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Abstract. Accurate and detailed cropland maps are essential for agricultural planning, resource management, and food 

security, particularly in countries like China, where agricultural productivity is high but resources are limited. Despite the 

availability of several medium-to-high-resolution satellite-based cropland maps, significant discrepancies in area estimates 

and spatial distribution persist, limiting their utility. This study proposes a data-driven framework for cropland mapping that 

leverages 2 m High Resolution (HR) imagery from Mapbox and Google. The framework consists of three main stages: First, 20 

national imagery is partitioned into 0.05°×0.05° blocks for efficient parallel computation. An Image Quality Assessment 

(IQA) using ResNet models is performed on both sources to address the challenge of missing image acquisition metadata. 

Second, a robust cropland identification model integrates Mask2Former for precise segmentation and XGBoost for error 

assessment, facilitating iterative improvements through active learning. Finally, a novel integration strategy combines four 

feature groups—Geography, IQA, Region Property, and Consistency—using XGBoost to merge the datasets into a unified 25 

cropland layer, named Croplayer. The Croplayer dataset achieves an overall mapping accuracy of 88.73%, with 30 out of 32 

provincial units reporting area estimates within ±10% of official statistics. In contrast, only 1 to 9 provinces from seven other 

existing datasets meet the same accuracy standard. The results highlight Croplayer's potential for applications such as crop 

yield estimation and agricultural structure analysis, offering a reliable tool for addressing agricultural and food security 

challenges. 30 
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1 Introduction 

China, with its extensive agricultural resources and long-standing tradition of intensive farming, occupies a pivotal role in 

global agriculture. Despite possessing less than 7% of the world's cropland and only 5% of utilizable freshwater resources, 

China produces a quarter of the world's food, sustaining more than 22% of the global population (Kuang et al., 2022). This 

significant contribution underscores China's importance to both domestic and international food and nutritional security 35 

(Zhang et al., 2022). Currently, China is the world's leading producer of grains, cotton, and vegetables. However, recent 

uncertainties in global food security including adverse climate changes, catastrophic events, and increasing competition and 

trade tensions, have amplified the need for enhanced agricultural monitoring (Piao et al., 2010; Kang and Eltahir, 2018). 

Accurate cropland maps are indispensable for estimating crop areas and yields, as well as for assessing losses from 

disasters. Remote sensing serves as a highly effective method for producing cropland maps over large geographic areas (Wu 40 

et al., 2023). Over the years, researchers have developed hundreds of cropland maps at both national and global scales, many 

of which are derived from land use and land cover (LULC) products (Cui et al., 2024). The resolution and accuracy of these 

maps have progressively advanced, corresponding to improvements in satellite capabilities. Spatial resolutions have evolved 

from coarse (1 km, 500 m) to medium (30 m, 10 m) (Cui et al., 2024a), and more recently to high resolutions approaching 1 

m (Li et al., 2023). 45 

Except for the early coarse-resolution data, medium-resolution data is currently widely utilized. Products based on 30-m 

Landsat data include: 1) the China land cover dataset (CLCD) (Yang and Huang, 2021), 2) Finer Resolution Observation and 

Monitoring of global land cover (FROM) (Gong et al., 2019), 3) Global land-cover product with Fine Classification System 

2020 (FCS30) (Zhang et al., 2021), and 4) Globeland30-2020 (GL30) (Jun et al., 2014). Products based on 10 m Sentinel 

data include: 5) WorldCover from European Space Agency (ESA) (Zanaga et al., 2021) and 6) Land cover v2 from the 50 

Environmental Systems Research Institute (ESRI) (Karra et al., 2021). High-resolution products based on Google Earth 

imagery is relatively new, i.e. 7) National-scale land-cover map of China (SinoLC) (Li et al., 2023). 

Nevertheless, existing cropland datasets for China exhibit certain limitations, including: 

1) Challenges in cropland area estimation: Existing cropland maps for China exhibit significant discrepancies when 

compared with official statistics. For instance, our preliminary analysis indicates that in Guangdong Province, the reported 55 

cropland area in certain datasets is up to three times larger than the official statistics (Jiang et al., 2024). Such substantial 

discrepancies undermine the reliability of these datasets and hinder their application in agricultural planning and policy-

making (Cui et al., 2024b).  

2) Inadequate representation of cropland diversity: Current cropland datasets for China reveal significant discrepancies in 

their ability to accurately represent cropland diversity. These discrepancies manifest as overestimations in some provinces 60 

and underestimations in others, largely influenced by the diverse climatic conditions, terrain, and agricultural practices 

across China's vast landscape. The country's cropland includes a wide range of field types, such as terraced fields, barrage 

fields, flatland fields, gully fields, weir fields, and strip fields, each of which requires tailored sampling strategies to ensure 
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accurate representation (Zhang et al., 2020). However, the lack of comprehensive coverage for these diverse field types often 

results in biased estimates, leading to significant overestimations or underestimations of specific cropland categories.  65 

3) Limitations in spatial details for complex terrains: The spatial resolution of commonly utilized satellite data sources, 

such as Landsat (Hansen and Loveland, 2012) and Sentinel (Bontemps et al., 2015; Qiu et al., 2022), presents significant 

limitations when applied to regions with complex terrains. These data sources, with resolutions suited to large, contiguous 

agricultural fields in regions like the United States, Europe, and Northern China, struggle to capture the intricate spatial 

details of Southern China's fragmented and rugged landscapes (Qiu et al., 2024). In these areas, characterized by 70 

mountainous terrain and small, irregular crop fields typically 0.04 ha, the resolution is insufficient to distinguish between 

croplands and non-agricultural features, such as ridges, roads, or highways (Liu et al., 2020). This lack of spatial detail not 

only leads to misclassification but also undermines the overall accuracy of cropland datasets. To address these challenges, 

higher-resolution imagery and more advanced classification algorithms are essential for accurately mapping such complex 

agricultural environments. 75 

Toward the above three requirements, we improve the cropland identification method from the following three ideas: 

1) Leveraging Open Access High-Resolution Imagery 

Accessing national-scale high-resolution (HR) data often incurs substantial costs, prompting the academic community to 

turn to more accessible alternatives. Freely available Google Satellite imagery offers a resolution of at least 0.3 m in most 

global regions, while Mapbox provides a cost-effective option with moderate fees. These HR datasets have proven effective 80 

in applications such as land cover analysis and object detection, offering spatial detail that far surpasses Sentinel and Landsat 

data. However, they come with notable limitations, including missing metadata on satellite sources, acquisition dates, and 

the lack of temporal dynamics essential for crop phenology monitoring. Furthermore, they are limited to RGB bands, 

restricting their spectral information content.  

To address these shortcomings, this study proposes an image quality assessment method to infer missing metadata and 85 

leverage human interpretation to gain prior knowledge of the imagery. By integrating this information, the study aims to 

selectively utilize Google Satellite and Mapbox imagery to enhance cropland extraction. This approach balances the superior 

spatial detail of HR imagery with the need for ancillary information to ensure reliable analysis. 

2) Advancing Cropland Mapping with Deep Learning-Based Semantic Segmentation 

Traditional pixel-wise classification methods relying on shallow machine learning algorithms struggle to capture the 90 

complexity of cropland patterns. In contrast, deep learning-based semantic segmentation methods excel by leveraging 

hierarchical feature extraction to analyze shape, texture, color, and contextual information. Early approaches primarily 

employed Convolutional Neural Networks (CNNs), which effectively capture local patterns. However, recent advancements 

favor Transformer-based architectures, which are adept at modeling long-range dependencies and extracting complex 

features, making them particularly suitable for cropland mapping. 95 

This study will evaluate the performance of widely used models, including PSPNet (Zhao et al., 2017), PIDNet(Xu et al., 

2023), Segformer (Xie et al., 2021), and Mask2Former (Cheng et al., 2022), to determine the most accurate method for 
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cropland identification. By comparing these models, the research aims to capitalize on the strengths of Transformers while 

addressing the diverse and intricate characteristics of croplands, thereby advancing the precision and scalability of cropland 

mapping. 100 

3) Optimizing Sample Selection through Active Learning 

Traditional sampling techniques, such as regular or stratified random sampling, often rely on cropland area distribution for 

stratification. While effective for general land cover classification, these methods are less suited for semantic segmentation, 

where capturing object diversity is more critical than sampling similar objects repeatedly. 

Active Learning has emerged as an effective approach to significantly reduce the number of samples that need to be 105 

labelled, often by several orders of magnitude (Kaijage et al., 2024). Active learning provides a more efficient alternative by 

selectively labeling the most informative samples, reducing redundant labeling and minimizing manual workloads (Mittal et 

al., 2023). This study aims to establish criteria for sample selection and determine iteration termination within the active 

learning process. Using provincial cropland statistics as a benchmark, an active learning framework will be constructed to 

enhance model performance while minimizing labeling costs, ensuring diversity in sample selection. 110 

In this study, we propose the use of 2.4 m resolution (level-16) Google and Mapbox satellite imagery to generate a 

nationwide cropland distribution map for China. The methodology comprises 3 key steps: image quality assessment, 

cropland extraction, and results enhancement, all guided by data-driven strategies. The resulting cropland data is then 

evaluated against 7 publicly available cropland datasets, focusing on metrics such as accuracy, area, and consistency. 

Additionally, we analyze the spatial distribution of cropland in China, offer recommendations for practical applications of 115 

this dataset, and discuss potential directions for future research. 

2 Study area and data 

2.1 Study area 

The study area encompasses the entirety of China, located in the eastern part of the Eurasian continent, with a total land area 

of approximately 9.6 million km2. Cropland in China covers about 127.87 million ha, ranking it as the third-largest country 120 

globally in terms of cropland area. The country's topography is highly varied, with mountains, plateaus, and hills accounting 

for approximately 67% of the land area, while basins and plains make up the remaining 33% (Liu et al., 2024). This complex 

terrain, combined with diverse climatic conditions, results in substantial regional variability in agricultural practices and 

cropland types (Figure 1). 

    China's primary cropland types include dry land, paddy fields, and irrigated land (Zhang et al., 2024). Flat terrains in 125 

basins and plains, such as the Northeast Plain, North China Plain, the middle and lower Yangtze River Plains, and the 

Chengdu Basin, are well-suited for large-scale mechanized farming due to concentrated land resources. Conversely, 

mountainous, plateau, and hilly regions, particularly in Southwest China, feature rugged terrain and fragmented arable land, 

posing significant challenges to large-scale agricultural development (Xinyu et al., 2022).  
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. 130 

Figure 1: Slope distribution in the Study Area of China. 

2.2 Data 

2.2.1 High Resolution Remote Sensing Imagery and Data Structure 

The Croplayer dataset was generated using HR satellite imagery from Mapbox and Google. These imagery datasets are 

continuously updated from various sources, including commercial providers, NASA, and USGS. According to the Google 135 

(http://mts0.googleapis.com) and Mapbox (https://api.mapbox.com/v4/mapbox.satellite) satellite services, global HR satellite 

imagery is provided as RGB color patches with a resolution of 256 × 256 pixels and is accessible via a Web Map Service 

(WMS) API. The imagery used in this study was accessed between August 2022 and December 2023. 

Although the datasets lack key metadata, such as sensor type, viewing angle, and atmospheric conditions, they undergo 

extensive radiometric and geometric corrections before being made publicly available. These corrections ensure data 140 

reliability and suitability for various applications, including cropland mapping. 

In this study, the HR imagery was organized into image blocks measuring 0.05° × 0.05° in WGS 1984 geographic 

coordinates, with each block comprising mosaicked image patches. A total of 389,777 image blocks were generated, 

covering the entire extent of China for both datasets. The imagery was utilized at level-16, corresponding to a spatial 

resolution of approximately 2.4 m per pixel, which is sufficient for capturing the geometry and structure of cropland. 145 
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2.2.2 DEM Data 

Given the strong correlation between cropland distribution and topographic features, this study utilized Digital Elevation 

Models (DEM) to improve cropland mapping accuracy. Due to the lack of high-resolution DEM data, it was not included in 

the initial cropland extraction phase. Instead, 30 m resolution DEM data from the Shuttle Radar Topography Mission 

(SRTM) was incorporated during the post-processing stage. Key topographic features including slope, ruggedness, and 150 

roughness were derived from the DEM using the gdaldem tool (https://gdal.org/en/latest/programs/gdaldem.html). 

2.2.3 Samples 1: Coverage type classification 

All image blocks were categorized into five distinct coverage types: Planting, Non-Planting, Cloudy, Snow/Ice, and Nodata, 

represented by the color codes green, yellow, white, light grey, and black, respectively. Due to the relative scarcity of blocks 

classified as Cloudy, Snow/Ice, and Nodata, an active learning strategy was adopted for sampling, enabling the selection of 155 

blocks with more distinct features. This approach improved class discriminability compared to systematic sampling methods. 

    Definitions for each coverage type are outlined in Table 2. From the datasets, a total of 8,084 image blocks were curated 

from various regions of China, ensuring comprehensive coverage. These blocks were further divided into 6,465 training 

samples and 1,619 validation samples to provide a robust and diverse dataset for model training and evaluation. 

Table 1: Definition of image coverage type. 160 

Coverage type Image color Explanation 

Planting Green Cropping season 

Non-Planting Yellow 
Areas not currently cultivated i.e. fallow 

cropland or the Gobi Desert 

Cloudy White Thick cloud coverage > 10% 

Snow/Ice Light Grey Snow/Ice coverage > 20% 

Nodata Black No data coverage > 10% 
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Figure 2: Examples of 5 Coverage type. The HR remote-sensing images in the figure are from © Mapbox 2023 and © 

Google Maps 2023. 

2.2.4 Samples 2: Cropland extraction 

Cropland samples were manually labelled using HR imagery in shapefile format via QGIS software. These samples were not 165 

collected in a single phase but were gradually acquired through an active learning strategy (Mittal et al., 2023). Initially, the 

model was trained on a preliminary set of samples. The predicted results were then visually inspected, and additional 

samples were collected from areas with the most significant errors to improve model accuracy.  

    The spatial distribution of the labelled samples is illustrated in Figure 3, while examples of the labeled data are provided 

in Table 2. 170 

Table 2: Typical representatives of various types of cropland and non-cropland. The HR remote-sensing images in the figure 

are from © Mapbox 2023 and © Google Maps 2023. 

  
Definition South region 

Central and Northeast 

region 
Northwest region 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Cropla

nd 

Paddy 

croplan

d 

Cropland used for growing 

aquatic crops such as rice 

and lotus root. (Including 

arable land where aquatic 

and dry crops are rotated. 
   

Irrigate

d 

croplan

d &Dry 

croplan

d 

Artificially watered and 

cropland without irrigation 

facilities (including 

bananas and pineapples). 
   

Terrace

s 

Arable land with a strip 

terrace or wavy section 

built in the contour 

direction on hilly hillside 

land. 
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Fallow 

land 

Cropland that is not 

planted with crops for the 

time being. 

   

Green 

house 

Land on which plastic 

greenhouses or mulch, etc., 

with no substantial impact 

on the tillage layer. 

   

Cropla

nd with 

scattere

d trees 

Cropland with scattered 

trees at intervals, including 

fruit trees, mulberry trees 

or other trees. 

   

Confus

ing 

types 

of non-

croplan

d 

Orchar

ds 

Land planted with fruit 

trees with more than 50 per 

cent cover. 

   

 

Woodla

nd 

Land on which trees, 

bamboos and shrubs grow. 

   

Bare 

land 

Land with an earthy 

surface and essentially no 

vegetation cover; or land 

with a rocky, gravelly 

surface, which covers ≥ 

70 % of the land. 
   

https://doi.org/10.5194/essd-2025-44
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

Grassla

nd 

Land dominated by 

herbaceous plants. 

   

To enhance model robustness, the cropland samples were designed to encompass diverse cropping practices and crop 

types. The dataset consists of 157,395 polygons, most of them representing an individual cropland, distributed across 366 

image blocks (0.05° × 0.05° each), collectively referred to as positive cropland samples (Figure 3). 175 

In addition to these positive samples, the dataset includes 761 negative cropland samples blocks devoid of cropland 

polygons. These negative samples are particularly important as they often feature areas resembling cropland but are not 

actual cropland. Their inclusion strengthens the model's ability to differentiate between cropland and non-cropland regions, 

thereby improving classification accuracy. 

 180 

Figure 3: Distribution of positive and negative cropland samples.  

2.2.5 Samples 3: Error assessment and results integration 

A data-driven approach is adopted for both error assessment and results integration during the cropland extraction process. 

Systematic grid sampling at intervals of 0.5° longitude and latitude is applied, generating a total of 3,891 image blocks. The 

process involves two key steps: 185 
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    1) Error Assessment: 

Independent sample interpretation was conducted for cropland results derived from Mapbox and Google datasets, yielding 

7,782 samples categorized into four groups: 

a) True Positive (TP): Correctly identified croplands. 

b) False Positive (FP): Non-cropland areas mistakenly identified as cropland. 190 

c) Noise: Very small extraction errors. 

d) Artifacts: Misclassified areas due to imagery inconsistencies or processing errors. 

2) Results Integration: 

The same set of 3,891 blocks was classified into four integration categories: 

a) Neither Source: Blocks where neither dataset identifies cropland. 195 

b) Only Mapbox: Blocks with cropland identified exclusively by Mapbox. 

c) Only Google: Blocks with cropland identified exclusively by Google. 

d) Merging Both: Blocks where cropland is identified in both datasets, integrated for improved accuracy. 

To ensure comprehensive evaluation and reliable result integration, a systematic sampling and categorization approach 

was adopted. For model classification, the total sample set was stratified and randomly split, allocating 80% for training and 200 

20% for testing. This method enhanced model accuracy and improved the reliability of the final cropland dataset. 

2.2.6 Statistical Cropland Area 

Provincial-level cropland area statistics for China are sourced from the Third National Land Survey (TNLS), a 

comprehensive initiative that involved detailed assessment and verification of land resources, including the area and 

distribution of cultivated land. The project employed professional investigators and a hierarchical inspection system to 205 

ensure data accuracy and reliability, making the statistics a robust reference for comparative analysis and validation. This 

study focuses on the 32 provincial units in China with cropland areas exceeding 100 km², excluding Hong Kong and Macau. 

Additionally, Taiwan's cropland statistics are not part of the TNLS and are instead derived from alternative sources 

(https://agrstat.moa.gov.tw/sdweb/public/indicator/Indicator.aspx). Notably, the definition of cropland in Taiwan differs 

significantly from TNLS, as it includes orchards. 210 

2.2.7 Existing cropland data 

To evaluate the performance of the proposed method and the public cropland datasets in identifying cropland inundation in 

mountainous regions, this study involves seven land cover (LC) datasets including: 

1) China land cover dataset (CLCD) (Yang and Huang, 2021),  

2) WorldCover from European Space Agency (ESA) (Zanaga et al., 2021),  215 

3) Land cover v2 from the Environmental Systems Research Institute (ESRI) (Karra et al., 2021),  
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4) Finer Resolution Observation and Monitoring of global land cover from Tsinghua University (FROM) (Gong et al., 

2019),  

5) Global land-cover product with Fine Classification System 2020 from Aerospace Information Innovation Institute, 

Chinese Academy of Sciences (FCS30) (Zhang et al., 2021),  220 

6) Globeland30-2020 from National Geomatics Center of China (GL30) (Jun et al., 2014),  

7) National-scale land-cover map of China (SinoLC) (Li et al., 2023).  

The 7 LC data are all produced based on Sentinel or Landsat data, human-interpreted samples and machine learning 

methods. 

These datasets are derived from Sentinel or Landsat data, combined with human-interpreted samples and machine learning 225 

methods. Table 1 summarizes the datasets. All datasets, except FROM (representing data from 2017), correspond to the year 

2020. Although there is a three-year gap, differences in provincial cropland changes may still be evident. The declared 

accuracy for the 7 datasets ranging from 72% to 85.72%. 

Table 3: Summary of 7 Land cover data 

Cropland 

data name 
Issuer 

Data 

source 

Spatial 

resoluti

on 

Classification 

method 

Cropland 

definition 
Declared 

accuracy 

CLCD 

2020 
Wuhan University Landsat 30m Random Forest 

Cropland 
79.31% 

ESA 

WorldCover 

2020 

European Space 

Agency 

Sentinel-

1 

Sentinel-

2 

10m 
Gradient boosting decision 

tree algorithm (CatBoost) 
Cropland 74.40% 

ESRI 

Land Cover 

2020 

Impact Observatory, 

Inc., Washington, 

D.C. 

Sentinel-

2 
10m Deep learning (UNet) Crops 85% 

FROM_GLC

10  2017 
Tsinghua University 

Landsat 

Sentinel-

2 

10m 

Maximum Likelihood 

Classification， 

Decision Tree， 

Random Forest， SVM 

Cropland 72.43% 

GLC_FCS30 

2020 

Aerospace 

Information Research 

Institute, 

Chinese Academy of 

Sciences 

Landsat 30m Random Forest 
Rainfed cropland, 

Irrigated cropland 
82.5%, 
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Globeland30-

2020 

China National 

Geographic 

Information Centre 

Landsat 

HJ-1 

GF-1 

30m 

Maximum Likelihood 

Classification, SVM,  

Thresholds method 

Cultivated Land 85.72% 

SinoLC 
China university of 

geosciences 

Google 

Earth 

imagery 

1m L2HNet 

Cropland 

73.61 % 

 230 

3 Methods 

This study proposes a data-driven framework for cropland mapping using 2 m HR imagery from Mapbox and Google. The 

framework consists of three key stages (Figure 4): 1) Pre-processing: The national imagery is divided into 0.05°×0.05° 

blocks to facilitate efficient parallel processing (Yang et al., 2019). Image quality assessment (IQA) is conducted on both 

imagery sources using ResNet models (He et al., 2016), despite the lack of acquisition metadata. 2) Cropland Extraction: An 235 

active learning-based model for cropland identification is developed, utilizing Segformer for cropland segmentation and 

XGBoost (Chen and Guestrin, 2016) for error assessment. 3) Post-processing: A merging strategy is applied using XGBoost, 

combining four feature groups including Geography, IQA, Region Property, and Consistency to integrate the two datasets 

into the final cropland data, referred to as Croplayer. The performance of Croplayer is evaluated by comparing it with seven 

publicly available cropland datasets and statistical area information. 240 
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Accuracy validation by 
test samples

Original Mapbox 
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1) Pre-processing:
Image quality assessment

ESA WorldCover 2020
10m

ESRI Land Cover 2020 
10m

GLC FCS30 2020
30m 
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Globeland30 2020 
30m

CLCD 2020
30m

Consistency validation with existing cropland data
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Manual 
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Planting Non-Planting Cloudy Snow/Ice Nodata

Cropland extraction using 
Segformer Model 
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XGBoost model Error

Cropland extraction 
Sample Labelling
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Mapbox
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Correct

2) Cropland extraction: 
Segformer Semantic Segmentation 
of Active Learning 

3) Post-processing: 
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Validation

Consistency 
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Image quality 
features
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Ruggedness

HSL color 
transform

Region property 
features

Neither source Merging bothOnly Mapbox Only Google 

Error assessment 
sample labelling

Results analysis 
sample labelling

Results analysis using 
XGBoost model

Result integration by each blocks, options:

Collect 4 groups of features

SRTM DEM

TP

Error assessment by each blocks,  options:

TN Noise Artifacts

Provincial statistical check: area ratio > 80%

Sharpness

Coverage type features

Region property &
Consistency
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Figure 4: Flowchart of cropland mapping. 

3.1 Pre-processing: image quality assessment 

The identification of croplands using satellite imagery from Mapbox and Google is often hindered by low-quality images, 

including those affected by no-data regions, cloud cover (thick and thin), snow/ice, and land fallow periods. To address these 245 

challenges, an image quality assessment (IQA) method was developed to guide the selection of optimal datasets.  

IQA replicates human perception of image quality and serves two key purposes: filtering out poor-quality images to 

improve downstream tasks such as alignment, fusion, and recognition, and evaluating the performance of post-processing 

algorithms (Zhu et al., 2020). IQA methods are broadly classified into with-reference and no-reference approaches (Gao et 

al., 2024). In this study, both were utilized: with-reference IQA for classifying easily identifiable features and no-reference 250 

IQA for detecting thin clouds through specialized feature calculations. The IQA outputs were integrated during post-

processing to enhance cropland identification results. 

1) Coverage Type Classification: To classify image coverage types, we trained a ResNet-based image classification model 

using the samples described in Section 2.2.3. ResNet's deep residual architecture enhances feature extraction by addressing 

the vanishing gradient problem with skip connections, enabling the network to capture multilevel abstract features. This 255 

capability allows ResNet to excel in identifying complex image attributes such as color, texture, shape, and spatial context, 

thereby improving classification accuracy. Fine-tuning the pre-trained ResNet model on the dataset further enhances 

generalization and efficiency in coverage type classification. 

2) Thin cloud features calculation: Thin clouds pose a unique challenge, as they are difficult to detect through standard 

image classification methods. To address this, two features were calculated: the Gradient (Eq.1) represents the sharpness of 260 

land cover boundaries, serving as an indicator of image clarity. The HSL (Hue, Saturation, and Lightness) (Eq.2-4) Captures 

color and saturation properties, aiding in the detection of subtle cloud contamination. These features collectively contribute 

to assessing the impact of thin clouds on image quality, enabling more accurate cropland identification during post-

processing. 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 𝑆𝑜𝑏𝑒𝑙(𝑅, 𝐺, 𝐵)           (1) 265 

𝐻𝑢𝑒 =

(

 
 
 
 
 

0°, 𝑖𝑓 𝑚𝑎𝑥 = 𝑚𝑖𝑛

60° ×
𝐺−𝐵

𝑚𝑎𝑥+𝑚𝑖𝑛
+ 0°, 𝑖𝑓 𝑚𝑎𝑥 = 𝑅 𝑎𝑛𝑑 𝐺 ≥ 𝐵

60° ×
𝐺−𝐵

𝑚𝑎𝑥+𝑚𝑖𝑛
+ 360°, 𝑖𝑓 𝑚𝑎𝑥 = 𝑅 𝑎𝑛𝑑 𝐺 < 𝐵

60° ×
𝐵−𝑅

𝑚𝑎𝑥+𝑚𝑖𝑛
+ 120°, 𝑖𝑓 𝑚𝑎𝑥 = 𝐺 

60° ×
𝐺−𝐵

𝑚𝑎𝑥+𝑚𝑖𝑛
+ 240°, 𝑖𝑓 𝑚𝑎𝑥 = 𝐵

       (2) 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = {
0

𝑚𝑎𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥

   
𝑖𝑓 𝑚𝑎𝑥 = 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (3) 

𝐿𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =
1

2
(𝑚𝑎𝑥 + 𝑚𝑖𝑛)           (4) 
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Here, the 𝑅, 𝐺, 𝐵 represent the Red, Green, and Blue bands of the RGB image. The max and min referred to 𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) 

and 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵). The Sobel operator is applied to each of the three bands of the RGB image to calculate the gradient, which 270 

is a measure of the intensity of the edges in the image. 

3.2 Cropland extraction: semantic segmentation of active learning 

3.2.1 Cropland extraction via active learning strategy 

The active learning process for semantic segmentation begins by labeling an initial set of image blocks, which is then used to 

train the segmentation model. The trained model predicts cropland areas beyond the initial blocks, and these predictions are 275 

reviewed. Blocks with significant commission or omission errors are labeled and added to the sample set, iterating this 

process until a stopping criterion is met. The stopping criterion is defined as the absence of substantial artifacts or 

underestimation errors. 

A significant challenge in the iterative process is evaluating the quality of predictions and determining when to terminate 

the iteration. During the initial iterations, errors such as overestimation and underestimation are readily apparent through 280 

manual visual inspection. However, as the model's predictions become more refined in later iterations, these errors become 

less noticeable, making manual review of the entire area increasingly impractical. 

To overcome this challenge, an independent error assessment model is utilized to automatically evaluate the predictions of 

the cropland extraction model. By leveraging several image features, the error assessment model is trained to estimate 

extraction accuracy, enabling it to detect errors without relying solely on manual intervention. This automated evaluation 285 

ensures efficient and precise identification of cropland areas while significantly reducing the need for extensive human 

review. 

3.2.2 Mask2Former model 

Mask2Former is a universal image segmentation framework capable of handling semantic, instance, and panoptic 

segmentation tasks through a Transformer-based decoder (Cheng et al., 2022). Unlike traditional Transformer decoders, it 290 

introduces a masked attention mechanism that restricts cross-attention operations to the foreground regions defined by 

predicted masks. This approach accelerates convergence and improves performance by focusing attention on local areas 

rather than the entire image, making it particularly effective for segmenting small objects. The model incorporates multi-

scale, high-resolution feature inputs, allowing it to handle objects and regions of various sizes while iteratively refining mask 

predictions through multiple layers.  295 

    To enhance efficiency, Mask2Former optimizes the Transformer decoder by adjusting the order of self-attention and 

cross-attention for more effective feature learning. It also uses learnable query features, which provide more expressive 

initial queries without relying on random initialization. Additionally, the model reduces memory consumption by computing 

mask loss through random sampling, lowering memory usage by threefold while maintaining segmentation performance. 
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These improvements enable Mask2Former to achieve high segmentation accuracy while significantly increasing training 300 

efficiency and reducing computational demands.  

3.2.3 Error assessment features 

To account for multiple features in error assessment, a data-driven approach was employed to evaluate each block. Region 

properties (Burt et al., 1981), including Area Ratio, Solidity, Euler Number, and Consistency, were calculated (Maryada et 

al., 2024; Bhosale et al., 2023). Using systematic grid sampling (Section 2.2.5), manually interpreted samples were used to 305 

train an XGBoost model to predict errors across the study area. The defined features are as follows: 

    1) Area Ratio: The proportion of cropland area within each block, calculated as (Eq.5): 

𝐴𝑟𝑒𝑎 𝑅𝑎𝑡𝑖𝑜 =
𝑃𝑁𝑐𝑓

𝑃𝑁𝐵𝑙𝑜𝑐𝑘
           (5) 

    where 𝑃𝑁𝑐𝑓 and 𝑃𝑁𝐵𝑙𝑜𝑐𝑘 are the pixel number for crop fields and entire region of each block. 

    2) Solidity: Solidity represents the compactness of cropland regions, measured as (Eq.6): 310 

𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎

𝐴𝑟𝑒𝑎(𝐶𝑜𝑛𝑣𝑒𝑥 𝐻𝑢𝑙𝑙)
          (6) 

 

    where 𝐴𝑟𝑒𝑎 is the pixel count in the cropland region, and 𝐴𝑟𝑒𝑎(𝐶𝑜𝑛𝑣𝑒𝑥 𝐻𝑢𝑙𝑙) is the pixel count in its convex hull. 

Higher solidity indicates fewer irregularities in shape. 

    3) Euler number: A topological metric evaluating the structure of cropland extraction results, defined as (Eq.7): 315 

𝐸𝑢𝑙𝑒𝑟 𝑁𝑢𝑚𝑏𝑒𝑟 = 𝐶 − 𝐻           (7) 

    where 𝐶 represents the number of connected components (objects), and 𝐻 is the number of holes within those components. 

A higher Euler number signifies fewer holes and better segmentation quality.  

4) Consistency: Consistency quantifies similarity between binary images and reference data, using the Intersection over 

Union (IoU) metric (Eq.8): 320 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
            (8) 

    where TP (true positives) and TN (true negatives) are correct predictions, FP (false positives) are incorrect identifications, 

and FN (false negatives) are missed identifications. IoU was applied to compare results from Mapbox and Google datasets, 

extracted cropland samples, and the final Croplayer product with other datasets.  

3.3 Post-processing: cropland results integration 325 

Using imagery from Mapbox and Google, two distinct cropland identification results were generated for each block across 

the study area. To create a final, higher-quality cropland map, an integration strategy was developed to combine the strengths 

of both datasets. Each block was assigned one of four integration options: Neither Source, Only Mapbox, Only Google, or 

Merging both, as detailed in Table 4. 
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Table 4: Results refining options and explanations 330 

Option Major Region Explanation 

Neither 

source 

Western Applied primarily for noise-prone areas, characterized by small, isolated features with low 

consistency between Mapbox and Google results (e.g., dunes resembling fallow fields 

under certain lighting). 

Only 

Mapbox / 

Only 

Google 

Central and 

Eastern 
Suitable for regions with larger, regular crop fields that are easily identifiable. The source 

with higher image quality (e.g., seasonal clarity) is preferred, avoiding merged results that 

may capture fallow orchards. 

Merging 

both 

Southern Applied in areas with smaller crop fields in mountainous or hilly terrain. Complex 

landscapes with dense vegetation and forested croplands benefit from merging sources, as 

this provides additional phenological information to aid cropland boundary delineation. 

To determine the optimal integration strategy for each block, a data-driven approach was employed. Four groups of 

features—Geography, Image Quality, Region Properties, and Consistency—were derived and summarized in Table 5. 

Samples collected through systematic grid sampling (Section 2.2.5) were manually interpreted and used to train an XGBoost 

model, which predicted the most suitable integration strategy for each block. 

Table 5: Evaluation metrics for each block 335 

Groups Features Explanation 

Geography 

Elevation Median of SRTM DEM 

Slope Median slope value 

Ruggedness Median Terrain Ruggedness Index (TRI) 

Roughness Median Roughness value 

Image 

quality 

Coverage type Image quality: Planting, Non-Planting, Cloudy, Snow/Ice and Nodata 

Sharpness Median Sobel gradient value 

HSL Median Hue, Saturation, Lightness values 

Region 

property of 

results 

Area Total cropland area within a block 

Area ratio Ratio of cropland area to block area. 

Soliditymean Mean Solidity of binary cropland images 

 Soliditytotal Total Solidity values across all cropland regions in a block 

ENmean  Mean Euler Number of binary cropland images 

ENtotal Total Euler Number across all cropland regions in a block 

Consistency Consistency IoU between Mapbox and Google cropland extractions 
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3.4 Cropland results assessment 

The validation of Croplayer data involves three objective metrics: 1) Accuracy assessment: The IoUscore is used to evaluate 

the performance of the cropland extraction model with the test sample set. 2) Area assessment: Validation is conducted at the 

provincial level, where the extracted cropland area is compared to the statistical cropland area to assess proportionality. 3) 

Consistency assessment: The IoU score is also employed to compare Croplayer with seven existing cropland datasets, 340 

evaluating consistency. 

    In addition to the quantitative assessments, a visual analysis was conducted to compare Croplayer data with other datasets. 

This analysis focused on typical details to better understand the reasons for any discrepancies between the datasets.  

4 Result 

4.1 Image quality assessment 345 

The Coverage Types classification model, based on ResNet, achieved a top-1 accuracy of 95.6%. Figure 5 presents the 

statistical values for the different Coverage types. Overall, the combined proportion of Planting and Non-Planting images is 

similar for both datasets, accounting for 82.5% of the total. However, there are notable differences between them. For high-

quality Planting images, Mapbox has a higher proportion at 50.7%, compared to Google’s 41.3%. Conversely, for medium-

quality Non-Planting images, Mapbox accounts for 32.2%, while Google has a higher proportion at 40.8%. 350 

 

Figure 5: Statistics of Coverage Types for Original Mapbox and Google Imagery. 

   The combined percentage of the three lower-quality categories (Cloudy, Snow/Ice, and Nodata) is roughly 17.5% for both 

datasets. Specifically, the Cloudy category makes up 8.5% of Mapbox’s data, significantly higher than Google’s 1.9%. On 

the other hand, Google shows a higher proportion of Snow/Ice (13.4%) and Nodata (2.6%) issues compared to Mapbox (8.3% 355 

and 0.4%, respectively). 

    The geographic distribution of image quality, shown in Figure 6, further underscores the differences between the two 

datasets: 
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    For Mapbox, image quality is generally poorer in southern China, with a higher prevalence of Cloudy and Nodata blocks. 

In contrast, northern China exhibits better image quality, though Cloudy and Snow/Ice imagery is concentrated in the 360 

northeastern region. 

    For Google, image quality is comparatively better in southern China, with more Nodata and Snow/Ice blocks observed in 

the northeastern and western regions. Additionally, northern China has a higher number of Non-Planting images. 
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Figure 6: Original Mapbox/ Google Imagery and Image Quality Assessment (IQA). a) Original imagery from Mapbox; b) 365 

Original imagery from Google; c) Coverage types of Mapbox imagery; d) Coverage types of Google imagery; e) Saturation 

of Mapbox imagery; f) Saturation of Google imagery; g) Sharpness of Mapbox imagery; h) Sharpness of Google imagery. 

The HR remote-sensing images in the figure are from © Mapbox 2023 and © Google Maps 2023. 

4.2 Sample distribution 

The active learning sampling process was iterated approximately 50 times. To assess the distribution of samples across 370 

provincial units, we calculated the sampling density, defined as the ratio of the number of sampled blocks (both positive and 

negative) to the total number of blocks within each provincial unit (Figure 7). Among China's 32 provincial units, only six—

Beijing, Ningxia, Tianjin, Guangdong, Qinghai, and Shanghai—exceed the national average sampling density of 0.0033. 

Notably, Shanghai exhibits the highest sampling density at 0.0135, significantly surpassing the next-ranked province, 

Taiwan, with a sampling density of 0.0025. 375 

    Conversely, provinces with the lowest sampling densities include Shaanxi, Shanxi, Hebei, Hainan, Henan, Hubei, Anhui, 

Zhejiang, and Jiangxi. Except for Hainan, these provinces are concentrated within China’s major grain-producing regions: 

the Huang-Huai-Hai Plain and the middle and lower reaches of the Yangtze River Plain. The underlying reasons for these 

patterns will be further examined in conjunction with the extraction results in Section 5.2. 

 380 

Figure 7: Sampling density for 32 provincial units.  
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4.3 Cropland extraction accuracy 

A validation sample set was utilized to evaluate the performance of four segmentation models: PSPNet, PIDNet, Segformer, 

and Mask2Former. Among these, Mask2Former achieved the highest IoU score of 88.73% and was consequently selected 

for cropland extraction in this study. 385 

Table 6: Model performance. 

Model Training timing Test Accuracy in IoU 

PSPNet 20h 69.13% 

PIDNet  14h13m 82.37% 

Segformer 5h41m 85.10% 

Mask2Former 11h56m 88.73% 

The error assessment, conducted using the XGBoost model, achieved an overall accuracy of 94.3%. The combined TP and 

TN predictions reached accuracies of 95.9% for Mapbox and 97.1% for Google, demonstrating the strong performance of 390 

both sources in cropland identification (Figure 8). However, Mapbox imagery exhibited higher occurrences of Noise and 

Artifacts compared to Google imagery. 

Spatially, Artifacts are more closely linked to low-quality imagery, as identified by the IQA analysis (Figure 6), rather 

than to topographical features such as Slope (Figure 1). In Mapbox imagery, Artifacts are primarily concentrated in southern 

China, particularly in mountainous and hilly regions frequently affected by Cloudy conditions (Figure 6). In contrast, 395 

Artifacts in Google imagery are more prevalent in northeastern China, largely due to Snow/Ice coverage, though they are 

predominantly observed in expansive plains. 

 

Figure 8: Distribution and statistics of error assessment for extracted croplands from a) Mapbox and b) © Google imagery. 
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4.4 Cropland results integration 

The results integration was achieved through a combination of model predictions and manual modifications. The final results 

integration are illustrated in Figure 9. The four integration strategies—Neither Source, Only Mapbox, Only Google, and 400 

Merging Both—account for 46.7%, 15.7%, 19.7%, and 18.0% of the total blocks, respectively. Geographically, the 

distribution of these options aligns closely with the Slope characteristics of the regions. The integration characteristics can be 

broadly summarized as follows: 

1) Single Source Regions: These areas include major grain-producing regions such as the Northeast Plain, central and 

eastern China, the North China Plain, and key agricultural zones in Xinjiang, the Hexi Corridor of Gansu, and Yunnan 405 

Province. In these regions, one imagery source was typically preferred due to notably poor data quality from the alternative 

source. 

2) Merged Source Regions: These regions primarily encompass southern China, mountainous and hilly areas of the Loess 

Plateau, eastern Mongolia, terraced landscapes, and river valleys in Xizang. 

3) Excluded Regions: Areas where neither imagery source was utilized are largely located in western China and Inner 410 

Mongolia. 

 

Figure 9: Cropland results integration 

Figure 10 presents the statistical cropland area values across the four scenarios. The x-axis represents the four scenarios 

(Only Mapbox, Only Google, Complete Integration, and Selected Integration), while the y-axis lists 32 provincial units, 415 

ordered roughly by latitude. These are divided into Northern provinces (Qinghai and above) and southern provinces (Xizang 

and below). 
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In general, cropland estimates in Northern provinces are close to or slightly exceed statistical areas, while southern 

provinces exhibit widespread underestimation. The reasons behind these deviations will be discussed in detail in Section 5.2. 

 420 

Figure 10: Percentage of cropland area versus statistical area (PCS) of 7 existing data, cropland extraction results derived by 

four scenarios (Only Mapbox, Only Google, Complete Integration, and Selected Integration) with statistical area. In. 

Mongolia represents Inner Mongolia. 

4.5 Comparison with seven existing cropland data 

We evaluated seven existing cropland datasets—CLCD, ESA, ESRI, FCS30, FROM, GL30, and SinoLC—alongside 425 

Croplayer (Figure 11 a-f, h, and i) using statistical area data. Additionally, we assessed the consistency of these datasets with 

Croplayer. 

    (1) Percentage of cropland area versus statistical area (PCS): 

The cropland area for each dataset was calculated across 32 provincial administrative units and compared with statistical 

data. Differences in PCS within ±10% of the statistical area (90%–110%) are highlighted in gold in Figure 10. 430 

Croplayer exhibited the highest alignment with statistical areas, with 30 provincial units showing PCS differences within 

±10% (Figure 10). By contrast, ESA and ESRI met this standard for 9 units, CLCD and FROM for 2 units each, and FCS30, 

GL30, and SinoLC for only 1 unit each (Figure 11). 
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Figure 11. PCS distribution of 7 existing data, cropland extraction results derived by four scenarios (Only Mapbox, Only 435 

Google, Complete Integration, and Selected Integration) and statistical area. 

    (2) Consistency of 7 existing cropland data with Croplayer 

Focusing on consistency between Croplayer and the seven existing datasets, two key observations emerge (Figure 12): 

High-Consistency Datasets: A comparison of provincial units revealed that among the seven datasets, only ESA, ESRI, 

FROM, and CLCD achieved the highest provincial consistency with Croplayer. Among them, ESA had the most instances, 440 

aligning with Croplayer in 26 out of 32 provincial units. ESRI, CLCD, and FROM achieved the highest consistency in 4, 1, 

and 1 provincial units, respectively. 

Regional Trends: High consistency between Croplayer and other datasets was predominantly observed in regions 

characterized by extensive plains, particularly in northern China and the southern plain provinces of Anhui, Hubei, and 

Jiangsu. 445 
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Figure 12. IoU of 7 existing cropland data with Croplayer. In. Mongolia represents Inner Mongolia. 

     (3) Visual Comparison 

    We selected ten representative sites for visual comparison across eight datasets, including Croplayer and seven publicly 

available datasets (Figure 13). The analysis highlights the unique challenges in each region and underscores Croplayer's 450 

superior performance in accurately identifying croplands while addressing the limitations of existing datasets: 

    a) Qiqihar, Heilongjiang: For large black soil croplands, most datasets successfully identified the main cropland areas, 

except for FCS30, which exhibited significant omissions. 

    b) Changji, Xinjiang: In arid regions with extensive pivot irrigation croplands, most datasets performed well, although 

GL30 lacked detail, and SinoLC showed overall omissions. 455 

    c) Pinggu, Beijing: In orchard-dominated areas, FCS30 slightly overestimated croplands. The other datasets consistently 

misclassified orchards as croplands, leading to a 3–4 times overestimation of Beijing's cropland area. 

    d) Zhongwei, Ningxia: For regions dominated by sand-control grass grids, ESRI showed minor overestimations, while 

other datasets contained substantial errors. 

   460 
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Figure 13. Example site of 7 existing cropland data and Croplayer. The HR remote-sensing images in the figure are from © 

Mapbox 2023 and © Google Maps 2023. 
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  e) Qingyang, Gansu: On the Loess Plateau terraces, CLCD and GL30 performed best, while FROM and SinoLC produced 

fragmented results. ESA and SinoLC exhibited artifacts, and ESRI underestimated cropland significantly. 465 

    f) Weifang, Shandong: In this vegetable-growing region with numerous greenhouses, only CLCD, FCS30, and GL30 

accurately identified croplands. Other datasets, particularly ESA, significantly underestimated cropland coverage. 

    g) Zhongxian, Chongqing: In the complex southern folded hilly croplands, CLCD, FCS30, and FROM performed well. 

GL30 overestimated extensively, while ESRI, ESA, and SinoLC largely missed croplands. 

    h) Rikaze, Xizang (Tibet): For high-altitude croplands, ESA performed best. GL30 and ESRI exhibited both 470 

overestimations and underestimations, while other datasets largely omitted cropland areas. 

    i) Chiayi, Taiwan: In coastal areas with a mix of paddy fields and fish ponds, CLCD, FROM, GL30, and ESRI correctly 

excluded fish ponds, while other datasets erroneously included some. 

    j) Honghe, Yunnan: For southern terrace areas, FCS30 and ESA accurately identified croplands. FROM and SinoLC 

showed some omissions, while other datasets tended to overestimate cropland coverage. 475 

    These comparisons demonstrate Croplayer's robust performance in addressing the limitations of existing datasets across 

diverse and complex agricultural landscapes. 

5 Discussion 

5.1 Impact of the image quality 

In cropland remote sensing mapping, the quality of the data source sets the upper limit of mapping accuracy. Mapping 480 

methodologies—including sample selection, extraction, and result integration—determine how closely this limit can be 

approached. In remote sensing imagery, cropland parcels exhibit distinct features, such as shape and texture, which tend to 

be more stable than spectral or temporal variations and less affected by weather conditions or sensor performance. 

Consequently, cropland extraction that leverages the detailed information provided by HR data offers a more effective 

approach than methods relying on temporal variation information derived from traditional medium-resolution data (e.g., 485 

Sentinel, Landsat). 

However, obtaining large-scale HR imagery remains a significant challenge. Publicly available 2 m resolution data, such 

as GF-1, GF-2, GF-6, and ZY-3, typically require extensive pre-processing, including registration, calibration, and color 

rendering, all of which increase processing costs. By contrast, the Mapbox and Google datasets are pre-processed into RGB 

images, making them more readily compatible with deep learning-based semantic segmentation algorithms. Nonetheless, 490 

these datasets suffer from inconsistent quality and a lack of acquisition metadata (e.g., sensor type, acquisition time, cloud 

cover), complicating the identification of low-quality imagery. 

To address these limitations, we adopted a simplified image classification approach that relies solely on the imagery itself 

to evaluate image quality and coverage types, despite the absence of acquisition metadata. As demonstrated in Section 4.1, 

both the Mapbox and Google datasets exhibit considerable quality issues. The imagery was classified into five Coverage 495 

https://doi.org/10.5194/essd-2025-44
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



28 

 

types: Planting, Non-Planting, Cloudy, Snow/Ice, and Nodata, with the last three types significantly reducing extraction 

accuracy. Importantly, the distribution of low-quality data varies between the two datasets. Specifically, thick clouds and 

missing data in Mapbox imagery are concentrated in southern China and parts of northeastern China, whereas snow/ice and 

cloudy conditions are prominent in Google imagery, particularly over the Qinghai-Xizang Plateau and northeastern China. 

This complementary distribution of low-quality data between the two sources enhances the potential accuracy of integrated 500 

results. 

Additionally, sharpness and HSL features were employed to detect subtle cloud coverage that might otherwise be 

overlooked. Artifact errors were identified through error assessment and addressed by replacing or merging erroneous 

segments. Despite these measures, certain blocks contained low-quality imagery from both Mapbox and Google, which was 

a major source of over- or under-segmentation errors in the Croplayer dataset. 505 

This approach underscores the importance of integrating multiple data sources to achieve comprehensive and effective 

coverage, as relying on a single HR imagery source inherently limits spatial and data quality coverage. By leveraging 

complementary datasets, we can enhance spatial coverage while maintaining the necessary data quality for accurate cropland 

mapping. 

5.2 Sample Representativeness 510 

We evaluated the advantages of Croplayer using two objective metrics—Provincial Consistency Score (PCS) and 

Consistency—as well as subjective visual assessments (Figures 9 and 13). Using statistical cropland area data as a reference, 

30 out of 32 provincial units exhibit PCS differences of less than ±10% with Croplayer. In contrast, the most accurate 

datasets among the other seven (ESA and ESRI) meet this standard in only eight provincial units. Furthermore, as 

demonstrated in Figure 13, Croplayer provides finer and more stable details across 10 different cropland types compared to 515 

other datasets. 

The superior performance of Croplayer is attributed to the rich detail provided by HR imagery and the active learning 

strategy employed. Statistical area data were integrated into the mapping process and used as termination criteria during 

sample collection. Artifacts were automatically identified through an error assessment process, enabling improvement in 

poorly performing regions by supplementing new samples, which resulted in enhanced model predictions. However, the 520 

iterative process, including sample creation, model training, and result validation, remains time-consuming and labor-

intensive. 

Nevertheless, we contend that the representativeness of the samples significantly impacts cropland identification outcomes. 

By analyzing the 10 examples in Figure 12, we explain the substantial differences in area estimates observed among other 

datasets (Figure 10): 525 

Firstly, resolution is important but not the sole factor: ESA and ESRI datasets achieve the most accurate area estimates, 

with ESA exhibiting the highest consistency. Visually, ESA and FROM provide finer spatial details, often delineating field 

boundaries. Consequently, datasets with 10 m resolution (ESA, ESRI, and FROM) outperform those with 30 m resolution 
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(CLCD, FCS30, and GL30). However, in some cases, including Changji (b), Weifang (f), Zhongxian (g), and Honghe (j), 

CLCD performs comparably to ESA, ESRI, and FROM. At last, despite using 1 m resolution imagery, SinoLC does not 530 

achieve higher area accuracy than the other six datasets. 

Secondly, sample representativeness is the primary factor for cropland area estimation: Existing systematic and rule-based 

sampling approaches have limitations. Based on our findings, we summarize three key insights:  

1) Sampling quantity should reflect geospatial heterogeneity rather than area size: 

Traditional stratified sampling allocates samples in proportion to area size, but this is less effective for semantic 535 

segmentation. Model generalization requires diverse samples capturing cropland heterogeneity and surrounding contexts 

rather than large quantities of similar samples. For example, the Huang-Huai-Hai Plain and the middle and lower reaches of 

the Yangtze River Plain, representing China's largest cropland areas, have the fewest samples. Provinces in these regions, 

including Hebei, Hainan, Henan, Shaanxi, Shanxi, Hubei, Anhui, Zhejiang, and Jiangxi, had almost no samples, while 

Jiangsu and Shandong also had few. 540 

2) Numerous special cases require dedicated sample creation 

HR remote sensing segmentation encounters challenges in complex scenarios influenced by data quality, algorithm 

performance, and sampling expertise. Many errors only become apparent during the mapping process, necessitating the 

creation of additional samples to address specific issues. For example, tailored sampling was required for orchards in Pinggu 

(c), greenhouses in Weifang (f), sand control grids in Zhongwei (d), and high-altitude croplands in Xizang (h). 545 

Regions with the highest sample density (Figure 7), such as Beijing, Tianjin, and Shanghai, feature complex land cover 

types, including skyscrapers and their shadows, urban open spaces, orchards, and athletic fields. Similarly, provinces like 

Guangdong, Ningxia, and Qinghai, characterized by diverse landforms—encompassing orchards, fish ponds, sand control 

grids, salt pans, sand dunes, and photovoltaic panels—also demanded specialized sampling efforts. 

3) Insufficient utilization of prior knowledge 550 

Statistical data can guide sampling in two ways: Firstly, assisting in initial sample planning by aiding proportional 

allocation based on area size. Secondly, defining termination conditions for sampling, as seen in this study, where statistical 

data helped evaluate extraction performance. Using statistical constraints and iterative active learning in the extraction 

process effectively prevents extreme errors. While the seven other datasets showed errors where at least two provincial units 

exhibited underestimations of 50% or overestimations exceeding 200%, our approach minimized such inaccuracies. 555 

5.3 Potential use of the data 

The Croplayer dataset provides a robust foundation for tasks such as identifying crop distribution, assessing growth, 

estimating yields, and evaluating crop damage. Its precise delineation of cropland boundaries ensures high consistency with 

provincial statistical values and enables its integration with broader research domains. The advantages of Croplayer can be 

summarized as follows: 560 
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1) Enhanced data comparability: Croplayer closely aligns with provincial statistical values while utilizing only publicly 

accessible data sources, ensuring transparency, reproducibility, and facilitating data-sharing in agricultural and 

environmental research. Furthermore, advanced outputs like crop yield estimates derived from Croplayer remain consistent 

with other statistical datasets, enabling seamless integration across diverse analytical frameworks. 

2) Advancing agricultural models: Accurate cropland delineation supports precise classification of rain-fed, irrigated, and 565 

paddy croplands, as well as more detailed subcategories (Salmon et al., 2015), while also advancing crop classification 

research (Dong et al., 2020). Croplayer’s extensive coverage and high-resolution precision provide essential inputs for 

building agricultural foundation models (Li et al., 2024) and large-scale knowledge systems (Yang et al., 2024), driving 

advancements in predictive modeling for crop growth, yield estimation, and environmental impact assessment, thereby 

fostering innovation in agricultural AI research. 570 

3) Impacts on land cover studies: By improving cropland identification, Croplayer reduces classification errors in other 

land cover categories, such as forests, water bodies, and built-up areas. This enhancement indirectly increases the reliability 

of land cover datasets, supporting applications in ecological research, environmental management, and urban planning (Chen 

et al., 2022). 

5.4 Limitations and future directions 575 

This study primarily employs semantic segmentation for cropland identification, which, while effective for delineating 

cropland regions, falls short of providing instance segmentation to distinguish individual fields. This limitation constrains 

more granular analyses, such as precise field counts and area measurements, which are critical for agricultural statistics and 

field-level management. Incorporating instance segmentation in future iterations of the Croplayer dataset would significantly 

enhance its utility for detailed agricultural applications. 580 

Although the Croplayer dataset aligns closely with provincial statistical areas, the lack of comprehensive municipal- and 

county-level statistics poses challenges for fine-scale validation. While provincial-level estimates appear accurate, 

discrepancies at finer administrative scales, such as overestimations in urban-adjacent regions, highlight the need for more 

localized statistical data. Additionally, the rapid pace of urbanization further exacerbates these inaccuracies when imagery 

updates lag behind land use changes, emphasizing the importance of more frequent and timely imagery acquisitions (Xian et 585 

al. 2009). 

Finally, the study's reliance on 2020 data limits its capacity to capture temporal dynamics in cropland distribution. Multi-

temporal datasets are crucial for understanding the impacts of agricultural policies, environmental changes, and land use 

transitions. As public imagery resources with higher spatial and temporal resolution continue to expand, future versions of 

Croplayer can address these limitations. By integrating instance segmentation, multi-temporal analyses, and finer-scale 590 

validation, the dataset holds the potential to support more comprehensive agricultural and land use research. 
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6 Data availability and user guidelines 

The Croplayer China 2020 dataset generated in this study is available on Zenodo: https://doi.org/10.5281/zenodo.14726428 

(Jiang et al., 2025). The dataset is provided in Shapefile (.shp) format, with each file representing cropland within a county-

level administrative region in China. For clarity, file names follow the format cf_城市名_县名 (cf_city_county) and are 595 

organized by province, with each province packaged into a compressed file (.tar.gz). Additional datasets used in this study 

are introduced in Section 2, with download links provided. 

7 Conclusion 

This study addresses the discrepancies in existing public cropland datasets across China by proposing a comprehensive, data-

driven framework for high-resolution cropland mapping. Utilizing publicly available 2 m High Resolution (HR) imagery 600 

from Mapbox and Google, the framework integrates advanced deep learning and machine learning techniques in a three-

stage process: (1) national imagery is partitioned into 0.05°×0.05° blocks for efficient parallel processing, accompanied by 

an Image Quality Assessment (IQA) to ensure data integrity despite the absence of metadata; (2) an active learning-based 

model is employed for cropland identification, incorporating segmentation and error assessment to refine the accuracy of the 

predictions; and (3) an integration strategy merges four key feature groups—Geography, IQA, Region Property, and 605 

Consistency—resulting in a final cropland map referred to as Croplayer. 

The proposed methodology achieves an overall mapping accuracy of 88.73%, with 30 out of 32 provincial units reporting 

area estimates within ±10% of official statistics. In contrast, only 1 to 9 provinces from seven other existing datasets meet 

the same accuracy standard. The Croplayer dataset demonstrates considerable potential for improving crop yield estimation, 

facilitating agricultural structure analysis, and enhancing land-use research across China. Furthermore, the integration of 610 

open-access data, coupled with the high spatial resolution, enables future studies to refine agricultural monitoring models, 

making Croplayer a valuable tool for policymakers and researchers aiming to assess and manage China's agricultural 

landscape. 
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