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e Dataset with instance-level and temporally resolved annotations of con-
trails from ground-based videos.

e Unified contrail segmentation and tracking model using Mask2Former.

e Robust tracking of individual contrails over time, enabling analysis of
their full lifecycle.
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Abstract

Aviation’s climate impact includes not only CO5 emissions but also significant
non-CO, effects, especially from contrails. These ice clouds can alter Earth’s
radiative balance, potentially rivaling the warming effect of aviation COs.
Physics-based models provide useful estimates of contrail formation and cli-
mate impact, but their accuracy depends heavily on the quality of atmo-
spheric input data and on assumptions used to represent complex processes
like ice particle formation and humidity-driven persistence. Observational
data from remote sensors, such as satellites and ground cameras, could be
used to validate and calibrate these models. However, existing datasets den’t
explore-atl-aspeet-do not explore all aspects of contrail dynamics and forma-
tion: they typically lack temporal tracking, and do not attribute contrails
to their source flights. To address these limitations, we present the Ground
Visible Camera Contrail Sequences (GVCCS), a new open data set of con-
trails recorded with a ground-based all-sky camera in the visible range. Each
contrail is individually labeled and tracked over time, allowing a detailed
analysis of its lifecycle. The dataset contains 122 video sequences (24,228
frames) and includes flight identifiers for contrails that form above the cam-
era. As reference, we also propose a unified deep learning framework for con-
trail analysis using a panoptic segmentation model that performs semantic
segmentation (contrail pixel identification), instance segmentation (individ-
ual contrail separation), and temporal tracking in a single architecture. By
providing high-quality, temporally resolved annotations and a benchmark for
model evaluation, our work supports improved contrail monitoring and will
facilitate better calibration of physical models. This sets the groundwork for
more accurate climate impact understanding and assessments.
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1. Introduction

Aviation contributes to global climate change not only through carbon
dioxide (CO3) emissions but also through a variety of non-CO, effects, in-
cluding nitrogen oxides (NOy), water vapour, and aerosols. Among these,
condensation trails (contrails), ice-crystal clouds formed by aircraft at typi-
cal cruising altitudes, stand out for their potentially large —yet-uneertain—yet
uncertain radiative impact. Though they often appear as ephemeral white
streaks in the sky, persistent contrails can spread into extensive cirrus-like
cloud formations that +rap-reduce outgoing long-wave radiation, warming the
planet. Recent studies suggest that the climate forcing dueto-contrail-eirrus
elends—{rom contrail cirrus is of the same order of magnitude as that from
aviation CO, emissions (Lee et al. 2021} |Teoh et all [2023)), although this
comparison depends on the metric used (Borella et al., 2024)).

Yet—aceurately—Accurately assessing the climate impact of contrails re-

mains a agmﬁcant challenge for both aviation and climate scientists. Fhe

s-Contrail lifecycles depend on complex in-

terrelated processes, %&Gh—&% including ice nucleation, crystal growth, wind-
driven dispersion, and interaction with natural clouds, that are sensitive
to ambient atmospheric conditions. Small variations in temperature and
humidity, particularly relative humidity with respect to ice, can determine
whether a contrail dissipates quickly or persists and spreads. This sensi-
tivity, combined with the-diurnal variability in radiative forcing (eeeoling

radiationat-—nightdaytime cooling from reflected sunlight versus nighttime
warming from trapped infrared radiation), makes the net climate effect of
contrails beth-eontext-dependent-and-extremely-difhienlt-te-modelreliablyhighly

variable and challenging to model.
While contrail impacts have traditionally been studied using physical

models, recent advances in remote sensing and computer vision now offer
a valuable observational perspective. Physics-based models, such as the Con-

trall Cirrus Predlctlon model (CoClP) (Schumann| 2012) G%GE%MFH%%&H—BQ%

-ont and the Aircraft Plume Chemistry, Emissions,
and Micro h sics Model APCEMM) (Fritz et al.l [2020)), simulate contrail

lifecycles by solving complex equations that describe the-interaetion-interactions
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between aircraft emissions and atmospheric conditions. These models pro-
vide valuable theoretical insights, but their accuracy is—heavily—dependent
depends heavily on the quality of the-input data (Gierens et al. 2020). Key
parameters, such as atmospheric temperature, humidity, and aircraft en-
gine characteristics, are often uncertain, and these uncertainties propagate
through thecalculations, affecting thereliabilityoftheresultsresult reliability.
Moreover, detailed simulations of contrail microphysics and radiative effects
can be computationally demanding, particularly when applied to global-scale

analyzesanalyses

Observatlonal methods ;-using satellite and ground-based imagery s-offer

a directand-, data-driven wayto-studycontrails—eomplementing-approach
to studyin contralls that complements theoretical models. Satellite-based
contrail detection has a long history, beginning with early automated methods

that leveraged brightness temperature differences and Hough transforms in
NOAA-AVHRR imagery (Mannstein et al.. [1999). Subsequent work extended

these techniques to stud re ional radiative forcin Meyer et al.l 2002), contrail
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me%ee%elegtea%d&b&SEVIRI enabled ra 1d scan observatlons that fa(nhtated

automated contrail tracking (Vazquez-Navarro et al., |2010), lifecycle analysis (Vazquez-Navarro et

and improved detection algorithms (Ewald et al.l 2013: Mannstein et al., 2012
. Ground-based validation campaigns Mannstein et al., [2010; [Schumann et al.

rovided essential verification of satellite-derived contrail properties. More
recently, high-resolution remote sensing combined with modern computer

2013)

vision and deep learning has further enhanced detection capabilities (Meijer et al.|, [2022: IMcCloske

Despite growing interest in observational contrail analysis, publicly avail-

able datasets are-stil-remain limited in scope. FThe-most—universally—used

resouree—Google’Existing datasets of contrails annotated in observational
data, such as Google’s OpenContrails, do not track individual contrails over

time or provide information on the flichts that formed them. Specificall

OpenContrails offers instance-level masks only on the central GOES-16-GOES-16

frame, with surrounding images left unannotated;-hindering-contrailtrackine
aeross—time. In contrast {Sarna-et-a-2025)- Sarna et al. (2025)) introduced

SynthOpenContrails, which overlays synthetic contrails and annotations onto
real scenes, providing full per-frame localization, tracking, and flight attribu-
tiondemenstrating-. This demonstrates that richly annotated data existscan
exist, even if confined to synthetic contrail overlays rather than human an-
notation. An ideal scenario would be a fully annotated video dataset where
every frame is humanlytabeled-labeled and each contrail is assigned a per-
sistent identifier across time.

To advance research in this area, this-paper-we present the Ground Visible
Camera Contrail Sequences (GVCCS), an open dataset_(Jarry et al., 2025)
with instance-level annotations, derived from ground-based video recordings
in Brétigny-sur-Orge, France (Réuniwatt CamVision visible ground-based
camera). Our dataset includes 122 videos (of duration between 20 minutes
te-and 5 hours) with a total frame number-of-around-of approximately 24,200
frames, each annotated with instance-level labels. By making this dataset
openly available, this—paper-prevides-we provide a valuable benchmark for
both the atmospheric and aviation research communities.

To support future performance comparisons, we introduce here—a deep
learning-based model for contrail segmentation and tracking. Instead of re-
lying on separate models for these tasks, an approach that often requires com-
plex, ad-hoc combinations of techniques, we adopt a unified framework based

4
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on Mask2Former (Cheng et al., |2021b), a state-of-the-art computer vision
model. Mask2Former is designed for panoptic segmentation, which combmes
semantic segmentation (labeling each pixel with a class, e.g., ¥ :
“eontrail" or "sky") and instance segmentation (dlstlngmshlng between in-
dividual objects, e.g., different contrails). In addition to separating contrails
from clear sky, it eenld-can handle complex backgrounds, such as lew-altitude
low-altitude cloud layers that partially or fully obscure contrails, by assign-
ing appropriate “e “""cloud" labels while still maintaining unique instance
identities. For example, in a single image, panoptic segmentation can iden-
tify all visible contrail pixels, correctly label intervening clouds, and assign
consistent instance masks to each contrail, even when they overlap, intersect,
appear fragmented, or are seen through thin cloud cover. In fact, contrails
often break into multiple disconnected components due to atmospheric con-
ditions and natural dissipation processes. A robust monitoring system must
not only identify these fragments —but also associate them with the correct
contrail instance.

It is worth noting that ;—fragmentation poses a significant challenge for
contrail analysis based solely on images or videos: visually disjointed seg-
ments from the same flight must be grouped without external data. More-
over, tow-altitude-low-altitude cloud obscuration and sun glare can further
interrupt or mask contrail continuity, producing multi-pelygen-multi-polygon
annotations even for a single physical contrail. In operational settings, how-
ever, it is possible to first perform single-polygon instance segmentation and
then associate multiple instances with the same flight using auxiliary data
such as aircraft trajectories and wind fields. This post-processing step en-
ables grouping across time and space based on flight identity rather than
visual continuity. In this work, we restrict ourselves to purely image-based
analysis and defer the integration of external data sources to future work.

Mask2Former, originally designed for individual images, can be easily ex-
tended to video data to improve the consistency of panoptic segmentation
across frames (Cheng et al., 2021a). By leveraging temporal information,
Mask2Former for videos performs semantic segmentation, instance segmen-
tation, and tracking in an integrated manner. In this paper, we study both
the frame-based and video-based versions of Mask2Former, comparing their
performance on our dataset.

The remainder of this paper is structured as follows. Section [2| provides
the necessary background on contrail formation and computer vision tech-
niques, establishing the foundation for the challenges addressed in this work.

29
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Section (3] reviews related work on contrail datasets and segmentation mod-
els, highlighting current limitations and motivating our approach. Section
introduces our newly developed video-based dataset, detailing its annotation
methodology and unique instance-level structure. Section [5] describes our
panoptic segmentation framework based on the Mask2Former architecture.
Section [6] presents and analyses the experimental results. Finally, Section [7]
summarises our main contributions and outlines future research directions.

2. Background

This section introduces the key concepts necessary to understand the chal-
lenges addressed in this work. We begin by outlining the physical processes
behind contrail formation and the-their implications for climate, focusing on
why contrails are particularly difficult to detect and track. We then review
relevant computer vision techniques, specifically object detection and image
segmentation, and assess their suitability for analysing contrails.

2.1. The Science of Contrails

Contrails are artificial clouds that form behind aircraft when hot, humid
engine exhaust mixes with the cold, low-pressure air at cruising altitudes, typ-
ically between 8 and 12 km. If the-atmospheric conditions are right-suitable
— specifically, if the temperature falls below -46=Cand-a critical threshold
(typically around —40°C, depending on pressure and humidity) and the air is
sufficiently humid —— the water vapour in the exhaust condenses and freezes
into ice crystals. Fhis—preeess——modeled—and—eguantifiedby—The physical
mechanism _underlying this process was first_explained by [Schmidt| (1941]),
who recognized that contrails form when ambient temperature is low enough
to_cause the humidity inside the aircraft plume to reach saturation with
respect to liquid water, triggering condensation. |Appleman| (1953)) provided

further quantitative analysis, though without fully accounting for engine
characteristics. |Schumann| (1996)) later developed a comprehensive treatment
incorporating engine efficiency and practical application methods, formalizin

what is now known as the Schmidt—Appleman criterion{Appleman; 1953},
Mroduces the famlhar thin, Whlte trails visible in the sky.

Like natural clouds, contrails influence the-Earth’s radiation budget: they
trap-reduce outgoing long-wave radiation, leading to warming, while also
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reflecting incoming solar radiation, which has a cooling effect. The net
result depends on the contrail’’s altitude, optical properties, lifespan, and

the-time of day. The preeiserelativeimpaet-magnitude of contrail climate

forcing relative to aviation’s COs emissions depends on the climate metric
chosen (Borella et al. 2024); however, contrails are thought to warm the

climate at a level of the same order of magnitude as aviation’’s COy emis-
sions (Lee et al. 2021; Teoh et al., 2023). This makes the monitoring and
characterization of contrails an essential part of understanding aviation’s full
environmental footprint (Teoh et al.,|2023) and developing mitigation strate-
gies (Teoh et all 2020).

uantifying this radiative forcing requires understanding both contrail

optical properties and their spatial and temporal distribution. Early satellite-based

studies provided first estimates of regional contrail radiative effects (Mever et al.. 12002

and developed parametric models linking contrail properties to radiative
forcing (Schumann et al., 2009)). Climatological analyses of persistent contrails

revealed dependencies on atmospheric conditions and aircraft traffic patterns (Iwabuchi et al.| 2012

while ground-based observations offered validation of satellite-derived contrail

properties (Mannstein et al., 2010).

As mentioned above, the observational viewpoint offers an alternative
perspective that focuses on detecting and analysing contrails directly i

atmospherieimageryusing satellite and ground-based remote sensing instruments.

However, detecting and tracking contrails presents several technical chal-
lenges, which helps explain the growing research interest in the topic. Satel-
lite imagery often lacks the spatial and temporal resolution needed to detect

contrails in their early stages{Ng-et-al;-2023)) (Ng et all [2023; Mannstein et al., 2010

. Geostationary satellites have a nominal spatial resolution of about 0.5 to
2 km and a temporal resolution of 5 to 15 min, which is often insufficient to
capture the narrow, faint, and short-lived nature of freshly formed contrails
unless they persist and grow. Even when contrails de-spread into detectable
cloud structures, they are difficult to distinguish from natural cirrus, partic-
ularly in scenes with complex cloud layers. Moreover, by the time a contrail
is visible in satellite images, it has often drifted and deformed, complicating
the-attribution to the flight that produced it_(Chevallier et al., 2023; Sarna)

et al.L 2025). This linkage is crucial, as identifying the originating flight
enables researchers to retrieve essential details such as aircraft type and en-

’ )

gine model, key inputs for assessing contrails’~’ environmental impact and

improving physical models through comparison with empirical observations.
Ground-based cameras_(Schumann et al., 2013; Low et al., 2025) offer

7



22 a complementary perspective with critical advantages. Positioned beneath
23 flight paths, these systems can capture high-resolution images and video with
24 far greater spatial and temporal fidelity than satellites. Crucially, they can
25 detect contrails immediately after formation, while they are still thin, linear,
26 and visually distinct. This early visibility simplifies the task of associating
27 observed contrails with the specific flight responsible, especially when com-
28 bined with precise trajectory data. The main drawback is, naturally, their
20 Testricted spatial coverage, which hinders the ability to monitor contrails
20 from theirformation to dissipation.

21 This attribution advantage is particularly significant compared to satellite-based

2z approaches. Geostationary satellites face several challenges: their coarse

233 spatial resolution (~0.5-2 km/pixel) means contrails must persist and spread

24 before_becoming detectable, by which time wind advection has displaced

25 them substantially from their formation location; their temporal resolution

2 (515 minutes) means the originating aircraft may be far away when the

2 contrail first appears; and multiple aircraft may have traversed similar airspace

26 during this window, creating ambiguity. Attribution from satellite data

20 therefore requires sophisticated algorithms accounting for wind fields, parallax,

a0 and probabilistic matching (Chevallier et al., [2023; [Riggi-Carrolo et al., 12023} |Geraedts et al., 2024

21 . In contrast, ground-based cameras observe contrails at formation with
22 high spatial resolution (~73 m/pixel at 10 km altitude in our system) and
23 30-second sampling, enabling straightforward contrail-to-flicht attribution

ae  without the ambiguities inherent in satellite-based approaches.
25 While not the focus of this paper, one promising direction involves com-

a6 bining ground-based and satellite observations into a unified monitoring
a7 framework. In such a system, contrails would first be detected in high-
us resolution ground-based imagery and attributed to specific flights using tra-
29 jectory and weather data, providing access to key aircraft and engine param-
0 eters. Crucially, to enable continuous tracking beyond the limited field of
51 view of the ground-based camera, these contrails would then need to be re-
2 liably linked to their evolving counterparts in satellite imagery as they drift,
3 expand, and age. Successfully associating contrails across these two modali-
254 ties .—— ground and satellite -—— would allow monitoring of their full lifecycle
5 from formation to dissipation while preserving information about the specific
26 aircraft and flight responsible for creating them.
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2.2. Computer Vision Techniques for Contrail Monitoring

Contrails are visually challenging targets for computer vision due to their
thin, elongated shapes, variable curvature, and tendency to fragment or fade
over time. These characteristics make them fundamentally different from
the objects typically addressed in standard object detection benchmarks,
such as vehicles and animals in datasets like the Common Objects in Con-
text (COCO) dataset (Lin et al., |2014]), which features well-defined, discrete
objects.

Traditionally, object detection methods localise targets using bounding
boxes, usually axis-aligned rectangles. Standard approaches such as Faster
R-CNN_ (Ren et al., 2017) and YOLO (Redmon et al., 2016) exemplify this
paradigm. This approach works well for objects like cars or animals, which
are compact and roughly rectangular, but performs poorly for contrails. A
single axis-aligned bounding box may inadvertently include multiple contrail
segments or large amounts of background sky, while missing parts of curved
or fragmented trails. Oriented bounding boxes offer some improvement by
allowing rotation, which better fits the geometry of elongated contrails. How-
ever, they still fall short in capturing fine-grained shapes, gaps, or fading seg-
ments. Figure (1| shows the limitations of axis-aligned and oriented bounding
boxes for object detection on contrails.

= W

(a) Axis-aligned bounding boxes  (b) Oriented bounding boxes

Figure 1: Illustration of bounding box detection on contrails. Each detected contrail
is highlighted with a distinct color. Note how elongated or fragmented trails challenge
bounding box alignment and separation.

Instance segmentation provides a more precise solution by predicting
pixel-level masks for each individual object. This approach is particularly
beneficial for contrails, as it can delineate each trail accurately even when
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they intersect, overlap, or dissipate unevenly. For instance, two overlapping
contrails that fade at different rates can still be assigned to distinct instances.

It is important to note that instance segmentation has been addressed in

atmospheric science for decades using classical computer vision techniques.
Early work by Mannstein et al.| (1999) detected contrail pixels and grouped

spatially connected regions into distinct objects. Similarly, |Schumann et al.| (2013)

used ground-based cameras with automated algorithms to identify, track,
and characterize individual contrails. These methods achieved instance-level
contrail separation through feature-based detection, connectivity analysis,
and trajectory matching. Our work builds on this foundation by applying
modern deep learning architectures that perform instance segmentation through

learned feature representations rather than hand-crafted rules.
Semantic segmentation, in contrast, labels each pixel by class +—(e.g.,

"contrail" or "sky";-) but does not distinguish between individual contrails.
This is insufficient when studying temporal evolution or interactions between
specific contrails, since it treats all contrails as a single undifferentiated class.

Panoptic segmentation combines the strengths of both approaches: it as-
signs a class label to every pixel (semantic segmentation) and an instance
identifier where appropriate (instance segmentation). In this framework,
"things" such as individual contrails are assigned unique instance labels,
while "stuff" like the background sky or natural clouds is labelled only by
class. This unified view is well-suited to contrail monitoring, enabling fine-
grained analysis of individual contrails within the broader atmospheric con-
text. Moreover, the framework can be readily extended to additional classes
(e.g., cirrus, cumulus) for more comprehensive scene understanding, provided
—of-eourse—that-these classes have been effectively and consistently labelled
during dataset creation, which introduces an additional layer of complexity
to the annotation campaign. Figure [2]illustrates the instance, semantic, and
panoptic segmentation methods.

An important but often overlooked issue in the literature is how contrails
are geometrically represented. In reality, a single contrail may consist of
several disconnected segments —— for example, due to fading or occlusion
+—— making it a multi-polygon shape. See, for instance, the green contrail
in Figs. and However, the most natural approach is to simplify this
by treating each segment as a separate, independent polygon, effectively
assuming that each fragment belongs to a different contrail.

While this simplification avoids the complexity of handling multi-polygons
directly, it introduces a significant challenge: to reconstruct the full contrail,

10
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(a) Instance (b) Semantic (c) Panoptic

Flgure 2 Comparlbon of segmentation methods applied to illustrative contrails. Bistinet
: 5 : a) Instance segmentation assigns unique identifiers (colors) to
g@ﬁhcontraﬂ“ stances-or-classes, depending-on-themethodenabling individual tracking but
MJ&Q@@WM b) Semantic segmentation identifies all contrail
ixels as a single class (white) versus background (blue), without distinguishing between
individual contrails. (c¢) Panoptic segmentation combines both approaches: each contrail
receives a unique identifier while all pixels are classified (contrails in color, background
in blue). This unified representation enables both instance-level tracking and scene-level

understanding.

one must find a way to link fragmented pieces together. This requires ad-hoc
linking strategies, which vary in complexity and accuracy. Some methods rely
purely on the geometric properties of the fragments, such as their proximity
or alignment, while others incorporate external data, such as aircraft flight
paths or meteorological information, to make more informed associations.
In this work, we adopt panoptic segmentation as the foundation for seg-
menting and tracking contrails. This choice is motivated by its ability to si-
multaneously achieve instance-level precision and maintain contextual aware-
ness of the surrounding scene. Moreover, by explicitly addressing the issue
of fragmented contrails, our method enables instance-level identification of
contrails without requiring external sources of information, such as flight or
weather data. This is particularly valuable in scenarios where such data
may be unavailable or incomplete. However, we also explore an alternative
version of the model that treats each contrail fragment as an independent
instance, under the assumption that a downstream algorithm, leveraging ex-
ternal traffic and meteorological data, will later associate these segments with
their corresponding flights. The comparative evaluation of these two strate-
gies —— self-contained instance identification versus externally supported

11
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post-association ;—— will be presented in future publications. In this paper,
we focus solely on presenting the contrail segmentation models themselves.

3. State of the Art

This section presents an overview of prior work in contrail segmenta-
tion and analysis, focusing first on the datasets that have been developed
to support this research, and then on the computational models used for
contrail segmentation and flight attribution. The scope and key features of
existing datasets are outlined, with particular attention given to the lim-
ited availability of temporal annotations and flight attribution ground truth.
Subsequently, we examine state-of-the-art segmentation and tracking meth-
ods, particularly deep learning-based approaches, assessing their applicability
and performance in contrail analysis. This review highlights gaps in current
research and motivates the contributions presented in this paper.

3.1. Datasets

Recent advances in contrail detection have been supported by the devel-
opment of annotated datasets, primarily based on satellite imagery. These
datasets have facilitated the application of computer vision techniques for
contrail identification, although aspects such as temporal continuity and in-
tegration with flight metadata remain limited in most cases. In this section,
we review the most relevant publicly available datasets and place our contri-
butions within this context.

{Koalik, 2019) anc (Meifer ot al 2022)-srdKulil] (2019) and Meijer et al] (2022)

are, to our knowledge, the first studies to leverage a modern, data-driven,
deep learning framework for large-scale contrail segmentation. The authors
developed and applied convolutional neural networks, which were trained
using a manually curated dataset comprising over 100 mantaly-annotated
geostationary GOES satellite images with instance segmentation.

One of the first large-scale labelling efforts in contrail detection was led by
Google Research, beginning with the development of a contrail dataset based
on high-resolution Sentinel satellite imagery (McCloskey et all [2021). Hu-
man experts manually annotated the images usmg structured guldehnes pro-

ducing sk ach—vistble—eont se -masks that identif
contrail pixels at the semantic segmentation level., distinguishing contrail

from non-contrail regions without tracking individual contrail instances. Mul-
tiple annotators independently labelled each image, and the dataset includes

12



371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

all individual annotations, with the option to filter results by majority con-
sensus. This methodology improved both the spatial precision and overall
quality of the labels.

Building on this work, Google released the OpenContrails dataset (Ng
et al [2023)), which is based on images from the GOES-16 Advanced Base-

line Imager (ABI) Thanks—to—the10-minutetemporalresolution—provided
eeﬁbfaﬂs—&ﬁk&fge—sealefﬁOpenContraﬂs offers temporal context by including
short sequences of unlabelled images surrounding each annotated frame, pro-
viding valuable information to annotators for more accurate labelling. Only
the central frame in each sequence is annotated, therefore not allowing a-di-
rect comparison of contrail dynamics with physical models. Netably—a-2025

Wﬁmﬁmﬁm%}%ﬁmﬁ%&%@—dm ]
Q <l <l < 3 o <

In _the domain of ground-based data for contrail research, significant
resources_have been developed to support computer vision tasks.
@ introduce an epen-aeecess—open-access corpus of around 1,600
polygon—annetated-polygon-annotated hemispheric sky images acquired at
the SIRTA atmospherlc laboratory, near Paris, offering class labels that dis-
tinguish * e ~"young," "old," and "very old" con-
trails as well as several confounding artefacts. By capturing high-reselution
high-resolution ground views minutes after formation, the-datasetAfills—the

this dataset fills a temporal-spatial gap left by satellite benchmarks. Complementary

to this data provision, |Pertino et al.| (2024)) focus on the development of detection

methodolo roviding a comprehensive comparison of computer vision models

applied to both visible and infrared images.
Rather than creating a dataset for training modern convolutional net-

works on segmentation tasks {Low-et-al-2025)- [Low et al| (2025 manually
annotated the correspondence between contrail waypoints s—derived from
the application of the CoCiP model and observations from their wide-angle
ground camera system. This approach is particularly well-suited for directly
assessing and parametrizing physical models.

Metjeret-alH2024)-is Earlier studies have successfully collocated contrails
using various combinations of sensors, including ground-based observations

satellite imagery, and lidar data (Iwabuchi et al., [2012; [Mannstein et al., 2010

) demonstrated tracking

first identified in high-resolution MODIS imagery through time sequences of

. For example, |Vazquez-Navarro et al.| (2010 contrails
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ws Meteosat_data, leveraging complementary spatial and temporal resolution.
a0 Building on this foundation, Meijer et al.| (2024) is, to our knowledge, the
am first example of dataset-ecolocatingimages-ontwo-different-a dataset specifically
a2 designed for contrail altitude estimation by collocating images from two
a3 distinct remote sensors: they assembled a dataset speecifieally—for—eontrail

s altitude-altitude-estimationcomprising-over-3000-comprising over 3,000 cases
ss over the contiguous United States (2018-2022). Contrails were first lo-

se cated via automated detection in GOES16-GOES-16 ABI infrared imagery,
a7 then precisely collocated, correcting for parallax and wind advection, with
ns  CALIOP lidar eress-seetionscross-sections. The team then conducted man-
a0 ual inspections of the matched imagery to verify and validate alignment. This
20 benchmark dataset linking geostationary contrail signatures to high-resehution
a1 high-resolution vertical profiles enables supervised deep-learning-deep-learning
w22 approaches to predict contrail top heights from ABI data.

423 A significant advance in contrail detection has been the development of
24 synthetically labeled-datasets{{Chevallier-et-al-2023)-labelled datasets.|Chevallier et al.| (2023)
o generated a synthetic dataset using CoCiP_(Schumann), 2012) to overlay con-
w6 trail polygons onto GOES-16 imagery, enabling the first instance segmen-
227 tation pipeline for contrail detection. The performance of flight assignment
w8 algorithms was validated using actual GOES data ;-through manual inspec-
x0 tion rather than synthetic reference ground truth. Building on this synthetic
a0 foundation {Serna-et-al2025)- Sarna et al, (2025)) introduced a benchmark
a1 dataset, SynthOpenContrails, with sequences of synthetic contrail detections
12 tied to known flight metadata, providing the first opportunity to quantita-
13 tively evaluate and improve contrail-flight attribution algorithms. To our
s knowledge, this is the only dataset providing localized and tracked contrails
a5 with attributable ground truth, albeit synthetic. While the use of synthetic
16 datasets represents a modern and cutting-edge technique for training algo-
«7 rithms, the use of manually labelled data as test sets is still-theoretically
ss  preferable to objectively assess algorithmic performance. However, obtaining
10 such datasets on geostationary satellite images, with their coarse resolution,
w0 remains very difficult at this stage, which motivates the approach adopted by
a1 the authors. As mentioned in{Sarna-et-al-{2025}Sarna et al| (2025]), obtain-
w2 ing such a reference dataset with ground truth for flight attribution based on
w3 human annotations is definitelyfeasible in principle with higher resolution
wa ow—orbit-low-orbit satellites or ground-based cameras, which is the focus of
ws  the present work.

446 Overall, while existing datasets have contributed valuable resources, there
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is a lack of comprehensive, human-labelled data containing temporally re-
solved, instance-level, and flight-attributed annotations. Our work addresses
this issue by introducing a dataset designed to provide these annotations,
collected using our ground camera system.

3.2. Models

Contrail monitoring with computer vision was first pioneered in the early
nineties (Forkert et all [1993}; [Mannstein et al., [1999)), using nen-data-driven

traditional image-analysis techniques. Their work applied linear-kernellinear-kernel
methods, direct thresholding of brightness temperature difference channels,
and early Hough-transform operators (P m 2007)) optimized for linear shape
detection 'to 1dent1fy contralls in AVHRR satelhte 1magery This appfe&eh

IRYEPR

—foundational work was extended through im roved detection al orlthms Mever et al.l 2002, 12007
. automated tracking methods (Vazquez-Navarro et all [2010), and enhanced
) X 0P 5013 - 2 5

refined contrail and cirrus characterlzatlo Ground based Vahdatlon studies (Mannstein et al.. |201(
rovided essential verification of these satellite-based methods. These classical
computer vision approaches were later complemented by improvements from \Duda et al.| (2013

and eventually by modern dee learnln techniques,

To the best of our knowledge, : . Kulik| (2019
and |Meijer et al. (2022) represent the earliest applications of modern con-

volutional networks to pixel-level classification and semantic segmentation.
Building on the OpenContrails dataset, [Ng et al.| (2023) employed semantic
segmentation algorithms, specifically DeepLabV3 (Chen et al., 2017, 2018)),
to identify contrails in ash-rgb-ash-RGB composites using brightness tem-
perature differences. Their work demonstrated that adding temporal context
via a 3D encoder, incorporating the time dimension, led to improved perfor-
mance. Moreover, results from the subsequent Kaggle competition showed
that UNet-U-Net models (Ronneberger et al., 2015) equipped with modern
transformer backbones, such as MaxViT (Tu et al., 2022) and CoatNet

et al [2021)), achieved even stronger results (Jarry et all, [2024).

Using an ensemble approach, |Ortiz et al. (2025) combined six neural
networks, including U-Net, DeepLab, and transformer architectures, and ap-
plied optical-flow-based corrections to maintain temporal consistency across
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consecutive satellite frames. Meanwhile, Sun and Roosenbrand| (2025) intro-
duced a Hough-space line-aware loss for few-shot scenarios, supplementing
Dice loss with a global alignment term to encourage predictions to align with
linear structures.

Shifting from pixel-level masks to instance-level contrail segmentation and
making use of synthetic datafChevallier-et-al-2023)-, Chevallier et al.| (2023)
introduced the first algorithmic pipeline focused on instance segmentation
for contrail detection, utilizing the Mask R-CNN algorithm (He et al.| 2017).
Similarly, Van Huffel et al. (2025) adopted Mask R-CNN to process images
captured by their wide-angle ground camera system.

The diffienlt—challenging task of attributing detected contrails to individ-

ual ﬂlghts {typieallyusing-ADS-B-information)-in geostationary satellite im-
agery, ically using automatic dependent surveillance-broadcast (ADS-B

data,_ has been the focus of several recent studies{Chevallieret-all-2023)-
Chevallier et al.| (2023) introduced a pipeline that combines contrail detec-

tion, tracking, and matching with aircraft using geometric criteria and wind-
corrected trajectories, . : st

methods—that-aeceount— |Riggi-Carrolo et al.| (2023)) proposed a probabilistic
matching method that accounts for uncertainties in flight data and atmo-

spheric conditionsleveraging-as-wellon-Hongh-based-line deteetion—{Geraedts—et—-al12024)-

incorporating features derived from Hough-based line detection to improve

alignment. (Geraedts et al.| (2024) presented a scalable system designed to

assign contrails to flights on a large scale, enabling routine monitoring of
contrail formation and supporting climate assessments.{Sarna—et-al;-2025)-
Sarna et al| (2025) systematically benchmarked and refined these attribu-
tion algorithms, highlighting common challenges and proposing improved
association metrics, building on the release of the synthetically generated
SynthOpenContrails dataset.

By contrast, our work targets ground-based imagery, capturing contrails
immediately after formation and enabling near-instantaneous flight attri-
bution via ADS-B-ADS-B data. We harness panoptic segmentation using
Mask2Former, trained on high-resolution video, to extract pixel-accurate
masks of individual contrails and track them over time. This fills the gap in
early-stage contrail detection and provides richer spatial and temporal detail
than existing satellite-based models.
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4. Dataset

The primary contribution of this paper is the introduction of a new
dataset designed to support contrail detection, tracking, and attribution.
This section provides a detailed overview of the dataset. Section de-
scribes the data collection and labelling campaign. Section summarizes
the structure and content of the dataset.

4.1. Data collection and labelling campaign

To support the development of machine learning models for contrail detec-
tion, we conducted an extensive labelling campaign as part of the ContrailNet
project. Visible-spectrum image sequences were acquired using a-an all-sky
ground-based camera installed on the roof of the EUROCONTROL Innova-
tion Hub s—eapturing-(Location: 48°36'1.87" N, 2°20'48.46” E). The camera
captured the sky every 30 seconds at a resolution of 1976 x 2032 pixels.

Our camera provider, Reuniwatt, has-delivered a dual al-sky-all-sky cam-
era system: the first unit, CamVision, operates in the visible spectrum, cap-
turing high-reselution—high-resolution fisheye images every 30 seconds with
on-board processing and self-calibration, ensuring reliable daytime operation
even in dusty or wet conditions. The second unit, Skylnsight, uses long-
wave infrared (843-#m8-13 pm) imaging via a ehrome-coated-chrome-coated
hemispherical mirror and will be used in future research.

The raw all-sky images were first geometrically projected onto a square
grid. This projection process ;-uses camera-specific calibration files to asso-
ciate each pixel with its corresponding azimuth and zenith angles, effectively
removing lens distortions and re-mapping the sky onto a uniform Cartesian
representation. A #5km—><75km-75 km x 75 km grid of georeferenced points
was computed at a fixed cloud altitude (10 km), and a linear interpolation
scheme was used to assign raw pixel values to the projected frame. The out-
put is a square image of size 1024 x 1024 pixels that preserves the spatial
geometry of the sky above the camera.

To improve the visual clarity and consistency of the sequences, each
projected image then—undergoes a three-step enhancement process. First,
brightness is increased using a linear scaling operation to compensate for
underexposure in certain atmospheric conditions. Second, local contrast is
enhanced via CLAHE (Contrast Limited Adaptive Histogram Equalization),
which boosts featurestikefine features like faint or fragmented contrails with-
out overexposing the-imagebright regions. Finally, colour warmth is reduced
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(a) Raw all-sky image frem—the (b) Geometrically—projected
erotnd-based—eamera—with—vistble and—enhanced—image—used

eentratlsshowin, severe fisheye for————anneotation-Geometric segmentation;Final three-ste
distortion rojection onto a square grid  enhancement process.

Figure 3: Impact of preprocessing pipeline on contrail visibility.

by rebalancing the blue and red channels, mitigating the effects of high solar

glare and improving contrail visibility in high-sunlight—challenging lightin
condltlons This preprocessmg plpehne proved essentlal in-highlighting fine

%éeﬂm&wh%ﬁ%e&%geﬁ%@meéﬁﬁgﬁe@fm
it_enables annotators to identify and delineate contrails consistently across
diverse atmospheric scenes, and it simplifies the learning task for computer
vision models_by removing camera-specific_distortions and enhancing the
projection and enhancement, demonstrating how the pipeline reveals contrails
that_would otherwise_be difficult or impossible to_annotate reliably. All
models presented in this work are trained and evaluated exclusively on preprocessed
images.

The process—ofdabelling-video sequences included in the dataset were
not_randomly sampled from the full archive. To_ensure sufficient contrail
instances for effective model training while maintaining seasonal and atmospheric.
diversity, we applied a_two-stage selection strategy. First, the complete
year-long archive was processed using a lightweight binary classifier to distinguish
contrail-present from contrail-absent images. 'This automated filtering efficiently
identified_candidate periods by excluding extended intervals of clear sky
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or heavy low-altitude cloud cover. Second, video sequences were manuall
selected from these filtered periods, prioritizing scenes with visible, persistent
contrails suitable for detailed temporal annotation. This approach deliberatel

oversamples contrail-positive cases, enhancing the dataset’s utility for segmentation

and tracking but introducing a selection bias that should be considered when
evaluating model performance on unfiltered operational data. The final
dataset spans the full calendar vear, ensuring coverage of diverse seasonal

and atmospheric conditions.
The labelling process was applied to video sequences;—; each sequence

comprised between 60 and 480 images, corresponding to durations of 30
minutes to 4 hours, enabling the temporal tracking of contrails throughout
their formation and dissipation phases.

The labelling process was carried out using a dedicated annotation tool
developed by Encord, who also provided a professional team of annotators.
We maintained close collaboration with this team through regular coordina-
tion meetings, during which the annotation guide was developed and itera-
tively refined. The labelling platform was specifically configured to overlay
flight trajectory data above the camera”’s field of view, assisting annota-
tors in identifying “ ratls-"mew" contrails—those forming above the
camera and visibly assoc1ated with a known aircraft trajectory. In contrast,
“old™"old" contrails were defined as those already present at the start of a
sequence or likely formed outside the camera’’s field of view, making flight
association impossible.

Each contrail was annotated using high-precision polygons that tracked
its spatial extent throughout its visible evolution, from early linear stages to
advanced spreading phases. When contrails became fragmented or partially
obstructed by clouds, multiple polygons were used and linked using relational

attributes (Pfagmen%ed—c—eﬂ%faﬂ and-Cloud—obstruetion'fragmented contrail”

and "cloud obstruction") to preserve temporal continuity.

To ensure the highest annotation quality, the campaign incorporated a
multi-stage review protocol. An initial calibration phase was conducted us-
ing a sample dataset to harmonise interpretation and identify edge cases.
Each labelled sequence then underwent a two-step quality control process: a
technieal review made-technical review by the labelling team, followed by
an expert-—review made-expert review by EUROCONTROL to ensure final
quality. In total, 4,536 hours of labelling and 431 hours ex-of reviewing were
performed.
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s 4.2. Dataset Description

612 The GVCCS datasetdarey-et-akH2025)- (Jarry et al 2025) is the first
13 open-access, instance-level annotated video dataset designed for contrail de-
s1a  tection, segmentation, and tracking from visible ground-based sky camera
a5 imagery. It consists of 122 high-resolution video sequences (totaling 24,228
a6 images) captured at the EUROCONTROL Innovation Hub in Brétigny-sur-
sz Orge, France, using Réuniwatt”’s CamVision sensor. Fach sequence has been
sis carefully annotated with temporally consistent polygon masks for visible con-
10 trails, including multi-instance tracking and, where possible, attribution to
20 specific flights using aircraft trajectory data.

621 In total, the annotation team labelled 465+ 4,651 individual contrails
22 with a total of 3765494 176,194 polygons. The sequences cover a wide range
623 of durations (from 0.5 to 142.5 minutes per contrail), with each contrail com-
62 prising between 1 and 589 polygons (mean: 37.8). On average, each video
25 sequence spans 96.6 minutes and contains approximately 193 annotated im-
26 ages. About 3346 3,346 contrails are associated with unique flight identifiers
7 derived from synchronized flight trajectory data filtered above 15,000 ft.

628 The GVCCS dataset is structured into train/ and test/ folders, each
620 containing images, annotations. json (COCO format), and associated flight
s0 data in parquet format. The dataset supports a range of research tasks
sa1 including semantic and panoptic segmentation, temporal tracking, lifecycle
32 analysis, and contrail-flight attribution, and is released under the CC BY
633 4.0 license.

s D. Segmentation Models

635 This section reviews the segmentation models evaluated for identifying,

3 and for some also tracking, contrails. As established in Section 2.2, our
e37 primary objective is instance segmentation (detecting individual contrails
e and assigning them unique identifiers) which is essential for temporal tracking
oo and flight attribution. The models presented here are capable of panoptic
e segmentation (jointly handling instance identification and scene classification),
o1 though our evaluation focuses primarily on contrail instance quality rather

s2 than exhaustive scene parsing.
643 We focus on two model families: Mask2Former, a state-of-the-art transformer-

o4 based segmentation model, and a U-Net using a discriminative embedding
ss loss. Both are evaluated on individual images, while only Mask2Former is
sas  additionally evaluated on videos.
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Table 1: Descriptive statistics of the annotated contrail dataset

Metric Value
Total sequences (labelled) 122
Total images 24,228
Average sequence duration in-minutes(minutes) 96.6
Images per sequence (min / max / mean) 41 / 600 / 198.6
Total annotated contrail instances 465+-4,651
Total unique flight IDs assigned 3354-3,346_
Total polygons annotated 176,234
Contrail duration in minutes (min / max / mean) 0.5 /1425 / 14.6
Polygons per contrail (min / max / mean) 1/589 /378
Polygons per frame per contrail (min / max / mean) 1/45 /12

We also explore two problem formulations: in the single-polygon case,
each visible contrail fragment is treated as an independent instance; in the
multi-polygon case, all fragments of a given contrail are labelled as a single
instance, even if they are spatially disconnected. The single-polygon setting
assumes that a subsequent linking algorithm, not implemented in this work,
could later group fragments into full contrails. The multi-polygon formula-
tion, in contrast, expects the model to infer such groupings implicitly.

5.1. Mask2Former

Mask2Former is a universal segmentation architecture that unifies seman-
tic, instance, and panoptic segmentation within a single model. It is built
around a hierarchical encoder-decoder structure comprising three main com-
ponents: a convolutional backbone for multi-scale feature extraction, a pixel
decoder that generates dense spatial embeddings, and a transformer decoder
with learnable mask queries that iteratively refines segmentation predictions.

A central innovation in Mask2Former is its use of the-se-ealled-masked
attention in the transformer decoder. Unlike standard cross-attention, which
considers the entire image, masked attention limits attention to regions sur-
rounding the current predicted masks. This localized focus enables more pre-
cise refinement of object boundaries, which is particularly beneficial for thin,
high-aspect-ratio structures like contrails. The model’s learnable queries act
as object proposals and are refined through multiple decoding layers to gen-
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erate final instance masks and class labels in an end-to-end manner.
An 1mportant aspect of Mask2F ormer”’s effectiveness lies in its loss func-
tion G ; . §

that the model seeks to minimize during training. A loss function quantifies
the difference between predicted outputs (e.g.. segmentation masks) and

ground truth annotations, providing the learning signal that guides iterative
parameter updates. The loss function used by Mask2Former combines sev-
eral components. First, it uses a classification loss that helps the model
assign the correct class to each predicted mask (e.g., contrail vs. sky). Sec-
ond, it includes a mask loss, which measures how closely the predicted mask
matches the ground-truth mask for that object, commonly using a—pixel-
wise binary cross-entropy or Dice loss. Finally, Mask2Former incorporates

a matching step based on the Hungarlan algorlthm%eﬂhgﬁjafedieaeﬂﬁw%
ground-truth-inan-optimal— (Kuhnl 1955)—a combinatorial optimization
m@hmmmmﬂﬁ&@gmone—
to-one way—Fhis—correspondence between two sets given a cost matrix.
In this context, the algorithm matches each predicted mask with its most
appropriate ground-truth object by minimizing a combined cost based on
classification and mask similarity. This optimal matching ensures that each

predieted-maskprediction is evaluated against the mest-appropriatereferenceebjeetcorrect

reference, avoiding duplicate assignmentsor ambiguous assignments, which is
articularly important when multiple contrails with similar appearance are

A detailed technical description of the model is beyond the scope of this

paper, as our focus is on applying Mask2Former to contrail segmentation; we

ses— the mathematical objective

refer the reader to the original work by (Cheng-et-ak2022)-{Cheng et al | (2022)

for a comprehensive overview of the architecture and performance on popular
datasets.

To capture temporal dynamics inherent in contrail evolution, we ex-
tend Mask2Former to process short video sequences. Although designed
for single images, the model can handle multiple consecutive frames as a 3D
spatio-temporal volume by treating time as an additional axis alongside spa-

tial dimensions, following the extension introduced by [Cheng-et-ak{{202+a)

Cheng et al.| (2021a)).

Compared to traditional segmentation models, Mask2Former offers sub-
stantial architectural advantages. Mask R-CNN (He et al., 2017, while ef-
fective, performs detection and segmentation as separate stages, which can
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introduce spatial misalignment and inefficiencies, especially when segmenting
long, disconnected objects. DETR (DEtection TRansformer) (Carion et al.,
, though end-to-end and transformer-based, primarily focuses on ob-
ject detection and lacks the fine-grained spatial modelling needed for precise
mask prediction. MaskFormer (Cheng et al., 2021b) introduces transformer-
based decoding for segmentation ;—but relies on global attention, which can
dilute spatial precision. Mask2Former refines this approach with masked at-
tention and iterative refinement, leading to improved accuracy, especially in
challenging tasks where objects are often thin, faint, and visually ambiguous.

5.2. U-Net with Discriminative Loss
As a baseline, we implement a twe-steps-two-step instance segmentation

model. First, we use a elassical U-net-architeeturdJarey-et-ak{2024)-U-Net
archltecture (Ronneberger et alL 2015) for segmentation. U-Net is designed

a convolutional neural network

w@m@g@m
its_distinctive U-shaped architecture. The network features a symmetri-
cal encoder-decoder structure—The-encoder—part—of-thenetworkeradually
redueesthe spatiatsize of the input-image;extraeting;_the encoder progressively
anmhlgh level fe&‘&&fes%ha{—c—&pt—ufe%h&eve%&ﬂ

%GHWHWWM%MMMQ@

upsamples to recover spatial resolution. Crucially, U-Net uses-skip-connectionsthat

direetlytHnk—eorrespondingtayers—in—the—employs skip connections—direct

athways that link corresponding encoder and decoder layers, bypassing
intermediate processing. These connections allow fine-grained spatial de-

tails (such as exact contrail boundaries) that are lost during downsampling
to be reeevereddirectly recovered in the decoder, improving the quality and
precision of segmentation outputs.

Second, we use a similar architecture that learns a unique feature repre-
sentation, or embedding, for each pixel in an image by using a discrimina-

tive loss function — a training objective specifically designed to encourage

ixels from the same instance to have similar embeddings while pushing apart
embeddings from different instances. In this model, the final head of the U-

Net does not produce a typical segmentation map with class labels. Instead,
it produces an embedding for each pixel :—(a vector in a high-dimensional
feature space). The goal is for pixels that belong to the same object instance
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to have similar embeddings (meaning they are close together in this feature
space), while pixels belonging to different instances have embeddings that
are far apart. This way, the model effectively learns to group pixels based
on their learned features.

The process of identifying individual instances is performed in two sep-
arate steps. The first step is to generate these pixel embeddings with the
U-Net, and the second step is to group or cluster these embeddings into in-

dividual instances. For clustering, we use the HDSCAN-algorithm——tefind

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications
with Noise) (Campello et all 2013)—a_density-based clustering algorithm
that_automatically identifies clusters of arbitrary shape without requiring
a predetermined number of clusters. HDBSCAN groups pixels with similar
embeddings (high local density in the embedding space) into the same instance
while_identifying outliers that _do not belong to any clear cluster. These
outliers are subsequently assigned to the nearest cluster using k-means, ensuring
complete instance coverage. This approach is particularly suitable for contrails,
which often exhibit irregular, fragmented, or elongated shapes that are difficult

to cluster using traditional methods like k-means alone.
The discriminative loss function used to train the model is composed

of three parts. The first part, known as the pull term, encourages embed-
dings of pixels that belong to the same instance to be close together, making
the cluster compact. The second part, called the push term, forces em-
beddings of different instances to be sufficiently separated from each other,
preventing clusters from overlapping. The third part is a regularization
term that prevents the embeddings from growing too large in magnitude,
which stabilizes the training process and embedding space. This combina-
tion allows the model to learn meaningful and well-separated pixel embed-
dings without relying on explicit object bounding boxes or pre-defined region
proposals. For readers interested in the mathematical formulation and de-
tailed rationale behind the discriminative loss, we refer to the original paper
by [De Brabandere et-al1{2047De Brabandere et al| (2017).

It is important to note that this model operates only on single images.
Unlike models such as Mask2Former for videos mentioned in the previous sec-
tion, it does not incorporate any temporal or sequential information, nor does
it include recurrent layers or mechanisms to handle videos. Extending this
approach to process video sequences and incorporate temporal consistency
would require significant changes to both the architecture and the algorithms
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used, which is outside the scope of this work.

The embedding-based approach is well suited to segmenting objects that
may not be spatially continuous, such as contrails with fragmented shapes.
Since the model does not require spatial continuity, it can learn to embed
separate, disconnected parts of the same contrail into a similar region of
the feature space if they share common visual characteristics and belong to
the same label. However, this approach has its challenges. If parts of the
same contrail differ significantly in appearance ——due to factors like changes
in lighting, atmospheric conditions, or variations in the background texture-
They-, they may be embedded differently and incorrectly assigned to separate
clusters. Conversely, visually similar but unrelated contrail fragments could
be mistakenly grouped together, as the model relies solely on the learned
embeddings for clustering.

Figure [ illustrates a—ep ‘ stanee—diseriminative
WMHMMMWM@QWWM
separate contrail instances. On the left, the ground truth labels are dis-
played, highlighting the pixel-wise assignment to contrail instances. On the
right, we show the corresponding discriminative embedding space;redueed-to

two-dimensionsusing-._Since each pixel is represented by a high-dimensional
embedding vector (typically 32 dimensions), we apply Principal Component
Analysis (PCA) fervisualizationpurpesesto reduce this to two dimensions for
visualization: PCA identifies the two orthogonal directions that capture the
WMW&WM@W@
clusters onto a 2D plane. Each point repres ‘ / ;

colored accordm to its ground-truth 1nstance label. This visualization pro-
vides insight into how the model, trained with a discriminative loss, learns

to embed pixels from the same instance close together in the feature space,
while separating those from different instances. The separation observed in
the embedding space confirms the model”’s ability to cluster fragmented con-
trail structures, although visually similar but unrelated segments may still
partially overlap in the embedding due to shared appearance features.

6. Results

This section presents the performance of the models introduced in Sec-
tion [5] on contrail segmentation tasks. Our primary goal is not to achieve

state-of-the-art results but to establish clear examples-efappheation-application

25



817

818

819

8!

[¥]

0

821

822

823

824

825

826

827

Ground Truth PCA Component 1 vs 2

1000
800 \ |
600
400

200

0 200 400 600 800 1000 -3 -2 -1 0 1 2

Figure 4: Thetruedabeldis—displayed-onllustration of the %f%&ﬁé%h&dlscrlmlnatlve
embedding en-the-rightmethod for instance segmentation. The-latter—we ‘
Prineipal- Component-Analysis-Left panel: Ground-truth PGAWQ%&V@Q instance
labels, where each color represents a distinct contrail. Right panel: Visualization of the
learned pixel embeddings. The eolotrs—refiect-U-Net model learns to map each pixel to
a point in a high-dimensional feature space such that pixels belonging to the same con-
trail instancesare positioned close together, while pixels from different contrails are far
apart.  For visualization, PCA reduces this high-dimensional space to_two_dimensions
by identifying the directions of maximum variance. Each point represents one pixel,
positioned according to its learned embedding and colored by its ground-truth contrail
instance. Well-separated, compact clusters indicate that the model has successfully learned
to group pixels from the same contrail while distinguishing different contrails.

examples and meaningful baseline performances. By doing so, we highlight
the unique opportunities offered by this dataset and provide a foundation
for the research community to build upon, encouraging rapid progress in the
critical field of aviation’’s climate impact.

6.1. Training

All models were initialised—initialized from existing pretrained check-
points. We trained two versions of the Mask2Former architecture for the
single—image-single-image segmentation task. Both models share the same
core architecture but differ in the size of their transformer backbone: one
uses the Swin-Base (Swin-B) configuration and the other uses the larger
Swin-Large (Swin-L). The main difference between these two lies in model
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capacity;—:_ Swin-L has significantly more parameters, whieh-enables-enabling
it to learn richer representations at the cost of higher computational require-
ments.

Both image models were initialized from publicly available pretrained
checkpoints in the Mask2Former Model Zooﬂ. Each model was first pre-
trained on the ImageNet-21k (IN21k) (Ridnik et al., 2021) classification
dataset and then fine-tuned on the COCO panoptic segmentation dataset.
While COCO (Lin et al., 2014]) does not include contrails, it spans a wide
range of natural (including clouds and sky) and man-made objects, offering
useful general-purpose segmentation features. This two-stage pretraining -
(IN21k followed by COCO+-) has been widely validated in the literature and
provides a strong initialization for fine-tuning on contrail imagery.

Both the Swin-B and Swin-L variants were trained on individual image
frames using 200 learnable object queries. Given our hardware setup;——two
NVIDIA RTX 6000 GPUs, each with 48 GB of memory;—we were able to
train both variants on the image dataset without significant memory limita-
tions.

For video segmentation, we used the video-specific variant of Mask2Former,
which extends the original architecture to handle temporal sequences. Like
the image-based model, it alse-uses 200 object queries and Swin Transformer
backbones, and #-is initialized from a checkpoint pretrained on the YouTube-
VIS 2019 dataset (Yang et al., 2019). Although YouTubeVIS does not contain
contrails, its emphasis on learning temporally consistent object masks across
frames makes it well suited to capture the dynamics of contrails in video
data.

Due to GPU memory constraints, we limited both training and inference
to short video clips composed of a small number of consecutive frames. While
this restriction was necessary to fit within available hardware resources, par-
ticularly for memory-intensive architectures, it also shaped our training strat-
egy. During training, these clips are randomly sampled from longer video se-
quences to introduce temporal diversityinto-the-trainingproecess. By varying
the starting points of the sampled clips, the model is exposed to contrails at
different stages of their lifecycle +—(formation, elongation, dissipation;-) and
in diverse atmospheric contexts. This stochastic sampling encourages the
model to learn more generalizable temporal representations.

"https://github.com/facebookresearch/Mask2Former/blob/main/MODEL_Z00.md
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To support this setup, we trained the video Mask2Former model using
both Swin-Base (Swin-B) and Swin-Large (Swin-L) backbones. However, the
number of frames per clip had to be adjusted based on model capacity and
memory availability. With the more lightweight Swin-B variant, we were able
to train on 5-frame clips, while the higher-capacity Swin-L model could only
be trained on 3-frame clips due to its significantly larger memory footprint.
This reflects a trade-off between temporal context and model expressiveness:
longer clips may better capture the dynamic evolution of contrails, whereas
larger models like Swin-L provide richer per-frame representations. Training
both configurations allows us to explore how these two dimensions +(temporal
depth and model capacity;-) interact in the context of contrail segmentation.

For the U-Net model, we used a backbone based on MaxViT-B, a hybrid
vision transformer architecture that combines convolutional layers with self-
attention mechanisms for efficient and scalable visual representation learning.
This backbone was pretrained on ImageNet-21k and subsequently fine-tuned
on ImageNet-1k, providing robust feature representations to support the dis-
criminative loss function employed during contrail segmentation training.

The training procedure for each model involved several epochs of su-
pervised learning, with early stopping applied based on performance on a
validation set. The dataset was partitioned into training, validation, and
test sets using a 70-10-20 random split ;dene-at the video level. This means
that all frames from a given video were assigned exclusively to one of the
three sets to avoid any potential data leakage. To ensure a-fair and unbiased
evaluation, we also balanced the number of empty sequences —videos—that
eontainno—eontratls—— videos containing no contrails — across the three
subsets.

It is important to note that the reported metrics reflect model performance
on contrail-rich scenarios, as the dataset construction deliberately oversampled
contrail-positive sequences to maximize training signal. While this choice

enhances the dataset’s utility for contrail detection and tracking tasks, generalization

to unfiltered operational data with arbitrary sky conditions may differ and

warrants further investigation.
We did not perform exhaustive hyper-parameter tuning for any of the

models. Instead, our goal with this experimental setup was to establish
baseline results and to analyze model performance both qualitatively and
quantitatively under realistic computational and data constraints. All mod-
els were trained using the default hyper-parameters reported in their orig-
inal publications. Tables [2] and [3| summarize the most important training
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parameters for each model. Note that the models differ in the specific hyper-
parameters relevant to their architecture and training setup. Future work
will focus on exploring more sophisticated modeling strategies, systematic
hyper-parameter optimization, and additional training refinements.

Table 2: Default hyper-parameters for Mask2Former models.

Hyper-parameter Default value Notes / Differences
Training iterations 20K Same for image and video
Learning Rate — 3.75¢-5 (Image), 1.25e-5
(Video)
Batch Size — 6 (Image), 2 (Video)
Image Size 1024 x 1024 Same for image and video
Class Weight 2.0 Same for image and video
Mask Weight 5.0 Same for image and video
Dice Weight 5.0 Same for image and video
Importance Sample Ratio 0.75 Same for image and video
Oversample Ratio 3.0 Same for image and video
Augmentations

Rotation _ (90°), Applied at__image level
vertical  flip, (Image); applied at cli
horizontal flip level (Video

Remember-that-each-Fach model was trained and evaluated on two dis-
tinct formulations of the instance segmentation task. The first formulation
treats a contrail as a single object, even if it is composed of multiple dis-
connected regions or fragmented segments. In this setup, the model must
learn to group visually and spatially separated regions that correspond to
the same physical contrail. The second task-formulation simplifies the prob-
lem by treating each visible polygon as an independent instance. In this
formulation, the model is not required to group disjoint segments belonging
to the same contrail; instead, it simply detects and segments each distinct
region. This approach corresponds to a modular processing pipeline where
instance merging and flight attribution occur at a later stage, as will be
discussed in future work.
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Table 3: Default hyper-parameters for U-Net model trained with discriminative loss.

Hyper-parameter Default value
Architecture U-Net

Backbone tu-maxvit base tf 512.inlk
Input image size 1024 x 1024
Precision 16-mixed

Epochs 100

Batch size 1

Gradient accumulation steps 32

Learning rate 5x 107

Optimizer AdamW (weight decay = 107%)
Scheduler Cosine with warm-up
Augmentations Rotation (90°), vertical flip, horizontal flip

6.2. Evaluation

We evaluate both semantic and instance-level segmentation performance
using a combination of standard and task-adapted metrics.

For semantic segmentation, we report pixel-wise—seores—sueh—as—mean
interseetion—over—anion—the mean Intersect1on over Union (mloU) and the

metries—The-presentation—and-interpretation—of-Both metrics quantify the
overlap between predicted and ground-truth masks, with values ranging from
0 (no overlap) to 1 (perfect match).

The mloU is calculated as:

Area of Intersection

IoU =
mlol Area of Union

where the intersection is the set of pixels correctly predicted as contrail
and the results—are-provided-at—the-end—union includes all pixels predicted

as contrail plus all true contrail pixels. This metric equally penalizes both
false positives (predicting contrail where there is none) and false negatives
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missing actual contrail pixels).

The Dice coefficient is calculated as:

2 x Area of Intersection

Dice = )

The factor of 2 in the numerator makes the Dice coefficient emphasize
or thin structures. making it well-suited for evaluating contrails, which often
appear as narrow, clongated features that occupy a small fraction of the
image.

Temporal Evaluation Strategy

For video-based models, inference is performed using a sliding window
approach, where each video is divided into overlapping short clips of fixed
length, matching the clip length used during training (e.g., 3 frames for the
Swin-L. model, 5 frames for the Swin-B model). These clips advance by one
frame at a time (stride one), allowing the model to leverage temporal context
effectively while respecting memory constraints during inference. Crucially,
segmentation accuracy is computed only on the central frame of each short
clip. This design ensures that each frame in the video contributes exactly
once to the evaluation metrics, only when it appears as the center frame
of a clip. This prevents duplicate evaluation and enables a—fair comparison
with image-based models, which predict on single frames independently. For
example, if a 5-frame clip is used on a video with frames numbered 1 through
10, the first evaluation clip spans frames 1-5 with evaluation on frame 3;
the next clip covers frames 2-6 (evaluated on frame 4), and so on. This
guarantees unique evaluation for frames 3 to 8, each exactly once.

It should be noted that the video-based Mask2Former model maintains
temporally consistent instance identifiers within each clip. That is, if a con-
trail is labelled as instance #3 in one frame of a clip, it retains this identifier
across all frames in the same clip. However, since clips are processed inde-
pendently, these identifiers are not guaranteed to remain consistent between
consecutive clips. A given contrail may receive a different identifier in adja-
cent clips. To enable continuous tracking of contrails throughout the entire
video, we introduce a simple post-processing method that links and recon-
ciles these instance identifiers to generate coherent, continuous tracks; this

method is described in detail in [Appendix Al
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Instance Segmentation Metrics

Model performance is evaluated using both semantic and instance-level
segmentation metrics. All metrics are computed globally by aggregating
predictions and ground truths across the entire test set before applying the
metric calculations. This global computation prevents biases that can arise
from averaging metrics computed independently on each observation (i.e.,
frame), which is particularly important in settings with imbalanced or sparse
data such as contrail segmentation.

Instance segmentation performance is assessed using COCO-style met-

rics ([Lin et al., [2014) computed globally over the dataset. To accommo-
date the specific challenges posed by contrails, we adapt the IoU threshold

rangeand—denote—metries—with-—thefollowinenetation—AP. The notation
X@Q[IoU range |size-eategory— size category | max detections| ;—where ol

rangespecifies the range of loU-thresholds over whicl specifies three parameters:

e [oU range: The range of Intersection over Union thresholds used. A
rediction is considered a "true positive" only if its IoU with a ground-truth
object exceeds the threshold. Average Precision (AP) erAverage Reealt
(AR} s dientestheobi ) ! idered.
and—max—deteetionsis—the-1s computed across multiple thresholds and
averaged.

e Size category: Filters objects by area —"small" (< 322 pixels). "medium"
322 to 962 pixels), "large" (> 962 pixels), or "all" (no filtering).

o Max detections: The maximum number of deteetionsperimage-considered:

redicted instances considered per image (e.g.. 100).

For example, AP@[0.25:0.75 |all- all | 100] denotes the-mean—average
preeiston-eatentated-Average Precision computed over IoU thresholds ranging
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from 0.25 to 0.75, eensidering—across all object sizesand—up—to—, with a
@@W 100 detectlons gf@lg@jggmper 1mage Objeet—size—eategories

results that follow we report both Avera e Precision AP and Avera e Recall
(AR) using this notation.

We restrict the IoU threshold range to [0.25, 0.75], rather than the stan-
dard COCO range of [0.50, 0.95], to better accommodate the elongated and
thin geometry of contrails, where very high IoU thresholds are overly strict.
Contrails are thin, irregular, and may extend across large image portions,

makmg exact mask overlap challengmg Ui&é%—%ypiﬁ%l—@@@@—fﬁe&leﬁ

p%%ﬁ%%ﬁw%em%mmwgm
overlapping 30% of a contrail would be ignored under COCO*’s default min-

imum IoU of 0.5 +but counted as a true positive under our more lenient
thresholds. This adaptation better reflects practical segmentation quality
for contrails. _

By adjusting the IoU range, the metrics better reflect practical segmen-
tation quality for contrails, balancing sensitivity to spatial accuracy with
tolerance for slight misalignments and fragmentations inherent to this do-
main. [t is important to note that these adapted metrics are not directly
comparable to standard COCO scores but are specifically tailored to provide
meaningful evaluation in the context of contrail segmentation.

This evaluation framework, combining semantic and instance segmen-
tation metrics computed globally with appropriate IoU thresholds and size
categories, offers a comprehensive and interpretable means of assessing model
performance. It facilitates fair comparisons across models and supports fu-
ture benchmarking on our contrail dataset.

Tables [] and [5] summarize the results for the semantic and instance seg-
mentation tasks, respectively. All results are reported for both single-image
and video-based models. Instance segmentation results are further disaggre-
gated by annotation style: M refers to multi-polygon annotations, and S
refers to single-polygon annotations. For Mask2Former models, values with-
out parentheses correspond to the Swin-B backbone, while those in paren-
theses refer to Swin-L.
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Table 4: Semantic segmentation metrics. For the Mask2Former variants, values without
parentheses refer to Swin-B; values in parentheses refer to Swin-L.

Single Images Videos
Metric Mask2Former U-Net Mask2Former

Dice 0.56 (0.60) 0.59 0.57 (0.59)
mloU 0.38 (0.43) 0.42 0.40 (0.42)

In the semantic segmentation task, performance remains consistent across
all models and variants, with Dice and mlIoU scores showing little variation.
This stability is expected, as semantic segmentation only requires classifying
each pixel as either contrail or sky, without distinguishing between separate
contrail instances. The U-Net model achieves results on par with the more
advanced Mask2Former models, indicating that per-pixel contrail detection is
largely driven by local visual features, such as shape, brightness, and texture,
which U-Net captures effectively.

These results also reflect the quality and consistency of our dataset: al-
though based on ground-level imagery, the segmentation performance is in
line with results reported in previous studies using satellite data (Jarry et al.,
2024; Ortiz et al., 2025)). Although differences in imaging modality and scene
geometry preclude direct comparisons, the consistency in results suggests
that semantic contrail segmentation is a well-posed task for modern archi-
tectures, with strong performance achievable across diverse data sources.

Instance segmentation results reveal clear differences between model ar-
chitectures. These differences are more substantial than those observed in the
semantic segmentation task, highlighting the added complexity introduced by
instance-level reasoning. Mask2Former, which is designed for panoptic seg-
mentation through object-level queries and global spatial reasoning, consis-
tently outperforms U-Net across all instance metrics. The performance gap is
particularly pronounced in the multi-polygon setting, where contrails appear
fragmented and must be correctly grouped into coherent instances. These re-
sults highlight the value of architectures specifically built for instance-aware
tasks: Mask2Former”’s ability to reason globally and associate disjoint seg-
ments makes it better suited for detecting and tracking individual contrails.

A more nuanced comparison emerges when evaluating image-based ver-
sus video-based Mask2Former models. For the Swin-B backbone, the image-
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Table 5: Instance segmentation metrics. "M" refers to multi-polygon, whereas "S" indi-
cates single-polygon. For the Mask2Former variants, values without parentheses refer to

Swin-B; values in parentheses refer to Swin-L.

Single Images

Videos

Type Metric Mask2Former U-Net Mask2Former
AP@[0.25:0.75 | all | 100] 0.34 (0.34) 0.05 0.31 (0.33)
AP@[0.25:0.75 | small | 100] 0.21 (0.21) 0.01 0.14 (0.17)
AP@[0.25:0.75 | medium | 100] 0.39 (0.40) 0.13 0.37 (0.38)
AP@[0.25:0.75 | large | 100] 0.44 (0.47) 0.12 0.46 (0.47)

M AR@[0.25:0.75 | all | 1] 0.10 (0.10) 0.03 0.09 (0.09)
AR@[0.25:0.75 | all | 10] 0.41 (0.41) 0.18 0.38 (0.40)
AR@[0.25:0.75 | all | 100| 0.44 (0.44) 0.22 0.43 (0.44)
AR@[0.25:0.75 | small | 100] 0.30 (0.30) 0.14 0.26 (0.29)
AR@[0.25:0.75 | medium | 100] 0.50 (0.50) 0.25 0.49 (0.50)
AR@[0.25:0.75 | large | 100] 0.55 (0.55) 0.22 0.57 (0.56)
AP@[0.25:0.75 | all | 100] 0.35 (0.37) 0.06 0.31 (0.34)
AP@[0.25:0.75 | small | 100] 0.24 (0.26) 0.03 0.17 (0.21)
AP@|0.25:0.75 | medium | 100] 0.44 (0.45) 0.14 0.41 (0.43)
AP@[0.25:0.75 | large | 100] 0.37 (0.43) 0.11 0.46 (0.47)

S AR@[0.25:0.75 | all | 1] 0.08 (0.08) 0.03 0.07 (0.08)
AR@[0.25:0.75 | all | 10] 0.37 (0.38) 0.18 0.35 (0.37)
AR@[0.25:0.75 | all | 100] 0.44 (0.45) 0.21 0.42 (0.45)
AR@[0.25:0.75 | small | 100] 0.33 (0.34) 0.15 0.28 (0.32)
AR@[0.25:0.75 | medium | 100] 0.53 (0.53) 0.26 0.52 (0.55)
AR@]0.25:0.75 | large | 100] 0.54 (0.56) 0.25 0.58 (0.60)

wee based model achieves higher instance segmentation performance, while the
wno  video-based model slightly outperforms it on semantic segmentation metrics.
wn This suggests that although video models benefit from temporal consistency
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w2 and motion cues, the added complexity of enforcing cross-frame coherence
w3 may introduce challenges that slightly hinder instance-level prediction accu-
e racy, particularly when using a lower-capacity backbone like Swin-B.

1075 In the Swin-L setting, the image-based model performs best overall. It
wre  achieves both the highest instance segmentation score and slightly superior
w7 semantic segmentation performance. These results indicate that temporal
s medelling-modeling does not always yield performance improvements, espe-
e clally when the temporal context is limited (e.g., 3-frame clips) or when the
s spatial representation capacity of the model is already high. The image-
s based model benefits from pretraining on COCO, which may faveur—favor
ws2 precise spatial delineation, while the video-based variant relies on pretrain-
wss  ing on YouTubeVIS, which is more focused on temporal coherence. However,
8¢ it is important to note that the video-based model performs an additional
s task: tracking. By maintaining consistent instance identities across frames, it
wss enables temporally coherent segmentation that is not achievable with image-
g7 based models. Al-n-al—+the-The metrics reported here are computed on a
wss per-frame basis and do not account for flickering or instance identity consis-
wss tency over time. These temporal aspects are particularly important in video
w0 applications and are not captured by the conventional frame-level evaluation
wa  scores presented herein.

w2 Animportant caveat is that all reported metrics are computed independently
o3 for each frame and do_not account for temporal consistency of instance
wes  identities over time. Video-based models are explicitly trained to maintain
w05 coherent instance tracks across frames through end-to-end temporal modeling,
wes  Jointly optimizing segmentation and tracking within a unified objective. In

o7 contrast, image-based models require post-hoc association algorithms (such
1008 carian matching method described in|Appendix A to link instances
wso temporally based on spatial overlap alone. While both approaches can achieve
noo  tracking, video models learn temporal correspondences from motion cues
no and appearance_features during training, potentially offering more robust
ne - handling of occlusions, fragmentations, and brief disappearances. However,
nos  the per-frame metrics reported here (AP, AR, Dice, mloU) primarily assess
nos spatial segmentation quality and do not reward temporal consistency. As
nos a_result, while video models_do not uniformly outperform image models
mos  in_per-frame scores, they provide qualitative benefits in terms of reduced
nor - instance ID flickering and smoother temporal transitions that are not captured

s by these metrics. Future work should incorporate video-specific evaluation
noo  metrics (e.g., tracking accuracy, ID switches, fragmentation) to fully characterize
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the advantages of temporal modeling. Additionally, the short clip lengths
used in this study (3-5 frames) were dictated by hardware constraints; longer
temporal contexts may vield further improvements and warrant investigation

with more capable architectures.
Overall, Swin-L outperforms Swin-B across all setups, reinforcing the

benefit of increased model capacity for fine-grained spatial understanding
and instance-level reasoning. Nonetheless, this comes at the cost of higher
computational requirements, particularly in the video setting, underscoring
a trade-off between performance and scalability.

Another important trend observed in the evaluation is that model perfor-
mance is strongly influenced by contrail size and detection caps. Generally
speaking, larger contrails are segmented more accurately due to their higher
pixel counts and lower ambiguity, while allowing more predicted instances
(e.g., increasing the detection limit) improves recall by removing constraints
on how many objects can be reported. These trends are consistent with gen-
eral findings in object detection and reinforce the shared challenges between
contrail segmentation and broader instance segmentation tasks.

Comparing the multi-polygon and single-polygon formulations reveals a
difference in task difficulty: the single-polygon setting is inherently easier.
Across all models and data modalities, instance segmentation metrics are
consistently higher when using the single-polygon formulation. This is be-
cause the task removes the need to group fragmented or spatially disjoint
contrail segments into separate instances. Instead, all parts of a contrail, re-
gardless of their separation, are treated as a single mask, greatly simplifying
the model”’s objective. The model is no longer required to learn complex
grouping strategies or reason over spatial and temporal discontinuities. Note
that semantic segmentation metrics remain virtually unchanged between the
two formulations, indicating that identifying contrail pixels is equally feasible
in both cases. The difference lies solely in how those pixels are grouped into
instances. This distinction confirms that the main challenge in the multi-
polygon task is not pixel classification but instance association.

These results have important practical implications for different contrail
detection scenarios. For older contrails, such as those typically observed in
satellite imagery or in ground-based images when the contrail formed outside
the camera’’s field of view, it is extremely difficult to associate the contrail
with its source flight. In these cases, the only viable option is to group
visible fragments into instances based solely on visual information. This
makes multi-polygon instance segmentation essential, as it allows models to
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e detect and associate disjoint contrail segments without relying on external
me  data. Our dataset and Mask2Former-based models are specifically designed
uso for this setting, enabling effective instance-level detection even when contrails
ust  are fragmented, occluded, or spatially disconnected.

1152 In contrast, when a contrail forms directly above the camera and ad-
us3  ditional data such as aircraft trajectories and wind fields are available, a
use different approach becomes feasible. In these situations, one can perform
uss  single-polygon instance segmentation, where contrail fragments are grouped
uss into a single instance using post-hoc association based on flight paths and ad-
us7 - vection. This formulation is simpler from a computer vision perspective and
uss 18 commonly used in the literature (Ortiz et al., [2025; Chevallier et al., 2023}
uso |Van Huffel et al., 2025)), mainly because multi-polygon annotated datasets
ueo have not been available until now. However, this method depends on ac-
et cess to external data and is only applicable to contrails formed during the
us2 observation window, after the aircraft has entered the scene.

1163 By supporting both the multi- and single-polygon formulations, our dataset
ues enables training and evaluation across a broader set of operational use cases.
ues The multi-polygon task is essential for vision-only detection of older con-
ues trails or those in satellite imagery, while the single-polygon formulation may
uer  be more suitable when additional metadata enables contrail-to-flight attri-
ues bution. This distinction will be further explored in future work focused on
ueo linking contrails to their source aircraft.

uo 6.3, [llustrative examples

un We present two test-set examples to illustrate the challenges of the multi-
uz  polygon contrail segmentation task. In both cases, we compare predic-
u7z  tions from image-based and video-based versions of the Mask2Former model,
s trained from pretrained Swin-L backbones. These examples highlight how
urs  temporal context affects instance predictions and expose typical failure modes,
ur including contrail fragmentation, occlusion by clouds, and confusion between
urz  contrails and visually similar cloud structures.

1178 Figure |5 shows a frame from April 25™ 2024 at 05:51:00 (UTC), under
un clear-sky conditions. The background is uniformly blue, providing faveurable
uso favorable conditions for both human and machine segmentation. The corre-
us1  sponding ground-truth annotations include several contrails labelled as frag-
ugz  mented (e.g., identifiers 0, 1, and 5), based on known flight trajectories avail-
uss  able to annotators during the labelling process. This makes the example suit-
use able for evaluating instance-level understanding in the multi-polygon setting.
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1187

1188

(a) Reaw—Original projected and enhanced im-
age- (b) Ground truth annotations-

Figure 5: Raw-image-Original projected and enhanced as well as ground truth annotations
for April 25, 2024 at 05:51:00:00 (UTC).

a) Image-based model prediction- (b) Video-based model prediction-

Figure 6: Predicted instances for the frame shown in Fig. |5, using Swin-L models with
image and video inputs.

Despite-thefaveurable-Figure [0 shows predictions from both models for
this scene. Despite the favorable background, both models exhibit instance-

level errors. The image-based model correctly infers that contrail 1 is frag-
mented —but detects just one segment of contrail 0, missing the other entirely.
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It completely misses contrail 4 and erroneously merges contrails 5-3 and 6
into a single prediction. The video-based model makes similar mistakes: it
also merges contrails 5-3 and 6, and fails to detect contrail 4. Additionally,
it predicts the second fragment of contrail 0 but assigns it to a different
instance, and it incorrectly splits contrail 1 into two separate instances.

From a semantic segmentation perspective, both models perform rela-
tively well, as expected in a high-contrast scene. The image-based model
achieves a Dice score of 0.76 and a mean IoU of 0.64, while the video-based
model slightly outperforms it with a Dice of 0.79 and mean IoU of 0.67. How-
ever, due to the instance grouping errors, the image model achieves a slightly
higher AP@[0.25:0.75_|aH- all | 100] (0.62) than the video model (0.55).

Figure [7| shows a more challenging frame captured on November 19
2023 at 08:49:30-—30 (UTC). Here, several cirrus clouds are present in the
background, which introduces ambiguity, as some of these cloud structures re-
semble contrails. This scene also includes multiple contrails that are spatially
aligned and fragmented, increasing the complexity of the instance segmenta-
tion task.

6
—1
(a) Raw—Original projected and enhanced im-
age- (b) Ground truth annotations-

Figure 7: Raw—image-Original projected and enhanced image as well as ground truth
annotations for November 19, 2023 at 08:49:36-30 (UTC).

This scene illustrates a common failure mode: fragmentation and mis-
grouping of visually aligned but semantically distinct contrails. Contrail 6 is
split into two segments with contrail 0 lying in between; although they ap-
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Figure 8: Predicted instances for the frame shown in Fig. |7, using Swin-L models with
image and video inputs.

pear collinear, contrail 0 is a distinct instance generated by a separate flight.
Contrail 7 appears shortly after and may be misassociated with contrails 6
and 0 in the absence of flight metadata. The image-based model correctly
separates contrail 0 from 6 +—but incorrectly merges contrails 6 and 7. The
video model groups all three (6, 0, and 7;-) into a single prediction. In-
terestingly, this error reflects a plausible human interpretation without flight
context, highlighting the challenge of the task.

Both models fail to detect contrails 1 and 8, which are partially occluded
by clouds. They also produce a false positive (labelled as contrail 9), seg-
menting a cirrus structure that resembles a contrail. While the dataset is of
high quality and was carefully annotated with access to flight information,
some visually ambiguous cases, such as the one discussed, remain inherently
difficult to label with certainty. In this example, the predicted region resem-
bles a contrail in both structure and intensity, making it unclear whether
the false positive stems from a model error or an understandable omission in
the ground truth. These rare edge cases highlight the potential influence of
mild label noise in visually complex scenes. Future work could benefit from
complementary strategies such as confident learning (Northcutt et al., 2021)
to further refine annotations and improve robustness in borderline cases.

Semantic segmentation performance in this scene is lower than in the
previous one, reflecting increased difficulty. The image model achieves a
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Dice score of 0.61 and mloU of 0.43, while the video model scores 0.70 and
0.54, respectively. Instance-level AP@[0.25:0.75 |aH— all | 100] s-scores are
0.35 and 0.37, respectively, similar to the average metrics, making this a
representative case.

These examples illustrate several key challenges in multi-polygon contrail
segmentation: (1) correct grouping of fragmented contrail segments from the
same flight; (2) visual ambiguity due to clouds that resemble contrails; (3)
occlusion; and (4) spatial overlap of contrails from different flights. While
video-based models benefit from temporal information, they may over-group
distinct instances. Image-based models avoid this but often fail to connect
fragmented segments. Overall, these examples demonstrate the inherent dif-
ficulty of the task and the limitations of current models.

7. Conclusions

This work introduces a new dataset_(Jarry et al., 2025) and baseline
models for contrail segmentation from ground-based camera imagery. Our
experiments show that modern computer vision methods, particularly panop-
tic segmentation models like Mask2Former, can be effectively applied to this
task, especially when using large pretrained models and temporal informa-
tion. However, performance gains often come at the cost of increased com-
putational and memory demands, highlighting a trade-off between accuracy
and practicality.

The main contribution of this study is the release of the first wideo
anneotated—video-annotated dataset specifically designed for instance-level
contrail segmentation, tracking, and flight attribution in the visual spec-
trum. Along with detailed evaluation metrics, including average precision
and recall across multiple intersection-over-union thresholds and object size
bins, this benchmark provides a reproducible baseline for further research in
this emerging field.

A key limitation of our current setup is that the visible-light camera re-
stricts observations to daytime conditions. Yet contrails often have their
greatest radiative impact at night, when they trap-reduce outgoing long-
wave radiation and contribute to atmospheric warming. To address this, we
are deployed—deploying a co-located infrared imaging system that enables
continuous, day-and-night monitoring. This may also allow us to begin es-
timating the radiative forcing of individual contrails under real atmospheric
conditions.
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In parallel, we are working on a contrail-to-flight attribution algorithm
that hnks observed contrails to specific aircraft using autematie-dependent
3 ast—ADS-B -trajectory data. This tool, and the associ-
ated data and code, will be openly released in a future publication. Attribu-
tion is of utmost importance because it allows each contrail to be linked to
detailed aircraft and engine parameters, such as aircraft type, engine model,
fuel burn rate, flight altitude, and ambient conditions. These inputs are nec-
essary to reproduce the contrail using physical models like CoCiP, assess its
expected properties (e.g., ice crystal number, optical depth, lifetime), and
ultimately validate or refine these models using real-world observations.

We are also extending this work by annotating a new dataset of con-
trails in satellite imagery, with instance-level and sequence-based labels.
This dataset will allow us to test and evaluate the full multi-scale track-
ing pipeline proposed in this paper: starting from high-resolution, ground-
based detection, followed by attribution to flights, and finally linking to the
same contrails as they evolve in satellite imagery. This approach offers a
unique opportunity to study contrail formation, spreading, and dissipation
over time and at scale. We also plan to use our ground-based dataset to eval-
uate the predictions of physical models such as CoCiP. Direct comparisons
between observed and simulated contrail evolution will help assess model
accuracy and potentially inform improvements in contrail forecasting and
climate medelingmodeling.

Ideally, contrail detection, tracking, and attribution should be addressed
by a single deep learning architecture capable of jointly processing video,
flight trajectory data, and meteorological fields. A-medelsueh-as-For instance,
a variant of Mask2Former could be adapted for this purpose. Intesratine
these—tasks—into—one—arehiteeture—Such an integrated approach would en-
able end-to-end learning and exploit the complementary nature of the in-
puts, as weather conditions and aircraft traffic data are highly informative
for both detecting and tracking contrails. However, this integration is not
straightforward. It requires careful design of input data representations to
handle spatietempeoral-spatio-temporal and multi-modal inputs, the creation
of aligned and consistent annotations for all tasks, and the development of
loss functions that balance competing objectives across detection, segmenta-
tion, tracking, and attribution. Despite these challenges, we encourage the
research community to explore this unified approach.

Additionally, deploving multiple cameras in a spatially distributed network
would enable stereographic height analysis: contrails observed simultaneousl
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1oa from different viewing angles could be triangulated to determine altitude
1os  directly, rather than assuming a fixed height. This would provide crucial
1os  validation data for contrail formation models and improve flicht attribution

o7 accuracy by eliminating altitude uncertainty.
1308 More broadly, we hope this work encourages the development of simi-

1300 lar ground-based contrail monitoring systems in other regions. A collabo-
10 rative, open-science approach ;—— sharing datasets, models, and observa-
i tional infrastructure ;—— will be essential to building a geographically di-
2 verse and temporally continuous picture of contrail behaviourbehavior. We

13 view this paper as a first step toward a data-driven-eeosystem—collaborative
1314 open-science framework for contrail research: one that integrates physical

315 medelling-modeling with observational data through openly shared datasets
16 and tools, spans spatial and temporal scales through multi-platform monitorin
317 and supports long-term efforts to better understand and reduce aviation’’s

me impact on the-elimate—climate. By providing high-quality ground-based data
mo  alongside baseline computer vision models, we aim to facilitate model-data
1m0 comparison, enable validation of physical models, and encourage the development,
iz of complementary monitoring systems worldwide.
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Due to memory limitations, the video segmentation model operates on
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stride 1. While instance segmentation within each clip is temporally consis-
tent (i.e., instance identifiers are maintained across frames within the clip),
the model processes each clip independently. As a result, instance identifiers
are not necessarily consistent across clips.

To enforce globally consistent instance identifiers across the full video
sequence, we implement a deterministic post-processing method that aligns
instance predictions across overlapping clips. The method uses mask overlap
similarity;——specifically, loU;——across shared frames and performs optimal
bipartite matching using the Hungarian algorithm. Below, we provide a
rigorous description of the method.

For a given frame index + e {NN—++——~FH € {N,N+1,.... T}, we
define:

e The current clip as the sequence Fr——rFr—vro——FF N1, Frnao. o F}.
e The previous clip as the sequence Fr—Fr—vrr——F—Frn Fronite o  Froa.
The two clips overlap in “BHeS: —rN — 1 frames:

Froni1yo.. . Fiq. Only frame £+-F; is newly 1ntroduced in the current clip.
At each step, we seek to propagate consistent instance identifiers by matching
instances across the overlapping frames. Let:

o Lo ="ty = {1....,K}: instance identifiers in the previ-

ous clip.

o Lo ="t} = {1.... . M}: instance identifiers in the cur-
rent clip.

We define a cost matrix €~ RM=EC € RM*K " where each element €
Cj; encodes the negative temporal IoU between instance +cZoand-instanee

F-ELprevt € Loy and instance 7 € L., over the overlapping frames:

1
o prev
Ci=—x—7 2 UM M),
f=t—N+1
where M and-MT- MY and MU denote the binary masks of in-

stances iand—4-at—frame—f1 and j at frame f, respectively. If an instance

does not appear in a given frame (e.g., missing mask), its contribution is
treated as zero overlap.
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1585 To eliminate unlikely or noisy matches, we apply a threshold #<-{0;4
sss 7 € [0, 1] on the mean IoU:

Cz:{CZ 1f _CijZT;

+00 otherwise.

1557 where the threshold #7 is selected empirically to balance precision and ro-
1558 bustness; we recommend #=60-+7 = 0.1.

1589 We remove rows and columns of the cost matrix that contain only +ee
1500 +00 entries. Using the modified cost matrix, we solve the bipartite assign-
s ment problem via the Hungarian algorithm (Kuhn) [1955);——an optimization

152 method that finds the optimal one-to-one matching minimizing total cost—obtaining
1503 a one-to-one (or partial) mapping between current and previous instances.

e Let oL — Lo IS0 2 Loy — Lowe Y {D} denote the resulting as-
105 signment. We then update the instance identifiers in the current clip to
1.6 match those of the assigned instances in the previous clip. Unmatched in-
107 stances are assigned new unique identifiers. The pseudo-code of the algorithm
1508 is presented in Algorithm [I}

53



Algorithm 1 Post-processing for Consistent Instance Tracking

Require: Predicted instance masks for video frames #———+r+thresheld

Fy . ... Fpr, threshold 7

1: Initialize unique identifier counter

10:
11:

12:

Previous clip instances < Predicted instances on clip (Fy.....F

Assign unique identifiers to all instances in previeuselip-instanees

4: fort=N+1toT do

Current clip instances < Predicted instances on clip (F;_ .. B

Compute cost matrix Q—ever—%%&mecr%ﬁwp,—%—hgvgyggvﬁg@rvnvg@
Bioneroeeon i

Apply threshold #7 _and prune rows/columns with all +-ee—00

o~—Hungarian-Algorithm(€)-g_« Hungarian Algorithm(C)

Update instance identifiers in eurrent-elip—usine—mapping—o

current, clip using mapping o
Assign new identifiers to unmatched instances

Previous clip instances < Current clip instances
end for

1599

This process is applied sequentially from frame +=~N-—te-+t = N to T

100 ensuring that instance identifiers are globally consistent across the video.
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