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Abstract. Despite advances in remote sensing, consistent monitoring of water quality across freshwater-marine systems 10 

remains challenging due to methodological fragmentation. Here, we provide an overview of an exemplary dataset on water 

quality characteristics in inland waters, coasts, and the open sea estimated from optical satellite data. Specifically, this is 

Sentinel-3 OLCI data for the entire North Sea and Baltic Sea region for the period June to September 2023. The dataset includes 

daily aggregated observational data with a spatial resolution of approximately 300 m of reflectance at the top-of-atmosphere 

and for cloud-free water areas remote-sensing reflectance, inherent optical properties of the water, and an estimation of the 15 

concentrations of water constituents, e.g. related to the aquatic carbon content. These are the results of the novel A4O 

atmospheric correction and the ONNS water algorithm. The dataset serves as a prototype for understanding the processing 

chain and interdependencies, but also for developing a high degree of connectivity for answering various scientific questions; 

we do not perform an actual validation of the 73 individual parameters in the dataset. The aim is to show how fragmentation 

in water quality monitoring along the aquatic continuum from lakes, rivers to the sea can be overcome by applying an optical 20 

water type-specific and neural network-based processing scheme for Copernicus satellite data. Emphasis of this work is on 

analysing the optical complexity of remote-sensing reflectance in the North Sea, Baltic Sea, coastal, and inland waters. Results 

of a new optical water type classification show that almost all (99.7%) remote-sensing reflectances delivered by A4O are 

classifiable and that the region exhibits the full range of optical water diversity. The dataset can serve as a blueprint for a 

holistic view of the aquatic environment and is a step towards an observation-based digital twin component of the complex 25 

system.   

1. Introduction  

Satellite remote sensing enables a continuous and global observation of the Earth system and the interactions of its 

compartments. Optical remote sensing, which measures the radiance of reflected sunlight in the visible to near-infrared 

spectrum, allows large-scale observation of water surfaces, enabling effective assessment of aquatic ecosystems across the 30 

freshwater-sea continuum. With an image swath width of 1270 km and a spatial resolution nadir of approximately 300 m, the 

Ocean and Land Colour Instruments (OLCI) on board two Sentinel-3 satellites are particularly well suited for global water 
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observation. The Sentinel-3 constellation operates on a near-polar and sun-synchronous orbit with images taken close to local 

noon. At full resolution, not only large marine areas but also complex coastlines, broad rivers, and larger inland waters can be 

recorded. This enables the observation and evaluation of various issues, for example on drinking and bathing water quality, 35 

matter fluxes into the sea, the effects of human activities on the aquatic environment, and warnings of possible harmful algae 

blooms. However, different terminologies and inconsistent measurement practices are often used in limnology and 

oceanography. For a holistic view of the aquatic environment, it is therefore necessary to provide comprehensible and easily 

transferable reference values from satellite data. Moreover, for user-friendly usability, the data should not only be Findable, 

Accessible, Interoperable, and Re-usable (FAIR), they should also be scientifically documented, contain a thorough metadata 40 

description, and enable easy data handling, e.g. through clear labelling and definition of limits and uncertainties. Ideally, the 

storage-intensive satellite images are also available in a simple visualisation so that their useability can be checked easily, as 

large land-sea surfaces are usually not visible due to clouds. 

The view on different waters also poses significant challenges for analysing satellite images. This is mainly due to the optical 

effect of the water constituents, which are parameterized by their inherent optical properties (IOPs). In addition to the pure 45 

water itself, phytoplankton, coloured dissolved organic matter (CDOM), and suspended non-algae particles (NAP) contribute 

to the colour appearance of the water body (e.g. Bi et al., 2023). Phytoplankton biomass is characterised by the total 

concentration of chlorophyll-a pigment (Chl in mg m-3). But the various algae species have different pigment compositions 

and occur in a wide range of colours (e.g. Xi et al., 2015; Lomas et al., 2024). CDOM is often a degradation product of 

phytoplankton and organic compounds and is discharged from rivers into the sea in high concentrations but can also be brought 50 

into the sea by precipitation (e.g. Juhls et al., 2019; Kieber et al., 2006). The optical effect of CDOM is an absorption and 

darkening of the water. Sediments are suspended in shallow waters by currents, tides, and waves. Suspended particles increase 

the backscattering of the light in water and therefore result in relatively bright satellite image pixels. In addition to the water 

components mentioned, air bubbles, pollutants, and inelastic scattering processes can have an influence on the reflectance, but 

this is neglected here. From the perspective of the satellite, however, the total signal from the water body is small compared 55 

to the atmosphere. And here too, the atmospheric properties and cloud conditions over inland waters and the ocean can vary 

considerably, e.g. due to land-originated dust or soot aerosols or maritime aerosols (e.g. Hess et al., 1998). The correction of 

all atmospheric influences, masking of clouds and provision of remote-sensing reflectance (Rrs in sr-1) valid for all water types 

is therefore a crucial step.  

There are several methods for atmospheric correction (AC) and many water algorithms that derive water constituents from Rrs 60 

(e.g. Müller et al., 2015; Brewin et al., 2015). The methods are usually optimized for different water bodies. However, no 

method offers robust performance across all water types and special atmospheric conditions, and the uncertainties and 

application limits are often insufficiently characterized; Hieronymi et al. (2023a), González Vilas et al. (2024), and others have 

documented this for various atmospheric correction methods for OLCI. The standard OLCI Level-2 (water full resolution) 

baseline atmospheric correction is applied for all water surfaces but often delivers insufficient data quality for the Baltic Sea, 65 

many coastal, and inland waters, which is indicated, for example, by “negative” reflectance. In the Copernicus Marine Service, 

https://doi.org/10.5194/essd-2025-443
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



3 

 

different algorithms are used for the North Sea (as part of the North-East Atlantic) and the Baltic Sea (Brando et al., 2024), 

although this also includes inconsistent variables and designations; inland waters are not included here. Corresponding 

information for some lakes is provided in the Copernicus Land Service, but also with their own designations and completely 

different data accessibility. For coastal marine waters, there are additional products with higher spatial resolution from 70 

Sentinel-2 MSI observations, but also with pixel-based algorithm switching (Brando et al., 2024). Thus, it should be the aim 

to cover all water areas uniformly and with adequate accuracy of all products.  

Fuzzy logic classification of optical water types (OWT) quantitatively characterizes aquatic systems through continuous 

membership functions, overcoming the limitations of discrete classification schemes. This approach is particularly valuable 

for capturing transitional waters (e.g., river plume or algal bloom fronts) where optical properties vary non-linearly with 75 

constituent concentrations. However, its effectiveness depends on valid Rrs across the entire spectrum – a requirement often 

compromised when AC methods are optimized for specific water types. Hieronymi et al. (2023a) analyzed Rrs from five AC 

with different OWT classification methods and found that the OWT algorithms have focused too much either on marine or 

limnological applications. This is expressed in the sometimes very low classifiability of Rrs and the class assignment of spectral 

shapes. The study also demonstrated the significant advantages of an integrated adaptation of atmospheric correction and OWT 80 

classification method, which also applies to the down-stream water algorithms. The findings from this study led to the 

development of a novel, robust, and comprehensive OWT classification system (Bi and Hieronymi, 2024).  

In this paper, we document a dataset of merged Sentinel-3 OLCI Earth observations from the A4O-ONNS processing chain 

(Hieronymi et al., 2017), which includes the results of the new OWT classification. The individual processing steps have not 

yet been adapted to each other and fundamental further developments will be implemented in the future. However, this dataset 85 

serves to visualise the overall system and to further develop the underlying algorithms, flags, and biogeo-optical relationships. 

This enables a systemic harmonization and optimization of the workflow, a validation of all water products and a more targeted 

estimation of the overall system uncertainties. The presentation of data from the current version of the algorithm enables 

feedback from users and aims to increase the data interoperability and FAIR-ness level; nonetheless, publication of the code 

itself is only planned in the medium term. The aim is to show how fragmentation in water quality monitoring along the aquatic 90 

continuum from lakes, rivers to the sea can be overcome by applying an optical water type-specific and neural network-based 

processing scheme for Copernicus satellite data. Furthermore, in this work, some recommendations are realised to better 

characterize phytoplankton diversity and aquatic carbon fluxes in the future (e.g. Bracher et al., 2017; Brewin et al., 2023). 

The focus of this work is on the optical characterization of the waters of the North Sea – Baltic Sea region.  

 95 
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2. Data and methods  

2.1. Geographical region  

The spatial coverage of the Earth observation data extends from longitude -4.48° to 30.3° and latitude 48.98° to 65.9°, both in 

0.004° steps (Fig. 1). This covers the entire Baltic Sea and North Sea with parts of the Norwegian Sea and English Channel, 

even parts of the Irish Sea are included with the city of Glasgow as a landmark for the western extension. The southern extent 100 

is defined by the inclusion of the entire Elbe River catchment. The spatial resolution of OLCI of approx. 300 m per pixel was 

tried to achieve for the overarching grid, resulting in an image size of 8695 x 4231 pixels in the coordinate reference system 

WGS 84 (EPSG:4326). Accordingly, smaller bodies of inland water and narrow rivers are not covered. 

Four regional subdomains are defined for an initial categorisation of the optical diversity of the water bodies: North Sea, Baltic 

Sea, inland waters, and coastal waters; this is inspired by the domains in the Copernicus services (Brando et al., 2024). In terms 105 

of optical properties, the geographical subdomain “North Sea” is representative for the Copernicus Marine Service product for 

the Atlantic-European North-West Shelf which includes part of the Skagerrak in the east. In the Copernicus Marine Service, 

the Baltic Sea region is defined as an independent product, which also includes parts of the Skagerrak in the west at approx. 

9° E. Correspondingly, a line at 9° E between Denmark and Norway is used to geographically separate the North Sea from the 

Baltic Sea. The inland waters subdomain contains all water areas on land that are larger than the pixel resolution of approx. 110 

300 m, i.e. mainly lakes but also some broad rivers such as the Elbe estuary. The Copernicus Land Service offers Sentinel-3 

OLCI-based1 lake water quality products with a comparable resolution and additionally 100 m data from Sentinel-2 MSI2. In 

the optical characterisation of waters, the term “coastal waters” is often used; to define a subdomain for this, the 12 nautical 

miles zone of territorial coastal areas is used. In order to include brackish water areas of lagoons (e.g. the Curonian Lagoon), 

coastal lakes (e.g. the Ijsselmeer), and rivers influenced by the tide (e.g. the Lower Elbe), the coastal domain is defined as 115 

plus-minus 75 pixels along the coastal baseline (i.e. approx. ±22.5 km). The seaside zone roughly corresponds to the area of 

the high-resolution ocean colour product from the Copernicus Marine Service (with 100 m resolution from Sentinel-2 MSI3). 

The coastal waters therefore include parts of the other three domains. The images cover 36.8 million pixels in total, thereof are 

61% the fraction of land, 27% North Sea, 11% Baltic Sea, and 1% inland waters. Coastal (or territorial) waters cover 13%.   

 
1 https://doi.org/10.2909/801137b8-9575-43ef-a073-140b663cc61c  
2 https://doi.org/10.2909/deae3db1-a214-4375-8d1a-63c42498050e  
3 North West Shelf Region: https://doi.org/10.48670/moi-00118, Baltic Sea: https://doi.org/10.48670/moi-00079 
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Figure 1: Region of interest with definition of subdomains for optical water type analysis. 

2.2. Original Copernicus data  

The freely available Sentinel-3A and 3B OLCI Level-1 data was obtained from the Copernicus Data Space Ecosystem 

(https://dataspace.copernicus.eu). All scenes with a contribution to the region of interest and within the period 1 June to 30 

September 2023 were downloaded and processed. Among other things, the period covers a dedicated validation campaign in 125 

the Baltic Sea, where all water parameters from the satellite dataset were determined in-situ (Hieronymi et al., 2023b). Due to 

the polar orbit of the satellites, there are more frequent observation opportunities in the north and increasing gaps in the 

southern section (Fig. 2). The contributing images are taken around local noon, for this region within a time window of about 

three hours. It can therefore be said that the one-day aggregated data is representative for local noon.  
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Figure 2: Utilisation of all observational data within the region of interest from individual OLCI scenes from Sentinel-3A and 3B, 

which have shifted sun-synchronous orbits.  

2.3. Processing chain  

First, a summary of the evolution of the algorithm. The used algorithm is basically a further development of the Case-2 water 

algorithm by Doerffer and Schiller (2007), which was initially developed for ENVISAT MERIS and is currently being used 135 

for Sentinel-3 OLCI in the ground segment for coastal waters; this algorithm is also known as C2RCC (Brockmann et al., 

2016). Parallel to the further evolution of C2RCC, an independent algorithm was branched off, the OLCI Neural Network 

Swarm (ONNS) algorithm by Hieronymi et al. (2017). This aims to generate reliable water quality parameters seamlessly for 

all natural waters and also to provide additional products, e.g. on carbon concentrations in water. The water algorithm ONNS 

uses its own OWT classification with 13 defined classes and specific neural network algorithms for each class. For some time, 140 

the ONNS water algorithm (with atmospheric correction from C2RCC) was used in the Copernicus Marine Service to estimate 

the chlorophyll concentration in the Baltic Sea (Le Traon et al., 2021). However, the classifiability of reflectances from 

different atmospheric corrections (incl. C2RCC) was often insufficient, i.e. the AC methods sometimes did not provide known 

Rrs shapes and some defined classes were not provided at all (Hieronymi et al., 2023a). For this reason, an independent new 

AC was developed, which was optimized for the performance spectrum of ONNS and called Atmospheric Correction for 145 

Optical Water Types (A4O) (Hieronymi et al., in prep.). According to Hieronymi et al. (2023a), A4O has the following 

particularly good performance compared to other AC methods: 1) a high classifiability of the generated Rrs in different OWT 

frameworks, i.e. basically plausible spectra in the entire spectral range (without Rrs < 0), 2) general provision of spectra in all 

defined classes, 3) a high spatial homogeneity of the pixel-by-pixel image analysis and thus a particularly high number of 

achievable matchups. However, the comparison with in-situ measurement data shows a need for further improvement; the 150 
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reflectance spectra are often underestimated in magnitude - this is work-in-progress. Thus, the processing chain will be further 

optimized in terms of data quality, processing speed, data volume, and products including flags.  

In the used processing chain A4O-ONNS v0.25 for daily aggregated observations, up to 17 individual OLCI Level-1 scenes 

of the same day with a volume of around 8 GB are processed, in the intermediate Level-2 step approx. 38 GB are produced, 

and the resulting merged Level-3 NetCDF files have a size of around 3 GB. All cloud-free contributions are averaged within 155 

the superordinate grid. Due to the time offset between Sentinel-3A and 3B overflights and cloud motion, slightly more water 

surfaces can be seen, especially in the northern part, but this is irrelevant for the cloud statistics (Fig. 3). It should be noted, 

nevertheless, that the water-related products near clouds are usually subject to greater retrieval uncertainties. The optical water 

type classification of Bi and Hieronymi (2024) is applied to Rrs after merging. The final product contains selected information 

from Level-1 top-of-atmosphere, from climatology, the atmospheric correction, OWT classification, water products, and flags. 160 

Attention was paid to a concise metadata description, easy handling, and meaningful flagging.   

 

Figure 3: Percentage cloud cover of the region over the entire period June-September 2023 (122 days) and thus indirectly clear-sky 

probability, which indicates pixel-based observation frequency. The coastlines can be subject to cloud misdetection.  

2.4. Additional data  165 

The atmospheric correction A4O uses climatological data to better resolve influences of sea surface whitecaps and coastal 

conditions; these data are also provided. Climatological reanalysis data of sea surface temperature, SST, and salinity, SSS, have 

been adapted to A4O purposes with a global spatial resolution of 1/12° (approx. 8 km). Monthly mean temperature and yearly 

mean salinity were derived from the Copernicus Marine Service global ocean physics reanalysis (Lellouche et al., 2018) related 

to the period 1993 to 2016. Since this product contains no data for inland waters and lakes, monthly mean SST of larger lakes 170 
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were derived from ERA5 data of the European Centre for Medium-Range Weather Forecasts (ECMWF, 

https://cds.climate.copernicus.eu/; averaged over the years 1979 to 2020 and re-gridded from 30 km resolution). Missing values 

for any other inland waters were filled with the mean value of all grid cells on the same latitude of each month. Grid cells 

without a valid salinity value represent land or freshwater and were therefore assigned to a value of zero. Major saline lakes 

like Dead Sea or Great Salt Lake have been included manually. In practice, this gives a temperature between 0 and 36°C and 175 

salinity values of 0 to 40 PSU. A Laplace filter is applied to the re-gridded SST and SSS during the satellite image processing 

to smooth grid boundaries. When using A4O, the data is projected onto the coordinates of the Level-1 OLCI scenes; in Level-

3 processing, all data is projected onto the same global grid.  

 

3. Presentation and context of the dataset 180 

3.1. Overview of available parameters  

An overview of all parameters contained in the data for each day is listed in the following, the corresponding units are in 

brackets, where 1 stands for unitless. Some parameters refer to the entire region of interest over land and water, such as top-

of-atmosphere reflectance and wind speed. Products from climatologies and from them derived such as white cap fraction refer 

only to water areas resolved in the 300 m grid, i.e. for lakes, broad rivers, lagoons, and seas. Water quality characteristics are 185 

only provided for visible, cloud-free water areas. NaN (not a number) is used as fill values for corresponding data gaps.  

Parameters from the original OLCI Level-1 data: 

- L1_land: Level-1 land mask (thus implicitly water areas) [1] 

- L1_Wind_speed: Omnidirectional wind speed from Level-1 [m s-1]  

Parameters from the atmospheric correction A4O (Hieronymi et al., in prep.):  190 

- A4O_R_toa_400 – 1020: Reflectance at the top-of-atmosphere at 21 OLCI bands [1] 

- A4O_Rrs_n_400 – 1020: Normalized remote-sensing reflectance at 16 OLCI bands [sr-1]  

- A4O_SST: Monthly average of the sea surface temperature from climatology [°C] 

- A4O_SSS: Annual average of the sea surface salinity from climatology [1e-3] or [PSU]  

- A4O_A_wc: Percentage whitecap fraction of water areas based on wind speed and sea surface temperature [1] or 195 

[%] 

Parameters from the optical water type classification (Bi and Hieronymi, 2024): 

- OWT_AVW: Apparent visible wavelength based on A4O_Rrs_n between 400 and 800 nm [nm] 

- OWT_Area: Trapezoidal area at red, green, and blue (RGB) bands based on A4O_Rrs_n [1] 

- OWT_NDI: Normalized difference index at green and red based on A4O_Rrs_n [1] 200 

- OWT_index: Optical water type index or class based on A4O_Rrs_n [1] 

- OWT_U_tot: Total membership values in the OWT framework [1] 

Parameters from the ONNS water algorithm (Hieronymi et al., 2017): 

- ONNS_a_g_440: Gelbstoff (CDOM) absorption coefficient at 440 nm (from IOP nets) [m-1] 

- ONNS_a_p_440: Absorption coefficient of phytoplankton particles at 440 nm [m-1] 205 
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- ONNS_a_m_440: Absorption coefficient of minerals at 440 nm [m-1] 

- ONNS_a_tot_440: Total absorption coefficient at 440 nm of CDOM, phytoplankton, minerals, and water [m-1] 

- ONNS_b_p_440: Scattering coefficient of phytoplankton particles at 440 nm [m-1] 

- ONNS_b_m_440: Scattering coefficient of minerals at 440 nm [m-1] 

- ONNS_b_tot_440: Total scattering coefficient at 440 nm of phytoplankton, minerals, and water [m-1] 210 

- ONNS_a_dg_412: Absorption coefficient of detritus plus CDOM at 412 nm [m-1] 

- ONNS_b_bp_510: Total back-scattering coefficient of all particles at 510 nm [m-1] 

- ONNS_FU: Forel-Ule colour index [-] 

- ONNS_K_d_490: Diffuse attenuation coefficient of downwelling irradiance at 490 nm [m-1] 

- ONNS_K_u_490: Diffuse attenuation coefficient of upwelling irradiance at 490 nm [m-1] 215 

Parameters for concentrations of water constituents based on ONNS-derived inherent optical properties: 

- IOP_Chl: Chlorophyll concentration estimated from total particulate absorption coefficient at 440 nm [mg m-3] 

- IOP_TSM: Total suspended matter concentration estimated from total particulate scattering coefficient at 440 nm [g 

m-3] 

- IOP_POC: Total particulate organic carbon (POC) concentration based on inherent optical properties of 220 

phytoplankton and non-algae particles [g m-3] 

- IOP_DOC: Concentration of dissolved organic carbon (DOC) related to CDOM absorption at 440 nm (Juhls et al., 

2019) [mg m-3] 

Available flags from the atmospheric correction and water algorithm 

- A4O_flag_cloud: Cloud mask from A4O [1] 225 

- A4O_flag_cloud_risk: High risk of clouds, which can strongly influence the quality of the retrieval [1] 

- A4O_flag_adjacency: Pixel near land or clouds with high risk of retrieval influence, e.g. through sub-pixel 

contamination of land, optically shallow water, aquatic plants or cloud edges [1] 

- A4O_flag_bright: Level-2 bright mask, that includes possible clouds and sea ice [1] 

- A4O_flag_suspect_pixel: Level-2 flag for possibly implausible AC output [1] 230 

- A4O_flag_floating: Level-2 flag for very high biomass and possibly floating algae [1] 

- A4O_flag_glint_risk: Level-2 flag for sun glint risk [1] 

- ONNS_limited_valid: Estimated IOPs and concentration values are highly uncertain [1] 

Additional information on Level-3 data aggregation 

- TOA_count: Number of pixels from available satellite images at the top-of-atmosphere [1] 235 

- BOA_count: Number of pixels from available cloud-free images after atmospheric correction at the bottom-of-

atmosphere [1]  

Background information on selected parameters is provided in the following.  

3.2. Whitecap fraction 

Information on the whitecap fraction is important, for example, for estimating the gas exchange at the air-sea interface, the 240 

heat flux, or the formation of marine aerosols. Despite the relatively small area of coverage, whitecaps are relevant for 

atmospheric correction due to their high reflectivity in contrast to dark water. The surface fraction covered with whitecaps, 

Awc, depends on wind speed and water temperature and is usually much smaller than 5 %. Whitecap fraction is parameterized 

based on global microwave satellite observations (with a frequency of 10 GHz; Albert et al., 2016). The estimated Awc is 
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provided by the atmospheric correction A4O together with wind speed from OLCI Level-1 and sea surface temperature from 245 

monthly climatology, SST.  

3.3. Concentrations of water constituents 

The original ONNS algorithm by Hieronymi et al. (2017) applied an internal OWT classification and class-specific neural 

network (NN) algorithms to derive IOPs, light field parameters, and concentrations of water constituents directly. One reason 

for this was internal checks of system uncertainties. For a clearer, more flexible and purely physics-based derivation of the 250 

water constituents, the concentrations are now determined based on the NN-derived IOPs only. This is essentially the approach 

already favoured by Doerffer and Schiller (2007) and used in the OLCI Level-2 processing for Case-2 waters. To emphasise 

this, the concentration labels refer to IOPs and not to ONNS directly. Moreover, for concentrations of chlorophyll and total 

suspended matter, similar IOP-relationships were used as in Doerffer and Schiller (2007).  

The chlorophyll concentration is linked to phytoplankton-pigment absorption, but due to previous modelling inadequacies in 255 

the optical component separation, it is estimated here from total particulate absorption at 440 nm (an interim approach that 

will be revised in future):   

IOP_Chl = 21 (ap + am)1.04.           (1) 

The concentration of total suspended matter is estimated from total particulate scattering coefficient at 440 nm with:  

IOP_TSM = 1.73 (bp + bm).           (2) 260 

The analysis of optical measurement data (Röttgers et al., 2023) and concentration of particulate organic carbon, POC, shows 

clear dependencies on phytoplankton and mineral particles or detritus, especially for coastal waters. In addition to 

phytoplankton absorption at 440 nm, ONNS also derives the total backscattering coefficient of all particles at 550 nm. The 

concentration of particulate organic carbon is well represented by the following IOP-relationship:  

IOP_POC = 5.5 bbp(510) + 2.7 ap(440).          (3) 265 

Juhls et al. (2019) show that the concentration of dissolved organic carbon, DOC, can be estimated via the absorption 

coefficient of coloured dissolved organic matter at 440 nm (in the ONNS notation, subscript g stands for Gelbstoff as a synonym 

for CDOM). Their relationship is also applied here: 

IOP_DOC = 102.525 * ag
0.659.           (4) 

3.4. Parameters from the Optical Water Type classification 270 

Hieronymi et al. (2023a) documented weaknesses of previous OWT classification methods, including the one implemented in 

the ONNS algorithm. To mitigate these shortcomings, Bi and Hieronymi (2024) presented a new holistic OWT classification 

for ocean, coastal, and inland waters, the results of which are included in the dataset. The starting point for the classification 

is spectral remote-sensing reflectance provided by the atmospheric correction A4O. However, unlike previous OWT 

frameworks, Rrs is not compared directly with class-mean spectra, but three optical variables are derived from Rrs, which are 275 

compared in their covariances. The spectral magnitude is described by OWT_Area, the trapezoidal area below the Rrs spectrum 
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at three red, green, and blue (RGB) bands, also referred to as the zeroth spectral moment. The apparent visible wavelength, 

OWT_AVW, describes the weighted average of the wavelengths between 400 and 800 nm, which can be interpreted as the 

centroid of the spectrum, also described as the first spectral moment. The normalised difference index between green and red, 

OWT_NDI, helps to distinguish between phytoplankton and detritus-dominated spectra. Bi and Hieronymi (2024) define ten 280 

different water types, whereby OWT labels with the endings “a” and “b” were intended for types with a similar spectral shape 

but differing magnitudes, with “b” usually representing a variant with higher brightness. During the OWT analysis of the 

reflectance, weights are assigned to the defined classes, with three to six classes usually contributing. Thus, in addition to the 

index for the water class with maximum membership, the total membership of all contributing classes is also provided in the 

dataset (OWT_index and OWT_U_tot). The total membership serves as an indicator of the quality of the classifiability; a 285 

minimum requirement of 0.0001 is often used (e.g. Hieronymi et al., 2023a). 

Figures 4 to 8 illustrate the available data for one day (July 8, 2023) of the merged satellite image at the top-of-atmosphere, 

after atmospheric correction, as well as the three optical variables for the OWT classification. Figure 9 shows the resulting 

OWT classes with the highest membership for that day. In most cases, one class dominates in the OWT analysis and intuitive 

conclusions can be drawn about the reflectance spectrum (and corresponding water constituents or phytoplankton groups). At 290 

the boundaries between dominant water types, there is often a transition zone with approximately equal contributions from 

neighbouring types. For a full exploitation of the OWT method, the results of the specific water algorithms are mixed with 

corresponding weights in a fuzzy-logic approach. 

 

 295 
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Figure 4: RGB image created from reflectance top-of-atmosphere for one day (July 8, 2023). It illustrates the starting point for the 

atmospheric correction including clouds, water-land areas, and observation angle effects at the original image margins. TOA 300 
information is also used for orientation over land and in case of cloud issues.  

 

Figure 5: Corresponding to Fig. 4, the result of the atmospheric correction: normalized remote-sensing reflectance at one wavelength 

(the green band at 560 nm) and labelling of land, clouds and cloud risk. Original image boundaries with increased “air mass” are 

no longer recognisable, only at cloud discontinuities. 305 
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Figure 6: Corresponding to Fig. 5, derived apparent visible wavelength with reference to the spectral range 400 to 800 nm for OWT 

classification. 

 310 

Figure 7: Corresponding to Fig. 5, derived spectral area below Rrs at 443, 560, and 665 nm for OWT classification. 
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Figure 8: Corresponding to Fig. 5, derived normalized difference index for OWT classification. 

 315 

Figure 9: Corresponding to Fig. 5, resulting water types with maximum membership. Seven spectral Rrs shapes are distinguished in 

the OWT framework; the subdivision into “a” and “b” shows differences in magnitude. 
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4. Assessment of the optical complexity of the water bodies   320 

This section demonstrates the application potential of the optical water type classification data through a representative analysis 

of summer 2023 patterns in the North Sea and Baltic Sea region, showcasing how the dataset can elucidate water mass 

dynamics and ecological transitions. Figure 10 shows a map of the water classes with maximum memberships that occur most 

frequently in the four-month period. This demonstrates a fundamental distinction between North Sea and Baltic Sea, which 

also justifies the regional split of the products in the Copernicus Marine Service (Brando et al., 2024). In coastal and inland 325 

waters, the variability is broader with possible problems of the water algorithms used. Hieronymi et al. (2023a) compared five 

AC methods for OLCI and showed that especially in the transition from coastal to clearer North Sea waters, an ambiguous 

variability of Rrs shapes is provided by the different AC methods, with A4O having a possibly erroneous tendency towards 

more blue water (i.e. OWT 1). The other AC methods would probably result in larger areas with OWT 2 to 4-like reflectances. 

However, Hieronymi et al. (2023a) also documented some significant problems with the plausibility and classifiability of the 330 

results from the other atmospheric correction methods, e.g. to large-scale overcorrection with (incorrect) Rrs < 0 or significant 

excess of Rrs especially in blue bands. This requires further studies and comparisons with in-situ measurements.  

In general, however, the regional distributions show features that are reasonable from an oceanographic-limnological point of 

view. Figure 9 shows areas in the central North Sea with OWT 3b, a class that is intended to represent bright-turquoise blooms 

of coccolithophores, which contain high amounts of particulate inorganic carbon (calcite particles). Such bright pixels are 335 

sometimes flagged as clouds in other algorithms; in any case, such cases are critical regarding the assumptions for chlorophyll 

estimation, but OWT-specific assumptions can help here. But the coccolithophore bloom (OWT 3b) in Fig. 9 is only a 

temporary event with a phenologically changing colour appearance like shown for example in Cazzaniga et al. (2021); blue 

water (OWT 1) is the actual background in that region during summertime (Fig. 10). Another feature is visible in the North 

Sea area at the Dogger Bank with OWT 2, where the water can be less than 20 m deep, which on the one hand can lead to 340 

hydrodynamic resuspension of sediments through waves, and on the other hand it is possible that influences of the shallow 

bottom can be seen. This shows a fundamental problem of ocean colour, namely that optically shallow waters cannot yet be 

reliably flagged without water depth information, which can lead to misinterpretations of biomass and other parameters. The 

problem of shallow water and visible seafloor is particularly visible at the island of Læsø in the Kattegat, where the OWT 

variability is very high - in fact, this should be flagged, because underlying assumptions for the water algorithms are invalid. 345 

But even apart from such artefacts, the map shows that all defined OWTs occur, and the region thus well represents the optical 

variability of natural water bodies. But again, it is possible that A4O estimates something too “blue spectra” in relatively clear 

shelf sea water - however, there are also significant contributions from OWTs 2 and 3a.   

Also of interest is a map showing the number of different classes with maximum membership over the entire period (Fig. 11). 

Typical water algorithms and atmospheric corrections may be out-of-scope for different OWTs, which is not the case for A4O 350 

and ONNS. Areas with many different OWTs indicate high dynamics of sediments or algal blooms with possible 

eutrophication issues. Examples of water bodies with high optical variability with up to six different dominant classes are some 
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Estonian lakes, including the large Lake Peipus. Ansper-Toomsalu et al. (2024) compared satellite products with in-situ data 

from these waters, including the A4O-ONNS processing described here. Their results show a need for improvements but are 

not yet conclusive. Ideally, the comparisons should be made in the context of the prevailing OWT, which can help the further 355 

development of the algorithm and formulation of uncertainties. In principle, there can also be differences in the reflectance 

shape and the allocation of the OWT due to clouds, subvisible clouds, cloud shadows, but also due to subpixel contamination 

by coastal vegetation such as reeds, which is then interpreted as high biomass class. Nevertheless, there are also areas that are 

optically dominated by only one class over the entire period, such as the tide-influenced muddy and very bright Bristol Channel 

with dominating OWT 6. For ground-truthing and definition of system vicarious calibration gains, low optical variability over 360 

time is more important (but rather for clear waters). Analysing the recurring patchiness of water classes can support the 

selection of representative sites for water quality monitoring and satellite validation (Lehmann et al., 2021). 

 

Figure 10: Most common water types with maximum membership within June-September 2023. 
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 365 

Figure 11: Number of different water types with maximum membership within June-September 2023, i.e. the ecologically and 

hydrodynamically caused changes in water colour during the summer months.  

The occurrence of water classes and their classifiability for the entire region and period is shown in Fig. 12. This is a form of 

visualisation as already used in Hieronymi et al. (2023a) and Bi and Hieronymi (2024) (and their supplement), and in 

comparison with their results, Fig. 12 shows that Rrs from A4O can be well-classified with this OWT framework (99.68% of 370 

the cases lead to a minimum total membership of 0.0001) and that all classes are filled. This is a significant benefit of A4O, 

but also of the OWT framework.  
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Figure 12: Distribution of optical water types with maximum membership and category of their total memberships in high (>0.8), 

medium (0.3-0.8), low (0.0001-0.3), and below threshold (0-0.0001) for the entire region and period. The bar on the right gives the 375 
overall distribution. The figure corresponds to the illustrations in Hieronymi et al. (2023a) and Bi and Hieronymi (2024). 

Using the regional subdivisions shown in Fig. 1, which are aligned with the domains in the Copernicus services, the optical 

properties of the water areas can be further specified. Table 1 shows the distribution of occurring water classes with maximum 

memberships and the overall level of classifiability in the subdomains. The very few non-classifiable cases, where the sum of 

the class memberships does not exceed the threshold value of 0.0001, are mostly associated with clouds, e.g. in 0.53% of cases 380 

for the North Sea where the overall cloud cover is also higher (Fig. 3).  

In the North Sea region (which here includes other parts of the European North-West Shelf Sea), the oceanic water types 1 to 

3a dominate (with a total of 96.2%). This would also be expected from other AC methods (not shown). The bloom of 

coccolithophores visible in Fig. 9 is characterised by OWT 2, 3a, and 3b. The transitional waters to the southern coasts are 

more strongly influenced by CDOM input and sediment resuspension (OWT 4a and 4b). Thus, the spatial distribution of the 385 

classes also reflects the bathymetry of the North Sea.  

The Baltic Sea is optically dominated by CDOM absorption effects and OWT 4a (81.3%). The Skagerrak-Kattegat region is 

the transition to clear waters and marine salinity. As mentioned, there are some cases of optically shallow water with a visible 

sea floor for which OWT classes can serve as a mask, because the usual model assumptions for estimation of water constituents 

do not apply. OWT 5a and 5b also occur in the Baltic Sea. These classes represent green eutrophic to hypereutrophic waters 390 

with significantly higher phytoplankton biomass and bimodal reflectance shape. In the Baltic Sea, this is mostly associated 

with cyanobacteria blooms. The occurrence of these water classes can therefore be used directly as an indicator for 

cyanobacterial blooms. OWT 7 stands for dark brown waters with a very high CDOM concentration and low reflection in the 
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entire visible range. This class of water is found in the Baltic Sea particularly near river outflows in the Gulf of Finland and 

the Gulf of Bothnia.  395 

Inland waters are generally more characterised by CDOM absorption and its reflectance attenuation in the blue. Accordingly, 

oceanic water classes are not listed as predominant in this region. However, this could be the case in other regions of the world, 

e.g. in very clear oligotrophic lakes. Most inland waters fall into classes 4a, 5a, and 7, all of which have relatively high CDOM 

effects. Over 30% of the water bodies also have high concentrations of algae (5a and 5b), therefore the OWTs are also 

characteristic for the trophic state of inland waters. OWT 6 stands for extremely scattering (NAP-dominated) turbid waters; 400 

they occur in some river estuaries like the tide-influenced Lower Elbe or Severn that flows into the Bristol Channel.   

The category of coastal waters consists of parts of the other three subdomains and is optically the most diverse. Coastal waters 

range from oligotrophic ocean to hyper-eutrophic algal blooms and from bright-scattering to dark-absorbing. This means that 

the use of the term “coastal” for ocean colour algorithms is in fact somewhat misleading. The OLCI Level-2 coastal algorithm 

(or more precisely for optically complex waters), i.e. C2RCC, is optimised for moderately scattering or absorbing waters 405 

(Hieronymi et al., 2023a).  

 

Table 1: Percentage distribution of occurring water classes in regional subdomains and overall classification level.  

OWT 1 2 3a 3b 4a 4b 5a 5b 6 7 All 

North Sea 66.0 9.0 21.2 0.9 2.3 0.29 0.07 0.03 0.14 0 99.47 

Baltic Sea 3.6 0.36 11.1 0.03 81.3 0.33 2.2 0.32 0.1 0.64 99.98 

Inland waters 0 0 1.16 0 61.9 1.74 24.2 6.0 0.55 4.4 100 

Coastal waters 18.1 3.1 20.3 0.13 54.4 0.72 2.14 0.33 0.29 0.47 99.86 

Total  40.1 5.4 16.9 0.54 34.8 0.33 1.31 0.24 0.13 0.33 99.68 

 

5. Other features of the dataset  410 

The dataset also contains several parameters that are useful for oceanographic-limnological, atmospheric, and biogeochemical 

process studies. Examples are outlined in the following. 

5.1. Clouds  

From global MODIS cloud observations, it is estimated that the fraction of clouds over land is about 55%, with a distinctive 

seasonal cycle, whereas cloud cover over the oceans is around 72%, with reduced seasonal variability (King et al., 2013). In 415 

our region of interest, summer tends to have fewer clouds than winter, and our summer-dataset exhibits an overall lower cloud 

fraction compared to global climatology. The cloud cover averaged over the North Sea, Baltic Sea, and land areas (including 

inland waters) shows a relatively large daily variability and is significantly higher for the North Sea (41%) than for the Baltic 
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Sea and land areas in the region (both approx. 27%) (Fig. 3). At the British Isles and north of them, cloud cover was on average 

often >60%. The coastlines, and here in particular bright sandy beaches, are often misinterpreted as clouds (or cloud risk), 420 

which can be used for better flagging in the future. The cloud cover has an impact on the observable areas and possible 

matchups with satellites. Cloud cover also has an influence on the available solar radiation for photosynthesis of phytoplankton 

and is therefore crucial for estimating primary production. For example, neglecting photoacclimation of phytoplankton under 

clouds likely leads to a significant underestimation of growth rate and therefore of primary production (Begouen Demeaux et 

al., 2025). The available reflectances at top-of-atmosphere can be used to determine cloud shapes and brightness for cloud 425 

statistics, but also for better cloud-flagging and cloud-shadow detection in the future. Cloud motions and different correction 

methods also create problems when merging ocean colour data from different satellite missions for long time series (van 

Oostende et al., 2022). 

5.2. Wind  

The wind speed, i.e. the omnidirectional horizontal wind vector at 10 m altitude, is transferred from the OLCI Level-1 data 430 

and is available for all land-sea areas. Above water, wind influences the roughness of the water surface and wave development, 

the size of the direct sunglint area, the fraction of whitecaps at the surface due to wave breaking, the initial diffuseness of the 

underwater light field, but also the mixing of the upper water layer (e.g. Hieronymi and Macke, 2012; Hieronymi, 2016). This 

means that wind has an influence on the performance of the atmospheric correction, which is usually designed for moderate 

wind speeds, which is guaranteed on average for the North Sea and Baltic Sea at 6.3 and 5.5 m s-1 respectively. However, there 435 

were also large-scale storm events during the observation period, e.g. at the beginning of August, which brought large amounts 

of precipitation to Scandinavia. Strong wind events also lead to surface-accumulated algae being mixed into the depths.   

5.3. Carbon in the upper water column 

Brewin et al. (2023) provide an overview of methods for obtaining ocean carbon from space, but also priorities, challenges, 

gaps, and opportunities for satellite estimates. Their review targets on both inorganic and organic pools of carbon in the ocean, 440 

in both dissolved and particulate form, as well as major fluxes of carbon between reservoirs (e.g. primary production) and at 

interfaces (e.g. air-sea and land-ocean). Extreme events, “blue carbon”, and carbon budgeting were also key topics discussed. 

Current algorithms include those that are: based on empirical band-ratio or band-differences in remote-sensing reflectance 

wavelengths; IOP-based; IOP and chlorophyll based; based on estimates of diffuse attenuation (Kd); and based on relationship 

between diffuse attenuation and IOPs. Our dataset contains most needed parameters required for the use of the various 445 

algorithms. Some information can be estimated from the local course of the sun and large-scale cloudiness, like the diurnal 

photosynthetically available radiation (PAR) that is essential for estimating primary production. Optical water types also serve 

the better characterization of aquatic carbon. OWT 3b for example, which is especially defined for strongly backscattering 

coccolithophore blooms, serves as a direct hint for particulate inorganic carbon (PIC). The IOPs and reflectances provided 

allow quantification of PIC concentrations (e.g. Balch and Mitchel, 2023). The flag for floating algae is an indicator that 450 
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recognizes scum at the surface or floating macroalgae such as Sargassum, which are part of the “blue carbon”. There are 

therefore extensive links in the dataset for estimating aquatic carbon.  

We pursue the physics-based approach of determining the inherent optical properties of individual water constituents from 

aquatic reflectance. The optical effect of biogeochemical stocks can be reliably estimated using IOP-constituent relationships. 

The establishment of such relationships increases the traceability of individual processing steps. The concentration products 455 

in the dataset are based exclusively on the estimated IOPs and do not yet include any system vicarious calibration for the 

overall processing, which is an option for optimising validation results (e.g. O’Kane et al., 2024). In addition to the estimation 

of widely used concentrations of chlorophyll and total suspended matter, we also provide concentrations of dissolved and 

particulate organic carbon (DOC and POC). However, a matchup-based and OWT-specific validation of the products is still 

ongoing. Nevertheless, our POC measurements in the North Sea region usually show values of 0.05 to 0.5 g m-3; in the turbid 460 

parts of the German Bight and in the Elbe estuary, POC values up to 15 g m-3 have been measured (Röttgers et al., 2023). Our 

unpublished measurement data from the central Baltic Sea within the time frame of the dataset (July 2023) show POC between 

0.5 and 5 and some outliers up to about 10 g m-3 (Hieronymi et al., 2023b). These are exactly the magnitudes of POC 

concentrations that are mirrored in the dataset and shown in the monthly average in Fig. 13. Existing POC algorithms are often 

optimised for lower concentration ranges of oceans, e.g. Stramski et al. (2008), but there are also others that target higher 465 

coastal concentrations such as Loisel et al. (2023). Ultimately, their performance also depends on accurate atmospheric 

correction. The aim of our efforts with A4O and OWT-specific IOP-concentration relationships is to cover the entire span of 

concentrations over several orders of magnitude.  

 

Figure 13: July-monthly-averaged IOP-based estimate of the concentration of particulate organic carbon in the upper water column.  470 

https://doi.org/10.5194/essd-2025-443
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



22 

 

 

6. Uncertainties of the dataset 

The complete satellite image processing chain of atmospheric correction, OWT results, IOP algorithm, IOP-constituent 

relationships, and day-aggregated data is still work in progress and requires better harmonisation of the components. Individual 

parts, such as the atmospheric correction (A4O) and the water algorithm (ONNS), provide each an estimate of the uncertainties 475 

for the derived outputs – but these sub-results are not provided in the present dataset. These original uncertainty estimates are 

sometimes misleading because they do not take into account the other components, especially the coupling of atmospheric 

correction and water retrieval, but also not the higher-level flagging and actual comparisons with in-situ measurements.  

The spatial visualisation of the data gives indications of occasional imperfections, e.g. regarding flagging of clouds, nearby 

land, shallow water, sun glint, and tidal flats, but also viewing geometry effects from the atmospheric correction, which are 480 

sometimes mirrored in water products. Parameters such as CDOM absorption coefficient (and the corresponding directly 

derived DOC concentration) are particularly sensitive to smallest errors of the atmospheric correction due to the ambiguities 

of the system and the absolute signal dominance of Rayleigh light scattering in the atmosphere. Very high concentrations of 

CDOM are usually found in small inland waters and are discharged into the sea via rivers, which can lead to additional risks 

in monitoring due to relatively coarse spatial resolution and land-adjacency effects (e.g. El Kassar et al., 2023). 485 

The ambitions of the overall algorithm are very challenging, especially since a biogeo-optical system is to be described in an 

all-water type-comprehensive and open-connectable way, but all parameters basically vary over several orders of magnitude 

in their value ranges. Mission requirements for uncertainties are often defined in a simplified manner in the context of Case-1 

and Case-2 waters, but requirements are not specified for all variables, e.g. IOPs (e.g. IOCCG, 2019). A more concrete OWT-

specific guideline could help here; however, this also includes extreme waters that can exhibit very high uncertainties.  490 

The underlying algorithm setup has not yet been sufficiently validated for each water type; some variables and preliminary 

elements were addressed in Hieronymi et al. (2023a) and Ansper-Toomsalu et al. (2024). On the one hand, there are many 

parameters that are useful for the spectral system description and serve as links for various empirical algorithms; on the other 

hand, some parameters are rarely measured and are not available for all defined water types. In fact, the current efforts of FAIR 

data preparation are aimed at finding suitable validation data and contextualising the satellite products. The user-oriented, 495 

traceable, and simple categorization of uncertainties is a focus of ongoing research.  

7. Outlook     

An obvious and important goal is the appropriate validation of the parameters of the dataset and the processing chain in general, 

especially those related to water quality. Methodologically, five groups with specific requirements are distinguished here: 

remote-sensing reflectance (16 values), diffuse attenuation of irradiance (two), colour index (one), inherent optical properties 500 

(nine), and concentrations of water constituents (four). We are convinced that it would be beneficial to carry out the validation 

in the context of optical water type classification; the approach by Bi and Hieronymi (2024), which distinguishes ten classes, 
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is ideal for this. Alternatively, other OWT frameworks can serve as a basis (e.g. Vantrepotte et al., 2012; Moore et al., 2014; 

Mélin and Vantrepotte, 2015; Jackson et al., 2017; Spyrakos et al., 2018; Bi et al., 2021), but these are often more focussed on 

inland waters or oceans, and in some cases up to 17 classes are differentiated, which makes it very difficult to find class-505 

representative in-situ data. Ideally, one can utilise matchups in which all parameters were measured simultaneously, e.g. as on 

the dedicated research cruise in the Baltic Sea in July 2023 (Hieronymi et al., 2023b) - but this also only covers one water class 

(OWT 4a). We aim to utilise new data handling technologies, such as the AquaINFRA Data Discovery and Access System 

(https://aquainfra.eu/), which allows researchers to seamlessly find and retrieve datasets from heterogeneous sources, e.g. from 

stationary or moving measurement platforms, from long time series or targeted experiments. 510 

In perspective, this dataset and the underlying algorithms are an opportunity for the exploitation of remote sensing in order to 

answer limnological-oceanographic questions and expand monitoring capabilities. This could, for example, be a contribution 

to observation-based carbon budgeting (e.g. Friedlingstein et al., 2023; Brewin et al., 2023), whereby coastal DOC and POC 

are already provided and there is a good starting point for PIC and primary production. As has been shown, the optical water 

types are particularly useful as indicators for phytoplankton groups, and there is potential to better assess the phytoplankton 515 

function in the ecosystem, contextualising long-term observations, or to warn of harmful algal bloom (e.g. Bracher et al., 2017; 

Kordubel et al., 2024; Devreker et al., 2025).  

8. Data availability, visualisation, and context   

8.1. Data availability  

The dataset consists of 122 day-aggregated single NetCDF files totalling 365.16 GiB. It can be freely obtained from the World 520 

Data Center for Climate at https://doi.org/10.26050/WDCC/AquaINFRA_Sentinel3 (Hieronymi et al., 2024). Identical 

Sentinel-3 OLCI-based datasets with the same parameters have been produced for testing purposes for other regions of the 

world and will be made available soon at the same database: 1) the Mackenzie River region with the Beaufort Sea and Arctic 

Ocean, 2) the Black Sea with the Sea of Marmara and part of the Aegean Sea, and 3) the central North Atlantic. 

8.2. Data visualisation     525 

The NetCDF data can be opened and visualised in the Sentinel Application Toolbox SNAP or in QGIS, for example. In 

addition, there is a visualisation of the content using cloud-optimised GeoTIFFs, which was provided by the EU AquaINFRA 

project partner Finnish Geospatial Research Institute at the National Land Survey of Finland. This can be used to quickly 

check the actual availability of cloud-free water quality parameters of the Sentinel-3 OLCI ONNS dataset in two projected 

coordinate systems, namely  530 

Pseudo Mercator https://vm4072.kaj.pouta.csc.fi/ddas/oapic/collections/sentinel-3-OLCI-ONNS3857  and  

LAEA https://vm4072.kaj.pouta.csc.fi/ddas/oapic/collections/sentinel-3-OLCI-ONNS3035.  
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8.3. Corresponding Sentinel-3 OLCI data and additional resources    

Several data resources are available where partly the same Sentinel-3 OLCI input data are interpreted (processed) in a different 

way or where data from other satellite missions are visualised. The Copernicus Data Space Ecosystem Browser serves as a 535 

central hub for accessing, exploring and utilising Earth observation data such as from Sentinel-3 OLCI, where the standard 

Level-2 water products as well as many synergetic products can be viewed (https://dataspace.copernicus.eu/browser/). The 

Copernicus Marine Service provides physical and biogeochemical reference information on the state of the oceans, partly in a 

regionally optimised manner for Sentinel-3 OLCI with specific products for the North Sea, Baltic Sea, and coastal waters – 

but also in the context of other European seas (https://marine.copernicus.eu/). The Copernicus Land Monitoring Service 540 

provides information on land cover and land use, the water quality of lakes, and the water level of lakes and rivers in the 

hydrographic network worldwide and in Europe (https://land.copernicus.eu/en). The US-American National Oceanic and 

Atmospheric Administration (NOAA, NESDIS, Center for Satellite Applications and Research) hosts a valuable ocean colour 

viewer that puts Sentinel-3 OLCI data in context with other global ocean colour missions, most notably from the Visible 

Infrared Imaging Radiometer Suite (VIIRS) on two satellites (https://www.star.nesdis.noaa.gov/socd/mecb/color/index.php). 545 

The Finnish Environment Institute (Syke) operates the Tarkka service with a map viewer for satellite images of the Baltic Sea 

region and parts of the North Sea, which combines Sentinel-3 OLCI images with even higher spatial resolution Sentinel-2 MSI 

and Landsat images (https://tarkka.syke.fi). Sentinel-3 OLCI data are also integrated into global long-term time series, e.g. as 

part of the ESA Ocean Colour - Climate Change Initiative with observations since 1997 (https://www.oceancolour.org/), where 

spatiotemporal changes of water constituents in the oceans can be monitored (e.g. Oostende et al., 2023). 550 

9. Conclusions  

We provided a satellite image-based dataset that includes water quality properties in lakes, rivers, coasts, as well as the entire 

North Sea and Baltic Sea. We applied a novel data processing scheme with the aim of seamless and consistent data quality in 

the transition between the optically diverse waters. The analysis of the optical water types shows clear differences between the 

water bodies, which, in addition to seasonal phytoplankton phenology, are governed by CDOM absorption or hydrodynamic 555 

sediment suspension. CDOM is mainly discharged into the sea via the freshwater of inland waters and diluted in the sea; the 

salinity of water is therefore a good indicator for optical nuancing and shows, for example, a clear difference between the 

ocean/North Sea and the Baltic Sea. Optical water type classification helps to specify water constituents more precisely and 

serves as a direct hint for some phytoplankton groups. With this dataset, we present for the first time our approach for IOP-

based estimation of particulate and dissolved organic matter. Currently, we only provide a quantitative grading of the water 560 

quality parameters, which vary over several orders of magnitude – a detailed and OWT-specific validation of the 73 individual 

parameters to must follow. Overall, however, the dataset offers many starting points for deriving further parameters and user-

oriented information from the remote sensing data in the future.   

 

565 
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