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Abstract. Agroforestry systems are considered suitable nature-based solutions to mitigate climate change. Long-term measure-

ments of CO2 fluxes, evapotranspiration and sensible heat fluxes are, however, largely still missing. Here we present a unique

eddy covariance and meteorological dataset from a total of ten stations paired over agroforestry and open cropland or grassland

agricultural sites located in Northern Germany. The data were harmonized to create a consistent dataset which includes gap-

filled time series of meteorological and lower-cost eddy covariance measurements with identical instrumentation, accounting5

for a total of seventy eight site-years of data. The objective of this dataset is to provide observational data on the differences of

meteorological conditions, carbon, water and energy balances of adjacent agroforestry and open cropland or grassland sites in

five distinct climatic regions of Germany. This extensive, continuous dataset can be used to study ecosystem properties and the

potential benefits of agroforestry. It can also be used to parametrize models on crop and biomass productivity, or to evaluate the

response of such agroecosystems to climate change scenarios, among other applications. Anticipated key users of this dataset10

are researchers in the fields of micrometeorology, eddy covariance, agronomy, and ecosystem modeling. This dataset can be

accessed through https://doi.org/10.25625/A2Z8T8 (Callejas Rodelas et al., 2025b).

1 Introduction

The conversion of conventional agriculture, represented by open cropland (OC) or open grassland (OG) systems, to agroforestry15

(AF) systems, is an example of a nature-based solution with the potential to positively impact towards climate change mitigation

(Cardinael et al., 2021; Chapman et al., 2020; Kay et al., 2019). AF encompasses any type of agricultural system in which trees

and crops are cultivated concurrently, with the objective of benefiting from the presence of the trees in the agricultural land

while keeping an agricultural production of food, timber or other products (Nair, 1985). AF systems traditionally have been
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an important component in many agricultural landscapes across the globe. These systems encompass a wide array of practices20

adapted to the requirements of the territories, climate, culture, society or economy (Pancholi et al., 2023). Intensive research

has been conducted on AF systems to study their environmental benefits (for reviews on this topic, see Satish et al., 2024,

Pancholi et al., 2023, Singh et al., 2021). Due to the demonstrated superior performance in ecosystem functions and services

(Kay et al., 2019), there is an increasing interest in recent years to stimulate the transition of conventional agriculture to AF in

numerous regions globally (Gupta et al., 2020).25

AF systems have the potential to increase carbon sequestration, in comparison to conventional agriculture, in both within the

soil (Cardinael et al., 2015, 2017) and via biomass growth (Peichl et al., 2006). According to De Stefano and Jacobson (2017),

soil organic carbon (SOC) stocks exhibited an increase at several sites that had transitioned from agricultural to agroforestry

land use. Moreover, AF systems can also increase water use efficiency (WUE) (Ong et al., 2002), as ecosystem-scale evapo-

transpiration (ET) is expected to stay equal (Markwitz et al. (2020a), even under increased CO2 uptake. WUE is defined as30

the amount of carbon assimilated as biomass or grain produced per unit of water used by the crop (Hatfield and Dold, 2019),

which is equivalent to Gross Primary Production (GPP) divided by evapotranspiration (WUE = GPP / ET).

Short Rotation Alley Cropping (SRAC) is a type of AF in which trees and crops are cultivated in parallel (Markwitz and

Siebicke, 2019). There is an increasing interest in such agricultural systems in regions like central Europe (Quinkenstein et al.,

2009). Crops rotate in seasonal cycles, while trees rotate in periods of typically 3 to 6 years and are used for biomass production,35

e.g. for bioenergy (Böhm et al., 2014). Therefore, these systems can provide a renewable source of energy, while still keeping a

relatively large yield production from the crops (Veldkamp et al., 2023). In order to thoroughly address the impact of such land

use conversion, further data are required, that quantify ecosystem-atmosphere interactions at the system in order to understand

how AF impacts the surface energy balance, carbon sequestration, evapotranspiration, and WUE.

The eddy covariance (EC) technique has become the main tool for the study of land-atmosphere interactions at the ecosystem40

scale (Baldocchi, 2014). EC allows to quantify ecosystem-scale exchanges of energy, trace gases and momentum between

ecosystems and the atmosphere. However, there are inherent challenges in its application, including the costs of installation

and maintenance (Hill et al., 2017), data storage and management (Aubinet et al., 2012), and data processing with complex

data pipelines (Sabbatini et al., 2018; Pastorello et al., 2020). This has led to a lack of direct measurements with the EC

technique over certain types of ecosystems in recent decades (Schimel et al., 2015), including AF systems and, specifically,45

SRAC systems (Markwitz and Siebicke, 2019).

Most of the research on carbon, water and energy balances of AF systems has been performed in tropical areas (Cardinael

et al., 2015), where AF systems have a higher socio-economic and environmental significance (Chapman et al., 2020), and not

in temperate regions. For illustrative purposes, the reader is referred to e.g. Chinchilla-Soto et al. (2021) or Gomez-Delgado

et al. (2011). Furthermore, the studies conducted in the temperate zone have mainly focused on evaluating the potential carbon50

sequestration of an AF system by studying soil composition and SOC (e.g. Kanzler et al., 2021; Cardinael et al., 2015; Howlett

et al., 2011); by combining in situ measurements of SOC, C leaching and respiration with models to assess ecosystem-level C

pools (e.g. Peichl et al., 2006) or by assessing aboveground biomass in AF systems using remote sensing (Sprenkle-Hyppolite

et al., 2024; Zomer et al., 2016). However, none of these studies directly measured ecosystem-scale CO2 or H2O exchanges
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via the EC technique. To the best of our knowledge, the study of Ward et al. (2012) was the only one that quantified carbon55

and water balances of an alley cropping AF using EC, in a Mediterranean climate in Australia.

As part of the SIGNAL project (http://www.signal.uni-goettingen.de/subprojects/tp1-2-evapotranspiration/, last accessed

29 October 2024), the study by Markwitz et al. (2020a) quantified ecosystem-scale energy and water flux densities and the

influence of SRAC on evapotranspiration using the EC technique. Two studies have evaluated the lower-cost EC setups used

for this dataset (Callejas-Rodelas et al., 2024; van Ramshorst et al., 2024). Another study was published, focusing on carbon60

exchanges over some of the studied sites for the period 2019-2021 (van Ramshorst et al., 2025). Furthermore, a recent study

investigated the spatial variability of carbon and water flux densities across one of the SRAC systems involved in the project

(Callejas-Rodelas et al., 2025a).

This study presents multiple years of data concerning land-atmosphere exchange processes, as measured during the SIG-

NAL project. The dataset covers meteorological data, EC flux density time series of CO2, H2O, sensible heat (H), latent65

heat (LE) and momentum, some of the main measured turbulent flow variables (standard deviation of vertical wind velocity,

SIGMA_W, friction velocity, USTAR, Obukhov length, MO_LENGTH), and footprint climatology. We provide a unique, har-

monized dataset, incorporating the most significant variables recorded at the paired OC or OG and SRAC sites. The datasets

can be used for different purposes, with the main targets being the micrometeorological and the modeling scientific communi-

ties. Good quality-controlled long-term data above SRAC and OC/OG sites can be a highly valuable input for models aiming70

to predict crop and land-use change responses under different climate change scenarios. Furthermore, these data, in conjunc-

tion with other datasets that compare the ecosystem functioning between AF and OC/OG, can be used by stakeholders and

decision-makers in the development of agricultural policy.

2 Methods and datasets description

2.1 Site description75

The study sites were located in Northern Germany in five different regions (Fig. 1): Dornburg (51.015 ◦N, 11.64 ◦E, Thuringia),

Forst (51.79 ◦N, 14.63 ◦E, Brandenburg), Mariensee (52.565 ◦N, 9.464 ◦E, Lower Saxony), Vechta (52.759 ◦N, 8.549 ◦E,

Lower Saxony) and Wendhausen (52.33 ◦N, 10.632 ◦E, Lower Saxony). The mean annual temperature and precipitation for

the reference period (1981-2010) for all regions is shown in Table 1, with values extracted from the German Weather Service

data portal (DWD, 2024). The IDs of the DWD stations closest to the sites are Jena (2444), Cottbus (880), Hanover (2014),80

Grossenkneten (44) and Brunswick Airport (662), respectively. For simplicity, the SRAC systems will henceforth be referred

to as AF.

Each study region was divided into an AF and a OC or OG site. AF consisted of tree strips of fast-growing species, which

were intercalated by crops, for Dornburg, Forst, Vechta and Wendhausen; or by perennial grassland, for Mariensee. Trees

were poplar (Populus Nigra x Populus Maximowiczii) in Dornburg, Vechta and Wendhausen, while they were willow (Salix85

schwerinii x S. viminalis) in Mariensee, and both poplar and black locust (Robinia pseudoacacia) in Forst. The management of

crops or grass at both OC or OG and AF was similar. Crops were subject to a yearly rotation scheme, while trees were typically
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Table 1. Site location, climatological averages and standard deviations of annual air temperature (TA) and annual sum of precipitation (P)

for the reference period 1981-2010 (DWD, 2024), elevation above sea level and soil characteristics, for all the project sites. Soil type and

organic carbon content are based on Shao et al. (2025), Veldkamp et al. (2023) and Schmidt et al. (2021), while soil bulk density is based on

Shao et al. (2025) and Markwitz et al. (2020a).

Dornburg Forst Mariensee Vechta Wendhausen

Location
51◦00’50" N

11◦38’38" E

51◦47’20" N

14◦37’57" E

52◦33’51" N

09◦27’51" E

52◦45’33" N

08◦32’59" E

52◦19’59" N

10◦37’53" E”

Mean TA (◦C) 9.9 ± 0.8 9.6 ± 0.8 9.6 ± 0.8 9.3 ± 0.8 9.6 ± 0.9

Mean P (mm) 608 ± 117 568 ± 117 661 ± 109 806 ± 139 637 ± 125

Elevation a.s.l (m) 289 66 42 43 82

Soil type Calcaric Phaeozem Gleyc Cambisol Anthrosol Sandy Aeronosol Vertic Cambisol

Soil organic carbon (kg C m−2) 4.64 3.48 22.5 6.9 6.16

Soil bulk density (Mg m−3) 1.19 1.28 1.28 1.3 0.89

harvested in cycles of three to four years. Grass was cut twice per year in Mariensee. During the project, tree harvest took

place in February of 2021 for Forst, Mariensee and Wendhausen. No tree cut happened in Vechta and in Dornburg. However,

in Dornburg a partial cut of 15 m on each side of the EC station took place in winter 2018/19 to mitigate the potential impact of90

tall trees on the EC measurements. Table A1 shows the crops, sowing and harvest dates, and the harvest dates of trees, for all

the sites from 2016 to 2024. Further information on the management can be found in the supplementary material of Veldkamp

et al. (2023).
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Figure 1. Map of site location within Germany. The blue dot represents the grassland agroforestry site (Mariensee), while the red dots

represent the cropland agroforestry sites (Dornburg, Forst, Vechta and Wendhausen).

Two EC stations were installed at each region, one at the AF site and one at the OC/OG site. At Wendhausen, two additional

stations were installed at the AF from August of 2022 to September 2024. A detailed analysis of the distributed network of95

three stations above the AF is presented in (Callejas-Rodelas et al., 2025a). The present article focuses exclusively on the

long-term dataset corresponding to the original paired AF and OC stations in Wendhausen, maintaining a similar structure to

the other sites. The AF sites in Dornburg, Forst and Wendhausen, as well as the OC sites, were large in comparison to the

stations’ footprint area (Fig. 2a, b and c). In Mariensee, the AF site was small in comparison to the footprint area (Fig. 2c). In

Vechta, the footprint area covered by the AF station was small because of the tall surrounding trees located in the western and100

southern sectors (Fig. 2d). The AF stations were 10 m tall and were located within the tree strips, except the station at Vechta

AF, which was 5 m tall and was located at the crop field (Fig. 2). The OC/OG stations were 3 m (Forst and Mariensee), 3.5 m

(Dornburg and Wendhausen) or 5 m tall (Vechta) (Table 6) and were located approximately at the center of the OC/OG sites.

The station at Dornburg AF was relocated 10 m in NW direction at the beginning of the second phase of the project in August

2019.105

The measurement period varied by region and variable (Table A2). At Dornburg, Forst, and Wendhausen, EC and meteo-

rological measurements were performed from spring 2016 to Autumn 2024, with an interruption from January 2018 to mid

2019. At Mariensee, measurements covered the period from spring of 2016 to the end of 2021, with a similar long gap from

January 2018 to mid 2019. At Vechta, measurements covered summer 2019 to autumn 2024. The site-years were considered

5
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accounting for all years covered by the measurements, from approximately mid 2016 (all regions except Vechta) or mid 2019110

(Vechta) until end of 2021 (Mariensee) or end of 2024 (all the other regions).

Wendhausen

(a)

EC-AF
EC-OC/OG
AF
OC
Footprint_AF
Footprint_OC/OG

Vechta

Dornburg Forst

(a) (b)

(c)

©�Google�Earth�2025

Mariensee

(d)

©�Google�Earth�2025

©�Google�Earth�2025

©�Google�Earth�2025

©�Google�Earth�2025

(e)

Figure 2. Satellite view of the sites, including the distribution of the agroforestry (AF, pink dotted line) and the open cropland or grassland

(OC/OG, black dotted line) areas, the location of the eddy covariance stations (dark blue diamond for AF and orange circle for OC/OG), and

the footprint climatology derived for the whole measurement period, for AF (dark blue solid line) and OC/OG (orange solid line), for all

sites (a-Dornburg, b-Forst, c-Mariensee, d-Vechta, e-Wendhausen). The footprint climatology displayed in the maps corresponds to the 80 %

contribution to the footprint. The footprint was calculated using the model of Kljun et al. (2015) in its Python version. Figure created with

QGIS v. 3.22.11, aerial map by Google Satellite Maps. © Google 2024.
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2.2 Meteorological measurements

The meteorological and turbulence variables (Table 2) measured at the sites are named in accordance with FLUXNET stan-

dards (https://fluxnet.org/data/

aboutdata/data-variables/, last accessed 23/01/2025). All the variables were collected at both the AF and OC/OGstations using115

a similar setup. Atmospheric pressure (PA) and photosynthetic active radiation (PPFD_IN) were measured only at the AF

sites. Air temperature (TA) and relative humidity (RH) were measured at a height of 2 m at all stations. Shortwave incoming

radiation (SW_IN), shortwave reflected radiation (SW_OUT), long-wave outgoing radiation (LW_OUT) and net radiation (NE-

TRAD) were measured at a height of 0.5 m below the top of the station (see height in the site description section). SW_OUT

and LW_OUT measurements were only available from 2019 onwards. At Vechta OC, no LW_OUT data were available. At120

Wendhausen OC, the SW_IN sensor failed from December 2023 until the end of the project. Atmospheric pressure (PA) and

precipitation (P) were measured at a height of 1 m. P at the OC/OG was always taken as the reference because it suffered less

from interception, which at the AF was caused by the trees. Soil heat flux (G) was measured at all the stations using one soil

heat flux plate before 2019 and two plates from 2019 (Table 2) inserted at a depth of 5 cm and randomly distributed. PPDF_IN

measurements were available from early 2022 in Forst, Dornburg and Vechta, from December 2022 in Wendhausen and not125

available in Mariensee. PPFD_IN was measured at 9.5 m height at the AF sites, next to the other radiation sensors. Data were

recorded at a 10 s time step and stored in 30-min files on CR1000X dataloggers (Campbell Scientific, Inc. Logan, UT, USA).
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Table 2. Meteorological and turbulence variables measured at the stations and instrumental information. Variable names follow the

FLUXNET standards (https://fluxnet.org/data/aboutdata/data-variables/, last access 23/01/2025). The information in this table corresponds

to the latest measuring setups. Not all variables were available during the whole project duration. Specifically, the lower-cost eddy covariance

setups to measure CO2 molar density and RH, were installed in 2019. From 2016 to 2017, a different setup was used, as described in more

detail in Section 2.3 (originally in Markwitz and Siebicke, 2019).

Measured variable Units Instrument Model Company

Precipitation, P mm
Precipitation

transmitter
5.4032.35.007

Thies Clima,

Göttingen, Germany

Atmospheric pressure, PA kPa Baro transmitter 3.1157.10.000
Thies Clima,

Göttingen, Germany

Net radiation, NETRAD W m−2 Net radiometer NR Lite2
Kipp & Zonen, B.V.,

Delft, The Netherlands

Shortwave incoming

radiation, SW_IN
W m−2 Pyranometer CMP3

Kipp & Zonen, B.V.,

Delft, The Netherlands

Shortwave outgoing

radiation, SW_OUT
W m−2 Pyranometer CMP3

Kipp & Zonen, B.V.,

Delft, The Netherlands

Longwave outgoing

radiation, LW_OUT
W m−2 infra-red temperature sensor IN510 Omega Engineering GmbH?

Photosynthetic Active

Radiation, PPFD_IN
µmolCO2 m−2s−1 PAR sensor PQS 1

Kipp & Zonen, B.V.,

Delft, The Netherlands

Relative humidity, RH %
Hygro-thermo

transmitter-compact
1.1105.54.160

Thies Clima,

Göttingen, Germany

Air temperature, TA ◦C
Hygro-thermo

transmitter-compact
1.1105.54.160

Thies Clima,

Göttingen, Germany

CO2 molar density,

LC setup, rc

µmolCO2 mair
−3 Infrared gas analyzer GMP343

Vaisala Oyj, Helsinki,

Finland

RH (from LC setup) % Relative humidity cell HIH-4000
Honey-well, Charlotte,

North Carolina, USA

Soil heat flux, G W m−2 Soil heat flux plates HFP01
Hukseflux, Delft,

The Netherlands

Wind velocity

components, u, v, w
cm s−1 Ultrasonic anemometer uSONIC-3 Omni

METEK GmbH,

Elmshorn, Germany

2.2.1 Processing of meteorological data

Meteorological measurements were filtered to remove outliers, based on a plausibility range for all variables, and resampled to

a time resolution of 30 min to match the time resolution of the EC time series. All the measurements were averaged from 10 s130
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to 30 min resolution, except precipitation, which was summed up over the 30 min period. For all variables, if less than 25 %

of the 30 min period values were available, the average or sum corresponding to that variable and that period was marked as a

not-a-number (NaN) value. Afterwards, saturated water vapor pressure (esat) and actual water vapor pressure (e) were obtained

following the Magnus-Tetens formulation (Eq. 2 and 3 in Vuichard and Papale, 2015); based on Murray, 1967). Vapor pressure

deficit (VPD) was calculated as the difference between esat and e.135

2.2.2 Gap-filling of meteorological data

Gaps in the time series of meteorological variables were filled following a four-steps routine. First, very short gaps up to one

hour were filled using linear interpolation. This was applied to all variables except P. Second, if there were gaps at one station

within a region, but the data were available at the paired station, then gaps were filled with linear regression between the two

stations. This was applied to all variables except P, which was filled by replacing the missing value one by one. In the case140

of PA and PPFD_IN, the whole time series were inserted into the OC/OGstations datasets, because these variables were only

measured at the AF. Furthermore, at Vechta the missing LW_OUT values at the OC station were filled with the measurements

at the AF, because the land cover around both AF and OC stations was similar. At Wendhausen, the missing SW_IN data from

December of 2023 until September 2024 were replaced with the measurements at the AF station.

Third, longer gaps were filled with a similar approach to that employed in FLUXNET (Pastorello et al., 2020; Vuichard and145

Papale, 2015), with slight differences. ERA5-Land re-analysis data (Muñoz-Sabater et al., 2021) were used as predictor for

the missing data, instead of ERA5 re-analysis data (Hersbach et al., 2020) as employed in the FLUXNET central processing

pipeline (Pastorello et al., 2020), due to their enhanced spatial resolution of 9 km. The data were requested using the API

of the Climate Data Store from Copernicus (https://cds.climate.copernicus.eu/datasets; last accessed 15-11-2024) with the

Python library cdsapi (https://pypi.org/project/cdsapi/). The ERA5-Land time series of 2 m TA, 2 m dew-point temperature150

(TAd), SW_DOWN, horizontal wind speed South-North direction WS_N, horizontal wind speed West-East direction WS_E and

PA were first down-sampled to 30 min time resolution from the original 1 h time step, using linear interpolation. P was not

interpolated. WS and WD were calculated by applying basic trigonometry to both horizontal wind speed components. Finally,

RH and VPD were calculated from 2 m TA and TAd, using the same formulation as explained above in section 2.2.1, and the

relations between RH and VPD.155

Gaps in SW_IN, PA, TA, RH, VPD, wind speed (WS) and wind direction (WD) were filled using linear regressions between

the ERA5-Land data and the station data. Despite their high degree of variability at the local scale, WS and WD were also filled

by this procedure because it is difficult to find a set of predictor variables to perform a more sophisticated type of regression

(see next paragraph). In the case of WS, WD and SW_IN, the intercept of the linear models was forced to be zero, to exclude the

possibility of having negative data as a model result (e.g. a negative WD or a negative SW_IN), which would not be physically160

consistent. In the case of the other variables, both slope and intercept were used to generate the new data. Due to its different

nature, P was gap-filled at the hourly scale by multiplying ERA5-Land data by a factor calculated as the ratio of the total sum

of P measured at the station and the total sum of P from ERA5-Land, for the target period (Vuichard and Papale, 2015). Finally,

PPFD_IN was filled by multiplying SW_IN by a factor obtained as the ratio between measured PPFD_IN and SW_IN.
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The fourth step consisted in a different approach to fill the variables that vary more at the local scale and may not correlate165

well in general with ERA5 or ERA5-Land re-analysis data. These variables were: NETRAD, LW_OUT, SW_OUT and G. This

approach used Extreme Gradient Boosting (XGBoost), a machine learning tool belonging to the tree-decision algorithms (Chen

and Guestrin, 2016). This algorithm was also applied for gap-filling flux densities (see Section 2.3.2). The code was adapted

from the original version published by Vekuri et al. (2023) to gap-fill meteorological data. A more detailed description of the

algorithm can be found below, in Section 2.3.2. The predictors used to gap-fill NETRAD, LW_OUT, SW_OUT and G were170

SW_IN, TA, VPD and PA, all of them already gap-filled with the linear regressions in the previous step; and NETRAD from

ERA5-Land data. Due to the nature of XGBoost, the relevance of the different predictors for modeling the target variable is

evaluated. Consequently, the incorporation of variables such as VPD or PA to the set of predictors for, e.g. radiation variables,

does not introduce bias in the results (see following Section 2.3.2 for more information).

The gap-filling of completely missing variables (see Table 3), such as PPFD_IN before 2022 or LW_OUT before 2019, was175

done by directly applying the steps three and four outlined previously. Therefore the provided time series of these variables are

completely modeled before those dates. The accuracy of the gap-filling was considered sufficient due to the good representation

of ERA5-Land data of the meteorological conditions at the sites (Fig. B1).

A flag was generated for the meteorological data, named with the suffix "_QC_GF". The flag was 0 for measured data, 1 for

interpolated data for short gaps, 2 for data filled using the nearby station, and 3 if ERA5-Land data were used as predictors.180

2.2.3 Evaluation of gap-filling of meteorological data

The evaluation of the gap-filling was performed by splitting first the datasets in training (80 %) and test (20 %) datasets. The

root mean squared error (RMSE) was calculated on the test dataset after training the model and prior to predicting all missing

data (Table B1), for both the variables modeled using linear regressions and XGBoost. As additional justification of the gap-

filling method, linear models between measured and ERA5-Land data were calculated before training the models for gap-filling185

(Table B2). In general, ERA5-Land and measured data correlated well, which allowed us to consider that the gap-filling using

the linear models was appropriate. No evaluation was performed for P and PPFD_IN. A comment on the uncertainties related

to gap-filling can be found in section 4.2.2.
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Table 3. Percentages of measured (_m), post-filtered (_af ) and filled (_gf ) data for some of the main variables. No column exists for TAU_af

or TAU_gf because no filters or gap-filling were applied to TAU. Measured data for flux densities includes all data that could be calculated

from raw data, prior to filtering. Filtered data correspond to data that went through the quality checks. Filled data for flux densities refer to

the amount of data that were filled. These values were calculated as the averages across all time series originating from the different USTAR

filters that were applied (see section 2.3.1). Measured data for meteorological variables refer to all available data after de-spiking the initial

raw data (see Section 2.2.1). Filled meteorological data would just be the remaining fraction up to a 100 %.

H_m LE_m FC_m Tau_m H_af LE_af FC_af H_gp LE_gp FC_gp TA SW_IN WS P RH

Dornburg AF 67.36 59.96 59.96 67.36 46.45 35.56 38.85 53.55 64.44 61.15 66.76 65.41 62.14 70.76 65.03

Dornburg OC 68.36 56.23 56.23 68.36 43.49 31.27 30.82 56.51 68.73 69.18 76.74 77.04 68.59 73.69 76.83

Forst AF 71.4 69.06 69.06 71.4 40.97 36.83 37.63 59.03 63.17 62.37 70.96 71.02 62.34 62.08 71.02

Forst OC 73.15 69.63 69.63 73.15 42.59 37.46 38.51 57.41 62.54 61.49 76.9 76.98 65.7 68.64 76.96

Mariensee AF 61.34 56.92 56.92 61.34 40.02 32.59 35.2 59.98 67.41 64.8 60.6 60.62 54.95 61.01 60.59

Mariensee OG 67.28 63.86 63.86 67.28 34.95 29.43 37.24 65.05 70.57 62.76 72.72 72.72 61.82 72.7 72.72

Vechta AF 67.36 59.96 59.96 67.36 32.03 21.42 28.65 67.97 78.58 71.35 58.8 59.14 53.23 57.81 59.14

Vechta OC 68.36 56.23 56.23 68.36 40.44 36.46 38.57 59.56 63.54 61.43 74.63 74.78 61.54 69.01 74.78

Wendhausen AF 71.4 69.06 69.06 71.4 38.11 31.29 31.0 61.89 68.71 69.0 59.34 59.69 53.42 58.95 59.69

Wendhausen OC 73.15 69.63 69.63 73.15 42.49 27.13 27.32 57.51 72.87 72.68 73.9 73.11 70.53 71.85 74

2.3 Eddy covariance measurements

During the first phase of the project, covering the years 2016 to 2017, measurements of three-dimensional wind speed and190

H2O concentrations only (Table 2) were taken at all the stations to calculate flux densities of latent heat (LE, W m−2), sensible

heat (H, W m−2) and momentum (TAU, kg m−2 s−1). The LC-EC setup to measure H2O was based on a BME280 sensor

(Bosch, Germany) as described in Markwitz and Siebicke (2019). For details on data processing, filtering and gap-filling and

analysis of the LE the reader is referred to Markwitz et al. (2020a). The dataset corresponding to that publication can be found

in https://zenodo.org/records/4038399 (Markwitz et al., 2020b). The following data processing and gap-filling sections refer to195

the eddy covariance measurements from 2019 until 2024.

Following the interruption of 2018, in 2019 the measurement setup changed. The measurements of three-dimensional wind

speed continued, but the setup for H2O measurements was replaced by a setup measuring both CO2 and H2O concentrations

(Table 2), in order to calculate additionally CO2 flux densities (FC, mu mol m−2 s−1).

Three-dimensional wind speed measurements were taken with Metek uSONIC-3 Omni ultrasonic anemometers (METEK200

GmbH, Elmshorn, Germany). CO2 and H2O concentrations were measured with a lower-cost EC (LC-EC) setup, previously

prepared at the University of Exeter (Hill et al., 2017). The LC-EC setups consisted of a CO2 infrared gas analyzer (IRGA)

combined with a RH capacitance cell and sensors for temperature and pressure to derive H2O mole fraction from RH. These

sensors were isolated within a custom made enclosure. The air was sampled below the sonic anemometer and then directed to

the enclosure using Synflex 1300 tubes (1300-M0603, Eaton Corporation, Dublin, Ireland) and across two stainless steel filters205

with a pore size of 2 µm (SS-4FW-2, Swagelog, Solon, Ohio, USA). The length of the tubes depended on the station height
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(9 m at the AF stations, 4.5 m in Vechta AF and OC, and around 2.5 m at the other OC/OG stations). Nominal flow rate was

2.2 L min−1 until summer 2022, when pumps were replaced by stronger ones to get a flow rate of 5.0 L min−1. Data from

the EC setups were logged at a 2 Hz frequency by CR6 dataloggers (Campbell Scientific, Inc. Logan, UT, USA) in files of

30 min duration. Data from the ultrasonic anemometers were logged additionally at 20 Hz frequency in separated files. The210

flux density calculation was done using the 2 Hz dataset, however upon request the 20 Hz raw data can be made available

from the authors. The LC-EC setups were validated in Callejas-Rodelas et al. (2024) and van Ramshorst et al. (2024). The data

from the validation are available in two different repositories which can be found in the corresponding publications. Additional

details about the setups, including information about all the sensors of the enclosure and a scheme of the setup, can be found

in Callejas-Rodelas et al. (2024).215

Both meteorological and eddy covariance measurements were backed up and uploaded to a server using Ethernet connections

and Raspberry Pi 2, model B processors (Raspberry Pi Foundation, Cambridge, UK). The stations were solar powered, with the

installation comprising monocrystalline solar panels (model 3-01-001245, from Offgridtec GmbH, Eggenfelden, Germany),

lithium batteries (type S12/130, code NGS0120130HS0CA, from Exide Technologies GmbH, Büdingen, Germany) and solar

charge controllers (model PR 10–30, from KATEK Memmingen GmbH, Memmingen, Germany).220

2.3.1 Processing of eddy covariance data

Raw turbulence data were processed using the EddyUH software (Mammarella et al., 2016) in its Matlab version (MATLAB,

R2023a). Input meteorological data were TA, RH and PA, which were gap-filled using the nearby station (AF-MC), following

steps one and two explained in Section 2.2.2. FC, LE, H and TAU, among other relevant parameters, were calculated from

the raw data of 2 Hz frequency, by applying the following processing routine. De-spiking of the data was performed by225

applying absolute difference limits between consecutive data points (Mammarella et al., 2016; Aubinet et al., 2012). Block-

averaging for de-trending the data followed the approach explained in Rannik and Vesala (1999). Coordinate rotation for the

three-dimensional wind field was carried out through the planar fit method described in Wilczak et al. (2001). Low-frequency

losses due to block-averaging and finite period integration were corrected for according to Rannik and Vesala (1999). High-

frequency losses due to the low-pass filtering effect of the instruments, especially pronounced due to the use of slow response230

sensors in the LC-EC setup (Callejas-Rodelas et al., 2024; van Ramshorst et al., 2024), were corrected with the experimental

approach of Mammarella et al. (2009). A quality flag depending on the state of turbulence was assigned to all flux density

time series, with integer values ranging from 1 to 9 following the approach of Foken et al. (2005). Random uncertainty was

estimated according to Finkelstein and Sims (2001). Data were processed on a yearly basis, as recommended by the processing

standards of ICOS and FLUXNET (Pastorello et al., 2020; Sabbatini et al., 2018), and in order to ensure a better accuracy235

of the calculation of the transfer function for H2O. Exceptions were some periods shorter than one year that were added to

the processing of the previous/posterior year. More details on how the transfer functions were calculated can be found in the

original paper (Mammarella et al., 2009), and further information on the processing routine for the LC-EC setups is given in

(Callejas-Rodelas et al., 2024). When the dependency of H2O time response with RH could not be estimated accurately, the

coefficients of the fit corresponding to the previous year were employed.240
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After flux density calculations, FC, H and LE were filtered to remove outliers and to ensure a good quality of the measure-

ments. Outliers were removed following the approach of Mauder et al. (2013), based on a median absolute deviation (MAD)

filter, since it is a robust outlier detector (Leys et al., 2013). The MAD filter was used for positive and negative values of FC,

with the threshold parameter q (Eq. 1 in Mauder et al., 2013) being 7.5; for LE and H, the same approach was applied for

positive values, while for negative values, a hard limit of -100 W m−2 was applied to H and of -20 W m−2 to LE, rejecting245

data below that threshold. A moving window of 14 days was used for calculating median and MAD values and for removing

outliers, and three iterations were performed on each time series to increase the robustness of the outlier removal. After the

MAD filter, additional hard upper and lower limits were applied. These limits were 700 W m−2 for H and LE, and -50 µmol

m−2 s−1 and 40 µmol m−2 s−1 for FC. Only good quality data (e.g. sufficiently well-developed turbulence) according to data

quality flags between 1 and 6 were accepted (Foken et al., 2005).250

Additionally, H, LE and FC were filtered according to friction velocity values, to ensure a well developed turbulence. The

USTAR threshold was estimated following the procedure of Papale et al. (2006), based on the method by Reichstein et al. (2005).

Following FLUXNET processing pipeline (Pastorello et al., 2020), 40 different USTAR thresholds were calculated and applied.

The 40 thresholds were withdrawn as the percentiles 2.5% to 97.5%, in steps of 2.5 %, of the distribution of estimated USTAR

values. USTAR thresholds were calculated on a yearly basis. Table 4 shows the averages of USTAR thresholds corresponding255

to the 2.5 % and 97.5 % percentiles, across years. This procedure led to 40 different time series for each variable, i.e. H, LE

and FC. The gap-filling (Section 2.3.2) was performed on these time series.

Table 4. Average across years of USTAR thresholds corresponding to the percentiles 2.5 % and 97.5 % withdrawn from the distribution of

USTAR values.

USTAR_2.5 (m s−1) USTAR_97.5 (m s−1)

Dornburg AF 0.17 0.37

Dornburg OC 0.11 0.21

Forst AF 0.14 0.23

Forst OC 0.1 0.16

Mariensee AF 0.16 0.23

Mariensee OG 0.11 0.15

Vechta AF 0.13 0.19

Vechta OC 0.14 0.21

Wendhausen AF 0.19 0.24

Wendhausen OC 0.14 0.2

2.3.2 Gap-filling of eddy covariance data

Gaps in the time series of FC, LE and H were filled using the combination of two methods, as also applied in (Winck et al.,

2023). First, the full time series were gap-filled using the Marginal Distribution Sampling (MDS) algorithm (Reichstein et al.,260
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2005), implemented in REddyProc. The output of REddyProc provides a quality flag depending on the reliability of the filled

data, ranging from 0 to 3. Original data have a quality flag of zero. Highly reliable gap-filled data have a quality flag of 1, as

these data correspond to short gaps of up to few hours duration with low uncertainty from gap-filling (Wutzler et al., 2018).

Data with flags of 0 and 1 were selected after using the MDS algorithm. Later on, the remaining gaps were filled using the

XGBoost method. Prior to apply this algorithm, additional hard limits were applied to winter and autumn months to prevent a265

bias during those periods, due to the large sensitivity of XGBoost to the input data used to train the model. For H and LE, these

hard limits were 100 W m−2 in October and March and 50 W m−2 from November to February. For FC, the hard limits were

± 10 mu mol m−2 s−1 from November to February and ± 15 mu mol m−2 s−1 in October and March.

The original code implementing XGBoost was used in Vekuri et al. (2023) to fill FC flux densities and later on adapted

in Callejas-Rodelas et al. (2025a) to gap-fill H and LE as well, with a different combination of predictors. This later version,270

from Callejas-Rodelas et al. (2025a), was employed to generate the current datasets. The meteorological drivers used for the

gap-filling were SW_IN, TA, VPD, WS and WD. WS was included to consider the effect of a changing fetch area for the flux

density measurements, and WD was included to account for the heterogeneity across the AF sites and some of the OC/OG

sites. The gap-filling was applied separately to all 40 different time series for each variable H, LE and FC.

2.3.3 Implementation of XGBoost275

The XGBoost algorithm and other associated functions for the gap-filling were implemented using the Python libraries xgboost

(Chen and Guestrin, 2016) and scikit-learn (Pedregosa et al., 2012). The parameters used in the implementation of XGBoost

were kept similar to Vekuri et al. (2023). The time information, directly linked to seasonality in phenology and both seasonality

and diurnal variability in meteorological variables, was included as in the original code of Vekuri et al. (2023), by adding to

the XGBoost two cyclical functions for month and time of the day and an additional linear description of time. This was280

valid for the gap-filling of both meteorological and flux density data. The model evaluation was done by calculating the root

mean squared error (RMSE) between modeled and measured data, after fitting the model to the training dataset, prior to

predicting all missing data. The original code can be found in the repository linked to the publication of Vekuri et al. (2023)

(https://github.com/hvekuri/co2_gapfilling, last access: 12 February 2025). The modified version of the code, adapted to the

current datasets, can be found in the data repository linked to this publication.285

2.3.4 Evaluation of gap-filling and uncertainty estimation of eddy covariance data

The uncertainty due to gap-filling can be evaluated in different ways, depending on how data are aggregated. Errors in individual

30-min data can be assigned using either a reference to another setup or the random error. In the paper by Callejas-Rodelas

et al. (2025a), errors in measured data were considered in two distinct manners. In the first case, errors were calculated as the

deviation of fluxes between lower-cost and conventional EC setups (Callejas-Rodelas et al. (2024) and van Ramshorst et al.290

(2024)). This deviation was considered as the worst case RMSE of the linear regression models of FC and LE, separately. In the

second case, errors were calculated as the sum of that deviation and the random error (Callejas-Rodelas et al., 2025a). Errors

in gap-filled data with REddyProc were defined as the standard deviation of the data points used for gap-filling (Wutzler et al.,
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2018). Finally, the error in gap-filled data with XGBoost was taken as the RMSE between modeled and measured data, after

fitting the XGBoost regressor and prior to predicting all missing data, similarly to the meteorological data filled with XGBoost.295

RMSE values of gap-filled FC, LE and H are displayed in Table 5. The individual errors can be propagated if a cumulative sum

is calculated, as explained in Section 2.5 of the paper by Callejas-Rodelas et al. (2025a).

Both REddyProc and XGBoost reproduced the diel cycle of measured data, for FC (Fig. C1a) and LE (Fig. C1b). The gap-

filling led to a reduction of the magnitude of the measured values, due to the fact that most gaps were present during winter

and during nighttime, with smaller flux density magnitudes. However, the similarity in diel cycles between measured and filled300

data can be considered an indicator of reliability of the gap-filling procedure, besides other sensitivity or uncertainty analysis

that may be performed.

Table 5. Root mean squared error (RMSE) between modeled and measured data, for FC, LE and H. RMSE was calculated after fitting the

XGBoost regressor to measured data and prior to the prediction of all missing data. RMSE was calculated as an average across all 40 USTAR

scenarios for each variable and site.

RMSE_FC (mu mol m−2 s−1) RMSE_LE (W m−2) RMSE_H (W m−2)

Dornburg AF 3.2 27.7 17.3

Dornburg OC 2.5 22.8 10.8

Forst AF 2.4 23.6 13.8

Forst OC 2.2 24.0 11.2

Mariensee AF 2.5 26.2 13.4

Mariensee OG 2.2 25.5 15.0

Vechta AF 3.9 48.8 16.8

Vechta OC 2.5 20.3 11.3

Wendhausen AF 2.8 23.2 14.5

Wendhausen OC 2.8 25.7 14.1

2.4 Partitioning of FC into GPP and RECO

The net ecosystem exchange of CO2 (FC) was partitioned into its photosynthesis (GPP) and respiration (RECO) components.

Both nighttime and daytime models were applied, after Reichstein et al. (2005) and Lasslop et al. (2010), respectively. The305

partitioning was performed using the REddyProc package in R, version 4.2.1 (Wutzler et al., 2018). The partitioning was

applied separately to each of the filled time series of FC. This implies the 40 filled FC time series led to 80 different final time

series of GPP and RECO, because of the two methods used for partitioning. There was one exception, for Wendhausen OC,

where the daytime partitioning method failed and only nighttime GPP and RECO were provided.

Following Tikkasalo et al. (2025), nighttime GPP was forced to zero by subtracting the 1.5 days running median of the310

nighttime GPP from the GPP time series and forced any residual nighttime GPP to zero. The 1.5 days running median of GPP
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was then added to the RECO time series. This way, the relation FC = RECO - GPP is valid at all time steps and GPP is zero

when global radiation is zero.

2.5 Flux footprint climatology

The footprint climatology was estimated using the model of Kljun et al. (2015) in its Python version (Python v. 3.6). Separate315

runs were carried out for the different years at each of the stations, in order to better address the effect of a changing canopy

height, and the effect of crop rotation at the different sites. Additionally, a single run with all available data was done, to

provide an illustration on the average area measured by the EC stations (Fig. 2). Yearly footprint runs are not shown in the

current article, but the results are available at the repository linked to this publication.

The input data to the footprint model were non gap-filled wind data (WS and WD), roughness length (z0), USTAR, Obukhov320

length (MO_LENGTH), the standard deviation of lateral wind speed (V_SIGMA), boundary layer height (PBLH, retrieved

from ERA5, Hersbach et al., 2023), measurement height (zm), displacement height (d) and aerodynamic canopy height (ha).

The time resolution of all parameters calculated from the eddy covariance measurements was 30 min, therefore PBLH was

resampled to match this resolution by linearly interpolating the original hourly time series. Only daytime values were used,

based on values of SW_IN higher than 10 W m−2. Some hard limits were applied to MO_LENGTH (values between -30 and325

+30 m were removed) and zm-d (values below 2.1 m were removed) to avoid errors while running the model. ha was calculated

during neutral conditions (stability parameter z/L≤ |0.1|) based on the procedure by Chu et al. (2018). Complete time series

of ha were estimated as described in more detail in van Ramshorst et al. (2025). This allowed for a better representation of the

roughness effects of a spatially and temporally varying canopy, therefore it can be considered as a more accurate procedure

compared to the use of a single value representing the average canopy height for the whole site for each time step. d and z0330

were estimated as 0.1 and 0.6 times the aerodynamic canopy height, following Chu et al. (2018).

Canopy height at the different sites was estimated using some available tree height measurements and pictures taken across

the measurement period at the sites. Canopy height is provided as an ancillary parameter in the dataset.

2.6 Shortcomings of the dataset

In some cases there were certain conditions which reduced the accuracy of the eddy covariance measurements. Firstly, at335

Dornburg AF, the measurements were conducted in the roughness sublayer and below the canopy height of the tree stripes in

the footprint during most of the study period. Trees were very close to the height of the EC station in 2018, and higher than it

from mid 2020, a problem which was partially mitigated by a clearcut of an area of 30 m around the station in August 2019.

Although data followed the same processing routine as the other datasets and were thoroughly quality checked and filtered, the

structure of turbulence might have affected their reliability.340

Furthermore, the period January 2020 until March of 2021 was missing in Wendhausen OC, and the year 2021 in Dornburg

OC presented a very poor quality. These two site-years were discarded in the final dataset, as the gap-filling would become

very uncertain.
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Table 6. Average of the main parameters used for the footprint model implementation. Measurement height (zm), canopy height (z), aero-

dynamic canopy height (ha) (calculated as described in van Ramshorst et al. 2025), Obukhov length (MO_LENGTH), stabilility parameter

(ZL), friction velocity (USTAR), standard deviation of lateral wind velocity (V_SIGMA) and boundary layer height (PBLH). Canopy height

was estimated from measurements and pictures of the sites. Mean wind speed (WS) and wind direction (WD), also needed as input to the

footprint model, are displayed in Table 7.

zm (m) z (m) ha (m) MO_LENGTH (m) ZL (-) USTAR (m s−1) V_SIGMA (m s−1) PBLH (m)

Dornburg AF 10 9.75 6.76 -554.78 -0.06 0.49 0.95 595.23

Dornburg OC 3.5 0.56 0.42 -194.14 -0.02 0.34 0.91 595.23

Forst AF 10 3.71 3.18 1599.58 -0.06 0.42 0.99 625.75

Forst OC 3 0.49 0.36 76.75 -0.02 0.31 0.91 625.75

Mariensee AF 10 4.08 5.00 -482.2 -0.06 0.43 1.03 618.76

Mariensee OG 3 0.50 0.78 153.22 -0.02 0.30 0.97 618.76

Vechta AF 5 4.92 2.58 -31.20 -0.032 0.34 0.92 635.60

Vechta OC 5 0.51 1.89 -329.11 -0.03 0.33 0.92 635.60

Wendhausen AF 10 4.75 6.17 126.88 -0.07 0.45 1.04 620.87

Wendhausen OC 3.5 0.80 0.68 -15.04 -0.02 0.33 1.01 620.87

At Vechta AF, there was only one tree stripe, and the station was located within the crops, and not within the tree stripe 2.

Therefore, the representativity of this AF site should be considered with care. Furthermore, the EC data from 2022 to 2024345

were not included in the final dataset due to the very noisy flux densities.

3 Results

3.1 Meteorological data

SW_IN was similar between AF and OC/OG, with small variations between both systems attributed to changes in cloud cover

along the integration periods of 30 minutes (Table 7). PA was measured only at the AF site. Variations in PA between the AF350

and OC/OG sites were expected to be insignificant. TA was slightly higher at the AF in Dornburg, Mariensee and Vechta, and

slightly lower in Wendhausen, while in Forst it was similar at both sites. RH was higher at the OC than at the AF, in Dornburg

and Forst, and lower at the OC/OG than at the AF in Mariensee, Vechta and Wendhausen. VPD was larger at the AF in Dornburg

and Forst, and lower in Mariensee, Vechta and Wendhausen. In general, differences in TA, RH and VPD are negligible for the

comparison of AF and OC/OG, likely due to the homogeneity in atmospheric conditions for low distant stations. WS was larger355

at the OC in Dornburg, Wendhausen and Vechta, and larger at the AF in Forst and Mariensee. This is attributed to the in general

lower tree height at Mariensee AF, therefore the WS measured at 10 m height (AF) is larger than at 3 or 3.5 m height (OG). In

the case of Forst AF, this was caused by the station being located at a gap within the tree stripe. At the other sites, however,

trees were taller, especially in Dornburg and Vechta, than the AF station, leading to a stronger wind-barrier effect and wind
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speed reduction. Additionally, in Dornburg the OC site was located on an open elevated slope, leading to stronger winds. WD360

indicated predominant winds from the Northwest for Dornburg AF and OC, Mariensee AF and Wendhausen OC; and from the

Southwest for Forst AF and OC, Mariensee OG, Vechta AF and OC and Wendhausen AF. P was calculated as an average over

all annual sums at both AF and OC/OG, however, the values at the OC/OG are taken as the reference at all the sites because at

some of them (Dornburg, Mariensee and Wendhausen) there was an interception effect from the AF tree canopy.

Table 7. Averages of shortwave incoming radiation (SW_IN, W m−2), atmospheric pressure (PA, kPa), air temperature (TA, ◦C), relative

humidity (RH, %), vapor pressure deficit (VPD, kPa), precipitation (P, mm), wind speed (WS, m s−1) and wind direction (WD, ◦) for all

sites. For P, the value was calculated as the average of the annual cumulative sums across the period 1 July 2016 to 1 July 2024, in order to

evaluate full year sums and not partial sums due to the start and end of the datasets. For the other variables, the average was the average of

all 30 min values across the 9-years period. WD is expressed in degrees (◦) from the North direction.

SW_IN (W m−2) PA (kPa) TA (◦C) RH (%) VPD (hPa) WS (m s−1) WD (◦) P (mm)

Dornburg AF 141.2 98.1 10.7 79.1 4.0 2.7 308.5 505.4

Dornburg OC 130.7 98.1 10.6 79.2 3.9 3.2 281.4 513.4

Forst AF 136.9 100.7 10.9 79.1 4.3 2.8 255.9 488.9

Forst OC 134.8 100.7 10.9 80.0 4.2 2.4 217.3 470.2

Mariensee AF 127.3 101.0 10.6 83.2 3.3 2.4 299.5 433.1

Mariensee OG 128.0 101.0 10.5 82.7 3.4 1.7 258.0 467.0

Vechta AF 125.0 100.9 11.2 82.5 3.3 1.7 211.6 672.7

Vechta OC 126.3 100.9 11.1 80.8 3.5 2.0 226.8 603.1

Wendhausen AF 130.5 100.4 11.0 80.3 3.9 2.1 257.7 520.3

Wendhausen OC 132.9 100.4 11.2 79.9 4.0 2.3 276.7 536.8

With respect to the time series of meteorological data, the exemplary time series of SW_IN and TA (Fig. 3a and b) in Forst AF365

followed a marked seasonality, with the largest values in June for SW_IN and July for TA, and the lowest values in December

for SW_IN and in January for TA. There was a longer gap in 2019, and additional multiple shorter gaps of few weeks or months

in the other years. Gaps were longer in winter due to the solar powered stations, but this did not seem to affect the performance

of the gap filling procedure. In the case of WS, gaps were longer, especially in 2018 and part of 2019, but the gap-filling seemed

to appropriately reproduce the expected variable behavior at the site in terms of seasonal and diurnal variations.370
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Figure 3. Exemplary time series of shortwave incoming radiation (SW_IN, W m−2) (a), air temperature (TA, ◦C) (b) and wind speed (WS,

m s−1) (c) at Forst AF, at 30 min time resolution. Dark blue markers indicate measured data, light pink markers indicate data filled using

either interpolation or the nearby station as a reference, and burgundy markers indicate data filled using ERA5-Land data as a reference (see

Section 2.2.2).

The gap-filled data reproduced the seasonality and trends in all variables. In general, the agreement between measured

meteorological variables and ERA5-Land data is good (Fig. B1 and Tables B2 and B1), which justifies the use of the gap-

filling procedure. For WS and WD, the correlation between measured and ERA5-Land data is worst and varies more across
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sites, which can be explained by locally induced effects on the wind field and to a potential time shift between point data and

gridded data (Lipson et al., 2022). For SW_IN, slopes are very close to 1.0, but because there is a large scatter in the data (Fig.375

B1), RMSE is also large. This is caused by locally varying cloud conditions.
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Figure 4. Annual averages of air temperature (TA, ◦C) and annual sums of precipitation (P, mm) for all the sites. Black circles with solid

line represent the TA values at the AF sites. Orange squares with solid line represent the TA values at the OC/OG sites. Light orange bars

represent annual sums of P at the OC/OG sites, taken as a reference for the sites. The measurement period started in spring of 2016 at all

sites, except in Vechta, where it started in summer of 2019. Due to this, and due to the incomplete year of 2024 because of the end of the

project, the data corresponding to 2016 and 2024 (and 2019 for Vechta), should be considered with care. Data corresponding to incomplete

years are marked with asterisks.

Dornburg, Mariensee and Vechta experienced a higher annual TA at the AF than at the OC/OG (Fig. 4), while in Wendhausen,

TA was lower at the AF, and in Forst it was similar for both sites. However, the differences were very small between AF and

OC/OG. 2021 was the coldest year at all sites, while the other years were relatively similar. 2016 and 2024 for all sites, and
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2019 for Vechta, should not be considered because the average does not comprise some of the coldest months of the year. P380

was largest in Vechta, followed by Wendhausen, and lowest in Forst. 2018 was the driest year at all places, except in Vechta.

The driest year in Vechta was 2022. In Forst the annual sum of P in 2018 was similar to 2019 and 2020, likely indicating a

longer term drought event.

3.2 Eddy covariance flux densities

All flux density time series (for FC, LE and H) at the exemplary Dornburg AF site exhibited a marked seasonality (Fig. 5),385

with the largest values at the peak of the growing season (around June and July each year) and the lowest values in winter.

FC indicated an uptake of carbon throughout the growing season, coinciding in time with a larger LE, representing water

vapor release from the AF system. The lowest values of FC were attained in 2019 and in 2023. H was the largest in 2023,

corresponding to a lower LE. Throughout the whole period, LE was in general larger than H, indicating that water was not a

limiting factor, since more energy was employed to evaporate water from the ecosystem, than to heat up the air next to the390

surface. The gap-filling reproduced satisfactorily the seasonality and in general it did not appear to bias the time series of flux

densities. However, XGBoost smoothed the extreme values of the distributions for all variables, as clearly demonstrated by the

gap-filled LE values, which were never below 0.

Annual sums of H were larger at the OC/OG than at the AF in Dornburg, Forst and Mariensee, while they were lower at

the OC than at the AF in Vechta and Wendhausen (Fig. 6). Some years, like 2019 in Wendhausen, showed very similar sums395

of H. With respect to annual sums of ET, we found larger annual sums at the AF than at the OC/OG in most of the years

at most of the sites, with some exceptions, like the year 2020 in Dornburg, the year 2021 in Mariensee, or the year 2024 in

Wendhausen. In general, increases in the magnitude of both H and LE occurred in some years, like in 2020 in Forst, but there

is not a clear correlation between both, because the energy partitioning depended on many factors, such as the available net

radiation, the crop present at the system and its phenology, and yearly soil and plant water balances. Annual sums of FC (Fig.400

7) indicated a larger carbon sequestration at the AF than at the OC/OG in all years except 2019 in Dornburg, in all years

except 2019 in Forst, 2019 and 2020 in Mariensee and only one year in Wendhausen (2019). A more negative annual sum of

FC indicates a higher uptake. In the remaining years, either the OC/OG carbon uptake was larger, or both systems showed a

positive carbon balance, indicating a carbon release to the atmosphere. With respect to GPP, it was larger at the AF than at

the OC/OG in all sites, except in Vechta, where it was similar for both AF and OC. For RECO, values were larger at the AF405

than at the OC in Dornburg, Forst and Vechta, while they were similar in Wendhausen, and lower at the AF than at the OG in

Mariensee. Generally, the agreement between nighttime and daytime modeled GPP and RECO was good in the case of Forst

and Dornburg. For the other sites, GPPNT and RECONT were larger than GPPDT and RECODT , respectively.

The balance between gross primary productivity (GPP) and ecosystem respiration (RECO), explains the differences in the

net carbon balance of AF and OC/OG. The AF sites showed a larger GPP than the OC/OG sites, but also a larger RECO. This is410

due to an enhanced physiological activity at the AF compared to the OC/OG sites, with larger leaf area index and an extended

growing season of trees in comparison to crops. Exceptions were Vechta, were the vegetation surrounding both AF and OC

stations was very similar, therefore leading to very similar carbon balances between both sites; and Mariensee, where RECO
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Figure 5. Exemplary time series of flux densities of CO2 (FC, µmol m−2) (a), latent heat (LE, W m−2) (b) and sensible heat (H, W m−2)

(c) corresponding to the 50 % percentile USTAR scenario at Dornburg AF. Dark blue markers indicate measured data, light pink markers

indicate data filled with REddyProc, and burgundy markers indicate data filled with XGBoost (see Section 2.3.2). The horizontal dashed line

in plot (a) represents the 0 uptake line. Negative values of NEE indicate a carbon uptake, while positive values indicate a carbon release.

was larger at the OG because it consisted of low-intensity managed grass. If GPP was large due to the presence of the trees

at the AF, but RECO was also large because there was more biomass respiring and more organic matter being decomposed in415
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Figure 6. Annual sums of sensible heat flux density (H, MJ m−2) and evapotranspiration (ET, mm) for all the sites. Orange circles with

solid line represent the H values at the AF sites. Burgundy squares with solid line represent the H values at the OC/OG sites. Dark blue

bars represent the ET values at the AF sites. Turquoise bars represent the ET values at the OC/OG sites. For each annual sum, error bar

represents the standard deviation of the sums across all USTAR scenarios. The sums corresponding to the years 2019 and 2024 should be

considered with care, given that these were incomplete years (see Table A2). The years 2020 in Wendhausen OC and 2021 in Dornburg

OC were missing. Additionally, in 2021 the considered period is shorter in Wendhausen OC, because there were three missing months from

January to March. Data corresponding to the incomplete years are marked with asterisks.

the soil, then FC would sum for a larger uptake at the OC/OG. In order to evaluate longer term differences, all the individual

and year-to-year differences in crops, phenology and climate must be taken into account. Additionally, to assess the overall net

carbon balances, carbon export such as the yield and biomass removal from the field after harvest must be taken into account

(van Ramshorst et al., 2025). Most values in 2019 were very low, because the growing season was either very advanced or over

when the measurements started (Table A2).420
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Figure 7. Annual sums of CO2 flux density (FC, g C m−2) (dark blue), gross primary production from the daytime model (GPPDT , g

C m−2, solid turquoise markers), gross primary production from the nigthtime model (GPPDT , g C m−2, empty light orange markers),

ecosystem respiration from the daytime model (RECODT , g C m−2, solid terracotta markers) and ecosystem respiration from the nighttime

model (RECONT , g C m−2, empty red russet markers) for all the sites. Circle markers represent the values at the AF sites. Squared markers

represent the values at the OC/OG sites. For each annual sum, error bar represents the standard deviation of the sums across all USTAR

scenarios. The sums corresponding to the years 2019 and 2024 should be considered with care, given that these were incomplete years.

The years 2020 in Wendhausen OC and 2021 in Dornburg OC were missing. Additionally, in 2021 the considered period is shorter in

Wendhausen OC, because there were three missing months from January to March. The data corresponding to the incomplete years are

marked with asterisks.
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4 Discussion

4.1 Novelty and implications of the dataset

The objective of the current publication was to present a harmonized and complete dataset of multiple site-years of meteoro-

logical and eddy covariance data over five AF and five OC/OG sites. A total of seventy eight site-years were compiled during

this project, which sum up to a consistent dataset that may be re-used by the scientific community. This dataset is unique in its425

nature, because currently such a comprehensive data set from temperate alley cropping agroforestry systems is not available.

In general, harmonized datasets offer the opportunity to study particular phenomena of interest, without the negative sides of

data harvesting from different platforms, repositories, personal communications, etc. Datasets focusing on specific ecosystems,

which were compiled in order to answer a specific research question, may help to better target and organize further research,

by ensuring consistency and alignments in data structure and processing routines.430

Particularly, the effect of this type of AF on carbon exchange has not been addressed through EC yet, neither the water

use efficiency of both systems, AF and OC/OG, respectively. Furthermore, the dataset can help to understand differences in

biophysical effects of the land use change from OC/OG to AF, with implications for the local and potentially global radiative

forcing. Based on this data compilation, the modeling of long-term behavior of AF and OC/OG sites, combined with yield

modeling through several crop rotations (using complementary data to this publication), could address the question whether435

this type of AF systems are potentially more resilient to climate change impacts.

Furthermore, the range of studied sites, characterized by distinct crop rotations, soils and climatic conditions, offers the

opportunity to examine in detail inter-annual and inter-site variability of the development of a certain crop and its implications

on water and carbon balances. The behavior of the AF and OC/OG systems, as a whole, is expected to be different depending

not only on the meteorological conditions of a specific season, as well as on the physiology of the crop grown in between440

the trees, the length of its growing season until harvest, as well as the age of the trees at the AF after tree harvest. The

present dataset, complemented by the two years campaign of EC measurements with a distributed network of three EC stations

(published in Callejas-Rodelas et al. 2025a), could help to elucidate the discrepancies between AF and OC/OG in carbon and

energy balances, as well as on ecosystem properties, depending on the crop type.

Due to the site heterogeneity, particularly at the AF, the footprint model output should be considered with care (Göckede445

et al., 2004). Nevertheless, the current dataset may help to study the effect of heterogeneity in the AF sites on flux densities,

and to test different approaches to better characterize footprints and the source/sink behavior of the areas around the stations.

This dataset also provides an opportunity to analyze the effect of canopy heterogeneity, canopy height change and harvest

disturbances on the footprint climatology. More refined information on the footprints could be used to assign further quality

flags to the flux densities, according to Rebmann et al. (2005) for a more accurate evaluation of carbon and energy exchanges450

around the stations.
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4.2 Uncertainties in the dataset

4.2.1 Uncertainties and errors in the eddy covariance measurements

The uncertainties in the EC measurements from the current datasets are primarily attributable to the inherent characteristics

of the EC technique itself, e.g. errors during nighttime measurements and the consequent USTAR filtering (Massman and455

Lee, 2002). Secondly, errors may have arisen from the use of lower-cost eddy covariance setups. Moreover, uncertainty in

the measurements may have arose from the station location(Chen et al., 2011). This error may be particularly large above

heterogeneous sites such as the AF systems.

The error due to larger spectral corrections in the LC-EC setups (Callejas-Rodelas et al., 2024; van Ramshorst et al., 2024),

could be accounted for in different ways. If the goal is to get the strength of carbon and evapotranspiration signals in cumulative460

sums, the error in individual measurements, in comparison to conventional EC setups, as done in Callejas-Rodelas et al. (2025a)

for daily sums, can be used to propagate to an error in the sum using classical error propagation. Another option would be to

consider the individual error as the random uncertainty estimated with different methods (e.g. Finkelstein and Sims, 2001;

Kessomkiat et al., 2013; Richardson et al., 2008). The measurement error, in comparison to conventional EC setups, could then

be propagated together with errors in gap-filled data as explained in section 2.3.4465

The study of Callejas-Rodelas et al. (2025a) concluded that the strength of the lower-cost EC setups resides in the fact

that they can facilitate replicated measurements, due to their reduced cost. Replicated measurements, especially above hetero-

geneous ecosystems, allow for a reduction in the error in ecosystem-level balances of carbon and energy (Hill et al., 2017).

Furthermore, the higher affordability of LC-EC allows for the deployment of multiple setups at different sites, such as in the

current project, therefore providing more datasets and a larger statistical robustness for the research questions.470

Finally, with regard to some features of the station location and the footprint size, in Wendhausen AF, Mariensee AF and

Vechta AF, the footprint area encompassed most of the target field (Fig. 2), however - under certain conditions - it also extended

to some areas beyond it, more marked in the case of Mariensee. This is not shown in Fig. 2, where only the 80 % footprint

contour line is displayed. The influence of the areas outside the AF field may be small, but should not be completely neglected

when evaluating sources and sinks of carbon and water. For the other sites, the smaller station at the OC/OG sites and the475

bigger size of the fields in Dornburg AF and Forst AF prevented this effect. In any case, individual year footprints should be

considered for a better estimate of the areas measured by the stations, and, only for a qualitative estimate of the distribution of

sources and sinks of carbon and water vapor.

4.2.2 Uncertainties in gap-filling meteorological data

The four-step gap-filling procedure applied to meteorological data (Section 2.2.2) enabled to generate consistent datasets with480

a quality flag indicating gaps filled with linear interpolation, using the nearby station (AF or OC/OG) as a reference, or using

ERA5-Land as a reference. In general, if data from a nearby meteorological station are available, the accuracy of using those

as a reference is higher than if re-analysis data are used. However, there are inconsistencies in the raw data from the German

Weather Service stations close to the field sites, with some missing variables or poor quality data. There are several publications
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where a number of approaches are applied for gap-filling the main meteorological variables (e.g. Dyukarev, 2023), and some485

available software packages which facilitate the user application (El Hachimi et al., 2023).

For consistency with FLUXNET datasets, re-analysis data from the European Centre for Medium-Range Weather Forecasts

(ECMWF) were used as a reference to fill missing meteorological data. The approach applied in FLUXNET (Pastorello et al.,

2020) is based on the original implementation of Vuichard and Papale (2015). Vuichard and Papale (2015) used originally ERA-

Interim re-analysis data (Dee et al., 2011) as a reference, but this was updated later on in FLUXNET to use ERA5 data as a490

reference (Hersbach et al., 2020). Instead, the current datasets were filled using ERA5-Land data as a reference, with improved

resolution over the land domain and a better representation of some features, such as orography (Muñoz-Sabater et al., 2021).

ERA5-Land data were also used as a reference in Dyukarev (2023) and El Hachimi et al. (2023). It would be advisable to

switch the FLUXNET processing routine to a gap-filling procedure which employs ERA5-Land data for terrestrial ecosystem

stations. The gap-filling of the meteorological parameters, particularly TA, SW_IN and VPD, is of fundamental relevance for495

the posterior gap-filling of EC flux densities. Any bias reduction can help reduce the error induced by the gap-filling of EC

data.

The gap-filling of most of the variables using linear regression models was considered reliable (Table B1 and Fig. B1) and it

was consistent to the FLUXNET implementation, however there was a large scatter in SW_IN, WS or WD. These variables could

potentially influence the posterior gap-filling of FC, LE and H. In general, there are unavoidable biases in the match between500

local point observations, from stations, and grid-scale data, from ERA5 or ERA5-Land (Haiden et al., 2018). This bias could

be reduced by employing a more sophisticated approach, such as in Lipson et al. (2022), however it was not implemented in the

current dataset. That method improved the correction of ERA5 data to match the local requirements, incorporating a spin-up

period for ERA5 data and smoothing hourly biases, and using the logarithmic wind profile to optimize the relation between the

ERA5 wind variables and the directly measured variables. This approach would eventually be applicable to any other site.505

The gap-filling of the remaining variables (NETRAD, LW_OUT, SW_OUT and G), performed with XGBoost, showed a

lower RMSE for all variables (Table B1). All variables are radiation or heat transport variables, therefore easier to predict based

on other radiation variables or temperature, if compared to ecophysiological variables such as FC. Nonetheless, this method

was not bench marked against others. In Dyukarev (2023), for example, five different methods were compared to gap-fill the

main meteorological parameters, based on all the available parameters of ERA5-Land (a total of 47). This approach, adapted510

to provide ensemble results (see next section and Lucas-Moffat et al., 2022), could be the solution to obtain more accurate

gap-filled meteorological time series, especially for variables with a large site dependency. This could improve posterior flux

density gap-filling and a more accurate picture of biophysical ecosystem properties, by providing less uncertain NETRAD or

LW_OUT.

4.2.3 Uncertainties in gap-filling eddy covariance data515

The hybrid gap-filling procedure for the eddy covariance data, which combines the MDS algorithm for short gaps and the

XGBoost algorithm for the remaining gaps, was selected due to the presence of long gaps in the measured data, and to the

demonstrated superior performance of machine learning algorithms compared to the use of only the MDS method (Winck
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et al., 2023). Concretely, XGBoost performed better than MDS for filling FC over the FLUXNET2015 dataset and for high-

latitude sites in Vekuri et al. (2023), and for a long dataset above a deciduous forest in Liu et al. (2025). Due to its handy520

applicability and the possibility of customizing the predictors and other model parameters, it was chosen as the algorithm to fill

longer gaps (of several days up to few weeks or months) for our presented data set. The filled data were carefully examined to

check the physical coherence of the values and the seasonality, but some level of uncertainty remained in the datasets, mainly

arising from the many missing data (Table 3). This uncertainty may be calculated in different manners, which should be adapted

to the specific data aggregation method. A first and easy attempt to estimate the uncertainty in the annual or multiannual sums525

could be based on individual 30 min errors, as explained in section 2.3.4, or based on the standard deviation across annual

balances arising from the different USTAR scenarios.

In general, it is desirable that the uncertainty associated to any gap-filling procedure should be of similar magnitude as the

noise of the measurements (Moffat et al., 2007). In the current datasets, longer gaps were typically present in winter time.

However it was shown in other studies that in temperate or boreal ecosystems, with low physiological activity in winter, long530

gaps did not add large uncertainty to the data (Richardson and Hollinger, 2007). Moreover, because of having multiple years

of data, it was assumed that the gap-filling model could learn appropriately the relations between drivers and flux densities for

different times of the year.

The uncertainty in annual balances of FC was estimated by Vekuri et al. (2023) and Liu et al. (2025) by creating artificial

time series using neural networks and then adding multiple scenarios with different percentages of data coverage. In both535

studies the authors used XGBoost and compared it to MDS. Based on the error in annual balances from both studies, we could

assign an uncertainty in annual sums of FC in the current dataset of ± 30 g C m-2 from Vekuri et al. (2023), considering the

worst case scenario with very long gaps and a small data coverage, and of ± 70 % of the annual sum from Liu et al. (2025)

considering the spread across different gap scenarios. The uncertainty in ET balances could be considered in a similar manner.

We suggest considering these values when making use of the current dataset. More specific analysis, such as the method540

proposed by Richardson and Hollinger (2007), are planned in future work. Such method allows to disentangle random error

and gap uncertainty depending on which time of the year gaps occurred, and focuses on the gap uncertainty rather than the

gap-filling method uncertainty.

The EC community is increasingly adopting machine learning algorithms to fill gaps in time series (Lucarini et al., 2024)

and there is a number of studies demonstrating their reliability (e.g., Mahabbati et al., 2021, Tramontana et al., 2016 or Zhu545

et al., 2022). Providing ensemble results from different methods, as recommended by (Lucas-Moffat et al., 2022) and imple-

mented by e.g. Tikkasalo et al. (2025), may solve partially the question of gap-filling method uncertainty. However, machine

learning methods are not yet standardized neither used in the processing pipelines of international networks such as FLUXNET

(Pastorello et al., 2020) or ICOS (Sabbatini et al., 2018). It is recommended and expected to see more efforts in this direction

within the EC community.550
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4.3 Compare processing routines to FLUXNET

The development of international networks of EC stations, such as ICOS or FLUXNET, aimed to standardize measurements

and data processing pipelines with centralized processing protocols and units to increase inter-comparability and reliability

of results (Rebmann et al., 2018; Sabbatini et al., 2018). However, the datasets uploaded through a network get embedded

in a larger scale processing scheme that may mask site individual features that are relevant for the data to be interpreted or555

processed. Many EC stations, however, do not belong to these networks, due to the lack of certain measurements, the use

of different instruments such as lower-cost setups, or the use of different processing schemes (Pastorello et al., 2020). It is

thus important for the EC community that these original datasets are published along with a detailed site characterization and

methodological explanation. This was the main motivation for the current publication.

The EC setups deployed within the SIGNAL project do not meet all the standards of FLUXNET in terms of the minimum560

requirements of instruments and measured variables. The major difference is the use of slow-response gas analyzers for mea-

suring CO2 molar density and for RH measurements, from which later on H2O mole fraction is derived. The gas analyzers

used by the community are capable to sample at higher frequencies, and specifically the analyzer recommended in ICOS is

the LI-7200 (LI-COR Inc., Lincoln, NE, USA) (Rebmann et al., 2018; Sabbatini et al., 2018). Regarding the post-processing,

applied after the calculation of half-hour flux densities, there were several differences to FLUXNET, from which only the most565

relevant are pointed out.

Firstly, from the required data variables for post-processing ("Critical data variables for the post-processing, averaged or

integrated over 30 or 60 minutes", in Pastorello et al., 2020), in the current datasets the storage of CO2 (SC), the soil temperature

(TS) and the soil water content (SWC) are missing. Compared to the variables in Table 2 of Pastorello et al. (2020), TS, SWC,

outgoing photosynthetic photon flux density (PPFD_OUT), diffuse incoming photosynthetic photon flux density (PPFD_IN)570

and diffuse incoming global radiation (SW_DIF) are missing inside this work. Additionally, the net ecosystem exchange (NEE)

is just FC in the current dataset because no storage correction was done. With respect to gap-filling meteorological data, for

the current dataset ERA5-Land data were used as a reference, instead of ERA5 as in FLUXNET (Pastorello et al., 2020). We

included a more advanced approach for some energy and radiation variables which can be important to interpret ecosystem

functioning and its biophysical properties. Thirdly, in FLUXNET the gap-filling of FC, LE and H is performed fully using the575

MDS algorithm, based on Reichstein et al. (2005), whereas the hybrid approach combining MDS and XGBoost was employed

for this dataset. Then, the energy balance closure is estimated using three different methods and the corrected H and LE are

provided as an ancillary data product (Pastorello et al., 2020), while in the current datasets no energy balance correction was

applied. Regarding USTAR filtering, the bootstrapping of the USTAR distribution is slightly different in FLUXNET than applied

in REddyProc (Wutzler et al., 2018). In FLUXNET, the method of Reichstein et al. (2005), implemented in Papale et al. (2006),580

was complemented by the change-point detection method after Barr et al. (2013). During the preparation of the current dataset,

only the moving point detection method of Papale et al. (2006) was implemented. Thereafter, the use of 40 different USTAR

thresholds to generate 40 different time series of the flux density variables is similar as in FLUXNET in the case of FC, but

it is not implemented for H and LE. A third method implemented in FLUXNET, the sundown partitioning method after van
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Gorsel et al. (2009), was not applied to the current dataset because there were no storage data, required by the method. Finally,585

the partitioning of FC into GPP and RECO was done for both daytime and nighttime based methods, as in FLUXNET, but the

time series were forced to fulfill the relation FC = RECO - GPP as explained in section 2.4. This correction is not implemented

in FLUXNET.

5 Data records and usage of the dataset

Upon appropriate citation and referencing, users are encouraged to download and work with the current dataset and to reuse590

the codes, to perform further data analysis, modeling or test of gap-filling algorithms, footprint models, etc. There is a metadata

excel sheet in the repository with name, units and description of all the published variables. There are three files corresponding

to each station, containing meteorological data at 30-min resolution, except precipitation; eddy covariance data at 30-min reso-

lution; and precipitation data at 1-hour resolution. Missing data are marked with -9999 for original variables. Time coordinate

is UTC. Time stamp is 30 min, with the ISO format yyyymmddHHMMSS, and corresponds to the end of the averaging period.595

Time stamp and variable names follow FLUXNET standards. Year ("YEAR"), day of year ("DOY"), and hour ("HOUR"),

are also provided. Additionally, the yearly footprints and the single footprint including all years are published in files, con-

taining the contour lines of the 70, 80 and 90 % contribution to the footprints. The contour lines are defined by "X_" and

"Y_" coordinates in EPSG:4326 (WGS84), together with the latitude and longitude coordinates in the coordinate reference

system EPSG:25832. The files are named as ’footprint_year_station_contribution%’ for the different years and % of footprint600

contribution, and ’station_contribution’ for the single footprint run.

Variable names and units are stored in the file called "variable_name_unit_meteo.csv" and "variable_name_unit_eddycov"

for meteorological and eddy covariance data, respectively. The filled time series of H, LE and FC are named as ’variable_name_-

Uperc_f’. The quality flag columns of the filled data are named as ’variable_name_Uperc_QC_GF’. Time series of GPP and

RECO are named as ’GPP_DT_Uperc’, ’GPP_NT_Uperc’, ’RECO_DT_Uperc’ and ’RECO_DT_Uperc’, for daytime and605

nigthtime modelled GPP and RECO, respectively. The uncertainty from REddyProc gap-filling is included in the columns

’FC_Uperc_fsd’. ’perc’ refers to the USTAR percentile, from 2.5 to 97.5 %, in steps of 2.5 %. The original flux density vari-

ables, prior to filtering, are named as FC_ORIG, LE_ORIG and H_ORIG. Random error corresponding to these variables is

named as RE.FC, RE.LE and RE.H, respectively. Quality flags are named as FC_QC, LE_QC and H_QC, respectively.

All the information that was considered relevant for the interpretation and further analysis of the current dataset was included610

in this publication or can be found in the files in the linked repository. However, the authors might have missed some details or

might not be aware of some features of the sites, which could eventually be important to perform some specific analysis. The

users of the dataset are therefore encouraged to contact the authors if missing information is required.
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6 Code and data availability

Data presented in this article can be accessed through https://doi.org/10.25625/A2Z8T8 (Callejas Rodelas et al., 2025b), under615

a Creative Commons Attribution licence (CC BY-4.0). Codes used to filter, gap-fill, create the figures and extract relevant

information for the paper, can be accessed through https://github.com/jangelcrgot/Processing_dataset_multiyear_eddycov_

agroforestry, under a GNU General Public License version 3.0 (GPL-3.0). Raw meteorological and eddy covariance data

can be provided by the authors upon request.

Appendix A: Supporting information on the sites620

Table A1. Sowing and harvest dates of crops, harvest dates of trees, and cutting dates for the grassland in Mariensee, throughout the project

duration. No precise dates were available for the grass cut in Mariensee, but it was always taking place at late spring (Langhof and Swieter,

2024). In 2023, clover did not grow well in Forst due to the very wet winter conditions, therefore no harvest took place. In 2024, part of the

winter wheat in Dornburg was infested by snails and it was replaced in March by summer barley. Harvest of both crops took place on the

same day. In Wendhausen, there were three crops, typically summer barley, corn and winter rapeseed, rotating each year across the site. In

the table, only the crop located in the main footprint area of the EC station is written down.

Site

Year
Dornburg Forst Mariensee Vechta Wendhausen

Crop/

sowing-harvest date

2016
Summer barley

25 March - 15 August

Winter wheat

4 November 2015 - 25 August

Grass

Late spring
-

Winter rapeseed

8 September 2015 - 20 July

2017
Winter rapeseed

28 August 2016 - 17 August

Winter barley

22 September 2016 - 21 July

Grass

Late spring
-

Winter wheat

27 September 2016 - 7 August

2018
Winter wheat

16 October 2017 - 27 July

Silo maize

4 May - 3 September

Grass

Late spring
-

Winter wheat

18 October 2017 - 18 July

2019
Summer barley

5 March - 22 July

Summer barley

25 March - 25 July

Grass

23 June

Silo maize

3 May - 20 September

Silo maize

18 April - 23 October

2020
Summer barley

28 March - 12 August

Bristle oat

17 March - 31 July

Grass

19 June

Winter rye

3 October 2019 - 6 August

Silo maize

21 April - 28 September

2021
Winter wheat

28 October 2020 - 21 August

Winter wheat

13 October 2020 - 15 August

Grass

16 August

Potatoe

9 April - 20 October

Summer barley

29 March - 30 July

2022
Winter barley

2 October 2021 - 15 August

Winter barley

24 September 2021 - 4 July
-

Winter rye

3 November 2021 - 28 July

Winter rapeseed

8 September 2021 - 14 July

2023
Winter rapeseed

October 2022 - 11 August

Clover

Bad growth
-

Winter rapeseed

3 November 2022 - 20 July

Silo maize

26 April - 26 September

2024

Winter wheat

October 2023 - 13 August

Summer barley

March 2024 - 13 August

Winter wheat

30 October 2023 - 17 July
-

Rye

9 September 2023 - 01 August

Silo maize

24 April - 13 September

Tree harvest - February 2021 February 2021 - February 2021

31

https://doi.org/10.5194/essd-2025-440
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Table A2. Measurement period for all stations. During the first phase of the SIGNAL project a different EC setup was running at all sites in

addition to the meteorological sensors (more details in Markwitz et al., 2020a; Markwitz and Siebicke, 2019). In the table, only the starting

dates of the EC setups measuring during the second and third phases of the project are displayed. The EC setup in Vechta AF was removed

some months before the end of the project, but the meteorological sensors were still measuring until October 2024.

Meteorological data EC data

Dornburg
AF 22 April 2016 - 17 July 2024 04 September 2019 - 17 July 2024

OC 21 April 2016 - 09 October 2024 02 July 2019 - 09 October 2024

Forst
AF 11 March 2016 - 29 August 2024 03 July 2019 - 29 August 2024

OC 09 March 2016 - 10 October 2024 26 June 2019 - 10 October 2024

Mariensee
AF 17 March 2016 - 29 December 2021 17 May 2019 - 29 December 2021

OG 17 March 2016 - 31 December 2021 17 May 2019 - 31 December 2021

Vechta
AF 31 July 2019 - 29 August 2024 31 July 2019 - 31 December 2021

OC 31 July 2019 - 02 October 2024 31 July 2019 - 02 October 2024

Wendhausen

AF 22 March 2016 - 18 September 2024 25 May 2019 - 18 September 2024

OC 23 March 2016 - 18 September 2024 30 May 2019 - 18 September 2024

Appendix B: Evaluation of gap-filling of meteorological data

Table B1. Root mean squared error (RMSE) for evaluation of the gap-filling of meteorological data. RMSE was calculated between measured

and ERA5-Land data in the case of SW_IN, PA, TA, RH, VPD, WS and WD, for the test dataset using a 0.8:0.2 ratio of training to test data.

RMSE was calculated between predicted and measured data, after model fitting and prior to predicting all missing data, for SW_OUT,

NETRAD, LW_OUT and G. In this case, RMSE was calculated as the average RMSE of the modeled data for the different split data sets in

training and test data, for each variable. More details about the gap-filling can be found in Sections 2.2.2 and 2.3.2.

SW_IN (w m2) PA (kPa) TA (◦C) RH (%) VPD (kPa) WS (m s−1) WD (◦) SW_OUT (W m−2) NETRAD (W m−2) LW_OUT (W m−2) G (W m−2)

Dornburg AF 103.6 3.9 2.1 9.1 0.3 1.1 191.6 12.7 44.5 10.2 6.0

Dornburg OC 109.4 3.8 1.7 9.4 0.2 1.1 192.7 10.0 33.2 8.4 10.0

Forst AF 101.4 0.9 2.0 9.5 0.2 1.0 172.1 7.4 28.4 11.0 7.8

Forst OC 97.5 0.9 1.9 9.1 0.2 1.0 180.4 7.4 22.7 8.1 13.2

Mariensee AF 103.9 1.0 2.1 9.5 0.2 0.9 178.2 7.6 25.0 19.4 3.9

Mariensee OG 94.8 1.0 2.0 9.7 0.2 0.8 166.0 5.5 26.2 37.2 3.8

Vechta AF 98.2 0.5 1.3 7.3 0.2 0.9 176.8 8.4 26.6 7.5 10.1

Vechta OC 93.1 0.5 1.3 7.0 0.2 1.0 169.0 7.3 19.9 7.8 10.9

Wendhausen AF 101.5 1.1 1.8 9.2 0.2 0.9 174.9 9.0 33.7 14.2 8.4

Wendhausen OC 101.5 1.1 1.7 8.9 0.2 1.1 182.9 8.6 21.8 14.7 12.0
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Table B2. Slopes (a) and coefficients of determination (r2) of linear regression models (of the form y = ax + b) between measured and

ERA5-Land data, for SW_IN, PA, TA, RH, VPD, WS and WD. The intercept b was forced to be 0 in the case of SW_IN, WS and WS. More

details about the gap-filling can be found in Sections 2.2.2 and 2.3.2.

SW_IN PA TA RH VPD WS WD

Dornburg AF
a = 1.1

r2 = 0.9

a = 1.0

r2 = 0.8

a = 1.0

r2 = 0.9

a = 1.1

r2 = 0.8

a = 1.1

r2 = 0.8

a = 1.0

r2 = 0.9

a = 1.0

r2 = 0.4

Dornburg OC
a = 1.0

r2 = 0.9

a = 1.0

r2 = 0.8

a = 1.0

r2 = 1.0

a = 1.1

r2 = 0.7

a = 1.0

r2 = 0.9

a = 1.2

r2 = 0.9

a = 1.0

r2 = 0.3

Forst AF
a = 1.1

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.1

r2 = 1.1

a = 1.1

r2 = 0.8

a = 1.1

r2 = 0.9

a = 1.0

r2 = 0.9

a = 0.8

r2 = 0.4

Forst OC
a = 1.1

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.0

r2 = 1.1

a = 1.1

r2 = 0.8

a = 1.1

r2 = 0.8

a = 0.9

r2 = 0.9

a = 0.8

r2 = 0.4

Mariensee AF
a = 1.0

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.1

r2 = 0.9

a = 1.1

r2 = 0.7

a = 1.1

r2 = 0.8

a = 0.8

r2 = 0.9

a = 0.9

r2 = 0.4

Mariensee OG
a = 1.1

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.0

r2 = 0.9

a = 1.1

r2 = 0.7

a = 1.1

r2 = 0.8

a = 0.6

r2 = 0.9

a = 0.8

r2 = 0.4

Vechta AF
a = 1.0

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.1

r2 = 1.1

a = 1.2

r2 = 0.8

a = 1.2

r2 = 0.9

a = 0.8

r2 = 0.8

a = 0.9

r2 = 0.4

Vechta OC
a = 1.1

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.0

r2 = 1.0

a = 1.1

r2 = 0.8

a = 1.2

r2 = 0.9

a = 0.7

r2 = 0.8

a = 0.8

r2 = 0.3

Wendhausen AF
a = 1.0

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.1

r2 = 1.0

a = 1.2

r2 = 0.8

a = 1.2

r2 = 0.9

a = 0.8

r2 = 0.9

a = 0.9

r2 = 0.4

Wendhausen OC
a = 1.1

r2 = 0.9

a = 1.0

r2 = 1.0

a = 1.1

r2 = 1.1

a = 1.2

r2 = 0.8

a = 1.2

r2 = 0.9

a = 0.9

r2 = 0.8

a = 0.9

r2 = 0.4
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Figure B1. Scatter plots and linear regressions of measured meteorological vs. ERA5-Land re-analysis data, for global radiation (SW_IN,

a), atmospheric pressure (PA, b), air temperature (TA, c), vapor pressure deficit (VPD, d), wind speed (WS, e) and wind direction (WD, f), at

Forst AF. Data are at 30-min time resolution. The turquoise lines represent the linear regression models between ERA5-Land and measured

data, and the pink/orange lines represent the reference 1-slope line with an intercept at 0.0. Slopes, r2 coefficients and intercepts of the linear

models between ERA5-Land and measured data are displayed in the legends.
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Appendix C: Diel cycles of measured and gap-filled FC and LE
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Figure C1. Exemplary mean diel cycle of CO2 flux density (FC, µmol m −2 s−1) and latent heat flux density (LE, W m−2) at  Dornburg. 

Values were calculated as the mean across all available data corresponding to each 30 min period, across all USTAR scenarios. Error bars 

represent the standard deviations over the 40 USTAR scenarios. Solid lines represent the AF values, dashed lines represent the OC values. 

Dark blue colour represents measured data, pink colour represents measured data plus data filled with REddyProc, and light orange colour 

represents measured data and gap-filled data with both REddyProc and XGBoost. It is important to note that because most gaps occurred in 

winter and nighttime, the filled data have a different distribution and thus lower magnitude.
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