
 

1 

 

High-Quality Remote Sensing Reflectance Products over China and 

US Coast 

Shuhui Zhao1,2, Youlv Wu3,4, Jingning Lv1, Dan Zhao1, Yan Zheng1, Lian Feng2 

1School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, 

China 5 
2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 

China 
3School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China  
4School of the Environment and Sustainable Engineering, Eastern Institute of Technology, Ningbo, 315200, China 

Correspondence to: Lian Feng (lianfeng619@gmail.com) 10 

Abstract Remote sensing reflectance (Rrs) is fundamental for deriving bio-optical properties of global surface waters. However, 

accurate atmospheric correction (AC) to derive Rrs in coastal waters remains challenging due to strongly absorbing aerosols 

and complex water optics. To address this, we developed an improved processing framework that integrates flexible use of 

global gridded aerosol models better suited for coastal environments and incorporates tailored masking strategies. Based on 

this framework, we generated a high-quality Rrs dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 15 

observations, spanning 2003–2022 for the coastal waters of China and the United States (US)—two regions where complex 

water optics and frequent anthropogenic aerosols have long impeded retrieval accuracy and valid data yield. Compared to the 

NASA standard MODIS Aqua Rrs products (mean regression slope: 0.90 ± 0.06), the improved framework achieves higher 

accuracy and reduced overcorrection biases (slope: 1.00 ± 0.08) across eight bands, especially in the 488–555 nm range. The 

new dataset also yields significantly more valid retrievals, with regional mean increases of 56% in the Chinese coastal waters 20 

and 18% in the US coastal waters at 443 nm. Regional image analyses confirm its superior capability in preserving valid 

retrievals and resolving fine-scale spatial features in turbid nearshore waters. Preliminary spatiotemporal analyses further 

demonstrate its effectiveness in capturing long-term Rrs dynamics and trends. These results highlight the robustness of the 

improved framework and the practical utility of the new dataset for long-term monitoring of coastal water quality and 

ecosystem variability. The dataset is available at https://doi.org/10.5281/zenodo.16413443 (Zhao et al., 2025).  25 

1 Introduction 

Remote sensing reflectance (Rrs), representing the fraction of the top-of-atmosphere (TOA) signal attributable to water-leaving 

radiance (Gordon, 1997), is fundamental for deriving bio-optical properties of global surface waters, such as inherent optical 

properties (IOPs) (Lee et al., 2002; Werdell et al., 2013), concentrations of chlorophyll-a (Chl) (O'reilly, 2000; Hu et al., 2019; 

Tong et al., 2022) and particulate organic carbon (POC) (Stramski et al., 1999; Stramski et al., 2022), among many others. 30 

Accurate atmospheric correction (AC)—which removes atmospheric contributions from the total radiance measured by 
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satellite sensors—is critical for retrieving Rrs and estimating water quality parameters (Gordon and Wang, 1994; Gordon, 

1997). However, a key challenge in AC lies in accurately characterizing aerosol radiative properties, especially in the presence 

of absorbing aerosols which strongly absorb light at short blue bands (410 or 412 nm and 443 nm) (Bassani et al., 2015; Ioccg, 

2019). In coastal regions where such aerosols (e.g., dust, smoke, and urban aerosols) are prevalent (Charlson et al., 1992), the 35 

aerosol models developed by Ahmad et al. (2010) (hereafter referred to as AF10), which are widely used in current operational 

AC, fail to account for strong aerosol absorption (Zhao et al., 2023), leading to systematic underestimation and limited 

reliability of Rrs (Wang and Jiang, 2018). In addition to aerosol-related issues, the cloud mask applied in current ocean color 

data processing pipelines often misclassifies highly reflective turbid waters (e.g., those with high suspended sediment 

concentrations) as clouds, resulting in the loss of usable Rrs data in coastal regions (Wang and Shi, 2006). Together, these 40 

issues severely constrain the usability of Rrs products in coastal regions and hamper the accurate retrieval of biogeochemical 

properties in these dynamic environments.  

One of the key factors determining the accuracy of Rrs retrievals after atmospheric correction is whether the adopted aerosol 

models can effectively capture the microphysical and optical properties of aerosols, thereby accurately estimating their 

scattering contributions (Prospero et al., 1983; Gordon et al., 1997; Bassani et al., 2015). To address this, a range of aerosol 45 

models has been developed and refined by incorporating observational data and analyzing aerosol sources (Shettle and Fenn, 

1979; Gordon and Wang, 1994; Ahmad et al., 2010; Zhao et al., 2023). Early work by Shettle and Fenn (1979) classified 

aerosols into five types (rural, urban, maritime, tropospheric, and fog) and accounted for humidity effects to produce a set of 

models (denoted as SF79). Building on this, Gordon and Wang (1994) formulated 12 humidity-dependent aerosol models 

(denoted as GW94) tailored for marine applications. With improved observational capacity, Ahmad et al. (2010) developed 50 

the AF10 models based on long-term data from 11 AErosol RObotic NETwork (AERONET) sites. The AF10 models 

parameterize aerosol particle size, refractive index, and fine-mode fraction as functions of relative humidity. Compared to 

GW94, they significantly reduced the uncertainties in aerosol optical thickness (AOT) and Ångström exponent (He et al., 2011; 

Mélin et al., 2013). As a result, the AF10 models have become the default aerosol model set in most current operational ocean 

color data processing systems  (Mobley et al., 2016).  55 

However, current operational AC based on AF10 models frequently yield poor Rrs retrievals in coastal regions, often resulting 

in underestimated Rrs values, particularly in the blue bands (Wang and Jiang, 2018). This limitation stems from the spatial 

representativeness of the AERONET sites used to build AF10 models: only three coastal stations (all in Chesapeake Bay) were 

included, while the remaining sites were located over open oceans. As a result, AF10 models primarily represent non- or 

weakly absorbing aerosols over the open ocean, and do not adequately reflect the high AOT and strong absorption features 60 

commonly present in coastal regions (Zhao et al., 2023). Although many studies have proposed aerosol model refinements 

(Giles et al., 2012; Hamill et al., 2016; Bru et al., 2017; Zhou et al., 2020; Montes et al., 2022), most focus on specific aerosol 

types or lack representation of seasonal variability, limiting their broader applicability for coastal waters.  
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Recognizing the limitations of the AF10 models, Zhao et al. (2023) developed a set of global gridded aerosol models tailored 

for inland and coastal waters. Leveraging AERONET observations from 1,475 sites worldwide, they generated 3,207 monthly 65 

aerosol models distributed across 310 5°×5° grids, and compiled the models into lookup tables compatible with the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) Data Analysis System (SeaDAS) to allow seamless integration into operational 

AC workflows. Validation using Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua data over six lacustrine or 

estuarine regions showed that the gridded models substantially improved Rrs retrieval accuracy compared to the AF10 models. 

Recently, Lv et al. (2024) further demonstrated the robustness of the gridded models through extended validations across 70 

multiple coastal regions and MODIS bands, with notable reductions in aerosol overcorrection errors under complex aerosol 

conditions. 

Although such global gridded aerosol models have shown promise in characterizing the complex aerosol properties of coastal 

regions, several practical challenges hinder their direct application in operational coastal Rrs product generation. One key 

limitation lies in the intrinsic complexity of coastal environments, where both atmospheric and water optical conditions can 75 

exhibit strong spatial heterogeneity within a single satellite scene—from nearshore turbid waters dominated by strongly 

absorbing continental aerosols to offshore regions with clearer water and weakly absorbing marine aerosols. Applying either 

model type uniformly across such spatial gradients can lead to potential retrieval errors—for instance, using AF10 models 

nearshore often results in overestimated aerosol path radiance and underestimated Rrs, while applying the gridded models 

offshore may produce unrealistically high Rrs values due to overestimated aerosol absorption. These challenges highlight the 80 

necessity of developing a dynamic and integrated model selection scheme that can adaptively select between gridded and AF10 

aerosol models under spatially heterogeneous conditions, to support accurate AC across the full coastal domain and generate 

spatially consistent, quality-assured Rrs products suitable for large-scale analysis.  

In addition to aerosol model selection issues, a more suitable cloud masking strategy is also essential for improving the usability 

of coastal Rrs data. The default cloud mask employed in current operational processing workflows—originally designed for 85 

open-ocean applications—relies on a Rayleigh reflectance threshold at 869 nm (Rrc,869 = 0.027) to identify cloudy pixels 

(Robinson et al., 2003). However, in turbid coastal waters, this threshold can easily be exceeded due to high water-leaving 

radiance, leading to misclassification of valid pixels as cloudy (Wang and Shi, 2006). As a result, a substantial portion of valid 

data was incorrectly discarded, limiting the spatial coverage and continuity of the standard Rrs products. To address this, 

previous studies have proposed using alternative thresholds at 1240 or 2130 nm, as these relaxed cloud masking thresholds 90 

help retain more turbid water pixels. However, the relaxation of the cloud masking criteria may increase the risk of residual 

contamination from thin clouds. Therefore, targeted masking approaches must be incorporated during data processing to 

complement the modified cloud masking threshold, thereby ensuring data reliability.  

In summary, while prior studies have addressed two major limitations of standard Rrs products in coastal waters—namely, the 

inadequacy of aerosol models and the excessive cloud masking—these improvements have yet to be fully integrated into 95 
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operational data production. To bridge this gap, we developed an improved processing framework that integrates refined 

aerosol model assignment and targeted masking strategies. To evaluate its performance, we conducted MODIS satellite–in situ 

matchup validation on a global scale and compared with the standard Rrs products. We further applied the improved framework 

to generate a consistent and high-quality MODIS Rrs dataset for two representative coastal regions—the coastal waters of 

China and the United States (US)—both of which are characterized by optically complex waters, strong anthropogenic 100 

influences, and insufficient data availability (Charlson et al., 1992; Wang et al., 2017). Evaluation of data coverage and 

spatiotemporal analyses were conducted using the new dataset to assess its utility to provide a consistent and high-quality basis 

for long-term coastal monitoring and regional change detection.  

2 Data and Methods 

2.1 Datasets 105 

2.1.1 Satellite Imagery 

This study utilized two types of MODIS Aqua satellite data acquired from the NASA Ocean Biology Processing Group 

(https://oceancolor.gsfc.nasa.gov/): Level-1A (L1A) and Level-2 (L2) ocean color products. L1A products contain 

unprocessed full-resolution data, supplemented with radiometric and geometric calibration coefficients and georeferencing 

parameters. L2 products provide derived geophysical variables (e.g., Rrs, Chl) at the same spatial resolution and geolocation 110 

as L1A data. 

A total of 136,544 L1A images acquired between 2002 and 2022 (data beyond 2022 were excluded here due to satellite orbital 

changes beginning in 2023 (Twedt et al., 2023; Nasa Ocean Biology Processing Group, 2024)) were used in this study for two 

main purposes: 

(1) Matchup validation: A subset of 4,961 L1A images (2002-2022) was used to generate satellite Rrs for validation against 115 

in situ measurements, with temporal coverage aligned to field campaigns. 

(2) New coastal Rrs dataset generation: Most of the images (128,226 scenes, from 2003 to 2022) were used to generate the 

new Rrs dataset for two regions: the coastal waters of Chinese mainland (106°E–127°E, 17°N–41°N) and the US (128°W–

65°W, 18°N–51°N). 

NASA standard Level-2 Rrs products generated using the operational AC algorithm developed by NASA OBPG (Nasa Ocean 120 

Biology Processing Group, 2022) were also obtained. This dataset was used for: 

(1) Comparative validation with Rrs data generated in this study using a common set of in situ measurements. 

(2) Evaluation of improvements in valid data yield by comparing valid observations counts (see Sect. 2.3.2) and assessing 

single-scene retrievals.  
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Both the new dataset and standard products include Rrs at 10 spectral bands: 412, 443, 469, 488, 531, 547, 555, 645, 667, and 125 

678 nm, all at 1 km spatial resolution. 

2.1.2 Ancillary Environmental Data 

To support accurate AC, this study also incorporated ancillary data (Nasa Ocean Biology Processing Group, 2019) during the 

processing of MODIS imagery. These inputs—automatically acquired via the SeaDAS processing environment—include 

meteorological variables (e.g., wind speed, surface pressure, relative humidity) and concentrations of atmospheric gases (e.g., 130 

water vapor, ozone, nitrogen dioxide). These parameters are essential for calculating Rayleigh scattering, atmospheric 

transmittance, and gaseous absorption, and thus directly influence the quality of retrieved Rrs values. The best available 

ancillary data at the time of processing were used, consistent with standard SeaDAS ancillary data usage practices. This 

approach helps minimize the influence of auxiliary input differences when comparing with the standard Rrs products and 

improves the reliability of Rrs values derived with our improved processing framework. 135 

2.1.3 In Situ Data 

To evaluate the performance of the improved processing framework and compare its outputs with the standard products, we 

used in situ Rrs measurements archived in the SeaWiFS Bio-optical Archive and Storage System (SeaBASS, 

http://seabass.gsfc.nasa.gov/) (Werdell et al., 2003; Bailey and Werdell, 2006). SeaBASS provides precompiled satellite–in 

situ matchup records, each containing metadata such as geographic coordinates, sampling time, cruise ID, measured Rrs values, 140 

corresponding MODIS Aqua filenames, and validation flags. In this study, the metadata was used to extract satellite-derived 

Rrs from outputs of our improved processing framework and standard products, rather than using the satellite Rrs values directly 

included in the SeaBASS records. This allowed us to apply a unified and more stringent quality control (QC) strategy (see 

Sect. 2.2.2) to both data, ensuring consistency and reliability of the accuracy assessment. 

The in situ measurements cover eight MODIS bands: 412, 443, 488, 531, 547, 555, 667, and 678 nm. Due to a lack of in situ 145 

records at 469 and 645 nm, these two bands were excluded from all accuracy assessments (see Sect. 2.3.1).  

To focus on coastal conditions and ensure compatibility with the coverage of the global gridded aerosol models, observations 

located over open ocean or inland waters were excluded. A total of 6,362 in situ records were retained for validation, distributed 

across a wide range of coastal environments (see Figure 1). 

 150 
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Figure 1: Distribution of in situ measurements. Also shown are the study areas—the coastal waters of China and the United States—

as well as four specific regions of interest: the Mississippi River Estuary, Chesapeake Bay, Pearl River Estuary, and Bohai Sea. 

 

2.2 Processing Framework 155 

Accurate AC is essential for deriving reliable Rrs in optically complex coastal waters, where high turbidity and variable aerosol 

properties present persistent challenges. In this study, we refined current operational ocean color AC algorithm (Mobley et al., 

2016) to enhance its performance in such environments. All processing was conducted using SeaDAS software (version 8.3.0). 

Our modifications build upon the standard near-infrared (NIR) iterative approach, which estimates aerosol contributions by 

assuming negligible water-leaving radiance in the NIR bands and minimizing residual signals through iteration (Gordon and 160 

Wang, 1994; Mobley et al., 2016). While effective over open ocean, this method could produce biased results in coastal waters 

due to sharp gradients in both water optical properties and aerosol characteristics. To address these limitations, we introduced 

a more flexible AC approach tailored to spatially heterogeneous coastal conditions. The full procedure is detailed in Sect. 2.2.1. 

Additionally, a unified set of QC strategies was applied to both the newly generated data in this study and standard Rrs products 

to ensure consistency in evaluation. These procedures are described in Sect. 2.2.2. 165 

2.2.1 Improved Atmospheric Correction 

Building upon the standard NIR iterative approach, we further enhanced AC performance in coastal waters by incorporating 

the global gridded aerosol models (Zhao et al., 2023) and introducing a spatially adaptive aerosol model selection strategy. 

The overall process is illustrated in Figure 2. 

 170 
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Figure 2: Improved atmospheric correction (AC) workflow. Notation: t (diffuse transmittance), Lw (water-leaving radiance), λ 

(wavelengths), NIR (near-infrared), N (normalization). 

 

After preprocessing steps such as Rayleigh scattering and sun glint removal, the initial aerosol contribution was estimated 175 

using a gridded aerosol model selected based on the pixel’s geographic location and date (Zhao et al., 2023), since the gridded 

models offer improved representation of the diverse and potentially absorbing aerosols common in coastal regions.  

To account for spatial heterogeneity in coastal conditions, each pixel was preliminarily classified based on its normalized NIR 

water-leaving radiance (denoted as [𝐿
𝑤
(𝑁𝐼𝑅)]

𝑁
). Specifically, a pixel was classified as “turbid” if [𝐿

𝑤
(𝑁𝐼𝑅)]

𝑁
  exceeded the 

empirical threshold defined by the TURBIDW flag in NASA Standard Level-2 Ocean Color Flags. Although this classification 180 

nominally distinguishes between clear and turbid waters, it served here primarily as a proxy for proximity to land. Turbid 

waters—characterized by elevated NIR reflectance due to high concentrations of suspended sediments or phytoplankton—are 

typically concentrated in nearshore zones, where riverine input and absorbing aerosols from anthropogenic sources are most 

pronounced (Husar et al., 1997). For these pixels, the gridded aerosol model originally assigned to the location was retained 

throughout iteration to better represent local aerosol properties. In contrast, pixels classified as “clear” were generally located 185 

offshore, where continental aerosol influence is weaker and water clarity is higher. For these pixels, an AF10 aerosol model 

was selected following the conventional open-ocean AC algorithm and used in subsequent iterations, as continued use of the 

gridded model in such areas could lead to underestimation of aerosol path radiance and overestimation of water-leaving 

radiance. This spatially adaptive model selection approach—guided by an indirect indicator of coastal influence—was key to 

improving retrieval performance across diverse coastal environments.  190 
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The iteration proceeded until the change in [𝐿
𝑤
(𝑁𝐼𝑅)]

𝑁
 between successive steps fell below a set threshold, after which the 

final [𝐿
𝑤
(𝜆)]

𝑁
 was converted to 𝑅𝑟𝑠(𝜆).  

While the NIR-SWIR switching method is considered more robust for highly turbid waters—leveraging the near-zero water-

leaving radiance assumption in the shortwave infrared (SWIR) bands—it is constrained by the low signal-to-noise ratios (SNR) 

of MODIS Aqua SWIR bands (Wang et al., 2009; Werdell et al., 2010). As demonstrated in previous studies (Shi and Wang, 195 

2007; Wang et al., 2009) and confirmed by our tests, excessive noise in these bands can significantly compromise retrieval 

accuracy. Therefore, we retained the NIR iterative approach, with enhanced reliability achieved through spatially adaptive 

aerosol model selection. 

2.2.2 Quality Control Strategies 

To ensure reliability and comparability of Rrs retrievals, a unified set of QC strategies was applied to both the newly generated 200 

data in this study and standard products prior to subsequent analysis. These procedures aimed to eliminate contaminated or 

highly uncertain retrievals and to support robust evaluation of data accuracy and comparison of valid data yield. 

NASA Standard Level-2 Ocean Color Flags (l2_flags) were used to mask pixels affected by clouds, ice, sun glint, stray light, 

and extreme solar or sensor viewing angles. In addition, pixels flagged as MAXAERITER, indicating that the maximum 

number of aerosol iterations was reached without convergence, were also excluded to minimize the influence of potential AC 205 

failure under complex water or aerosol conditions.  

Among these flags, the CLDICE mask was customized to improve cloud detection performance over turbid coastal waters. A 

revised threshold of Rrc,2130 = 0.037 was applied to reduce excessive cloud masking over areas with high AOT and turbid waters 

(Zhao et al., 2023; Zhang et al., 2014). In contrast, the standard Rrs products used for comparison was originally generated 

with the conventional Rrc,869 = 0.027 threshold.  210 

To further suppress residual cloud contamination that may result in abnormally elevated Rrs values, a secondary spectral filter 

was applied. Specifically, any TURBIDW-flagged pixel with Rrs in any of the four blue bands (412–488 nm) exceeding the 

value at 531 nm was excluded. This criterion effectively identifies cloud-contaminated water pixels whose spectral shapes 

deviate from typical turbid water profiles—characterized by a reflectance peak near the green wavelengths and decreasing 

reflectance toward the blue, due to strong absorption by colored dissolved organic matter (CDOM) and Chl (Kirk, 2010). In 215 

contrast, cloud-contaminated pixels often exhibit spuriously enhanced blue-band reflectance, resulting in anomalous spectral 

peaks uncharacteristic of true turbid waters. This filter is hereafter referred to as the “Wrong Turbid Water Mask”. 

Extremely turbid waters were also excluded to reduce uncertainty in AC performance. Specifically, pixels exhibiting saturated 

Rrs signals in the 667 nm band—typically associated with very high suspended sediment concentrations—were filtered out, as 

such conditions compromise the reliability of both aerosol estimation and water-leaving radiance retrievals (Hu et al., 2012). 220 

This step is referred to as the “Saturated Rrs(667) Mask”.  
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By applying these QC strategies consistently across both datasets, we ensured that subsequent analyses were based on 

equivalently screened, quality-assured Rrs products. 

2.3 Data Usability Assessment 

2.3.1 Accuracy Evaluation 225 

To assess the accuracy of the Rrs data derived with our processing framework and compare it with standard products, satellite–

in situ matchups were compiled following NASA OBPG protocols (Bailey and Werdell, 2006). As mentioned in Sect. 2.1.3, 

both two kinds of satellite Rrs values were re-extracted based on the SeaBASS-provided metadata (e.g., geographic coordinates, 

acquisition time), with the same stricter QC strategy (Sect. 2.2.2) applied to ensure comparability.  

Matchups were identified based on a ±3-hour temporal window between satellite overpass and in situ measurement. To ensure 230 

spatial representativeness and minimize the impact of pixel-level variability, a 5×5 pixel window centered on the in situ 

location was extracted from each satellite image. Within each window, only non-land pixels were considered. A matchup was 

deemed valid only if more than 50% of the pixels in the window passed QC screening and the coefficient of variation (standard 

deviation divided by the mean) was below 0.15—ensuring spatial homogeneity and consistency with in situ conditions. 

Rrs accuracy was evaluated using four metrics: regression slope, coefficient of determination (R²), median absolute percentage 235 

error (MdAPE), and normalized root mean square error (NRMSE). Among them, MdAPE serves as a robust indicator of 

relative error, being less sensitive to outliers than MAPE (mean absolute percentage error). NRMSE provides a scale-

independent measure suitable for cross-band error comparison. These metrics were calculated as follows: 

𝑀𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|
𝑌𝑖 − 𝑋𝑖
𝑋𝑖

| × 100%) 

𝑁𝑅𝑀𝑆𝐸 =
√1
𝑁
∑ (𝑌𝑖 − 𝑋𝑖)

2𝑁
𝑖=1

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
× 100% 240 

where 𝑋𝑖 and 𝑌𝑖 denote the in situ and satellite-derived Rrs values respectively, and N is the number of valid matchups. 

2.3.2 Valid Data Yield Comparison 

Because valid Rrs retrievals are often restricted by atmospheric conditions and QC thresholds (Wang and Shi, 2006; Ioccg, 

2010), the frequency with which a dataset provides usable values serves as a practical indicator of its spatiotemporal utility. 

To quantify differences in data availability between the new dataset for coastal waters of China and US and the standard 245 

products, we computed a pixel-level metric representing the number of days with valid Rrs retrievals throughout the analysis 

period. For each pixel and spectral band, the number of days with valid retrievals was counted and denoted as VO (Valid 

Observation). A retrieval was considered valid if the Rrs value was non-negative and passed all QC filters described in Sect. 

2.2.2. 
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The difference in valid observation counts between the two datasets was defined as: 250 

𝑉𝑂𝐷 = 𝑉𝑂𝑁𝑒𝑤 − 𝑉𝑂𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑  

Here, VOD (Valid Observation Difference) captures the pixel-wise and band-wise difference in the number of valid retrieval 

days between the new and standard datasets. A positive VOD indicates that the new dataset provided valid Rrs values on more 

days than the standard dataset at the specific pixel and spectral band.  

2.4 Analysis of Spatiotemporal Dynamics 255 

To demonstrate the practical utility of the new Rrs dataset for long-term monitoring, we conducted a preliminary spatiotemporal 

analysis over the study regions. For each pixel and spectral band, a monthly time series of mean Rrs was first constructed by 

averaging all valid retrievals within each calendar month over the 20-year period (i.e., 240 monthly averages per pixel). The 

overall mean of this time series was then calculated and used to visualize the typical spatial patterns of Rrs across the study 

region. 260 

To detect long-term trends, we applied the seasonal Mann–Kendall test—a non-parametric method that accounts for intra-

annual variability and is robust to missing or abnormally distributed data (Mann, 1945; Kendall, 1970)—to the 240-month Rrs 

time series of each pixel. To ensure reliable trend estimation, only pixels with valid data in at least 50% of the months were 

retained. The rate of change (% yr-1) was then calculated by dividing the Mann–Kendall slope by the corresponding long-term 

mean Rrs for each pixel. 265 

3 Results and Discussion 

3.1 In Situ Validation 

The comprehensive validation (shown in Figure 3) suggested that Rrs products generated with the improved processing 

framework demonstrate strong agreement with field observations across eight MODIS Aqua bands, with data points closely 

clustered along the 1:1 line. Overall, the average regression slope reaches 1.00 ± 0.08—significantly improved from 270 

0.90 ± 0.06 of the standard products—indicating that the aerosol overcorrection problem in the standard AC was substantially 

mitigated. The improvement is particularly pronounced in the 488–555 nm range, where our new Rrs data consistently 

outperform the standard products, achieving R² values of 0.90±0.02, MdAPE as low as 14.42±1.7%, and NRMSE below 5%. 

These results confirm that incorporating global gridded aerosol models greatly improves retrieval accuracy in the visible 

spectrum, which is most relevant to water color applications. 275 

Despite these improvements, some challenges remain in the blue bands (412 and 443 nm), where strong absorption and high 

aerosol sensitivity complicate AC (Ioccg, 2014; Kirk, 2010). While the regression slopes improve relative to the standard 

products, other metrics show slightly reduced performance, likely due to the limited temporal resolution of monthly aerosol 
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models in highly dynamic coastal regions. Nevertheless, the use of geographically informed aerosol priors still helps reduce 

the overcorrection tendencies typical of the standard products.  280 

In the red bands (667 and 678 nm), a slight overestimation is observed (slopes = 1.06–1.16), possibly due to uncertainties in 

aerosol absorption assumptions or the inherently low magnitude of Rrs signals at these wavelengths (Ioccg, 2019). Even so, 

our new data better preserves high Rrs values in turbid waters, which are often underestimated in the standard product due to 

conservative assumptions about aerosol absorption. 

In summary, the improved processing framework substantially enhances the accuracy of satellite-derived Rrs, particularly by 285 

improving aerosol correction in optically complex coastal waters through the flexible use of global gridded aerosol models. 

This improvement ensures more reliable Rrs inputs for coastal monitoring, long-term change detection, and ecological 

modeling. 
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 290 

Figure 3: Scatter plots showing the validation of Rrs from this study and from NASA standard MODIS Aqua products against in 

situ measurements across eight spectral bands. Accuracy metrics and the number of match-ups (N) are annotated. 

 

3.2 Valid Data Yield Comparison Analysis 

Figure 4 presents the spatial distribution of valid observations (VO) at 443 nm for both the new Rrs dataset and standard 295 

products, along with their difference (VOD), over the coastal waters of China and the US in 2007 (region locations shown in 
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Figure 1). The year 2007 was selected as a reference due to its high data availability and broad spatial coverage in both study 

regions, providing a practical basis for consistent comparison. 

In the Chinese coastal waters, the new dataset consistently yields more valid retrievals than the standard products, with notable 

improvements in the Bohai Sea, the Yellow Sea, and along the broader coastline. On average, the new dataset provides 51 VO 300 

per pixel per year, with local maxima reaching 140 days in the Bohai Sea—a region where semi-enclosed geography and 

sediment-laden river inflows result in persistently turbid conditions that challenge conventional AC (Xu et al., 2018). In 

contrast, the standard products yield an average of 32 VO, with a maximum of ~110 days observed off the northern coast of 

the Philippines. The resulting VOD indicates an average increase of 18 days per year in the Chinese coastal waters, reaching 

up to 94 days in some areas. These improvements reflect the enhanced retrieval capacity of the new processing framework in 305 

optically complex coastal regions where the standard operational processing tends to underperform.  

In the US coastal waters, the difference between the two datasets is generally smaller but still appreciable. The new dataset 

achieves an average of 80 VO per year, compared to 68 from the standard products. Both datasets report their highest VO in 

the Gulf of California, with values of 232 (new) and 225 (standard). The average VOD in this region is 12 days per year, with 

localized peaks up to 115 days, particularly around Chesapeake Bay, the western Gulf of Mexico, and Cuba.  310 

Overall, the new dataset delivers a regional average increase of 18 days per year in the Chinese coastal waters and 12 days per 

year in the US coastal waters for Rrs(443), corresponding to relative gains of approximately 56% and 18%, respectively. Similar 

improvements are observed at other visible wavelengths, as illustrated in Figures 5 and 6 for 547 nm and 667 nm, further 

confirming the broader enhancement in valid data yield provided by the new dataset across the visible spectrum. 

 315 
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Figure 4: Spatial distribution of valid observations for the new dataset (VONew), the standard products (VOStandard) and their 

difference (VOD, valid observation difference) for Rrs(443) in the coastal waters of China and the United States (US) in 2007.  
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Figure 5: Spatial distribution of VONew, VOStandard, and VOD for Rrs(547) in the coastal waters of China and the US in 2007. 320 
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Figure 6: Spatial distribution of VONew, VOStandard, and VOD for Rrs(667) in the coastal waters of China and the US in 2007. 
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Since cloud masking significantly affects the availability of valid satellite ocean color retrievals (Zhao et al., 2023; Zhang et 

al., 2014), a sensitivity analysis was conducted to isolate the effect of the updated cloud-masking strategy on data availability.  325 

Specifically, we reprocessed the 2007 MODIS data for both study regions using the standard NIR iterative AC algorithm and 

the AF10 aerosol models, but replaced the default cloud-masking threshold (Rrc,869 = 0.027) with the revised threshold (Rrc,2130 

= 0.037) adopted in our processing framework. All other processing steps, including the QC procedures described in Sect. 

2.2.2, were kept consistent. The resulting VO under this configuration is denoted as VOAF10&2130, which was then compared to 

the new dataset’s VONew. Their difference, defined as VODAF10&2130 = VONew - VOAF10&2130, quantifies the change of VO when 330 

using the full improved framework beyond the cloud-masking update alone. 

Results show that adjusting the cloud-masking threshold alone leads to substantial increases in VO relative to the standard 

products (VOAF10&2130 > VOStandard in Figure 4), particularly along the Chinese coast. This confirms that the updated threshold 

more effectively preserves valid water pixels in highly turbid areas that would otherwise be incorrectly excluded. 

Interestingly, Figure 7 shows that VODAF10&2130 is negative in many regions, suggesting that the AF10&2130 configuration 335 

can sometimes produce more VO than our full processing framework. However, the added retrievals may not be of comparable 

quality. Although these additional pixels passed the same QC filters, these filters—especially those based on spectral shape 

and signal saturation—were optimized for the improved processing framework. Consequently, they may not fully capture 

retrieval errors specific to the AF10&2130 configuration, especially the known Rrs underestimation issue associated with AF10 

models in coastal waters (see Figure 3). 340 

Overall, the new dataset achieves a more balanced outcome by integrating a spatially adaptive aerosol model selection strategy, 

an improved cloud mask, and tailored QC criteria. These components jointly enhance not only the data yield but also the 

reliability of Rrs retrievals in challenging coastal environments. 
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 345 

Figure 7: Spatial distribution of valid observations for the new dataset (VONew), the AF10&2130 configuration (VOAF10&2130) and 

their difference (VODAF10&2130 = VONew - VOAF10&2130) for Rrs(443) in the coastal waters of China and the US in 2007. 
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3.3 Single-Scene Imagery Comparison 

To further assess the utility of the new Rrs dataset, we conducted single-scene comparisons across four representative coastal 350 

regions: the Pearl River Estuary, the Bohai Sea, the Chesapeake Bay, and the Mississippi Estuary (see Figure 1 for their 

locations). This analysis aimed to evaluate the dataset’s ability to capture regional Rrs features under diverse optical conditions.  

Figure 8 presents the results for the Pearl River Estuary and the Bohai Sea, both characterized by turbid nearshore waters (Liu 

et al., 2012; Xu et al., 2018). While both datasets broadly reproduce the spatial patterns of Rrs, the new dataset provides 

markedly more extensive valid data coverage. For instance, the standard products yield few to no valid pixels within the Pearl 355 

River Estuary and large portions of the Bohai Sea, whereas the new dataset successfully retrieves Rrs values in these areas.  

The QC mask analysis reveals that most of the missing values in the standard products are flagged as cloud- or ice-

contaminated. In contrast, the successful retrievals in the new dataset suggest that these regions are actually cloud-free but 

exhibit high reflectance due to intense turbidity, leading to misclassification by the standard cloud mask. By adopting a revised 

cloud mask threshold and aerosol models better suited to turbid conditions, the new dataset retains a greater number of valid 360 

pixels, thereby enabling a more complete and accurate depiction of regional Rrs patterns. For example, in the western nearshore 

region of the Pearl River Estuary, the new dataset reveals a distinct high-reflectance band likely associated with suspended 

sediments along the coast—a feature entirely absent in the standard products due to cloud misclassification. This highlights 

the improved capability of the new dataset to preserve fine-scale coastal structures that are frequently lost under conventional 

processing.  365 

Notably, further inspection of the QC masks reveals that, in addition to improved retention of valid water pixels through the 

updated cloud mask, some pixels—though not flagged as clouds—were still excluded by the “Wrong Turbid Water Mask” 

and “Saturated Rrs(667) Mask” (i.e., the spectral-shape and saturation-based QC filters introduced in Sect. 2.2.2). This suggests 

that the newly implemented QC filters play a complementary role to cloud masking by identifying additional suspect pixels—

such as those with atypical spectral shapes or signal saturation—that might otherwise be retained. This added filtering helps 370 

enhance the overall reliability of the retained Rrs data. 

In addition to enhanced coverage, the new dataset also exhibits slightly higher Rrs values at identical locations. For instance, 

in the Pearl River Estuary, the average Rrs(547) in the sample window (indicated by black rectangles in Figure 8; the same 

symbol is used for other sample windows below) increases from approximately 0.0227 to 0.0239 sr-1; in Bohai Bay, the value 

rises from 0.0213 to 0.0244 sr-1. These differences underscore the improved retrieval capability of the improved processing 375 

framework, particularly in mitigating the underestimation tendency associated with AF10 models (as also evidenced in Figure 

3).  
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Nevertheless, the new dataset still fails to retrieve valid data in extremely turbid zones, such as parts of the western Bohai Sea, 

pointing to remaining challenges in processing waters with extremely high reflectance.  

 380 

 

Figure 8: Comparison of Rrs (units: sr-1) derived from single-scene MODIS Aqua observations over the Pearl River Estuary (2014-

12-14) and Bohai Sea (2020-03-11). For each region, the top image shows a true color composite (panels a and h), followed by Rrs at 

443, 547, and 667 nm from the new dataset (panels b–d and i–k) and from the standard dataset (panels e–g and l–n), respectively. 

Invalid pixels are marked with hatched patterns based on quality control masks. Black rectangles indicate sample windows used for 385 
regional comparison. 

 

We further examined two representative regions in the US coastal waters: the Chesapeake Bay and the Mississippi Estuary. 

As shown in Figure 9, both datasets reveal generally consistent spatial distributions of Rrs, supporting the reliability of the new 

dataset. However, clear differences in data availability are observed. True color composite combined with mask analysis 390 
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reveals that the new dataset exhibits greater resistance to thin cloud contamination, allowing successful retrievals over pixels 

that are missing in the standard products, such as those in the northern Chesapeake Bay and western Mississippi River Delta. 

The relaxed cloud mask helps preserve these pixels, while the adoption of more appropriate aerosol models enables more 

accurate retrievals rather than underestimation. Within the highlighted sample windows, the new dataset also yields slightly 

elevated Rrs values—for example, approximately 0.0113 sr⁻¹ vs. 0.0097 sr⁻¹ in the Chesapeake Bay, and 0.0169 sr⁻¹ vs. 0.0156 395 

sr⁻¹ in the Mississippi Estuary—further indicating improved performance in mitigating overcorrection caused by the AF10 

models. These results suggest that the observed improvements are not region-specific but hold across geographically and 

optically diverse coastal waters. 
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 400 

Figure 9: Comparison of Rrs (units: sr-1) derived from single-scene MODIS Aqua observations over the Chesapeake Bay (2019-02-

05) and the Mississippi Estuary (2021-01-13). For each region, the top image shows a true color composite (panels a and h), followed 

by Rrs at 443, 547, 667 nm from the new dataset (panels b–d and i–k) and from the standard dataset (panels e–g and l–n), respectively. 

Invalid pixels are marked with hatched patterns based on quality control masks. Black rectangles indicate sample windows used for 

regional comparison. 405 

 

In summary, the new dataset demonstrates superior performance in preserving valid retrievals and accurately capturing subtle 

gradients across optically complex coastal waters. These improvements enhance its suitability for detailed ocean color analysis 

and reliable assessment of water quality in challenging nearshore environments.  
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3.4 Spatiotemporal Patterns and Trends 410 

Figure 10 illustrates the spatial distribution of long-term mean Rrs values at 443, 547, and 667 nm for the coastal waters of 

China and the US over the 2003-2022 period. These patterns reveal clear wavelength dependence and regional variability.  

In Chinese coastal waters (Figures 10a–c), the regional average Rrs(443) is 0.00679 sr⁻¹, rising to 0.00866 sr⁻¹ within the 30 m 

isobath (marked by the white dashed line), where optically complex conditions dominate. Notably high Rrs(443) values are 

observed in nearshore areas such as the western Bohai Sea (0.00738 sr⁻¹), the Yangtze River Estuary and Hangzhou Bay 415 

(0.01213 sr⁻¹), the Pearl River Estuary, and the eastern Beibu Gulf. These high Rrs(443) values persist despite strong absorption 

by high concentrations of CDOM and Chl, suggesting that backscattering by suspended sediments dominates the blue 

reflectance signal in these turbid waters (Kirk, 2010; Feng et al., 2014; Ye et al., 2016). In contrast, significantly low Rrs(443) 

values (<0.003 sr⁻¹) occur in the central and northern Yellow Sea, where sediment loads are reduced and absorption remains 

high, resulting in suppressed reflectance in the blue band (Kirk, 2010; Ye et al., 2016; Ling et al., 2020). At longer wavelengths 420 

(547 and 667 nm), high Rrs values are more restricted to highly turbid nearshore and estuarine waters. Within the 30 m isobath, 

the mean Rrs(547) and Rrs(667) values reach 0.01551 sr⁻¹ and 0.00819 sr⁻¹, respectively, decreasing to 0.00506 sr⁻¹ and 0.00184 

sr⁻¹ farther offshore. These spatial patterns reflect the varying contributions of optically active constituents to spectral 

reflectance.  

In US coastal waters (Figures 10d–f) the long-term mean Rrs values exhibit distinct spatial features. At 443 nm, high Rrs values 425 

(>0.03 sr⁻¹) are found around the shallow Bahamas Banks, while low values (<0.003 sr⁻¹) dominate the East and West Coasts 

of the US, indicative of strong absorption by CDOM and Chl (Mannino et al., 2008; Kirk, 2010). At 547 nm and 667 nm, high 

Rrs values are observed in regions such as the northwestern Gulf of California, the Gulf of Mexico coast, and around 

Chesapeake Bay. As in the Chinese coastal waters, Rrs decreases sharply with increasing distance from shore. 

 430 
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Figure 10: Spatial distribution of long-term mean Rrs (units: sr-1) at 443, 547, and 667 nm for China (a–c) and US (d–f) coastal 

waters, derived from the new dataset (2003-2022). White dashed lines indicate the approximate 30 m isobath. 

 

Figure 11 illustrates the spatial distribution of long-term Rrs trends (% yr-1) for the same wavelengths, as estimated using the 435 

seasonal Mann-Kendall test over the 240-month period.  

In Chinese coastal waters (Figures 11a–c), Rrs(443) generally shows increasing trends, with a mean rate of 0.64% yr-1 and 

localized peaks reaching 6.85% yr-1 in the central Yellow Sea. Rrs(547) and Rrs(667) also exhibit upward trends in this region, 

potentially reflecting rising suspended sediment concentrations and declining Chl and CDOM levels in recent years, as 
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previously observed by Wang et al. (2023). In contrast, most of Laizhou Bay, Bohai Bay, and the eastern Liaodong Bay show 440 

consistent negative trends across all three wavelengths, possibly indicating a reduction in suspended sediment loads. This trend 

aligns with earlier findings that attribute such declines to weakening wind-driven sediment resuspension (Li et al., 2022; Zhao 

et al., 2022). The mean trends for Rrs(547) and Rrs(667) are 0.18% yr-1 and 0.24% yr-1, respectively, although widespread 

declines are also evident in other areas, such as the northern South China Sea, with maximum decreases reaching -6.70% yr-1 

and -9.08% yr-1.  445 

In the US coastal waters (Figures 11d–f), Rrs(443) exhibits a mean increase of 0.28% yr-1, with peak increases reaching 7.22% 

yr-1, Strong positive trends are observed along the US West Coast, near the Bahamas, and within the Gulf Stream region. In 

contrast, notable declines occur in areas such as southern Florida Peninsula and the western Gulf of Mexico, with rates reaching 

-6.06% yr-1. For Rrs(547) and Rrs(667), the overall trends are slightly negative (-0.004% yr-1 and 0.042% yr-1, respectively), 

with most coastal regions—except the western Gulf of Mexico—showing decreasing trends, with minimum values of -5.68% 450 

yr-1 and -7.51% yr-1, respectively. A particularly complex pattern emerges along the Gulf Stream: while Rrs(443) increases 

significantly, Rrs(547) and Rrs(667) exhibit moderate decreases. This may reflect the growing influence of oligotrophic Gulf 

Stream waters (Leonelli et al., 2022) and enhanced upper-ocean stratification associated with regional ocean warming (Todd 

and Ren, 2023). These processes are known to suppress vertical mixing and nutrient supply (Li et al., 2020), leading to reduced 

phytoplankton biomass (Yu et al., 2023) and lower concentrations of suspended matter (Wei et al., 2021) in the surface layer. 455 

Such reductions in optically active constituents diminish absorption in the blue bands and scattering in the green and red bands, 

consistent with the observed Rrs trends in this region. Additionally, the magnitude of Rrs trends is greater in the Chinese coastal 

waters than in the US coastal waters, likely reflecting stronger anthropogenic influences, hydrological variability, and regional-

specific geomorphological settings.  

The observed spatiotemporal patterns and trends in Rrs underscore the robustness of the new dataset in capturing diverse coastal 460 

optical dynamics. Their consistency with previously reported trends lends further confidence in the dataset’s reliability and 

demonstrates its value as a foundation for future research into long-term environmental change, human impacts, and climate-

related ecosystem responses in coastal waters.  
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 465 

Figure 11: Long-term Rrs trends (units: % yr-1) from 2003 to 2022, derived using the seasonal Mann-Kendall test at 443, 547, and 

667 nm for China (a–c) and US (d–f) coastal waters. Rates are computed as the Mann-Kendall slope divided by the corresponding 

20-year average Rrs. 

 

4 Data availability 470 

The high-quality coastal Rrs dataset generated in this study is publicly available at https://doi.org/10.5281/zenodo.16413443 

(Zhao et al., 2025). The dataset is provided in monthly composites and stored in GeoTIFF format at 0.01° spatial resolution 

under the EPSG:4326 (WGS84) spatial reference system.  
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5 Conclusion 

This study developed an improved processing framework suitable for coastal waters by integrating previous advancements in 475 

aerosol models and cloud masking strategies. A key innovation lies in the implementation of a spatially adaptive aerosol model 

selection mechanism, which dynamically assigns models based on pixel-level probabilities of continental aerosol influence. In 

addition, the framework incorporates targeted masking strategies tailored to both possible residual cloud contamination—due 

to the modified cloud masking threshold—and the occurrence of extreme turbid waters. Using this framework, we generated 

a high-quality Rrs dataset from MODIS Aqua observations for the coastal waters of China and the United States from 2003 to 480 

2022. The resulting dataset was rigorously evaluated against the NASA standard Rrs products through a series of comparative 

analyses under consistent and stringent quality control strategies. 

Compared to standard products, products generated with the improved processing framework exhibit substantial enhancements 

in both retrieval accuracy and valid retrieval coverage, particularly in turbid regions where conventional AC approaches often 

suffer from overcorrection and cloud misclassification. These enhancements are evident across both pixel-level validations 485 

and large-scale analyses, demonstrating the new dataset’s improved ability to preserve valid water-leaving signals and resolve 

fine-scale coastal features. The revealed spatiotemporal patterns and long-term trends of Rrs further underscore the new 

dataset’s capability to characterize coastal optical variability, supporting its application in long-term monitoring, water quality 

assessment, and environmental change studies.  

Although this study focused on MODIS Aqua and two regional case studies, the methodology is scalable and transferable to 490 

other sensors and global coastal zones. Future work may involve broader in situ validation and the application of this dataset 

to retrieve biogeochemical parameters such as Chl, suspended sediments, and CDOM, thereby extending its utility for coastal 

management and climate-related research. 
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