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Abstract. Biogenic volatile organic compound (BVOC) emissions from vegetation represent a major source of volatile 

compounds globally and play an important role as precursors for tropospheric ozone. Understanding their emissions is 20 

therefore crucial for quantifying the impact of ozone on air quality. We present two datasets of biogenic volatile organic 

compound emissions that cover the European modelling domain of the Copernicus Atmospheric Monitoring Service at a 

resolution of 0.1 × 0.1 to support the study of European scale air quality. The compounds included in the dataset follow the 

VOCs included in the regional atmospheric chemistry model mechanism (RACM). The datasets were produced within the 

framework of the EU’s SEEDS project. We produced each dataset by coupling modelling output variables from the 25 

SURFEX land surface model with the MEGAN3.0 BVOC emission model. In one instance, the SURFEX model was run in 

free-running mode, which we term the open-loop (OL) and in the other case we assimilated satellite observations of leaf area 

index (LAI), which we term the analysis. The OL and analysis land surface model outputs form the basis for each emission 

dataset that are called SURFEX-MEGAN3.0 OL and SURFEX-MEGAN3.0 analysis, respectively. The OL dataset is 

available over a five-year period from 2018-2022 and the analysis dataset is available over the three-year period 2018-2020. 30 

SURFEX was run for both the OL and analysis simulations in a configuration that allowed simulated vegetation to respond 

to variations in meteorology over time to more realistically track vegetation phenology. Evaluation of the land surface model 

output LAI and root-zone soil moisture (RZSM) showed that the OL and analysis simulations had good skill at tracking 

temporal changes in both variables, with the analysis performing better in each instance. We perform a variety of evaluations 
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on the isoprene emissions specifically given the importance of this compound for atmospheric chemistry. We evaluated the 35 

temporal variability of isoprene emissions in both datasets and found that the majority of the interannual and monthly 

variability was linked to variability in LAI that in specific cases, like the summer of 2019, could be linked to drought 

impacts on vegetation growth simulated by SURFEX. We evaluated the daily temporal variability of the OL and analysis 

isoprene emission datasets against in-situ online observations of isoprene concentrations at 8 sites in western Europe and 

found moderate to strong correlation between the emissions and observations in almost all location-year pairings. We also 40 

evaluated the OL and analysis emission datasets against other published bottom-up isoprene emission datasets over the same 

European domain used in this study. We found that the SURFEX-MEGAN3.0 OL and analysis isoprene emission datasets 

lie between the minimum (CAMS-GLOB-BIOv3.1) and maximum (MEGAN-MACC) published emission datasets based on 

bottom-up approaches. Furthermore, we were able to attribute differences in seasonality between SURFEX-MEGAN3.0 and 

other emission inventories to differences in the temporal variability of the underlying LAI dataset used to compile them. 45 

Overall, our findings show the importance of variability in LAI in controlling isoprene emissions on monthly to annual 

timescales. Combining this with the demonstrated skill of the emissions in evaluation with independent data, this points 

towards the value of an Earth-system approach to BVOC emission modelling. 

1 Introduction 

Vegetation represents a major source of volatile organic compounds (VOCs) to Earth’s atmosphere with estimates indicating 50 

that biogenic VOCs (so-called, BVOCs) contribute to approximately 90% of all the VOCs emitted to the atmosphere 

(Guenther et al., 1995, 2012; Lin et al., 2021). The remaining portion is anthropogenic in origin. VOCs play a critical role in 

atmospheric chemistry and mediate photochemical ozone formation (itself a greenhouse gas and air pollutant at the surface) 

as ozone precursors, and impact the oxidation capacity of the atmosphere, which can, in turn, impact the levels of the 

greenhouse gas methane (Thornhill et al., 2021). VOCs (including the BVOCs) also contribute to secondary organic aerosol 55 

formation (Carlton et al., 2009; Donahue et al., 2009), which also creates a radiative forcing effect (Sporre et al., 2019). 

Through these means, BVOCs, as the dominant component of VOCs at the global scale, have an important influence on 

atmospheric composition, surface air quality, and climate. 

Plants produce and release BVOCs during normal aspects of their growth, development, and senescence (Laothawornkitkul 

et al., 2009). Plants also deliberately release BVOCs for airborne signalling between individual plants for elicitation or 60 

priming of plant defences, signalling via attractor molecules to pollinators and seed dispersers, and for protection against 

pathogens (Laothawornkitkul et al., 2009), e.g., by direct deterrence or via attraction of the predators of herbivores. Lastly, 

damage to plants carried out either by herbivores or occurring from environmental factors such as ozone damage, high wind 

damage, or extreme temperature stress can lead to the release of BVOCs from within the stressed, exposed, or damaged plant 

tissue. 65 
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Plant emission of BVOCs varies in time according to changing environmental conditions, which can either result in the 

stimulation of plant growth or lead to biotic and abiotic stresses.  For instance, diurnal variations in solar radiation and 

ambient temperature as well as soil moisture availability affect the photosynthetic activity and in turn impact emissions. For 

example, (Guenther et al., (1993) shows that for a variety of species, isoprene emissions increase as ambient and leaf 

temperatures increase until a certain point is reached over ~40C at which point emissions of isoprene, and other de novo 70 

BVOC lacking a storage reservoir, begin to decline. In fact, leaf temperature is the most important variable since it has a 

more direct control and link to the plant physiological processes and underlying enzymatic activity that controls their 

metabolism. Thus, direct and indirect radiation play an important role in controlling BVOC emissions. As another 

consequence of this, shading of leaves within the canopy is another important process that impacts BVOC emissions. Given 

the importance of temperature for controlling emissions, there is a strong connection between BVOC emissions and heat 75 

waves whereby the hot weather can stimulate emissions of BVOCs over wide areas that can then in turn lead to significant 

photochemical ozone formation. Heatwaves can also interact with drought as the hot weather can act to increase the rate at 

which soils dry out and dry soils also increase the proportion of absorbed solar insolation that gets converted to sensible heat. 

Thus, droughts and heatwaves often occur concurrently and so the combined effects of both on BVOC emissions must be 

considered. Indeed, droughts can lead to reductions in BVOC emissions even during heatwaves as the water stress impairs 80 

photosynthesis and plant physiology. Drought stress can also lead to secondary effects that reduce BVOC emissions as the 

water stress can lead to browning and die-off of leaves, which can be observed as reductions in leaf area index (LAI) even 

before the growing season has culminated. In addition, phenological vegetation changes during the growing season, e.g., leaf 

surface area and leaf age, as well as longer-term changes associated with overall plant age can also impact emissions.  

BVOC fluxes can be measured for individual plant species at leaf level in field or laboratory conditions or for whole 85 

ecosystem types using field eddy covariance flux tower measurements. A key limitation of emission monitoring is the lack 

of spatial coverage of the observing network of BVOC fluxes. Furthermore, the implied heterogeneity in BVOC emissions 

arising from the varying spatial distribution of emitting species coupled with the spatio-temporal variability in driving 

environmental conditions strongly limits the spatial representativeness of BVOC flux observations at specific locations. This 

problem places limitations on attempts to directly extrapolate the spatially-sparse observations of BVOC emissions to 90 

estimate emissions at the global scale. Similarly, this problem also limits attempts to spatially interpolate the observed 

emission data between study sites in order to spatially map emissions. These challenges create the need for modelling 

approaches that can estimate BVOC emissions with spatial continuity over the Earth’s surface while considering the spatial 

distribution of emitting species and the spatio-temporal variability of driving environmental conditions. Such modelling 

approaches could thus deliver spatial gap-filling in regions lacking observations, which would have scientific value for 95 

studying air quality, atmospheric composition, and climate. Given this need, there have naturally been different efforts and 

approaches developed to model BVOC emissions from vegetation.  

Modelling approaches that have been used to estimate BVOC emissions can be separated into three broad categories: 1) 

empirically-based bottom-up models, e.g., different versions of MEGAN (Guenther et al., 1995, 2020, 2012), IBIS (Naik et 
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al., 2004), and EMEP (Simpson et al., 1999, 2012); 2) bottom-up models that attempt to simulate plant physiological leaf 100 

processes associated with photosynthesis, e.g., LPJ-GUESS (Arneth et al., 2007, 2011; Pacifico et al., 2011; Young et al., 

2009); and 3) top-down models that use observations of the ambient concentrations of the BVOC oxidation product, HCHO, 

to constrain emissions using inversion methods (Millet et al., 2006; Oomen et al., 2024; Palmer et al., 2003; Stavrakou et al., 

2009). Guenther et al. (1993) and references therein document a much more extensive history of modelling isoprene 

emissions that use empirically based approaches. 105 

Here we focus on the bottom-up BVOC model MEGAN, which has become a widely used tool in the atmospheric science 

community and in particular in the field of air quality modelling and forecasting. Sindelarova et al. (2014) and references 

therein provide a useful overview of some of the applications of MEGAN and includes a compilation of the range in 

emissions estimated at the global scale as well as an example application of its own. Different efforts to estimate BVOC 

emissions using the bottom-up approach result in global isoprene emission estimates ranging between 410 and 680 Tg yr -1 110 

(Arneth et al., 2007, 2011; Emmons et al., 2010; Guenther et al., 2006, 2012; Lathière et al., 2006, 2010; Levis et al., 2003; 

Müller et al., 2008; Naik et al., 2004; Pacifico et al., 2011; Pfister et al., 2008; Potter et al., 2001; Shim et al., 2005; 

Stavrakou et al., 2009; Tao and Jain, 2005; Wiedinmyer et al., 2006; Young et al., 2009).  

The large range in global BVOC emission estimates from MEGAN results from a significant uncertainty in the input data 

and the underlying mechanisms that drive BVOC emission estimation. Guenther et al. (2006) and references therein provide 115 

an excellent summary of some of the sources of uncertainty that arise from input data to the MEGAN model. For instance, 

use of differing LAI datasets can lead to relative changes in global isoprene emission estimates from -11% up to +29% 

(Guenther et al., 2006). Meanwhile, the use of different meteorological input datasets has a somewhat smaller relative impact 

on isoprene emission estimates with a range from -11% up to +15%. Guenther et al. (2006) also estimate that variations in 

plant function type mapping can impact isoprene emissions by up to -13% to +18%. Emission factors, also known as 120 

emission potentials, represent the emission from a unit leaf area or unit land surface area under a standard set of ambient 

conditions, which in turn get scaled upwards or downwards depending on the meteorological conditions at any given point in 

time. Emission factors have to be estimated from maps of vegetation type, climatic zone, and known emission rates from 

different plant species. Emission factors therefore represent another significant source of uncertainty (Langford et al., 2017), 

with the use of differing emissions factor datasets having a significant impact. A recent study (Sindelarova et al., 2022) 125 

showed that using different emission factors can lead to changes in global isoprene emission estimates of up to 33%. Lastly, 

there is no current consensus on how to account for drought effects on isoprene emissions using MEGAN. For instance, 

Sindelarova et al. (2014, 2022) both choose not to use the MEGAN soil moisture algorithm in their reference dataset and 

found that using the algorithm can reduce global isoprene emission estimates by up to 50%. Furthermore, estimation of soil 

moisture itself is also likely to be a source of uncertainty. 130 

Our motivation in this present study is to present two new BVOC emission datasets for use in the study of European air 

quality developed with the specific aim to address key uncertainties in BVOC emissions arising from the representation of 

vegetation phenology. We try to address this uncertainty by coupling MEGAN with the outputs (soil and vegetation 
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variables) from a well-validated land surface model (Masson et al., 2013) capable of detailed representations of vegetation 

dynamics (Calvet et al., 1998; Gibelin et al., 2006) and soil moisture (Decharme et al., 2011). We try to further address this 135 

uncertainty by assimilating satellite observations of LAI in the land surface model. Thus, we create two distinct BVOC 

emission datasets, one based on the free-running land surface model run, or so-called open-loop (2018-2022), and another 

based on the assimilation analysis (2018-2022) made by assimilating satellite LAI observations. Note, that the assimilation-

based dataset has a shorter timeframe due to the limited availability of suitable LAI observations. Both datasets can be used 

to allow an Earth-systems approach to permit feedbacks and interactions between meteorology/climate, vegetation, and 140 

atmospheric composition. 

Since our motivation was to develop BVOC emission datasets that are relevant for current-day European air quality 

modelling, we quickly highlight the current state of the art of the BVOC modelling over Europe using MEGAN for cases 

that have a focus on air quality. MEGAN has been used in some prominent examples of open-source BVOC emission 

datasets e.g., MEGAN-MACC (Sindelarova et al., 2014) and CAMS-GLOB-BIO (Sindelarova et al., 2022) that are designed 145 

for use in applications related to air quality and atmospheric composition simulation. The more recent example, which is 

CAMS-GLOB-BIOv3.1, had a spatial resolution of 0.25 × 0.25 was developed as part of the Copernicus Atmospheric 

Monitoring Service (CAMS), and was aimed at delivering improved estimates of BVOC emissions to support air quality 

modelling both in Europe and at the global scale. CAMS produces operational air quality forecasts and reanalyses at the 

global and regional scales and the activity within CAMS to produce the CAMS-GLOB-BIO emissions can be seen as a 150 

supporting activity both to the CAMS air quality modelling and air quality modelling activities external to CAMS itself. The 

emission datasets presented within this paper were produced within the frame of the EU funded Sentinel EO-based Emission 

and Deposition Service (SEEDS) project (https://www.seedsproject.eu/, last access: 17 July 2025). One aim of SEEDS was 

to produce emission datasets of pollutant emissions based on Earth observation data in support and development of the 

CAMS European air quality forecasting. Therefore, one aim of this present study is to develop a new methodology that can 155 

be used to create a BVOC emission dataset specifically for use in the CAMS European regional modelling activities.  

In addition to the targeted advancements in phenological modelling and data assimilation, we also implemented some further 

advancements relative to previous work (e.g., Sindelarova et al., 2022) and detail these below: 

i) Estimation of BVOC emissions at higher spatial resolution (0.1 × 0.1) and temporal resolution (1-hour) compared 

to existing publicly available BVOC emission datasets over Europe, e.g., CAMS-GLOB-BIO (Sindelarova et al., 160 

2022). 

ii) Using the state-of-the-art land cover maps over Europe, ECOCLIMAP-II (Faroux et al., 2013), which contain 

specific adaptations of the CORINE land cover to European conditions. 

iii) Updated MEGAN version to v3.0 (Guenther et al., 2020; Zhang et al., 2021). Many existing publicly available 

BVOC emission datasets and examples of applications in the literature use MEGAN 2.1. 165 

In Section 2 we present the methodology including the emission model, the land surface model, and the other datasets used 

in the production of the emission data including the meteorological forcing. In Section 3 we present the results including 
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spatiotemporal analysis of the BVOC emission inventories and a comparison of the BVOC emissions with other emission 

datasets and observations of isoprene emissions. In Section 4 we describe how to access the datasets. In Section 5 we present 

the conclusions. 170 

2 Methodology 

2.1 BVOC emission modelling system overview 

We first present an overview of the entire modelling system that we use to estimate BVOC emissions and create the two 

datasets presented in this paper (Hamer et al., 2025a, Hamer et al., 2025b). This is in order to highlight that our method 

consists of a unique framework of different modelling elements and data sources and to properly explain the various 175 

connections and workflow between each of these components. Figure 1 shows a schematic flow diagram of our 

methodological framework that highlights each modelling component and how they connect together. The modelling 

components (shown in black boxes) consist of the SURFEX land surface model and its data assimilation system, the 

MEGAN emission factor processor (MEGAN EFP), and the MEGAN3.0 BVOC emission model. We use a variety of data 

sources (shown in grey boxes) that fit into each modelling component. The first step in this framework involves running the 180 

SURFEX land surface model, which primarily uses the ECMWF HRES meteorology and the ECOCLIMAP-II land cover as 

inputs. In addition, when SURFEX is run using the LDAS-Monde data assimilation algorithm it also ingests LAI satellite 

observations to produce the assimilation analysis output. When SURFEX is run without the assimilation step in free-running 

mode this output is termed the open-loop. These two separate data flows from SURFEX (highlighted in blue boxes within 

Figure 1) are fed separately into the MEGAN3.0 model, and along with the emission factors from the MEGAN EFP. Each of 185 

these produce a separate corresponding output BVOC emission dataset (i.e., open-loop and assimilation analysis) shown in 

the green boxes. Further details of the MEGAN3.0 emission model and the MEGAN EFP are discussed in the following 

section (Section 2.2) and are shown in Figure 2.  
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Figure 1. A flow diagram showing how the different modelling elements within this BVOC modelling framework link together. 190 
Model components are shown in the black boxes, external input data sources are shown in grey boxes, intermediate data sources 

are shown in blue boxes, and output data are shown in green boxes. There are three data flows (ECMWF HRES meteorology, 

ECOCLIMAP-II land surface cover, and satellite observations of LAI based on PROBA-V and AVHRR data) into the SURFEX 

LDAS-Monde land surface modelling and data assimilation system. The output from SURFEX serves as the inputs into 

MEGAN3.0. There are two additional dataflows into the MEGAN3.0 model, which are emission factors calculated by the MEGAN 195 
EFP and the ECMWF HRES meteorology. We produce two differing BVOC emission datasets (open-loop and assimilation 

analysis) based on the corresponding output datasets from SURFEX of each type. 

 

2.2 The MEGAN 3.0 Emission model 

2.2.1 Model overview 200 

We first provide an overview of the basic conceptual framework built within MEGAN3.0 (Guenther et al., 2020). This 

concept can be described in a simple equation 𝑭𝒊 =  
𝒊

× ∑ (ɛ𝒊,𝒌 × 
𝒌

)𝒏
𝒌=𝟏    (1) defining the net 

emission flux into the above-canopy atmosphere of species, i as, Fi. 

𝑭𝒊 =  
𝒊

× ∑ (ɛ𝒊,𝒌 × 
𝒌

)𝒏
𝒌=𝟏    (1) 

Here, i is the chemical species-specific activity, i,k is the emission factor at standard conditions for vegetation type k, and k 205 

is the fractional grid box areal coverage. The activity represents changing environmental conditions (e.g., air temperature and 

radiation) and vegetation properties (e.g., LAI) that impact BVOC emissions. Activity is calculated by multiplying a set of 

different  activity parameters together in series (explained in more detail in Sect. 2.1.2) where each parameter represents a 

different process impacting activity. The emission factors are a measure of the potential emissions of a particular compound 

from a specific plant type. As a whole, this conceptual framework is expressed via algorithms within a software package 210 

containing the MEGAN3.0 model (consisting of five sub-components) and as well a separate MEGAN emission factor pre-
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processor (MEGAN EFP). We provide a schematic diagram in Figure 2 giving an overview of MEGAN3.0 and its five sub-

components, the MEGAN EFP, the dependencies on external data sources at each step, and the sequential steps used in the 

production of the intermediate datasets that all eventually lead to the final output BVOC emissions. These intermediate 

datasets are associated with specific environmental processes that impact activity (e.g., soil moisture) as well as physical 215 

properties affecting leaf physiology, e.g., temperature and radiation.  

We now describe the five sub-components of MEGAN3.0 in turn. The first is DAYMET, which calculates daily 

meteorological parameters using ECMWF (in our case) wind speed and accumulated photosynthetically active radiation 

(PAR), and 2m-temperature from the SURFEX land surface model. DAYMET calculates the daily mean, minimum, and 

maximum temperature, the daily mean photosynthetic photon flux density (PPFD), and the maximum daily wind speed.  220 

The second sub-component is CANMET, which is a canopy meteorological model that calculates shaded and sunny leaf 

temperatures and PPFDs for different vertical layers in the vegetation canopy as well as the fraction of sunny leaves at each 

canopy layer height. CANMET is important for calculating the transmission of solar radiation into the lower layers of the of 

dense canopy when LAI is high, i.e., > 3 m-2.m-2. In the configuration used in the SEEDS project, CANMET uses wind 

speed, surface pressure and accumulated PAR from ECMWF’s IFS HRES data, and 2m-temperature and 2m-specific 225 

humidity calculated within SURFEX.  

The third sub-component within MEGAN3.0 is MEGSEA, which is responsible for calculating the effects of soil physical 

properties estimated by the SURFEX land surface model (root zone soil moisture and root zone soil temperature) on BVOC 

and soil NOx emissions. The outputs from MEGSEA are the soil moisture activity parameter, SM, and the soil NOx activity 

parameter, which are both dependent on soil moisture and are sensitive to drought effects. 230 

The fourth sub-component is MEGVEA, which uses parameters calculated by the preceding sub-components (DAYMET, 

CANMET, and MEGSEA) to calculate all of the remaining activity parameters (more details in Sect. 2.2.2) associated with 

different physical and biological processes. The code then calculates the product of all of these parameters to then calculate 

and output the activity for a range of aggregated BVOC species. 

Prior to describing the final sub-component of MEGAN3.0 it is appropriate to briefly describe MEGAN EFP. MEGAN EFP 235 

calculates the emission factors and light-dependent factors over the chosen spatial grid using a set of maps of plant ecotype 

and growth form as input. The calculation of the emission factors and the MEGAN EFP software package are described in 

more detail in Sect. 2.2.3. 

The final sub-component with MEGAN3.0 is MGN2MECH. MGN2MECH performs a dual function. First, it calculates the 

emissions of BVOCs by multiplying the emission factors and activity according to Eq. (1). Second, it performs a 240 

reaggregation of the BVOC emissions to derive an output emissions dataset that is compatible with the selected chemical 

mechanism. In our example case this is for the RACM chemical mechanism (Stockwell et al., 1997). The chemical species 

associated with RACM mechanism that are included in the datasets are described in detail in Table S1 in the supplement. 
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Figure 2. A detailed flow diagram of the MEGAN3.0 BVOC emission model as used in our application. The five modelling 245 
components of MEGAN3.0 are shown in the coloured boxes (DAYMET in dark blue, CANMET in light green, MEGSEA in 

orange, MEGVEA in dark green, MGN2MECH in red). Note that MEGAN3.0 has to be run sequentially in this order. The 

MEGAN emission factor pre-processor shown in a light blue box must be run prior to the final MEGAN3.0 step (MGN2MECH). 

Note that the input and output flows for each model sub-component are represented using corresponding colour coded arrows. 

The various intermediate inputs and outputs are shown in light grey boxes. Lastly, the output BVOC emissions calculated by 250 
MEGAN3.0 from the MGN2MECH routine are shown in the grey-filled box. 

2.2.2 Emission Activity 

The activity, i, represents the vegetation BVOC emission response to changing environmental conditions. i is calculated by 

multiplying together a series of other parameters that represent vegetation properties and responses to changing 

environmental conditions. We describe how i is calculated for different chemical species and then describe how the 255 

parameters most relevant to this study (gTP  and gSM) are calculated.  

We define the standard activity that applies to the generic chemical species defined within MEGAN3.0 (i.e., this excludes 

isoprene, ethanol, acetaldehyde, and carbon monoxide) as: 


𝑖

= 𝐿𝐴𝐼 × 
𝑇𝑃

× 
𝐿𝐴

× 
𝐻𝑊

× 
𝐴𝑄

× 
𝐻𝑇

× 
𝐿𝑇

× 
𝑆𝑀

× 𝐿𝐷𝐹 
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Here, the activity used for BVOC chemical species that have a generic response are TP, which is the canopy average 260 

temperature and radiation response parameter, LA is the leaf age response parameter, HW is the response to high windstorms 

parameter, AQ is the response to air pollution (ozone) parameter, HT is the response to high temperature parameter, LT is the 

response to low temperature parameter, SM is the soil moisture response parameter, and LDF is the light dependent fraction 

(the LDF is explained further in Sect. 2.2.3). 

Next, we first define the emission activity for isoprene as: 265 

𝑔𝑖𝑠𝑜𝑝𝑟𝑒𝑛𝑒 = 𝐿𝐴𝐼 × 
𝑇𝑃

× 
𝐶𝑂2

× 
𝐿𝐴

× 
𝐻𝑊

× 
𝐴𝑄

× 
𝐻𝑇

× 
𝐿𝑇

× 
𝑆𝑀

× 𝐿𝐷𝐹 

Where CO2 defines the carbon dioxide response, which is only relevant for isoprene and thus makes the isoprene emission 

activity slightly different from all of the other chemical species. Next, we define the activity for ethanol and acetaldehyde: 


𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑜𝑟 𝑎𝑐𝑒𝑡𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒

= 𝐿𝐴𝐼 × 
𝑇𝑃

× 
𝐵𝐷

× 
𝐿𝐴

× 
𝐻𝑊

× 
𝐴𝑄

× 
𝐻𝑇

× 
𝐿𝑇

× 
𝑆𝑀

 

Where BD is the bidirectional exchange LAI response parameter, which is only relevant for both ethanol and acetaldehyde. 270 

The definition of the emission activity for carbon monoxide also differs from that of the other chemical species: 


𝐶𝑂

=  𝐿𝐴𝐼 × 
𝑇𝑃

× 
𝐿𝐴

× 
𝐻𝑊

× 
𝐴𝑄

× 
𝐻𝑇

× 
𝐿𝑇

× 
𝑆𝑀

 

We now describe the equations defining the two activity parameters of interest to this work in turn. The canopy average 

temperature and radiation response parameter, TP, is calculated via: 


𝑇𝑃

= ∑(
𝑇𝑃𝐿𝐷𝐹

 𝑗 × 𝐿𝐷𝐹 + 
𝑇𝑃𝐿𝐼𝐹

 𝑗 × (1 − 𝐿𝐷𝐹)) × 𝑊𝑗

𝑗=5

𝑗=1

 275 

Where 𝑊𝑗 are the predefined layer-specific weights distributing the potential emission across the different canopy layers and 

are defined as follows: 0.119, 0.239, 0.284, 0.239, and 0.119. These weights implicitly assume the vertical structure of the 

canopy follows this prescribed definition. The light-dependent fraction temperature and radiation response 𝑔𝑇𝑃 is calculated 

for each layer, j, within the canopy via: 


𝑇𝑃𝐿𝐷𝐹

 𝑗 = (
𝐶𝐷
 𝑗 × 

𝑇𝐿𝐷𝑠𝑢𝑛

 𝑗 × 
𝑃𝑠𝑢𝑛

 𝑗 × 𝑓𝑠𝑢𝑛
𝑗

) + (
𝑇𝐿𝐷𝑠ℎ𝑎𝑑𝑒

 𝑗 × (
𝑃𝑠ℎ𝑎𝑑𝑒

 𝑗 × (1 − 𝑓𝑠𝑢𝑛
𝑗

)) 280 

Here, P is the light response parameter, which is calculated independently for sunlit and shaded leaf areas depending on the 

photon flux within the canopy (calculated by CANMET – see Sect. 2.2.1) for both sunlit and shaded areas. TLD is the light 

dependent temperature response parameter, which is also calculated independently for sunlit and shaded leaf areas. 𝑓𝑠𝑢𝑛
𝑗

 is 

the fraction of sunlit area at each canopy layer height and 𝑔𝐶𝐷 is the canopy depth parameter.  

The light-independent fraction temperature and radiation response parameter for each canopy layer is defined as: 285 


𝑇𝑃𝐿𝐼𝐹

 𝑗 = (
𝑇𝐿𝐼𝑠𝑢𝑛

 𝑗 × 𝑓𝑠𝑢𝑛
 𝑗

) + (
𝑇𝐿𝐼𝑠ℎ𝑎𝑑𝑒

 𝑗 (1 − 𝑓𝑠𝑢𝑛
 𝑗

)) 

TLI is the light independent temperature response activity parameter, which is calculated separately for sunlit and shaded 

areas to take into account the differences in leaf surface temperature in both regions of the canopy at a particular layer 

height. 
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The soil moisture activity factor, 𝑔𝑆𝑀, is calculated differently according to whether the soil moisture, 𝑞, satisfies one of 290 

three different conditions: 


𝑆𝑀

= 0          𝑞 < 𝑞𝑤𝑖𝑙𝑡  


𝑆𝑀

= 𝑞 − 𝑞𝑤𝑖𝑙𝑡 /0.04         𝑞𝑤𝑖𝑙𝑡 ≤ 𝑞 ≤ 𝑞𝑤𝑖𝑙𝑡 + 0.04 


𝑆𝑀

= 1          𝑞𝑤𝑖𝑙𝑡 <  𝑞 

Where 𝑞𝑤𝑖𝑙𝑡  is the wilting point taken from the SURFEX physio-geographic maps, which is volumetric soil moisture at 295 

which plants are defined to wilt in SURFEX for a particular location. 

The 
𝐻𝑊

, 
𝐴𝑄

, 
𝐻𝑇

, and 
𝐿𝑇

 activity factors are calculated with an approach that is similar to the above equation for the soil 

moisture activity factor. For the remaining activity parameters we refer readers to Guenther et al. (2012), which describe the 

details of how 
𝐿𝐴

 and 
𝐶𝑂2

 are calculated. 

2.2.3 Emission Factors 300 

The MEGAN EFP is built on the Python programming language with the SQLite database system as an opensource program 

that generates the emission factor and light dependence factors (EF/LDFs) required to drive MEGAN3.0. The program first 

generates EF/LDFs for individual plant types and then integrates them with plant type distribution data to calculate 

landscape-average EF/LDFs for a modelling domain.  

To generate EF/LDFs for individual plant types, emission factor measurements compiled in the MEGAN EFP database are 305 

assigned a number from 0 to 4, called the J-rating, to indicate the quality of the data. A J-rating of 0 indicates the lowest 

quality including qualitative measurements and measurements conducted with methods that have high uncertainties and 

potentially strong bias. A J-rating of 4 is the highest quality data indicating that the data were obtained using methods that 

meet the recommendations of the BVOC emission measurement community (e.g., Niinemets et al., 2011). The MEGAN EFP 

allows users to choose to use all data or just measurements higher than a specified minimum J-value. The MEGAN EFP 310 

database also contains specific leaf area data (SLA) to convert EF measurements reported in terms of emissions per unit leaf 

mass to emissions per unit leaf area which is used by MEGAN.     

Landscape average EF/LDFs are calculated with the MEGAN EFP by synthesizing leaf level plant trait data, including 

BVOC emission factors, specific leaf area and emission light dependence factor, with landcover data (described in more 

detail shortly), including ecotype and growth-form fractions for each location in a modelling domain. Additional information 315 

in the MEGAN EFP database includes descriptions of biogenic compounds, emission classes, publication references, 

vegetation types, and canopy vertical distribution characteristics. These data allow users to identify the emissions data that 

were used to drive the MEGAN3.0 model emission inputs. 

We now describe the landcover data used by MEGAN EFP in more detail. The MEGAN3.0 emission factor distributions are 

based on four landcover input types: growth form fractions, ecotypes, plant type composition, and plant type emission 320 

factors. The growth form fractions, and ecotype inputs are ~1 km2 (30 second latitude × 30 second longitude) resolution 
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global maps.  The growth forms include trees, which are further divided into broadleaf vs needleleaf trees and tropical and 

extratropical trees, shrubs, grass and other herbaceous plants and crops. The total vegetation cover was based on a twelve-

year climatology (Broxton et al., 2014) and the relative fractions from global datasets of tree cover (Hansen et al., 2003), 

shrub and grass cover (Tuanmu and Jetz, 2014) and crop cover (Latham et al., 2014) that were merged with regional data 325 

including the NLCD 30-meter landcover data for the U.S. (Homer et al., 2015). The ecotypes include ~900 global ecotypes 

and ~1200 regionally specific ecotypes for the U.S. and Australia (Guenther et al., 2012) and ~400 locally specific ecotypes 

representing specific U.S. cities and urban neighborhoods.  

The plant type composition data is specified for each growth form and ecotype. For example, the plant type composition for 

a pine-oak forest ecotype includes the plant type composition for each growth form including broadleaf trees (dominated by 330 

oaks), needleleaf trees (dominated by pines), grass (temperate woodland grass), shrub (temperate woodland grass) and crop 

(generic crop). The plant types range from very specific, such as a plant species or even subspecies, to general types such as 

broadleaf tropical rainforest tree or arctic grass. The final database contains emission factors for each of the 20 MEGAN3.0 

emission categories for each plant type. The four input data types were used to estimate weighted average emission factors at 

each location. The emission factors were based on data compiled for MEGAN2.1 (Guenther et al., 2012) with updates for 335 

vegetation in parts of the U.S. and Australia based on locally specific data.       

 

2.3 Land surface model data 

We use ISBA (Interactions Between Soil, Biosphere, Atmosphere) within the SURFEX (SURface EXternalisée) modelling 

platform (Masson et al., 2013) in this work to provide some of the key land surface variables (i.e., 2m-specific humidity, 2m-340 

temperature, root zone soil temperature, root zone soil moisture, LAI) used in MEGAN. SURFEX simulates heat, moisture, 

and gas fluxes at the atmosphere-surface boundary and is designed to be coupled with meteorological models and 

atmospheric forcing both online and offline, respectively. SURFEX has been used successfully in a wide range of 

applications, e.g., river discharge prediction (Fairbairn et al., 2017), drought monitoring (Albergel et al., 2019), and urban 

climate studies (Schoetter et al., 2020). Regarding the soil-plant system, ISBA can dynamically simulate changes in Leaf 345 

Area Index (LAI) according to how meteorology impacts on the growing season. It has been shown to be skilful at 

estimating phenological changes and soil moisture on seasonal timescales when forced with state-of-the-art meteorological 

atmospheric forcing (Albergel et al., 2019; Szczypta et al., 2014). 

SURFEX simulates four broad land use classes, nature, town, fresh water (lakes, rivers, and lagoons), and sea (see schematic 

embedded within Figure 1). The nature type is represented within SURFEX by 12 sub-classes of land surface class that 350 

represent different types of biomes and agricultural land use. These different land surface types and sub-classes are defined 

by ECOCLIMAP-II (Faroux et al., 2013). These 12 sub-classes are listed in Table 1. SURFEX was run using 12 sub-classes 

(termed patches) of the nature land type because some of the model options (detailed below in Table 2) that are required to 
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run simulations of dynamic vegetation can only be run with these 12 patch types. Table 2 summarises all of the relevant 

model options used.  355 

SURFEX was configured to run on the same 0.1×0.1 spatial grid we use for MEGAN3.0, which is the same spatial domain 

as used by the CAMS regional air quality models and the ECMWF HRES meteorology. The meteorological parameters 

required by SURFEX were retrieved from ECMWF onto this spatial grid. While this increased high spatial resolution has 

been already used in applications for specific isolated domains within Europe (Albergel et al., 2019), this is the first time 

SURFEX LDAS-MONDE will be run for the whole of Europe at this high spatial resolution.  360 

SURFEX also includes a capability to perform data assimilation of satellite observations of land surface variables (soil 

moisture and LAI) using the Simplified Extended Kalman Filter (see e.g., Albergel et al., 2017). In this configuration 

SURFEX is termed the SURFEX LDAS-Monde (Land Data Assimilation System-World/Global), which can be applied with 

relative ease to study any area of the world. Assimilation of satellite observations of LAI and soil moisture in SURFEX 

LDAS-Monde has been shown to improve estimates of the soil moisture content and of phenological changes (Albergel et 365 

al., 2017) with LAI having a more significant and beneficial effect for the estimation of root zone soil moisture. For the 

purposes of the production of the BVOC emission datasets presented in this article we produce two different sets of land 

surface data for use in MEGAN. The first is just SURFEX run in a free-running mode with no data assimilation, which we 

term the open-loop dataset. The second is a SURFEX simulation run created by running SURFEX with data assimilation of 

satellite LAI, which we term the analysis. The analysis is run with the aim to improve estimation of LAI and the root zone 370 

soil variables that are relevant for vegetation growth and function that are used in MEGAN, i.e., root zone soil moisture and 

root zone soil temperature. 

To produce the assimilation-based analysis we assimilate LAI satellite data products from the Copernicus Land Monitoring 

Service (CLMS, https://land.copernicus.eu/global/products/lc, last access: 17 July 2025). Specifically, this includes 

assimilation of the PROBA-V LAI (Verger et al., 2014) product for years 2018 and 2019, using the GEOV1 product of 375 

CGLS. Since PROBA-V was decommissioned in 2020, we used the THEIA AVHRR-derived LAI (https://www.theia-

land.fr/product/serie-de-variables-vegetales-avhrr-fr/, last access: 17 July 2025) and performed a seasonal cumulative density 

function (CDF) matching of the latter from 1999 to 2019 (21 years) in order to use the CDF-matched THEIA LAI as a proxy 

of GEOV1 for the whole 2020. This AVHRR LAI product is derived from the Land Long Term Data Record (LTDR) 

AVHRR data (Vermotte 2021) 380 

(https://landweb.modaps.eosdis.nasa.gov/data/userguide/LTDR_Ver5_Products_UserGuide_v1.0.pdf, last access: 17 July 

2025) using another version of the GEOV2-AVHRR algorithm described in Pacholczyk and Verger (2020) 

(https://www.theia-land.fr/wp-content/uploads/2022/03/THEIA-MU-44-0369-CNES-GEOV2-AVHRR-Product-User-

Manual-V2_AV.pdf, last access: 17 July 2025). 

We did not use the CLMS LAI products for LAI from Sentinel-2 or from Sentinel-3 because we did not need the higher 385 

resolution of Sentinel-2 in this application, and we found a discontinuity between the PROBA-V and the Sentinel-3 data 

version that was available at the time of study. 
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Table 1. List of SURFEX nature tile patch numbers and corresponding ISBA vegetation type. 

Patch number ISBA vegetation type 

1 Bare soil 

2 Bare rock 

3 Permanent snow 

4 Deciduous broadleaf 

5 Needle leaf 

6 Evergreen broadleaf 

7 C3 crops 

8 C4 crops 

9  Irrigated crops 

10  Temperate grassland 

11  Tropical grassland 

12 Wetlands, parks and gardens 

 

Table 2. Model options used in SURFEX 390 

Model option Selected model setting 

ISBA photosynthetic scheme Nitrogen dilution scheme – NIT 

Soil moisture scheme Diffusion scheme 

Number of soil layers 14 

Town model No town model – All urban areas represented as solid rock 

Lake model Water flux model following Charnock formula 

Sea model Sea flux model following Charnock formula 

 

2.4 Meteorology 

Both the SURFEX and MEGAN3.0 model algorithms rely on the use of meteorological data from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) HRES operational forecast (Owens, R G, Hewson, 2018) for describing the 

meteorological conditions. The data was extracted via the MARS service (ECMWF's Meteorological Archival and Retrieval 395 

System) on a 0.1×0.1 grid with hourly resolution for the surface levels. The forecast at 12:00 was used and the following 

36 hours have been retrieved and then post-processed to create a single contiguous daily time series running from the 13th 

hour of the forecast (00:00 UTC) to the 36th hour (23:00 UTC). We then combined each individual daily time series together 
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to make a continuous running time series spanning the full dataset time period, i.e., 2018-2022. Table 3 shows which 

meteorological variables were extracted for use in which of the two models (SURFEX and MEGAN3.0). In the case of 400 

MEGAN3.0 we used two of the variables (2m air temperature and 2m specific humidity) calculated by SURFEX. There is a 

specific advantage to using these variables from SURFEX as opposed to the ECMWF HRES data directly because SURFEX 

can account for surface effects like surface fluxes of latent and specific heat and surface driven turbulence arising from 

different vegetation canopy heights and densities and different transpiration rates. In the case of all other meteorological 

variables the models used ECMWF HRES data. 405 

Table 3. Summary of meteorological variables used as inputs by the SURFEX and MEGAN3.0 algorithms. 

ECMWF HRES 

Meteorology 

Calculated within 

SURFEX 

Meteorological Variables used in 

SURFEX 

Meteorological Variables used in 

MEGAN3.0 

Surface Pressure  ✓ ✓ 

2m Air Temperature  ✓ - 

 2m Air Temperature - ✓ 

Wind Speed  ✓ ✓ 

Air Specific Humidity  ✓ - 

 2m Specific Humidity  ✓ 

Liquid Precipitation  ✓ - 

Solid Precipitation  ✓ - 

Incoming Shortwave 

Radiation 

 
✓ - 

Incoming Longwave 

Radiation 

 
✓ - 

PAR   ✓ 

 

2.5 Isoprene Observations 

We perform an evaluation of the temporal variability of the BVOC emissions using in-situ observations of isoprene collected 

during the period of our datasets (2018-2022). We obtained the isoprene observations from the EBAS database (Europe-wide 410 

observations excluding UK; EBAS home – ebas homepage, last access: 17 July 2025) and from UK-air (specific to UK 

observations; Data Archive - Defra, UK, last access: 17 July 2025). The EBAS database contains a wide variety of isoprene 

observations collected using different monitoring techniques. We select only observations made using the online gas 

chromatograph mass spectrometry method and we made a further selection to exclude observations made in dense urban 
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settings, e.g., Marylebone Road, London, to avoid sites with a strong influence from anthropogenic isoprene sources (Khan 415 

et al., 2018).  

3 Results and Discussion 

We describe different aspects of the SURFEX-MEGAN3.0 datasets within the following three sub-sections. First, in section 

3.1, we perform an evaluation of the underlying LAI data produced in the course of running the SURFEX-MEGAN3.0 

production chain. Then, in section 3.2, we describe the spatiotemporal characteristics of the datasets and we describe the 420 

impact of the LAI data assimilation on the results. Lastly, we evaluate the SURFEX-MEGAN3.0 emission inventory for 

isoprene against other published emission inventories in section 3.3. Throughout these discussions we focus on isoprene 

emissions. Isoprene is one of the most important BVOCs because its emissions are larger than other emitted BVOC species 

and it is one of the most reactive BVOCs and it therefore has an important influence on atmospheric composition. 

3.1 Performance of SURFEX land surface model 425 

One important conceptual basis for the creation of the BVOC emission datasets presented in this paper was that we could 

improve BVOC emission modelling by focusing on improvements of the input data used by the MEGAN emission model. 

Indeed, we hypothesize that BVOC emission modelling can be advanced by using the SURFEX land surface model to 

provide improved estimates of LAI and soil moisture based on dynamic, realistic vegetation phenology. Furthermore, we 

posit that the inclusion of the methodological step to assimilate satellite observations of LAI further improves the model 430 

representation of LAI used for BVOC estimation. Thus, we now attempt to evaluate the performance of the SURFEX land 

surface model for these key input variables used by MEGAN. We perform this evaluation using three approaches: i) use of 

TROPOMI satellite observations of solar induced fluorescence (SIF) to evaluate LAI, ii) in-situ observations of soil 

moisture, iii) a review and discussion of literature covering existing case studies evaluating the performance of the SURFEX 

land surface model, and iv) a brief review of the data quality of the LAI satellite observations used. In addition, we refer 435 

readers to Sect. 3.2.2 that covers a discussion of the impacts of the assimilation of satellite observations of LAI as this gives 

some further insight into the relative performance of the OL and analysis model runs.  

To assess the correlation between the SIF observations and both the LAI open-loop and LAI analysis, temporal correlation 

coefficients with SIF and LAI are calculated over the entire domain from 1 May 2018 to 31 December 2020. The results, 

shown in Figure 3, show robust correlations over much of the domain with correlation coefficients (R) greater than 0.7 for 440 

both the LAI open-loop and LAI analysis. Semi-arid regions such as parts of the Iberian Peninsula and the Middle-East, 

together with Nordic regions at high latitudes, show weaker correlation values. These regions present sparse vegetation and 

the SIF signal is weak, which likely degrades the correlations by making the SIF observations more subject to random and 

systematic errors in the retrieval. Figure 3 also shows the difference in correlation coefficients between the analysis and the 

open-loop LAI. When comparing the analysis with the OL (Figure 3b), improvements can be seen over almost the whole 445 
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study area. In particular, it can be seen that the assimilation improves the correlation between LAI and SIF over Germany 

and the Czech Republic. It should be noted, however, that the OL LAI does still correlate with SIF in a reasonable way, but 

the areas where it shows weaker correlation are more widespread. 

 

Figure 3. Maps showing (a) the Pearson correlation in time between the LAI analysis and the observed TROPOMI SIF (re-gridded 450 
to the CAMS spatial gridding) for each 0.1 × 0.1 grid cell and (b) the difference in correlation between the LAI analysis and SIF 

and the LAI open-loop and SIF. 

We now analyse the soil moisture represented by the SURFEX model. The SURFEX model soil layer corresponding to the 

SMOSMANIA in situ measurements at 0.3 m depth is layer 5 (0.2-0.4 m soil layer). This is also the layer that we use to 

create the root-zone soil moisture (RSZM) dataset used by MEGAN. The OL and analysis root zone soil moisture (RZSM) 455 

simulations for layer 5 are compared with observations from the Saint-Felix de Lauragais (SFL) station of the 

SMOSMANIA network for the study period (1 May 2018 to 31 December 2020) located in the south-west of France. The 

open-loop, analysis and in situ time series of RSZM are shown in Figure 4. The temporal patterns of the open-loop and 

analysis results clearly correlate with the observed seasonal variability of the RZSM, with similar times of rewetting events. 

The correlation scores are 0.92 and 0.93 for the OL and analysis (all seasons), respectively, and 0.74 and 0.77 (summertime 460 

only) for both model versions. The observed RZSM values range between 0.16 and 0.37 m³ m-3, while the corresponding 

variations in the open-loop and analysis simulations show values between 0.25 and 0.46 m³ m-3. The larger simulated RZSM 

values can be explained by differences between the soil properties used in the model, such as porosity, and the local soil 

properties around the soil moisture probe. Differences between the open-loop and analysis simulations occur during certain 

periods of the year, such as the autumn of 2019. The vegetation model is sensitive to soil moisture deficit through a soil 465 

wetness index corresponding to rescaled volumetric soil moisture between field capacity and wilting point. In this way, a 

large absolute bias for volumetric soil moisture has little effect on the vegetation response to drought. 
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Figure 4. Time series of observed in-situ RSZM at the Saint-Felix de Lauragais SMOSMANIA monitoring station (green), the 

RSZM from the SURFEX open-loop simulation (yellow), and the RSZM from the SURFEX analysis simulation (red). 470 

Unlike other land surface models, phenology in ISBA is entirely driven by photosynthesis and LAI responds to 

environmental factors such as drought, temperature, or solar radiation through photosynthesis (Calvet et al. 1998, Gibelin et 

al. 2006). ISBA is not calibrated and the vegetation parameters that drive photosynthesis and plant growth are derived from 

the literature (Delire et al. 2020). Despite this unique way of representing phenology, ISBA can achieve good skill compared 

to other LSMs (Peano et al. 2021, Friedlingstein et al. 2022). 475 

The CLMS LAI data assimilated by SURFEX has been evaluated extensively (Brown et al., 2020; Verger et al., 2023) 

demonstrating its consistency with MODIS products, temporal consistency, and highest accuracy when compared to 

reference data. Thus, the LAI data ingested into the SURFEX assimilation algorithm has an established track record of being 

of high quality. 

In summary, the simulated LAI and RZSM show robust correlations with independent data, and prior work establishes the 480 

skill of SURFEX and representing vegetation phenology relative to other LSMs. For LAI, the correlation with SIF is better 

than 0.7 over much of the domain. However, areas covered by sparse vegetation, semi-arid regions such as parts of Spain, 

together with Nordic regions at high latitudes, show weaker correlation values. 
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3.2 Characteristics of SURFEX-MEGAN BVOC dataset 

3.2.1 Spatiotemporal distribution of SURFEX-MEGAN BVOC emissions over Europe 485 

 

Figure 5. Maps of annual mean isoprene emissions (units of kg.m-2.s-1) calculated using the SURFEX-MEGAN3.0 algorithms over 

the period 2018-2022 using the open-loop configuration of SURFEX. The panels show each year over this time period moving 

sequentially from 2018 to 2022 from left to right. The colour bars indicate increasing mean isoprene emissions as the colours 

transition from pale yellow to dark green. Note that the colour bar has a quasi-logarithmic scale. The annual total mass of isoprene 490 
emissions (units of Tg) are shown above each plot. 

We first describe the temporal and spatial characteristics of the datasets on an annual basis. The annual mean isoprene 

emissions are displayed as maps over the CAMS European domain in Figure 5 for the period 2018-2022. The spatial 

distribution of the isoprene emissions on an annual scale is dependent on the general distribution of isoprene emitting 

vegetation as represented in the distribution of the isoprene emission factors. Thus, we see the regions with the highest year-495 

round emissions over areas with dense forest, and the regions with the lowest emissions (near-zero) over desert regions, high 

mountains, and permanent ice and snow. 
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Figure 6. The standard deviation of isoprene emissions over the CAMS European domain for the 2018-2022 period based on the 

SURFEX model open-loop simulations. Note that the standard deviation is expressed in the units of the emissions (kg.m-2s-1). 500 

The total annual mass of isoprene emissions is shown in Tg above each panel in Figure 5. The average annual emitted mass 

of isoprene for the open-loop emissions over the time period 2018-2022 was calculated to be 7.20 Tg yr-1 with a standard 

deviation of ± 0.28 Tg yr-1
. The emissions were estimated to be at their highest in 2018 and their lowest in 2020 and the 

difference in annual emissions between these two extremes was 0.82 Tg yr-1, which represents 11.4% of the average annual 

emission of isoprene in this time period. While the standard deviation on the total annual emission over this period is 0.28 Tg 505 

yr-1, this temporal variability is not evenly distributed spatially as can be seen within Figure 6, which shows the standard 

deviation in isoprene emissions calculated on an inter-annual basis. The areas of highest annual variability over the 2018-

2022 period coincide with the co-location of forests, emitting vegetation species, and meteorologically induced variability 

resulting from temperature, radiation, and soil moisture forcing. Indeed, the effect of these last variables can be seen in more 

detail within Figure 7 which shows the emission factors over the CAMS domain and the standard deviation of the inter-510 

annual variability for the gamma parameters for soil moisture, LAI, and radiation-temperature. Some of the areas with the 

highest year-to-year variability in emissions correspond to regions over where the emission factors are highest. Since the 
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emission factors are invariant in time, the standard deviation of the emissions will naturally be larger over regions with a 

higher emission factor as this acts to inflate the variability applied by the parameters used to calculate the activity. Similarly, 

LAI can vary quite significantly in some regions and where this is co-located with higher emission factors, this can lead to 515 

LAI having an important role in modulating emissions, e.g., over France, the Carpathian Mountains, Dinaric Alps, and the 

Caucasus. 

 

Figure 7. Maps of the MEGAN3.0 EFP isoprene emission factors in units of nano moles m-2 s-1 (top left), the LAI gamma in units of 

m-2.m-2 (top right), the soil moisture gamma (unitless) (bottom left), and the temperature-radiation gamma in the bottom right. 520 

In addition to analysing the standard deviation of the gamma parameters and emissions, we also analyse the correlation of 

the emissions to the different gamma parameters over different temporal timescales (yearly, monthly, daily, and hourly). We 

calculate the correlation in time at each grid cell of the soil moisture gamma, the temperature-radiation gamma, and LAI to 

the isoprene emissions calculated by MEGAN3.0. Thus, for each spatial grid cell and each pair of variables we derived three 
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different R2 values for each of the four selected timescales we averaged over. In order to support the interpretation of the 525 

inter-annual variability in isoprene represented in Figure 5 and Figure 6 we first analyse the correlation between isoprene 

emissions and the most influential gamma parameters over a yearly timescale and present these results in Figure 8. Within 

Figure 8, we represent the different R2 values for each grid cell as a series of statistical distributions using violin plots. These 

plots show that the correlation between the isoprene emissions and the different gamma parameters is largest, both in terms 

of being positive and magnitude (median of ~0.75 R2), for LAI. This suggests that LAI is the dominant driver of isoprene 530 

emission inter-annual variability within our modelling framework. It also further highlights the advantage of taking an Earth 

system approach by coupling dynamic vegetation modelling to BVOC emission modelling. The two remaining gamma 

parameters, i.e., the soil moisture and radiation-temperature gammas, have much lower median correlation to the emissions 

on a yearly timescale. Indeed, at times both show significant negative correlations. Even though the soil moisture gamma 

shows slightly higher overall correlation to the emissions, this difference probably has little physical meaning. Despite both 535 

the soil moisture and radiation-temperature gammas showing low median correlations and some negative correlations, there 

are still grid cells that show large positive correlation for both parameters indicating that these parameters play a role within 

some specific regions.  

 

Figure 8. Violin plots showing the statistical distribution of R2 correlation values between different activity parameters and the 540 
isoprene emissions calculated on a per grid cell basis averaged on an annual basis for each year from 2018-2022. The radiation-

temperature gamma (GAMTP) is shown in dark green, the soil moisture gamma (GAMSM) in light blue, and LAI in  turquoise. 

The pink horizontal bar in each plot represents the median R2 value. 
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Figure 9. Maps of monthly mean isoprene emissions (units of kg.m-2.s-1) calculated using the SURFEX-MEGAN3.0 algorithms and 545 
averaged over 2018-2022 using the open-loop configuration of SURFEX. The colour bars indicate increasing mean isoprene 

emissions as the colours transition from pale yellow to dark green. Note that the colour bar has a quasi-logarithmic scale. The 

monthly total mass of isoprene emissions (units of Tg) are shown above each plot. 
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 550 

Figure 10. Violin plots showing the statistical distribution of R2 correlation values between different activity parameters and the 

isoprene emissions calculated on a per grid cell basis over different averaging periods (monthly in plot (a), daily in plot (b), and 

hourly in plot (c)) for each year from 2018-2022. The radiation-temperature gamma (GAMTP) is shown in dark green, the soil 

moisture gamma (GAMSM) in light blue, and LAI in turquoise. The pink horizontal bar in each plot represents the median R2 

value. 555 

We now examine the monthly and seasonal variability in the isoprene emissions. For this purpose, we present the monthly 

mean emissions from the OL-based dataset averaged over the 2018-2022 time period. This way we avoid presenting single 
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years that can be affected by extremes in meteorology that lead to large increases or changes in isoprene emissions. For 

reference, however, the monthly means for all five years are presented in the supplement. 

The monthly mean isoprene emissions over the CAMS European domain are shown in Figure 9. First and foremost, we see 560 

the combined effects of the growing season, leading to changes in leaf area, and the annual cycle of sunlight and temperature 

during the year in this plot, with emissions at a minimum in the winter months and maximum in the summer months. Not 

only are the effects of the growing season visible from month to month, but we also see the progression of the growing 

season geographically. More southern regions have a growing season that starts earlier in the year compared to northern 

regions, but southern regions also show signs of reduced vegetation activity during summer as temperatures increase beyond 565 

optimal growing conditions. Similarly, western regions with milder maritime climates have increased emissions in the late 

winter and early spring compared to areas of eastern Europe with harsher continental-type winter conditions. Furthermore, 

the emissions peak in regions with higher densities of forest and thus emitting species and that coincide with regions with 

high levels of LAI (see Figure 7). 

There is a clear pattern presented in Figure 10 showing how the different MEGAN activity parameters drive variability in the 570 

emissions over different timescales. According to Figure 10(a), the monthly variability in emissions is driven by variability 

in the radiation-temperature gamma and LAI, with radiation-temperature being the dominant of the two parameters 

influencing isoprene emissions. At the shorter timescales, i.e., daily and hourly shown in Figure 10(b) and Figure 10(c), 

respectively, the radiation-temperature gamma increasingly dominates the variability in isoprene emissions compared to the 

other two parameters. Indeed, the correlation of the radiation-temperature gamma to emissions actually increases as the 575 

timescale shortens while the correlation of LAI to the emissions decreases markedly from monthly to hourly timescales. 

Figure 10 also shows that there is a remarkable consistency of the correlations of each parameter across each year that the 

dataset covers, i.e., 2018-2022. Indeed, there are only small variations in the median R2 value across each year for each 

parameter and for each timescale. Furthermore, the shape of the distribution of the R2 values for the radiation-temperature 

gamma is very consistent over all timescales and years. The R2 values for LAI and the soil moisture gamma do differ, 580 

however, in this regard with each pairing of year and timescale displaying markedly different distribution from each other. 

The distribution of the R2 of the soil moisture gamma varies widely, which is indicative of the varying influence this 

parameter has on controlling isoprene emissions. 

We now examine the variability in the simulated isoprene emissions during the summer of 2019. We select data from 2019 

to study and evaluate because 2019 presented some extreme and unseasonably hot conditions during the early summer that 585 

led to very large isoprene emissions. The results for the monthly mean isoprene emissions for the summer of 2019 are 

presented in Figure 11 covering the June, July, and August period along with the monthly mean LAI from the SURFEX 

open-loop simulation. Later in the summer, hot, dry weather caused the dynamic vegetation scheme within SURFEX to 

simulate strong reductions in leaf cover that led to reduced isoprene emissions. Indeed, isoprene emissions in 2019 peaked in 

June according to the SURFEX-MEGAN3.0 dataset, which makes 2019 unique among the five-year dataset since normally 590 

emissions peak in July within these data. Thus, 2019 presents an example of the impact extreme weather can have on 
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isoprene emissions via its effect on vegetation represented by the dynamic vegetation scheme. Visible within the maps, there 

are sharp declines in isoprene emissions within specific areas of Europe over this period, which can also be seen in the total 

emitted isoprene mass. To further investigate this link, we plot the temporal correlations (on a daily-averaged timescale) of 

the isoprene emissions to LAI over this time period in Figure 12. Figure 12 (a) shows large areas of Europe with high 595 

correlation between LAI and the isoprene emissions, and it is possible to see that some of the areas with high correlation 

correspond to areas with large declines in LAI from June to August in Figure 11. Furthermore, Figure 12 (b) shows the 

correlation between LAI and isoprene emissions only in areas where the LAI declined from June to August, and it is possible 

to see that the application of this mask to the dataset removed most of the areas with negative correlation between LAI and 

isoprene emissions. This evidence strongly suggests that the decline in LAI, which is driven by drought and heat stress on 600 

plants, is an important causative agent behind the reductions in isoprene emissions in the data during the summer of 2019. 

 

 

Figure 11. Maps of monthly mean isoprene emissions (units of kg.m-2.s-1) calculated using the SURFEX-MEGAN3.0 algorithms 

using the LAI analysis configuration of SURFEX (top-row) and LAI (units m-2 m-2) calculated by SURFEX in the open-loop 605 
configuration over the period June to August 2019. The panels sequentially show the monthly means for June, July, and August. 

The top row colour bars indicate increasing mean isoprene emissions as the colours transition from pale yellow to dark green. The 

bottom-row colour bars show increasing mean LAI as the colours transition from dark blue to yellow. The annual total mass of 

isoprene emissions (units of Tg) are shown above each plot in the top-row and the differences in annual total mass of isoprene 

emissions are shown above each plot in the top-row. 610 
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Figure 12. Maps of the correlation between LAI and the daily mean isoprene emissions over the CAMS European domain for the 615 
June to August 2019 time period. The left-hand panel shows the correlations for all grid cells within Europe while the right-hand 

panel shows the correlations only in locations where the LAI decreased between June 1st and August 31st. The colour bar shows 

green areas where the correlation was positive while the red areas shows where the correlation was negative. 

This analysis proves that modelling the vegetation dynamically for MEGAN3.0 has a direct impact on the isoprene 

emissions it calculates during drought and heatwave conditions. This approach moves beyond using either a climatology or 620 

more simplistic phenological model to calculate LAI. Furthermore, since we have established the skill of the LAI simulation 

within prior discussions in Sect. 3.1, we can have some confidence that the representation of these changes in LAI and the 

consequent declines in isoprene are realistic. 

3.2.2 Impact of LAI data assimilation 

We next evaluate the impact that the LAI data assimilation step has on the estimation of isoprene emissions within the 625 

SURFEX-MEGAN3.0 system. The LAI assimilation analysis data from SURFEX is based on the data assimilation of LAI 

satellite observations. Suitable satellite observations were only available during the 2018-2020 period, so the evaluation of 

the use of the LAI analysis dataset only covers this 3-year period. Prior to analysing the effect of the LAI data assimilation 

step on isoprene emissions, we first evaluate the effect on LAI itself of performing the data assimilation step.  

To evaluate the effect of the assimilation we plot in Figure 13 the annual mean LAI analysis minus OL LAI difference for 630 

the three years (2018-2020) when we have coverage of both datasets. We can see that the LAI analysis is consistently higher 

than the OL over France, the UK, and Ireland and consistently lower over northern Italy, areas of the Iberian Peninsula, and 

eastern Europe. The absolute differences in LAI between the two datasets peak at around 0.4 m-2.m-2 over these highlighted 

regions and the absolute differences generally stay below 0.2 m-2.m-2. The difference between the analysis and OL calculated 

relative to the LAI analysis similarly shows peaks of ~40% (both positive and negative) over specific regions (e.g., regions 635 

of Spain, Italy, north Africa, and the Middle East) across the three years when these datasets are compared. Of the three 

years, 2019 is the year with the lowest relative differences and 2020 shows the largest relative differences. 

We briefly discuss a further implication of this evaluation of the LAI data assimilation step. We can consider that the LAI 

assimilation step provides an indirect evaluation of the free-running model LAI from the OL simulation. This is because the 
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LAI data assimilation step corrects the OL LAI simulation in regions where the OL model minus observations errors are 640 

large, which in turn leads to larger assimilation increments (either positive or negative) in these locations. Conversely, in 

areas where the increments are low, we can determine that the OL LAI estimates are already in closer agreement with the 

satellite observations of LAI.  

 

Figure 13. Maps of the absolute and relative difference in annual mean LAI (units of m-2.m-2) between the LAI analysis minus the 645 
open-loop configurations over the period 2018-2020. The panels show each year over this time period moving sequentially from 

2018 to 2022 from left to right. The colour bar indicates the difference in annual mean LAI between the LAI-analysis and open-

loop configurations with red colours indicating larger annual mean open-loop LAI and green indicating larger LAI-analysis based 

LAI. The difference in annual mean LAI is shown above each plot. 

Next, we analyse the impact that the LAI data assimilation has on the isoprene emissions both on an annual and monthly 650 

average basis. Our aim here is to directly evaluate the differences between the two emissions datasets (OL-based emissions 

and LAI-analysis based emissions) presented in this study. We first look at the annual averages and the results of this 

comparison are presented in Figure 14. We have already presented the OL-based emissions in Sect. 3.2.1, so we only show 

the annual averages of the analysis-based emission data for 2018-2020 in Figure 14 along with the analysis minus OL   

differences and the percentage difference in isoprene emissions between the two datasets. The annual average isoprene 655 

emission total calculated from the analysis-based emissions (calculated over 3 years 2018-2020) is 7.19 Tg yr-1 with a 

standard deviation of 0.40 Tg yr-1. Note that the average annual emitted isoprene from the OL-based emissions over this 

https://doi.org/10.5194/essd-2025-442
Preprint. Discussion started: 2 October 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

 

same time period were 7.14 Tg yr-1 with a standard deviation of 0.44 Tg yr-1. We identify four main findings from the 

analysis of these data. First, the impact of the data assimilation upon the overall annual emission totals is relatively small as 

we can see from the differences noted above the plots in the second row of Figure 14. Second, while the impact on the sum 660 

of the emissions is minimal at continental scale (noting the annual average difference in emission totals), we see much 

stronger variations in the emissions within specific regions, e.g., the Iberian Peninsula in 2018, northern Italy, north Africa, 

and Croatia in 2020. Third, when we look at the percentage differences between the OL- and analysis-based datasets, we can 

see regions with large relative differences. Finally, the CANMET routine in MEGAN3.0 calculates the penetration of solar 

radiation through the vertical column of the canopy, and it can be considered that as LAI increases above 3 m-2.m-2 (see 665 

Figure 11 for reference), solar radiation becomes significantly attenuated within the canopy. As such, increases in LAI 

beyond this threshold do not lead to large increases in isoprene emissions. This means that regions with lower levels of LAI 

(i.e., < 3 m-2.m-2) are more sensitive to changes in LAI that result from the assimilation step. The effects of this are visible, 

for example, areas of the Iberian Peninsula and north Africa during 2018 and in northern Italy from 2018-2020. 
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 670 

Figure 14. Maps of annual mean isoprene emissions (units of kg.m-2.s-1) calculated using the SURFEX-MEGAN3.0 LAI analysis 

configuration of SURFEX (top-row), the difference between the LAI analysis minus the open-loop configurations (middle-row), 

and the percentage difference between the LAI analysis minus open-loop over the period 2018-2020. The panels show each year 

over this time period moving sequentially from 2018 to 2020 from left to right. The top-row colour bars indicate increasing mean 

isoprene emissions as the colours transition from pale yellow to dark green. The middle-row colour bars indicate the difference in 675 
annual mean isoprene emissions between the LAI-analysis and open-loop configurations with red colours indicating larger annual 

mean open-loop emissions and green indicating larger LAI-analysis based emissions. The bottom-row colour bar indicates the 

percentage difference in mean annual isoprene emissions between the LAI-analysis and open-loop with green indicating larger 

LAI-analysis based emissions and red indicating larger open-loop based emissions. The annual total mass of isoprene emissions 

(units of Tg) are shown above each plot in the top-row and the differences in annual total mass of isoprene emissions are shown 680 
above each plot in the middle-row. 
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We present the absolute monthly mean differences in analysis- and OL-based isoprene emissions averaged over the 2018-

2020 time period in Figure 15. When we analyse the impacts of the LAI assimilation on a monthly average basis, the 

absolute differences in isoprene emissions visible at regional scale resulting from the LAI data assimilation are larger than 

those seen in the annual averages (Figure 14). Note that we have plotted the monthly mean analysis-based isoprene 685 

emissions averaged over 2018-2020 and these are shown in the supplement. In addition, the monthly mean emissions for the 

assimilation analysis are also plotted for each year and shown in the supplement.  

The magnitude of the absolute differences between the analysis- and OL-based emissions shown in Figure 15Figure 15 

follows the growing cycle such that the size of the difference in emissions peaks when the emissions are at their highest for 

May through August. There are a few notable differences in emissions between the OL- and analysis-based emissions. First, 690 

the analysis-based emissions are larger in central and eastern Europe in April and May. Second, the picture becomes more 

complex in June, while Russia and the areas of higher altitude woodland across Europe (Carpathian mountains, Jura, Dinaric 

Alps, and Black Forest) show increased emissions in the analysis, areas of France, Turkey, the Iberian Peninsula, and north 

Africa show lower emissions compared to the OL. Lastly, in July and August, the OL emissions are larger than the analysis-

based emissions over most of Europe, with France and Germany showing the largest differences between the two datasets.  695 
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Figure 15. Maps of monthly mean (units of kg.m-2.s-1) difference in isoprene emissions between the LAI analysis minus the open-

loop configurations averaged over 2018 to 2020. The panels show each month during 2019 moving sequentially from January to 

December first from left to right and then from top to bottom. The colour bars indicate the difference in monthly mean isoprene 700 
emissions between the LAI-analysis and open-loop configurations with red colours indicating larger monthly mean open-loop 

emissions and green indicating larger LAI-analysis based emissions. The monthly total mass difference of isoprene emissions (units 

of Tg) are shown above each plot.  
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 705 

3.3 Comparison of SURFEX-MEGAN BVOC emissions with other datasets 

We now perform an evaluation of the two BVOC emission datasets presented in this study. We perform this evaluation in 

two different ways. First, we evaluate the isoprene emission datasets against in-situ observations of isoprene from 

monitoring sites across Europe. And the second, we evaluate the isoprene emissions with respect to other emission datasets.  

3.3.1 Evaluation using in-situ observations 710 

We now evaluate the isoprene emissions using in-situ observations of isoprene concentrations obtained using the online gas-

chromatograph (GC) technique. Note that we have excluded observations from other observation techniques, e.g., adsorption 

tube and canister sampling combined with the offline GC technique due to known issues involving systematic biases with 

observations obtained using these methods (Plass-Dülmer et al., 2006). In addition, these other observation techniques offer 

lower time resolution and sometimes do not provide continuous sampling. The emissions are extracted for the geographical 715 

location of the in-situ observations for this comparison. Since we are not comparing like with like, we cannot perform a 

direct evaluation of the absolute values, and so we focus on performing an analysis of the temporal correlation between the 

emissions and ambient isoprene concentrations. To facilitate this comparison, we normalise the emissions and isoprene 

concentrations onto a common scale running from 0 to 1. This allows us to carry out an evaluation of the temporal variability 

of the emissions and to derive the temporal correlation in terms of R2 between the simulated emissions and observations. We 720 

perform this analysis each year over the period 1st April though to 1st October. Although limiting the evaluation time period 

to the approximate duration of the growing season reduces the overall quality of the correlations leading to reduced R2 

scores, this mostly arises due to the removal of lower observed isoprene concentrations and emissions that occur during the 

wintertime. Including the lower values of both concentrations and emissions out of the growing season artificially boosts the 

scores. However, our objective here is to evaluate the higher temporal frequency of the day-to-day correlations. We also 725 

filter the data to remove all cases where the observations lay below the limit of detection (LOD). In addition, we remove data 

for particular years, for sites where there was either a lack of data, or there were apparent issues with the quality of the 

observations, i.e., large populations of data points near to the instrument LOD showing apparent systematic bias. The years 

we exclude are noted in relation to the compiled statistics shown in Table 4. Furthermore, we also excluded observations 

from very polluted urban sites in London, Paris, and Marseille due to concerns about contributions to ambient isoprene 730 

concentrations from anthropogenic sources (Khan et al., 2018). 

We calculated the daily mean emissions from both emission datasets and daily mean isoprene concentrations at the location 

of each observation site. We then calculated the Pearson correlation coefficients between the emission-observation pairings 

for each year and site. We collate all the correlation coefficients for each site, and for each year of the dataset, and present 

them in Table 4. 735 
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Table 4. Correlation coefficients showing the correlation in time between daily mean isoprene emissions and daily mean isoprene 

concentrations calculated for a variety of monitoring sites across Europe. We calculate the correlation coefficients individually for 

each year for the OL (2018-2022 shown as O) and for the analysis (2018-2020 shown as A). The monitoring sites are distributed 

across France, the UK, Switzerland, Germany, and Finland. The stations Feyzin Stade, Vernaison, Eltham, Chilbolton, 

Auchencorth, Beromünster Hohenpeissenberg, and Pallas are represented by the following three-letter acronyms, respectively, 740 
FEY, VER, ELT, CHI, AUC, BER, HOH, and PAL. 

 France United Kingdom Switzerland Germany Finland 

Year FEY VER ELT AUC BER ZÜR HOH PAL 

 O A O A O A O A O A O A O A O A 

2018 0.56 0.54 0.73 0.72 0.36 0.26 0.80 0.80 0.80  -  0.79 0.80 0.76 0.75 

2019 0.74 0.73 0.81 0.80 0.85 0.81 ++  0.83  -  0.81 0.81 0.70 0.70 

2020 0.63 0.66 0.63 0.65 0.51 0.44 0.72 0.72 0.72  -  0.88 0.88 0.39 0.38 

2021 0.72 - 0.88 - 0.87 - ++ - 0.78 - - - 0.81 -  - 

2022 0.36 - 0.63 - 0.17 - ++ - 0.64 - 0.89 - 0.76 -  - 

The correlations shown in Table 4 show that in general the isoprene emissions correlate with the observed isoprene 

concentrations at a moderate to strong level (22 cases of strong correlation > 0.7 R2, 7 cases of moderate correlation > 0.4 R2, 

and only 4 cases of weak correlation < 0.4 R2). The weakest correlations only occur at FEY in 2022, at ELT for 2018 and 

2022, and at PAL in 2021. The ELT site is an urban background site located inside Greater London, so it is possible it is 745 

partially affected by anthropogenic sources of isoprene. In this case of the ELT, the poor correlations could be due to its 

proximity to London and therefore might experience influence from anthropogenic sources of isoprene (Khan et al., 2018). 

Note that the R2 scores indicate there is no consistent improvement in the analysis emissions relative to the open-loop 

emissions. There are instances (both specific years and locations) where the analysis has both higher and lower correlation 

than the open-loop but overall there is not a strong indication either way which has consistently better correlation. This is in 750 

spite of the fact that the LAI analysis shows higher correlation with the independent TROPOMI SIF observations than the 

open-loop (see Sect. 3.1). 

Overall, this evaluation shows that the two isoprene emission datasets are able to capture the temporal variability of 

emissions on daily timescales. This is encouraging given that this comparison compares emissions to concentrations and 

there are several likely sources of error that would obfuscate such a comparison. First, there is the issue of the 755 

representativity of the 0.1 × 0.1 grid scale to the observation sites, which is important because of isoprene’s very short 

lifetime. Second, isoprene’s ambient concentration can also be affected by the abundance of its sinks, the hydroxyl radical, 

the nitrate radical, and ozone, which are ignored when only looking at the emissions. Lastly, other meteorological effects 

such as wind, turbulence, boundary layer height, and isoprene lifetime are implicitly ignored in this comparison. For 

instance, higher wind speeds and/or boundary layer heights would lead to lower ambient isoprene concentrations for the 760 

same emission source strength. The weak to moderate correlations found at some sites and for some years imply that further 
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study is required to further understand and interpret the potential sources of model error underpinning the poor performance 

of our datasets in these cases. 

3.3.2 Evaluation using other emission datasets 

A primary motivation of this work was to develop two BVOC datasets that could be used to support the study of European 765 

air quality specifically in relation to CAMS. We therefore perform an evaluation of the SURFEX-MEGAN3.0 emission 

datasets by comparing them to the MEGAN-MACC (Sindelarova et al., 2014) and CAMS-GLOB-BIO (Sindelarova et al., 

2022) BVOC emission datasets that were developed within the frame of CAMS. Furthermore, these datasets have received 

recent attention and represent the current state of the art in terms of emission modelling for Europe using MEGAN. In the 

case of the CAMS-GLOB-BIO emissions, we include a comparison with the v1.2, v3.0, and v3.1 versions of this dataset.  770 

A timeseries of the monthly mean isoprene emissions for each of these datasets is calculated over the CAMS European 

domain and plotted in Figure 16. In addition, in Table 5, we present a compilation of the annual emission totals for isoprene 

for each dataset and each year they are available. According to these comparisons, the MEGAN-MACC emission inventory 

is the dataset with the highest overall emissions over the period 2018-2020 over the CAMS domain. Meanwhile, the two 

SURFEX-MEGAN3.0 emission datasets are very similar to one another, and it is possible to see only minor differences 775 

during the periods with the highest isoprene emissions in the summertime. The SURFEX-MEGAN3.0 datasets are also very 

similar to the CAMS-GLOB-BIOv1.2 dataset, which appears to be coincidental given the large difference in input data and 

MEGAN model version used (i.e., version 2.1 in the case of CAMS-GLOB-BIOv1.2). On the other hand, both the CAMS-

GLOB-BIOv3.0 and CAMS-GLOB-BIOv3.1 dataset emissions are both lower overall compared to the SURFEX-

MEGAN3.0 datasets. 780 

Aside from differences in the absolute magnitude of the emissions, Figure 16 shows that the different datasets also have 

different seasonalities from each other. The SURFEX-MEGAN3.0 and the CAMS-GLOB-BIOv3.1 represent the two most 

contrasting emission datasets in terms of seasonality. Out of all of the emission datasets, the SURFEX-MEGAN3.0 

emissions consistently peaks earliest in the summer season (i.e., June to July) while the CAMS-GLOB-BIOv3.1 always peak 

the latest in the summer season (i.e., July to August). 785 

We only have this comparison for the 2018-2019 period for v3.0, and the 2018-July 2019 period for v1.2, but both of these 

two CAMS-GLOB-BIO datasets show a similar month-to-month variability to that of the SURFEX-MEGAN3.0 datasets, 

i.e., peaks in emissions towards the early part of summer on average. Although both datasets do show a more prolonged peak 

lasting into July in 2019. Meanwhile, the MEGAN-MACC emissions show their highest peak in emissions in June during 

2018 and during July during 2019 and 2020 placing it overall somewhat between the SURFEX-MEGAN3.0 and CAMS-790 

GLOB_BIOv3.1 emissions. 

We have evaluated the underlying causes of the differences in seasonality highlighted between the different emission 

datasets. This evaluation included analysing the different meteorological datasets and their effects on the GAMMATP 

variable (influenced by temperature and solar radiation), LAI, and the effect of soil moisture upon the SURFEX-MEGAN3.0 

https://doi.org/10.5194/essd-2025-442
Preprint. Discussion started: 2 October 2025
c© Author(s) 2025. CC BY 4.0 License.



36 

 

emissions (note that the other isoprene emissions in this example do not consider soil moisture effects). This evaluation 795 

revealed that in general the LAI datasets (based on Yuan et al., 2011) used to calculate the monthly emission factors in the 

CAMS-GLOB_BIOv3.1 emissions tend to peak later in the summer than the LAI calculated by SURFEX. Furthermore, the 

CAMS-GLOB-BIOv3.1 emissions used a climatological mean of LAI derived from MODIS (Sindelarova et al., 2022; Yuan 

et al., 2011) to calculate the LAI used with the MEGAN activity factor calculations. As a result, in years where SURFEX 

estimated particularly extreme deviations in LAI from the historical climatology with an early peak in LAI, e.g., 2019, the 800 

divergent effect on the emission seasonality is even greater. In terms of the overall magnitude, the annual mean of the 

SURFEX assimilation analysis LAI over the European domain was 1.12 m-2.m-2, 1.15 m-2.m-2, and 1.18 m-2.m-2 in the years 

2018, 2019, and 2020, respectively, compared to the mean of the climatological LAI of 1.00 m-2.m-2 from Yuan et al. (2011) 

used by CAMS-GLOB-BIOv3.1. The annual mean LAIs from the OL for 2021 and 2022 were 1.24 m-2.m-2 and 1.17 m-2.m-2, 

respectively. Thus, this indicates that the magnitude of the SURFEX LAI is slightly higher than that used by CAMS-GLOB-805 

BIOv3.1 

Figure 16. A time series of the monthly mean total emitted isoprene over the 2018-2022 period as calculated the SURFEX-

MEGAN3.0 OL (green solid), SURFEX-MEGAN3.0 Analysis (black dot-dash), MEGAN-MACC (blue dash), CAMS-GLOB-

BIOv1.2 (orange solid), CAMS-GLOB-BIOv3.0 (purple dash), and CAMS-GLOB-BIOv3.1 (red dash), emission inventories. The 810 
units of the isoprene emission totals are in Tg. The SURFEX-MEGAN3.0 OL and CAMS-GLOB-BIOv3.1 emission inventories are 

available over the full time period of 2018-2022, while the SURFEX-MEGAN3.0 Analysis and MEGAN-MACC emissions are only 

available over the period 2018-2020, the CAMS-GLOB-BIOv1.2 are only available 2018-July 2019, and the CAMS-GLOB-

BIOv3.0 are only available 2018-2019. 

Overall, this evaluation shows that the magnitude of the total isoprene emissions within the CAMS European domain of 815 

SURFEX-MEGAN3.0 emissions falls well within the bounds set by existing isoprene emission inventories. Indeed, both 

datasets fall within the upper and lower bounds set by the most recent published isoprene emission datasets published in 

association with the MACC and CAMS projects. There are some notable differences from other datasets in terms of the 

seasonal variability. Further study and evaluation will be required to determine if this difference represents a realistic 
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seasonal variability. The evaluation performed in Sect. 3.3.1 provides some support for the variability represented in both the 820 

OL and analysis-based datasets. 

Table 5. Annual total emitted isoprene in Tg over the CAMS European modelling domain as determined by the SURFEX-

MEGAN3.0 OL, SURFEX-MEGAN3.0 Analysis, CAMS-GLOB-BIOv3.1, and SUMO emission inventories. The emission datasets 

are available over different time periods. The SURFEX-MEGAN3.0 OL and CAMS-GLOB-BIOv3.1 emission inventories are 

available over the full tie period of 2018-2022, while the SURFEX-MEGAN3.0 Analysis emissions are only available over the 825 
period 2018-2020. These annual emission totals are calculated from 1st January to 31st December in all cases except for CAMS-

GLOB-BIOv1.2 that for 2019 were calculated January through to July. 

Year SURFEX-

MEGAN3.0 OL 

SURFEX-

MEGAN3.0 

Analysis 

MEGAN-

MACC 

CAMS-

GLOB-

BIOv1.2 

CAMS-

GLOB-

BIOv3.0 

CAMS-GLOB-

BIOv3.1 

2018 7.70 7.71 10.81 7.27 4.94 4.67 

2019 7.01 7.07 10.92 4.67* 4.63 4.61 

2020 6.84 6.91 10.87   4.70 

2021 7.50     4.72 

2022 7.15     5.14 

*Only calculated over January through to July 2019 

We quickly discuss the magnitude of the global isoprene emissions from the MEGAN-MACC and CAMS-GLOB-BIO 

datasets. In the case of MEGAN-MACC, the global BVOC emissions were estimated to be 760 Tg (C) yr-1 with 70% of this 830 

carbon mass from isoprene (602.9 Tg (isoprene) yr-1) over the 30-year period from 1980 to 2010 that was studied. In the case 

of CAMS-GLOB-BIO four estimates were made ranging between 424 and 591 Tg (C) yr-1 (299.1 to 440.5 Tg (isoprene) yr-

1), with CAMS-GLOB-BIOv3.1 being the recommended data set according to the authors (591 Tg (C) yr-1 and 440.5 Tg 

(isoprene) yr-1). Overall, the emission totals calculated over the CAMS European domain and presented in Table 5 represent 

only a small fraction of the global emission totals. 835 

4 Data Availability 

Both of the isoprene emission datasets are available as hourly means at a spatial resolution of 0.1 × 0.1 over the CAMS 

European domain. The data can be accessed from the SEEDS project data portal (https://www.seedsproject.eu/data, last 

access: 17 July 2025) and are available in Zarr format or can alternatively be downloaded in netcdf format using a short 

python script by following the instructions provided. The other compounds (including isoprene again) are available on the 840 

Harvard Dataverse inside the dataverse for the SEEDS project (https://dataverse.harvard.edu/dataverse/Horizon-SEEDS-

project, last access: 17 July 2025). Two different datasets were created within the SEEDS dataverse, one each for the 

analysis (Hamer et al., 2025a) and OL (Hamer et al., 2025b) (https://doi.org/10.7910/DVN/LAUVTU and 

https://doi.org/10.7910/DVN/69G1FX, respectively, last access: 17 July 2025).  
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5 Conclusions 845 

We have presented two new datasets of BVOC emission inventories that cover the CAMS European domain that are both 

publicly available and ready for use in applications related to the study of European scale air quality. As per this intention, 

both datasets were produced at a spatial resolution of 0.1 × 0.1 exactly matching the spatial domain utilised by the CAMS 

European regional forecast and analyses. The datasets were produced within the framework of the EU’s SEEDS project and 

are called SURFEX-MEGAN3.0 OL and SURFEX-MEGAN3.0 analysis. The OL dataset is available over a five-year period 850 

from 2018-2022 and the analysis dataset is available over the three-year period 2018-2020.  

Another motivation for the production of this new dataset was to address key uncertainties in BVOC emission modelling 

arising from representation of vegetation phenology and to move towards an Earth-systems approach allowing feedbacks and 

interactions between meteorology/climate, vegetation, and atmospheric composition. To this end, we applied a methodology 

based on using a land surface model capable of dynamic vegetation modelling that responds to an externally applied 855 

meteorological forcing. To further address uncertainties in the simulation of vegetation phenology, the land surface model is 

further supported by data assimilation of satellite observations of LAI to create an assimilation analysis, which forms the 

basis of the analysis emission dataset. In addition, we also used the most recent version (at the beginning of the study) of 

MEGAN3.0. 

Since we used SURFEX land surface model within the MEGAN3.0 production chain, we perform an evaluation of the key 860 

variables estimated by SURFEX that are used within MEGAN3.0. We evaluated both LAI and RZSM. In the case of LAI, 

we use observations of SIF from the TROPOMI satellite to establish that the SURFEX LAI datasets have good skill over the 

main body of Europe, the UK, Italy, Ireland, southern Sweden and into eastern Europe as well and that the analysis for LAI 

had improved correlation to SIF compared to the OL. The RZSM was evaluated against in-situ observations in south-western 

France and was shown to have strong year-round correlation and moderate correlation during the summertime. The RZSM 865 

analysis performed better than the RZSM OL. 

Analysis of the OL emission dataset over the 5-year period 2018-2022 shows that the average annual isoprene emissions 

were 7.20 Tg yr-1 and had a standard deviation of 0.28 Tg yr-1. The difference between the year with the largest (2018) and 

smallest (2020) emissions was equivalent to 11.4% of the average annual emission. The analysis-based average (calculated 

over 3 years 2018-2020) is 7.19 Tg yr-1 with a standard deviation of 0.40 Tg yr-1. Note that the average of the OL-based 870 

emissions over this same time period was 7.14 Tg yr-1 with a standard deviation of 0.44 Tg yr-1. The areas with the highest 

inter-annual variability correspond to areas of large standing woodland with the densest levels of emitting plant species. 

Analysis showed that this variability is induced by (listed with decreasing importance) variability in LAI, meteorology 

(temperature and radiation), and RZSM. LAI had the consistently highest correlation with isoprene emissions on the inter-

annual timescale indicating the important role that variations in vegetation and any induced effects by meteorology (e.g., 875 

affecting the growing season and drought) can play.  
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Analysis of the monthly variations in the OL dataset averaged over the 5-year period 2018-2022 show that monthly isoprene 

emissions follow the development of the growing season within different climatic zones. Isoprene emissions peak during the 

summer period (June through August) and are highest on average in July. An analysis of the underlying factors (listed in 

decreasing importance) driving the monthly variability showed that meteorology (temperature and radiation), LAI, and 880 

RSZM impacted the changes in isoprene emissions. This finding was reproduced consistently for all five years in the OL 

dataset. The importance of situations where extreme meteorological conditions can impact vegetation were highlighted in the 

context of the summer of 2019. Here, it was shown that reductions in LAI driven by extreme heat and drought led to 

decreased isoprene emissions in the month of July compared to June of that same year. 

The evaluations and analysis performed on these datasets at annual and monthly timescales highlights the importance of 885 

including a dynamic representation of vegetation by using a land surface model in the MEGAN emission production chain. 

Furthermore, this highlights the potential advantages of an Earth system approach to BVOC emission modelling. 

Performing the LAI data assimilation step does not impact the average annual LAI levels or the total magnitude of isoprene 

emissions at the continental scale to a significant degree either on monthly or annual timescales. However, larger absolute 

and relative variations in emissions and LAI do occur when looking at smaller spatial scales. The impact of the LAI data 890 

assimilation step is largest during the summertime.  

We evaluate the temporal (daily) correlation of isoprene emissions with in-situ observations of isoprene concentrations from 

8 sites across Europe. We find that both the OL and analysis datasets have moderate (> 0.4 R2) to strong (> 0.7 R2) temporal 

correlation with the in-situ observations for the majority of years and sites analysed with only 4 cases (site-year parings) 

showing weak (< 0.4 R2) correlation. This indicates that, overall, this method has good skill at estimating the temporal 895 

variability in the emissions. No overall strong difference between the skill of the OL and analysis datasets was found when 

the emissions were evaluated in this manner using in-situ observations. 

Compared to other isoprene emission datasets produced within the frame of MACC and CAMS, the two SURFEX-

MEGAN3.0 datasets estimate emission totals lie between the minimum (CAMS-GLOB-BIOv3.1) and maximum (MEGAN-

MACC) estimates in isoprene emissions over the CAMS European domain for the 2018-2020 time period. Indeed, the 900 

SURFEX-MEGAN3.0 isoprene emissions were very similar in magnitude to the CAMS-GLOB-BIOv1.2 isoprene 

emissions. We did note large differences in the seasonality of the different datasets whereby the SURFEX-MEGAN3.0, 

CAMS-GLOB-BIOv1.2, and CAMS-GLOB-BIOv3.0 emissions peaked earlier in summer, the MEGAN-MACC emissions 

peaked in the middle of summer, and the CAMS-GLOB-BIOv3.1 emissions peaked the latest in summer. An investigation 

showed that the differences between the earliest (SURFEX-MEGAN3.0) and latest peaking emissions (CAMS-GLOB-905 

BIOv3.1) were due to differences in the seasonality of the LAI datasets used in the two different approaches whereby the 

LAI estimated by the SURFEX OL and analysis tended to peak earlier than the MODIS based LAI used for CAMS-GLOB-

BIOv3.1 (Sindelarova et al., 2022; Yuan et al., 2011). These differences lead to substantial differences between these two 

emission datasets when compared on a month-by-month basis like this and it highlights the importance of our approach 

attempting to improve the temporal variability of LAI datasets used in the MEGAN algorithm. Indeed, Guenther et al., 2006 910 
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identify that uncertainties in LAI input data could impact global, annual isoprene emissions from -11% to 29%, but we see 

much larger relative differences between the SURFEX-MEGAN3 and CAMS-GLOB-BIOv3.1 emissions over Europe when 

compared on a month-to-month basis. Future work aimed at further intercomparisons of LAI input datasets would be 

valuable to support further advancement on this topic. 

Guenther et al. (2006) and Sindelarova et al. (2022) point to other sources of uncertainty that we do not directly address in 915 

this work, which include mapping and consistency of plant functional types (PFTs) and the manner in which the impacts of 

soil moisture and drought are treated within the MEGAN algorithm. Addressing these uncertainties in future work will be a 

priority in order to further improve the quality of emissions produced using the SURFEX-MEGAN algorithm. Indeed, the 

work of Oumami et al. (2024) already highlights the advantage of harmonizing PFTs between SURFEX and MEGAN, so it 

would be advantageous to use the SURFEX PFTs derived from either ECOCLIMAP-II (Faroux et al., 2013) or 920 

ECOCLIMAP-SG (Druel et al., 2022) as a basis for calculating the EFs used by MEGAN in the future.  

Accurately representing the impacts of soil moisture and drought on BVOC emissions is another important area of research. 

In light of the large uncertainties of the role of soil moisture and drought, some groups (Oomen et al., 2024; Sindelarova et 

al., 2022) have taken an approach to exclude the influence of soil moisture in the MEGAN algorithm. There is compelling 

evidence (Bonn et al., 2019; Jiang et al., 2018; Pegoraro et al., 2004; Yuan et al., 2016; Zheng et al., 2017), however, that 925 

vegetation response to soil moisture and drought plays an important role in BVOC emission variability, and this remains an 

open research question of how this should be addressed in a generalized way within the MEGAN model framework. The 

newly proposed parametrization of soil moisture stress on isoprene described in (Wang et al., 2022) was tested in CAMS-

GLOB-BIO and led to a decrease in global isoprene total emissions by 15 %, with even larger reductions in dry regions such 

as Australia, sub-Saharan Africa or Middle East (K. Sindelarova, personal communication). Future work should therefore 930 

address this source of uncertainty by testing different algorithms for different drought situations for varied climatic zones 

and ecotypes. 
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