

::::
the

:::::::::
optimal

::
one-683

to-one way. This
::::::::::::::::
correspondence

:::::::::
between

:::::
two

:::::
sets

:::::::
given

::
a
:::::
cost

:::::::::
matrix.684

::
In

:::::
this

:::::::::
context,

::::
the

:::::::::::
algorithm

::::::::::
matches

:::::
each

:::::::::::
predicted

::::::
mask

::::::
with

:::
its

::::::
most685

::::::::::::
appropriate

::::::::::::::
ground-truth

::::::::
object

:::
by

:::::::::::::
minimizing

::
a

:::::::::::
combined

:::::
cost

::::::
based

::::
on686

:::::::::::::
classification

:::::
and

::::::
mask

:::::::::::
similarity.

:::::
This

:::::::::
optimal

::::::::::
matching

:
ensures that each687

predicted mask
::::::::::
prediction

:
is evaluated against the most appropriate referenceobject

:::::::
correct688

:::::::::
reference, avoiding duplicate assignments

::
or

::::::::::::
ambiguous

:::::::::::::
assignments,

:::::::
which

::
is689

::::::::::::
particularly

:::::::::::
important

::::::
when

::::::::::
multiple

:::::::::
contrails

::::::
with

::::::::
similar

::::::::::::
appearance

::::
are690

:::::::
present

:::
in

::::
the

::::::
same

:::::::
image.691

A detailed technical description of the model is beyond the scope of this692

paper, as our focus is on applying Mask2Former to contrail segmentation; we693

refer the reader to the original work by Cheng et al. (2022)
::::::::::::::::::::
Cheng et al. (2022)694

for a comprehensive overview of the architecture and performance on popular695

datasets.696

To capture temporal dynamics inherent in contrail evolution, we ex-697

tend Mask2Former to process short video sequences. Although designed698

for single images, the model can handle multiple consecutive frames as a 3D699

spatio-temporal volume by treating time as an additional axis alongside spa-700

tial dimensions, following the extension introduced by Cheng et al. (2021a)701

:::::::::::::::::::::
Cheng et al. (2021a).702

Compared to traditional segmentation models, Mask2Former offers sub-703

stantial architectural advantages. Mask R-CNN (He et al., 2017), while ef-704

fective, performs detection and segmentation as separate stages, which can705
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introduce spatial misalignment and inefficiencies, especially when segmenting706

long, disconnected objects. DETR (DEtection TRansformer) (Carion et al.,707

2020), though end-to-end and transformer-based, primarily focuses on ob-708

ject detection and lacks the fine-grained spatial modelling needed for precise709

mask prediction. MaskFormer (Cheng et al., 2021b) introduces transformer-710

based decoding for segmentation , but relies on global attention, which can711

dilute spatial precision. Mask2Former refines this approach with masked at-712

tention and iterative refinement, leading to improved accuracy, especially in713

challenging tasks where objects are often thin, faint, and visually ambiguous.714

5.2. U-Net with Discriminative Loss715

As a baseline, we implement a two steps
:::::::::
two-step instance segmentation716

model. First, we use a classical U-net architectureJarry et al. (2024)
::::::
U-Net717

::::::::::::
architecture

:::::::::::::::::::::::::::::
(Ronneberger et al., 2015) for segmentation. U-Net is designed718

specifically for image segmentation tasks and
:
a

::::::::::::::
convolutional

:::::::
neural

:::::::::
network719

::::::::::
originally

:::::::::::
developed

::::
for

::::::::::::
biomedical

:::::::
image

::::::::::::::::
segmentation,

::::::::::::::
characterized

::::
by720

::
its

::::::::::::
distinctive

:::::::::::
U-shaped

::::::::::::::
architecture.

::::::
The

::::::::::
network

:
features a symmetri-721

cal encoder-decoder structure. The encoder part of the network gradually722

reduces the spatial size of the input image, extracting :
:::::
the

::::::::
encoder

::::::::::::::
progressively723

:::::::::::::
downsamples

::::
the

::::::
input

:::
to

::::::::
capture

:
high-level features that capture the overall724

context. The decoder then progressively restores the spatial resolutionby725

upsampling these features to produce a segmentation map that matches726

the original image size. Importantly
:::::::::
semantic

::::::::::
features,

:::::::
while

::::
the

:::::::::
decoder727

:::::::::::
upsamples

::
to

::::::::
recover

:::::::
spatial

::::::::::::
resolution.

::::::::::
Crucially, U-Net uses skip connectionsthat728

directly link corresponding layers in the
:::::::::
employs

:::::
skip

:::::::::::::::::::::
connections—direct729

::::::::::
pathways

:::::
that

:::::
link

::::::::::::::::
corresponding

:
encoder and decoder

:::::::
layers,

:::::::::::
bypassing730

:::::::::::::
intermediate

::::::::::::
processing. These connections allow fine-grained spatial de-731

tails
::::::
(such

:::
as

::::::
exact

::::::::
contrail

:::::::::::::
boundaries)

::::::
that

::::
are lost during downsampling732

to be recovered
::::::::
directly

::::::::::
recovered

:::
in

::::
the

:::::::::
decoder, improving the quality and733

precision of segmentation outputs.734

Second, we use a similar architecture that learns a unique feature repre-735

sentation, or embedding, for each pixel in an image by using a discrimina-736

tive loss function
::
—

::
a
:::::::::
training

::::::::::
objective

::::::::::::
specifically

::::::::::
designed

:::
to

:::::::::::
encourage737

::::::
pixels

:::::
from

::::
the

::::::
same

:::::::::
instance

::
to

:::::
have

::::::::
similar

:::::::::::::
embeddings

:::::
while

:::::::::
pushing

::::::
apart738

::::::::::::
embeddings

::::::
from

:::::::::
different

::::::::::
instances. In this model, the final head of the U-739

Net does not produce a typical segmentation map with class labels. Instead,740

it produces an embedding for each pixel ;
:
(a vector in a high-dimensional741

feature space
:
). The goal is for pixels that belong to the same object instance742
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to have similar embeddings (meaning they are close together in this feature743

space), while pixels belonging to different instances have embeddings that744

are far apart. This way, the model effectively learns to group pixels based745

on their learned features.746

The process of identifying individual instances is performed in two sep-747

arate steps. The first step is to generate these pixel embeddings with the748

U-Net, and the second step is to group or cluster these embeddings into in-749

dividual instances. For clustering, we use the HDSCAN algorithm , to find750

the clusters and a final k-means to associate outliers with closest cluster .751

::::::::::::
HDBSCAN

::::::::::::::
(Hierarchical

::::::::::::::::
Density-Based

::::::::
Spatial

:::::::::::
Clustering

:::
of

::::::::::::::
Applications752

:::::
with

:::::::
Noise)

:::::::::::::::::::::::::
(Campello et al., 2013)

::::
—a

:::::::::::::::
density-based

:::::::::::
clustering

:::::::::::
algorithm753

::::
that

:::::::::::::::
automatically

:::::::::::
identifies

::::::::
clusters

:::
of

:::::::::::
arbitrary

:::::::
shape

:::::::::
without

::::::::::
requiring754

:
a
::::::::::::::::
predetermined

::::::::
number

:::
of

:::::::::
clusters.

:::::::::::::
HDBSCAN

::::::::
groups

:::::::
pixels

:::::
with

::::::::
similar755

::::::::::::
embeddings

::::::
(high

:::::
local

::::::::
density

:::
in

:::
the

::::::::::::
embedding

:::::::
space)

::::
into

::::
the

::::::
same

:::::::::
instance756

:::::
while

::::::::::::
identifying

:::::::::
outliers

:::::
that

::::
do

:::::
not

:::::::
belong

::::
to

::::
any

::::::
clear

:::::::::
cluster.

::::::::
These757

::::::::
outliers

:::
are

::::::::::::::
subsequently

:::::::::
assigned

:::
to

:::
the

::::::::
nearest

:::::::
cluster

::::::
using

::::::::::
k-means,

:::::::::
ensuring758

:::::::::
complete

:::::::::
instance

::::::::::
coverage.

:::::
This

::::::::::
approach

::
is

:::::::::::::
particularly

::::::::
suitable

::::
for

::::::::::
contrails,759

::::::
which

::::::
often

:::::::
exhibit

::::::::::
irregular,

:::::::::::::
fragmented,

:::
or

::::::::::
elongated

:::::::
shapes

:::::
that

::::
are

::::::::
difficult760

::
to

::::::::
cluster

::::::
using

:::::::::::
traditional

::::::::::
methods

::::
like

:::::::::
k-means

:::::::
alone.

:
761

The discriminative loss
::::::::
function

::
used to train the model is composed762

of three parts. The first part, known as the pull term, encourages embed-763

dings of pixels that belong to the same instance to be close together, making764

the cluster compact. The second part, called the push term, forces em-765

beddings of different instances to be sufficiently separated from each other,766

preventing clusters from overlapping. The third part is a regularization767

term that prevents the embeddings from growing too large in magnitude,768

which stabilizes the training process and embedding space. This combina-769

tion allows the model to learn meaningful and well-separated pixel embed-770

dings without relying on explicit object bounding boxes or pre-defined region771

proposals. For readers interested in the mathematical formulation and de-772

tailed rationale behind the discriminative loss, we refer to the original paper773

by De Brabandere et al. (2017)
:::::::::::::::::::::::::::::
De Brabandere et al. (2017).774

It is important to note that this model operates only on single images.775

Unlike models such as Mask2Former for videos mentioned in the previous sec-776

tion, it does not incorporate any temporal or sequential information, nor does777

it include recurrent layers or mechanisms to handle videos. Extending this778

approach to process video sequences and incorporate temporal consistency779

would require significant changes to both the architecture and the algorithms780
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used, which is outside the scope of this work.781

The embedding-based approach is well suited to segmenting objects that782

may not be spatially continuous, such as contrails with fragmented shapes.783

Since the model does not require spatial continuity, it can learn to embed784

separate, disconnected parts of the same contrail into a similar region of785

the feature space if they share common visual characteristics and belong to786

the same label. However, this approach has its challenges. If parts of the787

same contrail differ significantly in appearance , due to factors like changes788

in lighting, atmospheric conditions, or variations in the background texture.789

They
:
,
:::::
they may be embedded differently and incorrectly assigned to separate790

clusters. Conversely, visually similar but unrelated contrail fragments could791

be mistakenly grouped together, as the model relies solely on the learned792

embeddings for clustering.793

Figure 4 illustrates a qualitative result of the instance discriminative794

segmentation model
::::
how

::::
the

::::::::::::::::
discriminative

::::::::::::
embedding

:::::::::::
approach

:::::::
learns

:::
to795

::::::::
separate

:::::::::
contrail

:::::::::::
instances. On the left, the ground truth labels are dis-796

played, highlighting the pixel-wise assignment to contrail instances. On the797

right, we show the corresponding discriminative embedding space, reduced to798

two dimensionsusing .
:::::::
Since

:::::
each

::::::
pixel

::
is

:::::::::::::
represented

:::
by

::
a

::::::::::::::::::
high-dimensional799

:::::::::::
embedding

:::::::
vector

:::::::::::
(typically

:::
32

:::::::::::::
dimensions),

::::
we

::::::
apply

:
Principal Component800

Analysis (PCA) for visualization purposes
::
to

::::::::
reduce

::::
this

:::
to

::::
two

::::::::::::
dimensions

:::
for801

::::::::::::::
visualization:

::::::
PCA

:::::::::
identifies

:::::
the

::::
two

::::::::::::
orthogonal

::::::::::
directions

:::::
that

:::::::::
capture

::::
the802

:::::
most

:::::::::
variance

::
in

::::
the

::::::::::::
embedding

::::::
space,

:::::::::::
effectively

:::::::::::
projecting

::::
the

::::::::::::::::::
high-dimensional803

::::::::
clusters

:::::
onto

:::
a

::::
2D

::::::
plane. Each point represents a pixel embedding, and804

colors indicate the instance it belongs to
:
in

:::::
this

:::::
plot

:::::::::::
represents

:
a
:::::::
single

::::::
pixel,805

:::::::
colored

:::::::::::
according

:::
to

:::
its

::::::::::::::
ground-truth

:::::::::
instance

::::::
label. This visualization pro-806

vides insight into how the model, trained with a discriminative loss, learns807

to embed pixels from the same instance close together in the feature space,808

while separating those from different instances. The separation observed in809

the embedding space confirms the model’
:
’s ability to cluster fragmented con-810

trail structures, although visually similar but unrelated segments may still811

partially overlap in the embedding due to shared appearance features.812

6. Results813

This section presents the performance of the models introduced in Sec-814

tion 5 on contrail segmentation tasks. Our primary goal is not to achieve815

state-of-the-art results but to establish clear examples of application
:::::::::::
application816
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Figure 4: The true label is displayed on
::::::::::
Illustration

:::
of

:
the left and the discriminative

embedding on the right
::::::
method

::::
for

::::::::
instance

::::::::::::
segmentation. The latter was created using

Principal Component Analysis
:::
Left

::::::
panel:

:::::::::::::
Ground-truth (PCA

::::::::::::::::
human-annotated)

:::::::
instance

::::::
labels,

:::::
where

:::::
each

:::::
color

::::::::::
represents

:
a
::::::::
distinct

:::::::
contrail.

:::::
Right

::::::
panel:

::::::::::::
Visualization

::
of
::::
the

::::::
learned

:::::
pixel

::::::::::::
embeddings.

:
The colours reflect

::::::
U-Net

::::::
model

::::::
learns

::
to

:::::
map

::::
each

:::::
pixel

:::
to

:
a
:::::
point

:::
in

::
a

:::::::::::::::
high-dimensional

:::::::
feature

:::::
space

:::::
such

::::
that

::::::
pixels

:::::::::
belonging

:::
to

:::
the

::::::
same con-

trail instances
:::
are

::::::::::
positioned

:::::
close

:::::::::
together,

:::::
while

::::::
pixels

:::::
from

::::::::
different

::::::::
contrails

::::
are

:::
far

:::::
apart.

:::
For

::::::::::::
visualization,

::::::
PCA

:::::::
reduces

::::
this

::::::::::::::::
high-dimensional

::::::
space

::
to

::::
two

:::::::::::
dimensions

::
by

::::::::::
identifying

::::
the

::::::::::
directions

::
of

::::::::::
maximum

:::::::::
variance.

::::::
Each

:::::
point

::::::::::
represents

::::
one

::::::
pixel,

:::::::::
positioned

:::::::::
according

:::
to

:::
its

:::::::
learned

::::::::::
embedding

::::
and

:::::::
colored

:::
by

:::
its

:::::::::::::
ground-truth

:::::::
contrail

::::::::
instance.

::::::::::::::
Well-separated,

::::::::
compact

:::::::
clusters

:::::::
indicate

::::
that

::::
the

:::::
model

::::
has

::::::::::
successfully

:::::::
learned

::
to

:::::
group

::::::
pixels

:::::
from

:::
the

:::::
same

::::::::
contrail

:::::
while

:::::::::::::
distinguishing

:::::::
different

:::::::::
contrails.

:::::::::
examples

:
and meaningful baseline performances. By doing so, we highlight817

the unique opportunities offered by this dataset and provide a foundation818

for the research community to build upon, encouraging rapid progress in the819

critical field of aviation’
:
’s climate impact.820

6.1. Training821

All models were initialised
::::::::::
initialized

::
from existing pretrained check-822

points. We trained two versions of the Mask2Former architecture for the823

single image
::::::::::::
single-image

:
segmentation task. Both models share the same824

core architecture but differ in the size of their transformer backbone: one825

uses the Swin-Base (Swin-B) configuration and the other uses the larger826

Swin-Large (Swin-L). The main difference between these two lies in model827
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capacity, :
:
Swin-L has significantly more parameters, which enables

:::::::::
enabling828

it to learn richer representations at the cost of higher computational require-829

ments.830

Both image models were initialized from publicly available pretrained831

checkpoints in the Mask2Former Model Zoo1. Each model was first pre-832

trained on the ImageNet-21k (IN21k) (Ridnik et al., 2021) classification833

dataset and then fine-tuned on the COCO panoptic segmentation dataset.834

While COCO (Lin et al., 2014) does not include contrails, it spans a wide835

range of natural (including clouds and sky) and man-made objects, offering836

useful general-purpose segmentation features. This two-stage pretraining ,837

:
(IN21k followed by COCO, )

:
has been widely validated in the literature and838

provides a strong initialization for fine-tuning on contrail imagery.839

Both the Swin-B and Swin-L variants were trained on individual image840

frames using 200 learnable object queries. Given our hardware setup,
::
—two841

NVIDIA RTX 6000 GPUs, each with 48
:
GB of memory,

::
—we were able to842

train both variants on the image dataset without significant memory limita-843

tions.844

For video segmentation, we used the video-specific variant of Mask2Former,845

which extends the original architecture to handle temporal sequences. Like846

the image-based model, it also uses 200 object queries and Swin Transformer847

backbones, and it is initialized from a checkpoint pretrained on the YouTube-848

VIS 2019 dataset (Yang et al., 2019). Although YouTubeVIS does not contain849

contrails, its emphasis on learning temporally consistent object masks across850

frames makes it well suited to capture the dynamics of contrails in video851

data.852

Due to GPU memory constraints
:
,
:
we limited both training and inference853

to short video clips composed of a small number of consecutive frames. While854

this restriction was necessary to fit within available hardware resources, par-855

ticularly for memory-intensive architectures, it also shaped our training strat-856

egy. During training, these clips are randomly sampled from longer video se-857

quences to introduce temporal diversityinto the training process. By varying858

the starting points of the sampled clips, the model is exposed to contrails at859

different stages of their lifecycle ,
:
(formation, elongation, dissipation,

:
)
:
and860

in diverse atmospheric contexts. This stochastic sampling encourages the861

model to learn more generalizable temporal representations.862

1https://github.com/facebookresearch/Mask2Former/blob/main/MODEL_ZOO.md
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To support this setup, we trained the video Mask2Former model using863

both Swin-Base (Swin-B) and Swin-Large (Swin-L) backbones. However, the864

number of frames per clip had to be adjusted based on model capacity and865

memory availability. With the more lightweight Swin-B variant, we were able866

to train on 5-frame clips, while the higher-capacity Swin-L model could only867

be trained on 3-frame clips due to its significantly larger memory footprint.868

This reflects a trade-off between temporal context and model expressiveness:869

longer clips may better capture the dynamic evolution of contrails, whereas870

larger models like Swin-L provide richer per-frame representations. Training871

both configurations allows us to explore how these two dimensions ,
:
(temporal872

depth and model capacity,
:
) interact in the context of contrail segmentation.873

For the U-Net model, we used a backbone based on MaxViT-B, a hybrid874

vision transformer architecture that combines convolutional layers with self-875

attention mechanisms for efficient and scalable visual representation learning.876

This backbone was pretrained on ImageNet-21k and subsequently fine-tuned877

on ImageNet-1k, providing robust feature representations to support the dis-878

criminative loss function employed during contrail segmentation training.879

The training procedure for each model involved several epochs of su-880

pervised learning, with early stopping applied based on performance on a881

validation set. The dataset was partitioned into training, validation, and882

test sets using a 70-10-20 random split , done at the video level. This means883

that all frames from a given video were assigned exclusively to one of the884

three sets to avoid any potential data leakage. To ensure a fair and unbiased885

evaluation, we also balanced the number of empty sequences , videos that886

contain no contrails ,
::
—

::::::::
videos

:::::::::::
containing

::::
no

:::::::::
contrails

::::
— across the three887

subsets.888

:
It

::
is
:::::::::::
important

:::
to

:::::
note

:::::
that

:::
the

::::::::::
reported

::::::::
metrics

::::::
reflect

:::::::
model

:::::::::::::
performance889

::
on

:::::::::::::
contrail-rich

:::::::::::
scenarios,

::
as

::::
the

::::::::
dataset

:::::::::::::
construction

:::::::::::::
deliberately

:::::::::::::
oversampled890

::::::::::::::::
contrail-positive

:::::::::::
sequences

::::
to

::::::::::
maximize

:::::::::
training

::::::::
signal.

::::::::
While

:::::
this

:::::::
choice891

:::::::::
enhances

::::
the

:::::::::
dataset’s

:::::::
utility

::::
for

::::::::
contrail

::::::::::
detection

::::
and

:::::::::
tracking

::::::
tasks,

:::::::::::::::
generalization892

::
to

:::::::::::
unfiltered

::::::::::::
operational

::::::
data

:::::
with

::::::::::
arbitrary

:::::
sky

:::::::::::
conditions

:::::
may

::::::
differ

:::::
and893

:::::::::
warrants

::::::::
further

::::::::::::::
investigation.

:
894

We did not perform exhaustive hyper-parameter tuning for any of the895

models. Instead, our goal with this experimental setup was to establish896

baseline results and to analyze model performance both qualitatively and897

quantitatively under realistic computational and data constraints. All mod-898

els were trained using the default hyper-parameters reported in their orig-899

inal publications. Tables 2 and
:
3 summarize the most important training900
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parameters for each model. Note that the models differ in the specific hyper-901

parameters relevant to their architecture and training setup. Future work902

will focus on exploring more sophisticated modeling strategies, systematic903

hyper-parameter optimization, and additional training refinements.904

Table 2: Default hyper-parameters for Mask2Former models.

Hyper-parameter Default value Notes / Differences

Training iterations 20K Same for image and video
Learning Rate — 3.75e-5 (Image), 1.25e-5

(Video)
Batch Size — 6 (Image), 2 (Video)
Image Size 1024 × 1024 Same for image and video
Class Weight 2.0 Same for image and video
Mask Weight 5.0 Same for image and video
Dice Weight 5.0 Same for image and video
Importance Sample Ratio 0.75 Same for image and video
Oversample Ratio 3.0 Same for image and video
Augmentations

Rotation (90°),
vertical flip,
horizontal flip
::::::::
Rotation

:::::::::
(90°),

:::::::
vertical

::::::::::
flip,

:::::::::
horizontal

::::
flip

Applied at image
level (Image); applied
at clip level (Video)
:::::::
Applied

:::::
at

:::::::
image

:::::::
level

::::::::
(Image);

:::::::::
applied

::::
at

:::::
clip

::::
level

::::::::
(Video)

Remember that each
:::::
Each

:
model was trained and evaluated on two dis-905

tinct formulations of the instance segmentation task. The first formulation906

treats a contrail as a single object, even if it is composed of multiple dis-907

connected regions or fragmented segments. In this setup, the model must908

learn to group visually and spatially separated regions that correspond to909

the same physical contrail. The second task
::::::::::::
formulation simplifies the prob-910

lem by treating each visible polygon as an independent instance. In this911

formulation, the model is not required to group disjoint segments belonging912

to the same contrail; instead, it simply detects and segments each distinct913

region. This approach corresponds to a modular processing pipeline where914

instance merging and flight attribution occur at a later stage, as will be915

discussed in future work.916
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Table 3: Default hyper-parameters for U-Net model trained with discriminative loss.

Hyper-parameter Default value

Architecture U-Net
Backbone tu-maxvit_base_tf_512.in1k
Input image size 1024× 1024
Precision 16-mixed
Epochs 100
Batch size 1
Gradient accumulation steps 32
Learning rate 5× 10−6

Optimizer AdamW (weight decay = 10−4)
Scheduler Cosine with warm-up
Augmentations Rotation (90°), vertical flip, horizontal flip

6.2. Evaluation917

We evaluate both semantic and instance-level segmentation performance918

using a combination of standard and task-adapted metrics.919

For semantic segmentation, we report pixel-wise scores such as mean920

intersection over union
:::
the

:::::::
mean

:::::::::::::
Intersection

:::::
over

:::::::
Union

:::::::::
(mIoU)

:
and the921

Dice coefficient. For instance segmentation, we adopt the COCO evaluation922

protocol with modifications to better reflect the thin, elongated structure of923

contrails. All metrics are computed globally over the full test set. In the924

sections that follow, we describe our evaluation procedure, sliding window925

inference strategy for video models, and the rationale behind our choice of926

metrics. The presentation and interpretation of
:::::
Both

::::::::
metrics

::::::::::
quantify

::::
the927

:::::::
overlap

:::::::::
between

::::::::::
predicted

:::::
and

::::::::::::::
ground-truth

:::::::
masks,

:::::
with

:::::::
values

:::::::::
ranging

:::::
from928

:
0
::::
(no

:::::::::
overlap)

:::
to

::
1
:::::::::
(perfect

:::::::::
match).

:
929

::::
The

::::::
mIoU

::
is
::::::::::::
calculated

:::
as:

:
930

mIoU =
Area of Intersection

Area of Union
,

::::::::::::::::::::::::::::::

::::::
where

::::
the

:::::::::::::
intersection

:::
is

::::
the

::::
set

::::
of

::::::
pixels

:::::::::::
correctly

::::::::::
predicted

:::
as

::::::::::
contrail,931

::::
and

:
the results are provided at the end.

:::::
union

::::::::::
includes

:::
all

:::::::
pixels

::::::::::
predicted932

::
as

:::::::::
contrail

:::::
plus

:::
all

:::::
true

:::::::::
contrail

:::::::
pixels.

:::::::
This

:::::::
metric

::::::::
equally

::::::::::
penalizes

::::::
both933

:::::
false

:::::::::
positives

::::::::::::
(predicting

:::::::::
contrail

:::::::
where

::::::
there

:::
is

::::::
none)

:::::
and

::::::
false

::::::::::
negatives934
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:::::::::
(missing

:::::::
actual

::::::::
contrail

::::::::
pixels).

:
935

::::
The

:::::
Dice

:::::::::::
coefficient

::
is

:::::::::::
calculated

::::
as:

:
936

Dice =
2× Area of Intersection

Size of Prediction + Size of Ground Truth
.

:::::::::::::::::::::::::::::::::::::::::::::::::::

::::
The

::::::
factor

:::
of

:::
2

::
in

:::::
the

:::::::::::
numerator

::::::::
makes

::::
the

:::::
Dice

::::::::::::
coefficient

:::::::::::
emphasize937

:::::::
correct

::::::::
overlap

::::::
more

:::::::::
strongly

:::::
than

:::::::
mIoU.

:::
It

::
is

:::::::::::::
particularly

:::::::::
sensitive

:::
to

::::::
small938

::
or

:::::
thin

::::::::::::
structures,

::::::::
making

::
it

::::::::::::
well-suited

:::
for

:::::::::::
evaluating

::::::::::
contrails,

:::::::
which

::::::
often939

:::::::
appear

:::
as

:::::::::
narrow,

:::::::::::
elongated

:::::::::
features

::::::
that

::::::::
occupy

::
a
:::::::
small

:::::::::
fraction

:::
of

::::
the940

:::::::
image.

:
941

Temporal Evaluation Strategy942

For video-based models, inference is performed using a sliding window943

approach, where each video is divided into overlapping short clips of fixed944

length, matching the clip length used during training (e.g., 3 frames for the945

Swin-L model, 5 frames for the Swin-B model). These clips advance by one946

frame at a time (stride one), allowing the model to leverage temporal context947

effectively while respecting memory constraints during inference. Crucially,948

segmentation accuracy is computed only on the central frame of each short949

clip. This design ensures that each frame in the video contributes exactly950

once to the evaluation metrics, only when it appears as the center frame951

of a clip. This prevents duplicate evaluation and enables a fair comparison952

with image-based models, which predict on single frames independently. For953

example, if a 5-frame clip is used on a video with frames numbered 1 through954

10, the first evaluation clip spans frames 1–5 with evaluation on frame
:
3;955

the next clip covers frames 2–6 (evaluated on frame
:
4), and so on. This956

guarantees unique evaluation for frames 3 to 8, each exactly once.957

It should be noted that the video-based Mask2Former model maintains958

temporally consistent instance identifiers within each clip. That is, if a con-959

trail is labelled as instance
:
#3 in one frame of a clip, it retains this identifier960

across all frames in the same clip. However, since clips are processed inde-961

pendently, these identifiers are not guaranteed to remain consistent between962

consecutive clips. A given contrail may receive
:
a
:
different identifier in adja-963

cent clips. To enable continuous tracking of contrails throughout the entire964

video, we introduce a simple post-processing method that links and recon-965

ciles these instance identifiers to generate coherent, continuous tracks; this966

method is described in detail in Appendix A.967
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:::::::::
Instance Segmentation Metrics968

Model performance is evaluated using both semantic and instance-level969

segmentation metrics. All metrics are computed globally by aggregating970

predictions and ground truths across the entire test set before applying the971

metric calculations. This global computation prevents biases that can arise972

from averaging metrics computed independently on each observation (i.e.,973

frame), which is particularly important in settings with imbalanced or sparse974

data such as contrail segmentation.975

For semantic segmentation, we report the mean Intersection over Union976

(mIoU) and the Dice coefficient. The mIoU measures the overlap between977

the predicted and ground truth binary masks by calculating the ratio of978

the intersection area to the union area of the masks, thus penalizing both979

false positives and false negatives. The Dice coefficient, defined as twice the980

area of overlap divided by the total size of the predicted and ground truth981

masks, emphasizes the correct overlap and is especially sensitive to thin or982

fragmented structures, making it a suitable metric for evaluating contrails.983

Instance segmentation performance is assessed using COCO-style met-984

rics
:::::::::::::::::::
(Lin et al., 2014) computed globally over the dataset. To accommo-985

date the specific challenges posed by contrails, we adapt the IoU threshold986

rangeand denote metrics with the following notation : AP
:
.
:::::
The

::::::::::
notation987

::
X@[IoU range

:
|size category

:::::
size

:::::::::
category

:
|
:
max detections] , where IoU988

rangespecifies the range of IoU thresholds over which
:::::::::
specifies

:::::
three

:::::::::::::
parameters:989

990

•
::::
IoU

:::::::
range:

:::::
The

:::::::
range

:::
of

:::::::::::::
Intersection

:::::
over

:::::::
Union

::::::::::::
thresholds

::::::
used.

:::
A991

::::::::::
prediction

::
is
::::::::::::
considered

:
a
::::::
"true

::::::::::
positive"

:::::
only

::
if

:::
its

::::
IoU

:::::
with

::
a

::::::::::::::
ground-truth992

::::::
object

:::::::::
exceeds

:::
the

:::::::::::
threshold.

:
Average Precision (AP) or Average Recall993

(AR) is computed , size categoryindicates the object size subset considered,994

and max detectionsis the
::
is

:::::::::::
computed

:::::::
across

:::::::::
multiple

:::::::::::
thresholds

:::::
and995

::::::::::
averaged.

:
996

•
::::
Size

::::::::::
category:

:::::::
Filters

::::::::
objects

:::
by

:::::
area

:::::::::::
—"small"

:::::::
(< 322

::::::::
pixels),

:::::::::::
"medium"997

::::
(322

:::
to

::::
962

::::::::
pixels),

::::::::
"large"

::::::::
(> 962

::::::::
pixels),

:::
or

::::::
"all"

::::
(no

::::::::::
filtering).

:
998

•
:::::
Max

:::::::::::
detections:

:::::
The

:
maximum number of detections per image considered.999

::::::::::
predicted

::::::::::
instances

:::::::::::
considered

::::
per

:::::::
image

::::::
(e.g.,

::::::
100).

:
1000

For example, AP@[0.25:0.75
:
|all

:::
all

:
|
:
100] denotes the mean average1001

precision calculated
::::::::
Average

::::::::::
Precision

::::::::::
computed

:
over IoU thresholds

::::::::
ranging1002
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from 0.25 to 0.75, considering
::::::
across

:
all object sizesand up to

:
,
::::::
with

::
a1003

::::::::::
maximum

:::
of

:
100 detections

:::::::::
evaluated

::
per image. Object size categories1004

follow the standard definitions used in COCO-style metrics: small objects1005

have an area less than 322 = 1, 024 pixels; medium objects range between1006

322 and 962 = 9, 216 pixels; large objects exceed 962 pixels. Metrics such1007

as AP@0.25:0.75 | small | 100then reflect the performance specifically on1008

small-sized objects, under the specified IoU and detection constraints
::
In

::::
the1009

:::::::
results

:::::
that

:::::::
follow,

:::
we

:::::::
report

:::::
both

:::::::::
Average

::::::::::
Precision

:::::
(AP)

:::::
and

::::::::
Average

:::::::
Recall1010

:::::
(AR)

::::::
using

:::::
this

:::::::::
notation.1011

We restrict the IoU threshold range to [0.25, 0.75], rather than the stan-1012

dard COCO range of [0.50, 0.95], to better accommodate the elongated and1013

thin geometry of contrails, where very high IoU thresholds are overly strict.1014

Contrails are thin, irregular, and may extend across large image portions,1015

making exact mask overlap challenging. Under typical COCO metrics, a1016

prediction with partial but semantically correct overlap might be unfairly1017

penalized. For example, a predicted mask overlapping only
::
A

:::::::::::
prediction1018

::::::::::::
overlapping

:
30% of a contrail would be ignored under COCO’

:
’s default min-1019

imum IoU of 0.5 , but counted as a true positive under our more lenient1020

thresholds.
:::::
This

::::::::::::
adaptation

:::::::
better

::::::::
reflects

::::::::::
practical

:::::::::::::::
segmentation

::::::::
quality1021

:::
for

::::::::::
contrails.

:
1022

By adjusting the IoU range, the metrics better reflect practical segmen-1023

tation quality for contrails, balancing sensitivity to spatial accuracy with1024

tolerance for slight misalignments and fragmentations inherent to this do-1025

main. It is important to note that these adapted metrics are not directly1026

comparable to standard COCO scores but are specifically tailored to provide1027

meaningful evaluation in the context of contrail segmentation.1028

This evaluation framework, combining semantic and instance segmen-1029

tation metrics computed globally with appropriate IoU thresholds and size1030

categories, offers a comprehensive and interpretable means of assessing model1031

performance. It facilitates fair comparisons across models and supports fu-1032

ture benchmarking on our contrail dataset.1033

Tables 4 and 5 summarize the results for the semantic and instance seg-1034

mentation tasks, respectively. All results are reported for both single-image1035

and video-based models. Instance segmentation results are further disaggre-1036

gated by annotation style: M refers to multi-polygon annotations, and S1037

refers to single-polygon annotations. For Mask2Former models, values with-1038

out parentheses correspond to the Swin-B backbone, while those in paren-1039

theses refer to Swin-L.1040
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Table 4: Semantic segmentation metrics. For the Mask2Former variants, values without
parentheses refer to Swin-B; values in parentheses refer to Swin-L.

Single Images Videos

Metric Mask2Former U-Net Mask2Former

Dice 0.56 (0.60) 0.59 0.57 (0.59)
mIoU 0.38 (0.43) 0.42 0.40 (0.42)

In the semantic segmentation task, performance remains consistent across1041

all models and variants, with Dice and mIoU scores showing little variation.1042

This stability is expected, as semantic segmentation only requires classifying1043

each pixel as either contrail or sky, without distinguishing between separate1044

contrail instances. The U-Net model achieves results on par with the more1045

advanced Mask2Former models, indicating that per-pixel contrail detection is1046

largely driven by local visual features, such as shape, brightness, and texture,1047

which U-Net captures effectively.1048

These results also reflect the quality and consistency of our dataset: al-1049

though based on ground-level imagery, the segmentation performance is in1050

line with results reported in previous studies using satellite data (Jarry et al.,1051

2024; Ortiz et al., 2025). Although differences in imaging modality and scene1052

geometry preclude direct comparisons, the consistency in results suggests1053

that semantic contrail segmentation is a well-posed task for modern archi-1054

tectures, with strong performance achievable across diverse data sources.1055

Instance segmentation results reveal clear differences between model ar-1056

chitectures. These differences are more substantial than those observed in the1057

semantic segmentation task, highlighting the added complexity introduced by1058

instance-level reasoning. Mask2Former, which is designed for panoptic seg-1059

mentation through object-level queries and global spatial reasoning, consis-1060

tently outperforms U-Net across all instance metrics. The performance gap is1061

particularly pronounced in the multi-polygon setting, where contrails appear1062

fragmented and must be correctly grouped into coherent instances. These re-1063

sults highlight the value of architectures specifically built for instance-aware1064

tasks: Mask2Former’’s ability to reason globally and associate disjoint seg-1065

ments makes it better suited for detecting and tracking individual contrails.1066

A more nuanced comparison emerges when evaluating image-based ver-1067

sus video-based Mask2Former models. For the Swin-B backbone, the image-1068
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Table 5: Instance segmentation metrics. "M" refers to multi-polygon, whereas "S" indi-
cates single-polygon. For the Mask2Former variants, values without parentheses refer to
Swin-B; values in parentheses refer to Swin-L.

Single Images Videos

Type Metric Mask2Former U-Net Mask2Former

M

AP@[0.25:0.75 | all | 100] 0.34 (0.34) 0.05 0.31 (0.33)
AP@[0.25:0.75 | small | 100] 0.21 (0.21) 0.01 0.14 (0.17)
AP@[0.25:0.75 | medium | 100] 0.39 (0.40) 0.13 0.37 (0.38)
AP@[0.25:0.75 | large | 100] 0.44 (0.47) 0.12 0.46 (0.47)
AR@[0.25:0.75 | all | 1] 0.10 (0.10) 0.03 0.09 (0.09)
AR@[0.25:0.75 | all | 10] 0.41 (0.41) 0.18 0.38 (0.40)
AR@[0.25:0.75 | all | 100] 0.44 (0.44) 0.22 0.43 (0.44)
AR@[0.25:0.75 | small | 100] 0.30 (0.30) 0.14 0.26 (0.29)
AR@[0.25:0.75 | medium | 100] 0.50 (0.50) 0.25 0.49 (0.50)
AR@[0.25:0.75 | large | 100] 0.55 (0.55) 0.22 0.57 (0.56)

S

AP@[0.25:0.75 | all | 100] 0.35 (0.37) 0.06 0.31 (0.34)
AP@[0.25:0.75 | small | 100] 0.24 (0.26) 0.03 0.17 (0.21)
AP@[0.25:0.75 | medium | 100] 0.44 (0.45) 0.14 0.41 (0.43)
AP@[0.25:0.75 | large | 100] 0.37 (0.43) 0.11 0.46 (0.47)
AR@[0.25:0.75 | all | 1] 0.08 (0.08) 0.03 0.07 (0.08)
AR@[0.25:0.75 | all | 10] 0.37 (0.38) 0.18 0.35 (0.37)
AR@[0.25:0.75 | all | 100] 0.44 (0.45) 0.21 0.42 (0.45)
AR@[0.25:0.75 | small | 100] 0.33 (0.34) 0.15 0.28 (0.32)
AR@[0.25:0.75 | medium | 100] 0.53 (0.53) 0.26 0.52 (0.55)
AR@[0.25:0.75 | large | 100] 0.54 (0.56) 0.25 0.58 (0.60)

based model achieves higher instance segmentation performance, while the1069

video-based model slightly outperforms it on semantic segmentation metrics.1070

This suggests that although video models benefit from temporal consistency1071
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and motion cues, the added complexity of enforcing cross-frame coherence1072

may introduce challenges that slightly hinder instance-level prediction accu-1073

racy, particularly when using a lower-capacity backbone like Swin-B.1074

In the Swin-L setting, the image-based model performs best overall. It1075

achieves both the highest instance segmentation score and slightly superior1076

semantic segmentation performance. These results indicate that temporal1077

modelling
:::::::::
modeling

:
does not always yield performance improvements, espe-1078

cially when the temporal context is limited (e.g., 3-frame clips) or when the1079

spatial representation capacity of the model is already high. The image-1080

based model benefits from pretraining on COCO, which may favour
:::::
favor1081

precise spatial delineation, while the video-based variant relies on pretrain-1082

ing on YouTubeVIS, which is more focused on temporal coherence. However,1083

it is important to note that the video-based model performs an additional1084

task: tracking. By maintaining consistent instance identities across frames, it1085

enables temporally coherent segmentation that is not achievable with image-1086

based models. All in all, the
::::
The

:
metrics reported here are computed on a1087

per-frame basis and do not account for flickering or instance identity consis-1088

tency over time. These temporal aspects are particularly important in video1089

applications and are not captured by the conventional frame-level evaluation1090

scores presented herein.1091

:::
An

::::::::::
important

:::::::
caveat

:::
is

::::
that

:::
all

::::::::::
reported

::::::::
metrics

:::
are

:::::::::::
computed

:::::::::::::::
independently1092

:::
for

::::::
each

:::::::
frame

:::::
and

:::
do

:::::
not

:::::::::
account

::::
for

::::::::::
temporal

:::::::::::::
consistency

:::
of

::::::::::
instance1093

:::::::::
identities

:::::
over

:::::::
time.

:::::::::::::
Video-based

:::::::::
models

::::
are

::::::::::
explicitly

::::::::
trained

:::
to

::::::::::
maintain1094

:::::::::
coherent

:::::::::
instance

::::::
tracks

:::::::
across

:::::::
frames

:::::::::
through

:::::::::::
end-to-end

::::::::::
temporal

:::::::::::
modeling,1095

:::::::
jointly

:::::::::::
optimizing

:::::::::::::::
segmentation

::::
and

::::::::::
tracking

:::::::
within

::
a
::::::::
unified

:::::::::::
objective.

:::
In1096

:::::::::
contrast,

:::::::::::::
image-based

::::::::
models

::::::::
require

::::::::::
post-hoc

::::::::::::
association

::::::::::::
algorithms

::::::
(such1097

::
as

::::
the

:::::::::::
Hungarian

::::::::::
matching

::::::::
method

:::::::::::
described

::
in

::::::::::::::
Appendix A)

:::
to

::::
link

::::::::::
instances1098

:::::::::::
temporally

::::::
based

:::
on

::::::::
spatial

::::::::
overlap

::::::
alone.

:::::::
While

:::::
both

::::::::::::
approaches

::::
can

::::::::
achieve1099

:::::::::
tracking,

:::::::
video

::::::::
models

::::::
learn

:::::::::::
temporal

:::::::::::::::::
correspondences

::::::
from

:::::::::
motion

:::::
cues1100

::::
and

::::::::::::
appearance

::::::::::
features

:::::::
during

::::::::::
training,

::::::::::::
potentially

:::::::::
offering

::::::
more

::::::::
robust1101

:::::::::
handling

:::
of

:::::::::::
occlusions,

:::::::::::::::::
fragmentations,

:::::
and

:::::
brief

:::::::::::::::::
disappearances.

:::::::::::
However,1102

:::
the

:::::::::::
per-frame

::::::::
metrics

::::::::::
reported

:::::
here

:::::
(AP,

:::::
AR,

::::::
Dice,

::::::::
mIoU)

::::::::::
primarily

:::::::
assess1103

:::::::
spatial

::::::::::::::
segmentation

::::::::
quality

:::::
and

::::
do

::::
not

::::::::
reward

::::::::::
temporal

::::::::::::::
consistency.

::::
As1104

:
a
::::::::
result,

::::::
while

:::::::
video

::::::::
models

::::
do

:::::
not

:::::::::::
uniformly

::::::::::::
outperform

::::::::
image

::::::::
models1105

::
in

:::::::::::
per-frame

::::::::
scores,

:::::
they

:::::::::
provide

::::::::::::
qualitative

:::::::::
benefits

:::
in

:::::::
terms

:::
of

:::::::::
reduced1106

::::::::
instance

::::
ID

:::::::::
flickering

:::::
and

::::::::::
smoother

:::::::::
temporal

::::::::::::
transitions

::::
that

::::
are

::::
not

::::::::::
captured1107

::
by

:::::::
these

:::::::::
metrics.

::::::::
Future

::::::
work

:::::::
should

:::::::::::::
incorporate

:::::::::::::::
video-specific

:::::::::::
evaluation1108

:::::::
metrics

::::::
(e.g.,

:::::::::
tracking

::::::::::
accuracy,

:::
ID

::::::::::
switches,

::::::::::::::::
fragmentation)

::
to

:::::
fully

:::::::::::::
characterize1109
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:::
the

:::::::::::::
advantages

::
of

:::::::::::
temporal

:::::::::::
modeling.

::::::::::::::
Additionally,

:::::
the

::::::
short

:::::
clip

::::::::
lengths1110

:::::
used

::
in

:::::
this

::::::
study

:::::
(3–5

::::::::
frames)

:::::
were

:::::::::
dictated

::::
by

::::::::::
hardware

::::::::::::
constraints;

:::::::
longer1111

:::::::::
temporal

:::::::::
contexts

:::::
may

::::::
yield

::::::::
further

::::::::::::::
improvements

:::::
and

::::::::
warrant

::::::::::::::
investigation1112

:::::
with

:::::
more

:::::::::
capable

::::::::::::::
architectures.

::
1113

Overall, Swin-L outperforms Swin-B across all setups, reinforcing the1114

benefit of increased model capacity for fine-grained spatial understanding1115

and instance-level reasoning. Nonetheless, this comes at the cost of higher1116

computational requirements, particularly in the video setting, underscoring1117

a trade-off between performance and scalability.1118

Another important trend observed in the evaluation is that model perfor-1119

mance is strongly influenced by contrail size and detection caps. Generally1120

speaking, larger contrails are segmented more accurately due to their higher1121

pixel counts and lower ambiguity, while allowing more predicted instances1122

(e.g., increasing the detection limit) improves recall by removing constraints1123

on how many objects can be reported. These trends are consistent with gen-1124

eral findings in object detection and reinforce the shared challenges between1125

contrail segmentation and broader instance segmentation tasks.1126

Comparing the multi-polygon and single-polygon formulations reveals a1127

difference in task difficulty: the single-polygon setting is inherently easier.1128

Across all models and data modalities, instance segmentation metrics are1129

consistently higher when using the single-polygon formulation. This is be-1130

cause the task removes the need to group fragmented or spatially disjoint1131

contrail segments into separate instances. Instead, all parts of a contrail, re-1132

gardless of their separation, are treated as a single mask, greatly simplifying1133

the model’
:
’s objective. The model is no longer required to learn complex1134

grouping strategies or reason over spatial and temporal discontinuities. Note1135

that semantic segmentation metrics remain virtually unchanged between the1136

two formulations, indicating that identifying contrail pixels is equally feasible1137

in both cases. The difference lies solely in how those pixels are grouped into1138

instances. This distinction confirms that the main challenge in the multi-1139

polygon task is not pixel classification but instance association.1140

These results have important practical implications for different contrail1141

detection scenarios. For older contrails, such as those typically observed in1142

satellite imagery or in ground-based images when the contrail formed outside1143

the camera’
:
’s field of view, it is extremely difficult to associate the contrail1144

with its source flight. In these cases, the only viable option is to group1145

visible fragments into instances based solely on visual information. This1146

makes multi-polygon instance segmentation essential, as it allows models to1147

37



detect and associate disjoint contrail segments without relying on external1148

data. Our dataset and Mask2Former-based models are specifically designed1149

for this setting, enabling effective instance-level detection even when contrails1150

are fragmented, occluded, or spatially disconnected.1151

In contrast, when a contrail forms directly above the camera and ad-1152

ditional data such as aircraft trajectories and wind fields are available, a1153

different approach becomes feasible. In these situations, one can perform1154

single-polygon instance segmentation, where contrail fragments are grouped1155

into a single instance using post-hoc association based on flight paths and ad-1156

vection. This formulation is simpler from a computer vision perspective and1157

is commonly used in the literature
:
(Ortiz et al., 2025; Chevallier et al., 2023;1158

Van Huffel et al., 2025), mainly because multi-polygon annotated datasets1159

have not been available until now. However, this method depends on ac-1160

cess to external data and is only applicable to contrails formed during the1161

observation window, after the aircraft has entered the scene.1162

By supporting both the multi- and single-polygon formulations, our dataset1163

enables training and evaluation across a broader set of operational use cases.1164

The multi-polygon task is essential for vision-only detection of older con-1165

trails or those in satellite imagery, while the single-polygon formulation may1166

be more suitable when additional metadata enables contrail-to-flight attri-1167

bution. This distinction will be further explored in future work focused on1168

linking contrails to their source aircraft.1169

6.3. Illustrative examples1170

We present two test-set examples to illustrate the challenges of the multi-1171

polygon contrail segmentation task. In both cases, we compare predic-1172

tions from image-based and video-based versions of the Mask2Former model,1173

trained from pretrained Swin-L backbones. These examples highlight how1174

temporal context affects instance predictions and expose typical failure modes,1175

including contrail fragmentation, occlusion by clouds, and confusion between1176

contrails and visually similar cloud structures.1177

Figure 5 shows a frame from April 25th, 2024 at 05:51:00
:::::::
(UTC), under1178

clear-sky conditions. The background is uniformly blue, providing favourable1179

:::::::::
favorable

:
conditions for both human and machine segmentation. The corre-1180

sponding ground-truth annotations include several contrails labelled as frag-1181

mented (e.g., identifiers 0, 1, and 5), based on known flight trajectories avail-1182

able to annotators during the labelling process. This makes the example suit-1183

able for evaluating instance-level understanding in the multi-polygon setting.1184

38



(a) Raw
::::::
Original

::::::::
projected

:::
and

::::::::
enhanced

:
im-

age. (b) Ground truth annotations.

Figure 5: Raw image
:::::::
Original

::::::::
projected

:
and

::::::::
enhanced

::
as

::::
well

::
as

:
ground truth annotations

for April 25th, 2024 at 05:51:00.
::
00

:::::::
(UTC).

(a) Image-based model prediction. (b) Video-based model prediction.

Figure 6: Predicted instances for the frame shown in Fig. 5, using Swin-L models with
image and video inputs.

Despite the favourable
::::::
Figure

::
6
:::::::
shows

::::::::::::
predictions

::::::
from

:::::
both

::::::::
models

::::
for1185

::::
this

:::::::
scene.

::::::::
Despite

::::
the

::::::::::
favorable

:
background, both models exhibit instance-1186

level errors. The image-based model correctly infers that contrail
:
1 is frag-1187

mented , but detects just one segment of contrail 0, missing the other entirely.1188
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It completely misses contrail
:
4 and erroneously merges contrails 5

:
3
:
and 61189

into a single prediction. The video-based model makes similar mistakes: it1190

also merges contrails 5
:
3
:
and 6, and fails to detect contrail

:
4. Additionally,1191

it predicts the second fragment of contrail
:
0 but assigns it to a different1192

instance, and it incorrectly splits contrail
:
1 into two separate instances.1193

From a semantic segmentation perspective, both models perform rela-1194

tively well, as expected in a high-contrast scene. The image-based model1195

achieves a Dice score of 0.76 and a mean IoU of 0.64, while the video-based1196

model slightly outperforms it with a Dice of 0.79 and mean IoU of 0.67. How-1197

ever, due to the instance grouping errors, the image model achieves a slightly1198

higher AP@[0.25:0.75
:
|all

:::
all

:
|
:
100] (0.62) than the video model (0.55).1199

Figure 7 shows a more challenging frame captured on November 19th,1200

2023 at 08:49:30.
:::
30

::::::::
(UTC).

:
Here, several cirrus clouds are present in the1201

background, which introduces ambiguity, as some of these cloud structures re-1202

semble contrails. This scene also includes multiple contrails that are spatially1203

aligned and fragmented, increasing the complexity of the instance segmenta-1204

tion task.1205

(a) Raw
::::::
Original

::::::::
projected

:::
and

::::::::
enhanced

:
im-

age. (b) Ground truth annotations.

Figure 7: Raw image
:::::::
Original

::::::::::
projected and

::::::::
enhanced

::::::
image

::
as

:::::
well

::
as

:
ground truth

annotations for November 19th, 2023 at 08:49:30.
::
30

:::::::
(UTC).

This scene illustrates a common failure mode: fragmentation and mis-1206

grouping of visually aligned but semantically distinct contrails. Contrail
:
6 is1207

split into two segments with contrail
:
0 lying in between; although they ap-1208
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(a) Image-based model prediction. (b) Video-based model prediction.

Figure 8: Predicted instances for the frame shown in Fig. 7, using Swin-L models with
image and video inputs.

pear collinear, contrail
:
0 is a distinct instance generated by a separate flight.1209

Contrail
:
7 appears shortly after and may be misassociated with contrails 61210

and 0 in the absence of flight metadata. The image-based model correctly1211

separates contrail
:
0 from 6 , but incorrectly merges contrails 6 and 7. The1212

video model groups all three ,
:
(6, 0, and 7,

:
)
:
into a single prediction. In-1213

terestingly, this error reflects a plausible human interpretation without flight1214

context, highlighting the challenge of the task.1215

Both models fail to detect contrails 1 and 8, which are partially occluded1216

by clouds. They also produce a false positive (labelled as contrail
:
9), seg-1217

menting a cirrus structure that resembles a contrail. While the dataset is of1218

high quality and was carefully annotated with access to flight information,1219

some visually ambiguous cases, such as the one discussed, remain inherently1220

difficult to label with certainty. In this example, the predicted region resem-1221

bles a contrail in both structure and intensity, making it unclear whether1222

the false positive stems from a model error or an understandable omission in1223

the ground truth. These rare edge cases highlight the potential influence of1224

mild label noise in visually complex scenes. Future work could benefit from1225

complementary strategies such as confident learning (Northcutt et al., 2021)1226

to further refine annotations and improve robustness in borderline cases.1227

Semantic segmentation performance in this scene is lower than in the1228

previous one, reflecting increased difficulty. The image model achieves a1229
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Dice score of 0.61 and mIoU of 0.43, while the video model scores 0.70 and1230

0.54, respectively. Instance-level AP@[0.25:0.75
:
|all

:::
all

:
|
:
100] s

::::::
scores

:
are1231

0.35 and 0.37, respectively, similar to the average metrics, making this a1232

representative case.1233

These examples illustrate several key challenges in multi-polygon contrail1234

segmentation: (1) correct grouping of fragmented contrail segments from the1235

same flight; (2) visual ambiguity due to clouds that resemble contrails; (3)1236

occlusion; and (4) spatial overlap of contrails from different flights. While1237

video-based models benefit from temporal information, they may over-group1238

distinct instances. Image-based models avoid this but often fail to connect1239

fragmented segments. Overall, these examples demonstrate the inherent dif-1240

ficulty of the task and the limitations of current models.1241

7. Conclusions1242

This work introduces a new dataset
:
(Jarry et al., 2025) and baseline1243

models for contrail segmentation from ground-based camera imagery. Our1244

experiments show that modern computer vision methods, particularly panop-1245

tic segmentation models like Mask2Former, can be effectively applied to this1246

task, especially when using large pretrained models and temporal informa-1247

tion. However, performance gains often come at the cost of increased com-1248

putational and memory demands, highlighting a trade-off between accuracy1249

and practicality.1250

The main contribution of this study is the release of the first video1251

annotated
::::::::::::::::
video-annotated

:
dataset specifically designed for instance-level1252

contrail segmentation, tracking,
::
and flight attribution in the visual spec-1253

trum. Along with detailed evaluation metrics, including average precision1254

and recall across multiple intersection-over-union thresholds and object size1255

bins, this benchmark provides a reproducible baseline for further research in1256

this emerging field.1257

A key limitation of our current setup is that the visible-light camera re-1258

stricts observations to daytime conditions. Yet contrails often have their1259

greatest radiative impact at night, when they trap
:::::::
reduce

:
outgoing long-1260

wave radiation and contribute to atmospheric warming. To address this, we1261

are deployed
::::::::::
deploying

:
a co-located infrared imaging system that enables1262

continuous, day-and-night monitoring. This may also allow us to begin es-1263

timating the radiative forcing of individual contrails under real atmospheric1264

conditions.1265
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In parallel, we are working on a contrail-to-flight attribution algorithm1266

that links observed contrails to specific aircraft using automatic dependent1267

surveillance–broadcast (ADS-B ) trajectory data. This tool, and the associ-1268

ated data and code, will be openly released in a future publication. Attribu-1269

tion is of utmost importance because it allows each contrail to be linked to1270

detailed aircraft and engine parameters, such as aircraft type, engine model,1271

fuel burn rate, flight altitude, and ambient conditions. These inputs are nec-1272

essary to reproduce the contrail using physical models like CoCiP, assess its1273

expected properties (e.g., ice crystal number, optical depth, lifetime), and1274

ultimately validate or refine these models using real-world observations.1275

We are also extending this work by annotating a new dataset of con-1276

trails in satellite imagery, with instance-level and sequence-based labels.1277

This dataset will allow us to test and evaluate the full multi-scale track-1278

ing pipeline proposed in this paper: starting from high-resolution, ground-1279

based detection, followed by attribution to flights, and finally linking to the1280

same contrails as they evolve in satellite imagery. This approach offers a1281

unique opportunity to study contrail formation, spreading, and dissipation1282

over time and at scale. We also plan to use our ground-based dataset to eval-1283

uate the predictions of physical models such as CoCiP. Direct comparisons1284

between observed and simulated contrail evolution will help assess model1285

accuracy and potentially inform improvements in contrail forecasting and1286

climate modelling
::::::::::
modeling.1287

Ideally, contrail detection, tracking, and attribution should be addressed1288

by a single deep learning architecture capable of jointly processing video,1289

flight trajectory data, and meteorological fields. A model such as
::::
For

:::::::::
instance,1290

a variant of Mask2Former could be adapted for this purpose. Integrating1291

these tasks into one architecture
:::::
Such

:::
an

::::::::::::
integrated

::::::::::
approach

::
would en-1292

able end-to-end learning and exploit the complementary nature of the in-1293

puts,
::
as

:
weather conditions and aircraft traffic data are highly informative1294

for both detecting and tracking contrails. However, this integration is not1295

straightforward. It requires careful design of input data representations to1296

handle spatiotemporal
::::::::::::::::
spatio-temporal and multi-modal inputs, the creation1297

of aligned and consistent annotations for all tasks, and the development of1298

loss functions that balance competing objectives across detection, segmenta-1299

tion, tracking, and attribution. Despite these challenges, we encourage the1300

research community to explore this unified approach.1301

:::::::::::::
Additionally,

::::::::::
deploying

:::::::::
multiple

:::::::::
cameras

::
in

::
a

:::::::::
spatially

::::::::::::
distributed

:::::::::
network1302

::::::
would

:::::::
enable

::::::::::::::
stereographic

:::::::
height

:::::::::
analysis:

::::::::::
contrails

:::::::::
observed

::::::::::::::::
simultaneously1303
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:::::
from

:::::::::
different

:::::::::
viewing

::::::::
angles

::::::
could

::::
be

:::::::::::::
triangulated

::::
to

:::::::::::
determine

:::::::::
altitude1304

::::::::
directly,

::::::::
rather

:::::
than

:::::::::::
assuming

::
a
::::::
fixed

::::::::
height.

::::::
This

::::::::
would

::::::::
provide

::::::::
crucial1305

::::::::::
validation

:::::
data

::::
for

:::::::::
contrail

::::::::::
formation

::::::::
models

:::::
and

:::::::::
improve

::::::
flight

::::::::::::
attribution1306

:::::::::
accuracy

:::
by

::::::::::::
eliminating

:::::::::
altitude

:::::::::::::
uncertainty.

:
1307

More broadly, we hope this work encourages the development of simi-1308

lar ground-based contrail monitoring systems in other regions. A collabo-1309

rative, open-science approach ,
::
—

:
sharing datasets, models, and observa-1310

tional infrastructure ,
::
—

:
will be essential to building a geographically di-1311

verse and temporally continuous picture of contrail behaviour
:::::::::
behavior. We1312

view this paper as a first step toward a data-driven ecosystem
::::::::::::::
collaborative,1313

:::::::::::::
open-science

::::::::::::
framework

:
for contrail research: one that integrates physical1314

modelling
:::::::::
modeling

:
with observational data

::::::::
through

:::::::
openly

::::::::
shared

:::::::::
datasets1315

::::
and

:::::
tools, spans spatial and temporal scales

::::::::
through

::::::::::::::::
multi-platform

::::::::::::
monitoring,1316

and supports long-term efforts to better understand and reduce aviation’
:
’s1317

impact on the climate.
::::::::
climate.

:::
By

:::::::::::
providing

:::::::::::::
high-quality

::::::::::::::
ground-based

:::::
data1318

:::::::::
alongside

:::::::::
baseline

:::::::::::
computer

:::::::
vision

::::::::
models,

::::
we

:::::
aim

:::
to

::::::::::
facilitate

::::::::::::
model-data1319

::::::::::::
comparison,

:::::::
enable

:::::::::::
validation

::
of

:::::::::
physical

::::::::
models,

:::::
and

:::::::::::
encourage

:::
the

::::::::::::::
development1320

::
of

::::::::::::::::
complementary

::::::::::::
monitoring

:::::::::
systems

::::::::::::
worldwide.

:
1321
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stride 1. While instance segmentation within each clip is temporally consis-1556

tent (i.e., instance identifiers are maintained across frames within the clip),1557

the model processes each clip independently. As a result, instance identifiers1558

are not necessarily consistent across clips.1559

To enforce globally consistent instance identifiers across the full video1560

sequence, we implement a deterministic post-processing method that aligns1561

instance predictions across overlapping clips. The method uses mask overlap1562

similarity,
:::
—specifically, IoU,

:::
—across shared frames and performs optimal1563

bipartite matching using the Hungarian algorithm. Below, we provide a1564

rigorous description of the method.1565

For a given frame index t ∈ {N,N + 1, . . . , T}
:::::::::::::::::::::::
t ∈ {N,N + 1, . . . , T}, we1566

define:1567

• The current clip as the sequence Ft−N+1, Ft−N+2, . . . , Ft:::::::::::::::::::::::
Ft−N+1, Ft−N+2, . . . , Ft.1568

• The previous clip as the sequence Ft−N , Ft−N+1, . . . , Ft−1 :::::::::::::::::::::::
Ft−N , Ft−N+1, . . . , Ft−1.1569

The two clips overlap in N − 1 frames: Ft−N+1, . . . , Ft−1:::::::
N − 1

::::::::
frames:1570

:::::::::::::::::
Ft−N+1, . . . , Ft−1. Only frame Ft :::

Ft :
is newly introduced in the current clip.1571

At each step, we seek to propagate consistent instance identifiers by matching1572

instances across the overlapping frames. Let:1573

• Iprev = {1, . . . , K}
:::::::::::::::::::
Iprev = {1, . . . , K}: instance identifiers in the previ-1574

ous clip.1575

• Icurr = {1, . . . ,M}:::::::::::::::::::
Icurr = {1, . . . ,M}: instance identifiers in the cur-1576

rent clip.1577

We define a cost matrix C ∈ RM×K
:::::::::::
C ∈ RM×K , where each element Cij1578

:::
Cij:encodes the negative temporal IoU between instance i ∈ Icurr and instance1579

j ∈ Iprev :::::::::
i ∈ Icurr ::::

and
:::::::::
instance

::::::::::
j ∈ Iprev:

over the overlapping frames:1580

Cij = −
1

N − 1

t−1∑
f=t−N+1

IoU
(
Mcurr

i,f ,Mprev
j,f

)
,

where Mcurr
i,f and Mprev

j,f ::::::
Mcurr

i,f :::::
and

:::::::
Mprev

j,f :
denote the binary masks of in-1581

stances i and j at frame f
:
i
:::::
and

::
j

:::
at

:::::::
frame

::
f , respectively. If an instance1582

does not appear in a given frame (e.g., missing mask), its contribution is1583

treated as zero overlap.1584
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To eliminate unlikely or noisy matches, we apply a threshold τ ∈ [0, 1]1585

:::::::::
τ ∈ [0, 1]

:
on the mean IoU:1586

Cij =

{
Cij if − Cij ≥ τ,

+∞ otherwise.

where the threshold τ
:
τ

:
is selected empirically to balance precision and ro-1587

bustness; we recommend τ = 0.1
:::::::
τ = 0.1.1588

We remove rows and columns of the cost matrix that contain only +∞1589

::::
+∞

:
entries. Using the modified cost matrix, we solve the bipartite assign-1590

ment problem via the Hungarian algorithm (Kuhn, 1955),
::::
—an

::::::::::::::
optimization1591

::::::::
method

:::::
that

:::::
finds

::::
the

::::::::
optimal

:::::::::::
one-to-one

::::::::::
matching

::::::::::::
minimizing

::::::
total

::::::
cost—obtaining1592

a one-to-one (or partial) mapping between current and previous instances.1593

Let σ : Icurr → Iprev ∪ {∅} :::::::::::::::::::::::
σ : Icurr → Iprev ∪ {∅}:denote the resulting as-1594

signment. We then update the instance identifiers in the current clip to1595

match those of the assigned instances in the previous clip. Unmatched in-1596

stances are assigned new unique identifiers. The pseudo-code of the algorithm1597

is presented in Algorithm 1.1598
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Algorithm 1 Post-processing for Consistent Instance Tracking
Require: Predicted instance masks for video frames F1, . . . , FT , threshold

τ
:::::::::::
F1, . . . , FT ,

:::::::::::
threshold

::
τ

1: Initialize unique identifier counter
2: Previous clip instances← Predicted instances on clip (F1, . . . , FN)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Previous clip instances← Predicted instances on clip (F1, . . . , FN):

3: Assign unique identifiers to all instances in previous clip instances
:::::::::::::::::::::::
previous clip instances

:

4: for t = N + 1 to T do
5: Current clip instances← Predicted instances on clip (Ft−N+1, . . . , Ft)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Current clip instances← Predicted instances on clip (Ft−N+1, . . . , Ft):

6: Compute cost matrix C over frames Ft−N+1, . . . , Ft−1 ::
C

:::::
over

::::::::
frames

:::::::::::::::::
Ft−N+1, . . . , Ft−1:

7: Apply threshold τ
:
τ
:
and prune rows/columns with all +∞

::::
+∞

:

8: σ ← Hungarian Algorithm(C)
:::::::::::::::::::::::::::::::
σ ← Hungarian Algorithm(C)

:

9: Update instance identifiers in current clip using mapping σ

::::::::::::
current clip

::::::
using

::::::::::
mapping

::
σ

:

10: Assign new identifiers to unmatched instances
11: Previous clip instances← Current clip instances

::::::::::::::::::::::::::::::::::::::::::::::::::
Previous clip instances← Current clip instances

12: end for

This process is applied sequentially from frame t = N to T
::::::
t = N

:::
to

::
T ,1599

ensuring that instance identifiers are globally consistent across the video.1600
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