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Abstract. Current large-scale maps of Spartina alterniflora (S. alterniflora) with 10 m resolution hinder accurate delineation

of community boundaries, detection of internal features such as creeks, and identification of small patches. These limitations

further compromise the accuracy of spatial distribution extraction and subsequent analyzes. To this end, this study produced

the first 2020 national-scale Sub-meter (0.9 m) S. alterniflora Map of Mainland China (CM-SSM), using an object- and sub-20
meter-enhanced pixel-based phenological feature composite method. The method integrates phenological features from

Sentinel-2 with spatial and texture details from Google Earth imagery, improving the spectral separability and mitigating

mixed-pixel effects. Compared to the 10 m S. alterniflora product of Mainland China (CMSA), CM-SSM improved overall

accuracy by 14.60 % and the F1 score by 0.24. Although the total mapped areas of CM-SSM (59,371 ha) and CMSA (58,006

ha) differ by only 1,365 ha, their spatial distributions diverge substantially. When benchmarked against CM-SSM, CMSA25
exhibited commission and omission errors totaling 34,273 ha (57.73 %). Moreover, the number of patches identified by CM-

SSM (148,072) was over 17 times greater than that of CMSA, reflecting its superior capability in detecting fragmented

distributions. In addition, Soil Organic Carbon (SOC) estimates derived from CM-SSM were 706.69 Gg (23.09 %) higher

than those reported by the corresponding national SOC product for the same year, emphasizing the essential contribution of

high-resolution mapping to accurate carbon accounting for S. alterniflora. These advances enhance understanding of S.30
alterniflora invasion dynamics, support carbon accounting, and inform evidence-based coastal wetland management and

restoration. The map is available at https://doi.org/10.5281/zenodo.16296823 (Xu et al., 2025).
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1 Introduction

Spartina alterniflora (S. alterniflora), native to the Atlantic coast of North America and widely recognized as a classic

“ecosystem engineer”, was intentionally introduced into China in 1979 to enhance embankment stability and mitigate coastal35
erosion (Jackson et al., 2021; Liu et al., 2020). Due to its lack of natural predators and high reproductive capacity, S.

alterniflora has rapidly expanded along China's coast over the past four decades, reaching a total extent of more than 50,000

ha (Meng et al., 2020). This rapid spread has posed serious threats to coastal ecosystems, including the displacement of

native species, degradation of nearshore habitats, and measurable declines in biodiversity (Li et al., 2009; Okoye et al., 2020).

In response, a range of control strategies, including physical removal, chemical control, and biological replacement, were40
employed to manage the invasion of S. alterniflora in China (Zheng et al., 2023a). However, the effectiveness of these

measures varied significantly across regions, and the risk of reinvasion remained high (Li et al., 2022a; Zhao et al., 2020).

Given the rapid natural spread of S. alterniflora and the continued influence of human activities on its spatial distribution,

there is an urgent need for accurate, large-scale monitoring to delineate its distribution patterns and assess the effectiveness

of removal effort.45
Remote sensing has been widely used for mapping S. alterniflora due to its capability for large-area coverage and long-term,

repeatable monitoring (Chen et al., 2020; Lourenço et al., 2021; Lv et al., 2019). Existing mapping products can be divided

into two categories based on spatial resolution. The first category includes products derived from High Resolution (HR)

imagery (10–30 m), such as Landsat and Sentinel series data (Zuo et al., 2025; Zuo et al., 2012). Liu et al. (2018) produced

the S. alterniflora map along mainland China's coast in 2015 at 30 m using Landsat 8. Subsequently, Hu et al. (2021)50
generated a 2019 coastal saltmarsh map (including S. alterniflora) using Sentinel-1, with an improved spatial resolution from

30 m to 10 m. To analyze expansion dynamics of S. alterniflora, Zhang et al. (2017) mapped a sparse multi-temporal dataset

spanning 1990 to 2014 using Landsat time-series imagery. Similarly, Mao et al. (2019) produced S. alterniflora maps at 5- or

10-year intervals from 1990 to 2015. The mapping intervals in previous studies were typically greater than 5 years, making it

difficult to capture the ongoing spread of S. alterniflora. Therefore, Li et al. (2024) generated annual distribution maps of S.55
alterniflora between 2017 and 2021 using Sentinel-2 imagery, enabling precise monitoring of interannual changes.

Nevertheless, relying solely on HR imagery (10-30 m) presents three key challenges due to inherent spatial limitations. First,

existing products often fail to detect small patches of S. alterniflora, which are ecologically important and may function as

early indicators of invasion risk (Chen et al., 2020). Second, boundaries between S. alterniflora and co-occurring species

remain poorly defined, limiting accurate delineation of its spatial extent. For instance, in mangrove areas, boundary60
misclassification hinders reliable assessment of invasion risk (Zheng et al., 2023b). Third, internal features within S.

alterniflora communities, such as creeks and open spaces, are difficult to capture. Creeks, in particular, influence

hydrological processes and seed dispersal, thereby affecting the rate and extent of spread (Sun et al., 2020). These issues

obstruct the effective application of existing products in precise monitoring and ecological management.
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The second category includes products derived from Very High Resolution (VHR) imagery (finer than 10 m), such as UAV65
(Windle et al., 2023), WorldView (Dong et al., 2024), Gaofen (Li et al., 2021), and SPOT imagery (Liu et al., 2017a).

Compared with HR data, these sources offer improved spatial detail and effectively reduce classification errors caused by

mixed pixels. However, their high acquisition cost and limited spatial coverage constrain their use in large-scale applications.

The Google Earth (GE) platform provides free access to sub-meter imagery with rich spatial detail (Li et al., 2022b), creating

new opportunities for large-area, high-precision monitoring of S. alterniflora. Nevertheless, the lack of multispectral70
information in GE imagery restricts its utility for spectral-based identification (Zhou et al., 2024).

Phenology-based methods, which exploit spectral variations during vegetation growth, are widely recognized for their

effectiveness in mapping S. alterniflora (Zeng et al., 2022; Zhang et al., 2022a). Initially, single-date imagery from the

growing period of S. alterniflora was used for classification (Ouyang et al., 2013; Wang et al., 2015a). However, relying

solely on the growing period is insufficient for accurate mapping because S. alterniflora shares similar spectral features with75
other saltmarsh vegetation, especially evergreen mangroves (Ai et al., 2017; Sun et al., 2021). To address this, time-series

imagery has been used to construct phenological trajectories, enabling improved distinction through the integration of

multiple growth phases (Sun et al., 2016; Liu et al., 2017b). For example, Sun et al. (2016) constructed monthly NDVI time-

series from the Chinese HuanJing-1 satellite imagery to monitor salt marsh vegetation, including S. alterniflora. While this

method shows strong potential, two major challenges remain. Frequent cloud cover and tidal disturbances in coastal regions80
complicate the acquisition of high-quality, high-temporal-resolution imagery. Moreover, S. alterniflora exhibits spatial

phenological heterogeneity, where communities in different regions may be at different phenological stages simultaneously,

introducing spectral inconsistencies that reduce classification stability and accuracy.

To address the limitations mentioned above, Tian et al. (2020a) proposed a Pixel-based Phenological Feature (PPF)

composite method. This method leverages the computational capacity and extensive data resources of the Google Earth85
Engine (GEE) platform to perform image compositing at the pixel level, aiming to overcome the difficulty of acquiring high-

quality imagery in intertidal zones. Instead of relying on entirely cloud-free scenes, the method integrates all cloud-free

pixels across multiple images, significantly improving the utilization of available data and alleviating the scarcity of usable

imagery. Two key phenological periods (green period and senescence period) were selected based on their spectral

distinctiveness. During the green period, S. alterniflora is spectrally distinguishable from non-vegetated surfaces such as90
mudflats and water; in the senescence period, it is more separable from evergreen species like mangroves. These periods

provide complementary spectral features, enhancing the separability of S. alterniflora and capturing most of its relevant

phenological information, while minimizing interference from transitional periods. Furthermore, to account for the

phenological variability of S. alterniflora across different geographic locations, the method constructs composite imagery by

extracting the greenest pixels during the green period and the most senescent pixels during the senescence period. This95
selection of extreme phenological states effectively reduces spatial heterogeneity in the phenology of S. alterniflora.

Subsequent studies have confirmed the value of the dual-temporal phenological feature composite method. It has been

shown to improve S. alterniflora classification accuracy (Zhang et al., 2020; Zhang et al., 2023) and to perform well in
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broader coastal wetland mapping (Chen and Kirwan et al., 2022; Zhao et al., 2023), demonstrating its effectiveness and

reliability. However, these studies relied on pixel-based classification methods, which consider only the spectral value of100
individual pixels and ignore spatial relationships with neighboring pixels, thus limiting classification accuracy (Frohn et al.,

2011). Independent pixel-wise classification often results in isolated misclassified pixels, producing the salt-and-pepper

effect (Dronova, 2015). In contrast, object-based image analysis (OBIA) integrates shape, texture, and spatial context

features and takes advantage of the spectral consistency within image objects. This method has shown promising potential

for S. alterniflora identification (Wang et al., 2021). Nevertheless, the application of OBIA in large-scale, sub-meter S.105
alterniflora mapping using VHR imagery remains underexplored.

This study aims to establish an object-based, large-scale mapping approach by integrating multi-source remote sensing

imagery to produce the first sub-meter map of S. alterniflora across mainland China. Our objectives are threefold: (1) to

develop a novel Object- and Sub-meter-enhanced PPF (OSPPF), (2) to produce a 2020 Sub-meter S. alterniflora Map of

Mainland China (CM-SSM), and (3) to evaluate the significant improvements of CM-SSM over the latest 10 m resolution110
map of S. alterniflora. Overall, the OSPPF effectively mitigates the mixed-pixel problem by incorporating sub-meter GE

imagery. Additionally, by integrating OBIA, the proposed OSPPF approach leverages multi-dimensional features such as

texture, shape, and spatial context, thereby overcoming the limitations of pixel-based classification that relies solely on

spectral features. This integration enhances the classification accuracy of S. alterniflora. CM-SSM addresses issues in

existing products, such as inaccurate boundary depiction of S. alterniflora, poor identification of internal details, and limited115
ability to detect small patches. As a high-resolution and high-accuracy map, CM-SSM provides a robust data foundation for

management assessment, blue carbon stock estimation, and coastal sustainable development.

2 Materials and methods

2.1 Study area

S. alterniflora is distributed across nine provinces in mainland China (20° N–41° N, 108° E–122° E), with coverage areas120
ranked in descending order as follows: Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangxi, Guangdong, Tianjin, and

Hebei. Common co-occurring species include Phragmites australis, Suaeda salsa, Tamarix chinensis, and mangroves.

To preliminarily delineate the potential distribution of S. alterniflora, a 10 km coastal buffer zone was generated by

extending seaward from the coastline dataset. Considering the regional differences in co-occurring species and phenology,

the coastal buffer was subdivided into five subregions: the Southern Coastal Zone (SCZ), Yangtze River Estuary Coastal125
Zone (YRECZ), Jiangsu Coastal Zone (JSCZ), Yellow River Delta Coastal Zone (YRDCZ), and Northern Coastal Zone

(NCZ). Subsequently, two national-scale S. alterniflora products from 2020 (see Sect. 2.2.2) were collected to extract their

union, which was then expanded with a 100 m buffer to cover potential edge areas. Omission errors were manually corrected

through visual interpretation of VHR imagery. The red-highlighted area represented an S. alterniflora patch. The study area



5

was divided into five subregions, each containing multiple S. alterniflora patches. All Sentinel-2 and GE imagery were130
collected within these subregions (Fig. 1).

Figure 1: Location of the study site in the coastal zone of mainland China. The background imagery is provided by Esri
(https://www.esri.com) and its data partners. The VHR imagery in the figure is from © Google Earth 2020.
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2.2 Datasets135

2.2.1 Remote sensing imagery

This study acquired approximately 6,007 Sentinel-2 Surface Reflectance (SR) images from the year 2020 through the GEE

platform. As S. alterniflora grows in intertidal zones and is highly susceptible to cloud contamination and tidal variation,

both scene-based and pixel-based methods were applied to ensure image quality (Chen et al., 2025). At the scene level,

images with more than 70 % cloud cover within the study area were excluded based on metadata attributes (Ni et al., 2021).140
At the pixel level, bitwise operations were used to the Sentinel-2 Scene Classification Layer (SCL) to mask cloud (SCL = 7–

9), cirrus (SCL = 10), and cloud shadows (SCL = 3). To further reduce tidal effects on classification, water pixels (SCL = 6)

were also removed. Additionally, 0.9 m GE imagery from 2020 with RGB bands was selected under low-tide and cloud-free

conditions. In regions lacking high-quantity 2020 imagery, supplementary GE imagery from 2019 or 2021 was used.

2.2.2 Existing S. alterniflora products145

Two S. alterniflora products covering coastal mainland China in 2020 were collected for study area delineation and

comparative analysis (Table 1). Mao et al. (2019) developed a multi-temporal S. alterniflora dataset (1990–2015) and used it

to generate a 30 m resolution product in 2020 (hereafter referred to as SpProduct_30m). More recently, Li et al. (2024)

generated a 10 m resolution S. alterniflora map of mainland China for 2020 (CMSA) using Sentinel-2 imagery. Both

SpProduct_30m and CMSA served as critical references for delineating the study area (see Sect. 2.1). As the highest-150
resolution national-scale S. alterniflora product for 2020, CMSA was used as the benchmark. Specifically, we evaluated the

improvement in detection capability achieved by our sub-meter product relative to the CMSA.
Table 1 Details of existing large-scale S. alterniflora products in 2020.

Product Dataset Resolution Extent References

SpProduct_30m Landsat-8 30 m Mainland China Mao et al. (2019)

CMSA Sentinel-2 10 m Mainland China Li et al. (2024)

2.2.3 Reference data155

The ecological complexity of intertidal zones where S. alterniflora grows poses challenges for large-scale field sampling and

limits the availability of sufficient reference data. To address this issue, we constructed a high-quality sample dataset by

integrating field surveys with multi-source VHR imagery. First, field surveys were conducted in 2020 in typical S.

alterniflora habitats, including the Beibu Gulf, Jiulong River Estuary, and Zhangjiang Estuary. Using differential GPS, we

collected 1,396 ground validation points, including 661 S. alterniflora and 735 non-S. alterniflora samples. Subsequently,160
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VHR imagery temporally aligned with the field survey was collected from UAVs, the Gaofen series, and GE. Based on this,

experienced researchers visually interpreted and manually labeled 10,570 S. alterniflora and 20,247 non-S. alterniflora

points by overlaying field data with VHR imagery. The non-S. alterniflora class includes co-occurring species (e.g.,

mangroves, Phragmites australis, Suaeda salsa) and other land covers such as mudflats. All sample points were evenly

distributed across the five subregions defined in Sect. 2.1. Finally, a stratified random sampling method was used to divide S.165
alterniflora and non-S. alterniflora sample points within each subregion into training and validation sets at a 7:3 ratio. In

addition, the class ratio of S. alterniflora to non-S. alterniflora (approximately 1:2) was preserved during the splitting

process. The sample points from all subregions were then merged to form a complete reference dataset. This method

mitigated issues of spatial autocorrelation and class imbalance (Wang et al., 2020). The training set was used to select input

features for the Random Forest (RF) classifier (see Sect. 2.3.3), while the validation set was employed to assess classification170
accuracy.

2.3 Development of an Object- and Sub-meter-enhanced PPF

This study proposed an Object- and Sub-meter-enhanced Pixel-based Phenological Feature (OSPPF) composite method for

mapping S. alterniflora, including four steps (Fig. 2). First, a Pixel-based Phenological Feature (PPF) was constructed using

Sentinel-2 imagery (10 m). Second, spatial and texture features extracted from GE imagery (0.9 m) were integrated to175
enhance the PPF, resulting in the Sub-meter-enhanced PPF (SPPF). Third, a multi-scale object-based segmentation strategy

was used to extract the OSPPF. Finally, a RF classifier was applied to generate the initial result, which was then manually

refined to generate the final S. alterniflora distribution map.
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Figure 2: Workflow of the proposed OSPPF.180

2.3.1 Pixel-based phenological feature composite method

Phenological features are critical for identifying S. alterniflora. Previous studies have shown that the green and senescence

periods are two key phenological phases that enhance the spectral separability of S. alterniflora from background land covers

(Tian et al., 2020a). Accordingly, this study constructed annual NDVI time series curves based on Sentinel-2 imagery

acquired between January 1 and December 31, 2020, to determine the green and senescence periods for each subregion.185
Using JSCZ as an example, 175 pure S. alterniflora pixels were selected through visual interpretation of GE imagery,

ensuring an even spatial distribution. NDVI values for these pixels were calculated from cloud-masked Sentinel-2 imagery,

extracting the median value for each Day of Year (DoY) to construct the NDVI time series. To reduce noise caused by cloud

cover and atmospheric effects, the NDVI time series was smoothed using the Savitzky-Golay (SG) filter (Savitzky and

Golay, 1964). As shown in Fig. 3, the NDVI time series of JSCZ exhibited a phenological pattern consistent with that190
reported by Tian et al. (2020a). To determine the two key phenological periods of S. alterniflora in the JSCZ, the annual

NDVI frequency distribution histogram and its first derivative curve were generated based on 175 pure S. alterniflora pixels
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(Fig. S1 in the Supplement). As shown in Fig. S1, the NDVI values exhibited a marked decline around 0.3 and a sharp

increase around 0.5, corresponding to the transitions from the senescence to the transitional period and from the transitional

to the green period, respectively. Therefore, NDVI values below 0.3 during DoY 1–125 indicated the senescence period,195
whereas values above 0.5 during DoY 190–325 corresponded to the green period. Following this procedure, the key

phenological windows were identified for each subregion (Table 2).

Figure 3: NDVI time series analysis of the S. alterniflora in JSCZ. Point density is represented using hexagonal binning, with color
intensity indicating the concentration of data points.200

Table 2 Sub-regional phenological windows.

Sub-region Dominant companion species Senescence period (DoY) Green period (DoY)

NCZ T. chinensis 1–150 200–290

YRDCZ P. australis, S. salsa, T. chinensis 1–175 200–325

JSCZ S. salsa, P. australis 1–125 190–325

YRECZ P. australis, S. mariqueter 1–105 205–315

SCZ Mangroves 1–140 160–300

Based on the two identified phenological periods, the PPF was constructed by integrating vegetation indices and original

spectral bands. Specifically, five indices were selected to characterize the phenological periods (Table 3): Normalized

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Plant Senescence Reflectance Index (PSRI),205
Normalized Difference Water Index (NDWI), and Land Surface Water Index (LSWI). NDVI, EVI, and NDWI were used
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during the green period, while PSRI and LSWI characterized the senescence period. The selection rationale is as follows: (1)

NDVI is sensitive to green vegetation but tends to saturate under dense canopies, whereas EVI remains responsive at high

biomass levels, making them complementary during the green period (Ni et al., 2021). (2) NDWI captures reflectance

differences between vegetation and water in the green and near-infrared bands, effectively distinguishing S. alterniflora from210
water when canopy cover is high during the green period (Mancino et al., 2020). (3) PSRI responds to changes in carotenoid

pigments associated with senescence, making it suitable for detecting vegetation during the senescence period (Tian et al.,

2020a). (4) As LSWI is sensitive to leaf water content, the progressive moisture loss in S. alterniflora during senescence

leads to decreased LSWI values, improving its separability from moist backgrounds such as mudflats and water (Wu et al.,

2020). Each index was derived from Sentinel-2 imagery of its corresponding phenological period, with median values of215
valid observations computed per pixel to generate the composite images.

In addition, five original bands of Sentinel-2 were selected for both phenological periods: B2 (blue), B3 (green), B4 (red),

B8 (NIR) and B11 (SWIR 1). B2, B3, and B4 cover the visible spectrum and are useful for distinguishing S. alterniflora

from water and mudflats. B8 and B11 are sensitive to vegetation structure and moisture content, effectively capturing

spectral transitions of S. alterniflora from the green to senescence period. Finally, the vegetation indices and selected220
spectral bands for both phenological periods (a total of 15 bands) were integrated to construct the PPF composite images.
Table 3 Vegetation indices used in this study.

Vegetation index Formula Reference

NDVI (NIR - Red) / (NIR + Red) Rouse et al. (1974)

EVI 2.5× (NIR - Red)/(NIR + 6× Red - 7.5× Blue + 1) Huete et al. (2002)

PSRI (Red - Blue) / NIR Merzlyak et al. (1999)

NDWI (Green - NIR) / (Green + NIR) Gao et al. (1996)

LSWI (NIR - SWIR1) / (NIR + SWIR1) Chandrasekar et al. (2010)

2.3.2 Integration of fine-scale spatial information in PPF

To address the spatial resolution limitations of PPF, this study introduced the SPPF composite method, incorporating fine-225
scale spatial information from GE imagery through three steps: GE feature extraction, spatial-scale normalization and

geometric registration, and image compositing.

First, spectral and texture features were extracted from GE imagery. For spectral features, the Normalized Green-Blue

Difference Index (NGBDI) and the Normalized Green-Red Difference Index (NGRDI), derived from the RGB bands (Table

4), have proven effective for wetland vegetation classification (Zheng et al., 2022). Texture features were computed from the230
red band using the Grey-Level Co-Occurrence Matrix (GLCM) method (Haralick et al., 2007), extracting four second-order

statistics commonly used in vegetation classification: contrast, entropy, correlation, and homogeneity (Wang et al., 2015b).
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Sliding window size is critical to texture extraction, with small windows failing to capture spatial texture and large ones

blurring object boundaries. A 17×17 sliding window was applied to the grayscale image of the red band (Li et al., 2020),

generating GLCMs and computing four texture metrics per window to produce corresponding texture bands.235
Second, enabling effective integration of multi-source data required resampling to a common resolution and geometric

registration. The Sentinel-2 spectral bands and associated vegetation index images (10–20 m) were resampled using cubic

convolution to match the 0.9 m GE imagery. Then, GE imagery was used as the reference to selecting evenly distributed and

clearly identifiable control points from both image sources (e.g., tidal creek intersections, aquaculture pond corners, and

vegetation patch boundaries). These points were used to construct a polynomial transformation model for registering the240
Sentinel-2 imagery. Finally, phenological features derived from Sentinel-2 were integrated with the spectral, texture, and

RGB features extracted from GE imagery to construct the SPPF composite images consisting of 24 bands.
Table 4 The RGB-based spectral indices used in this study.

Vegetation index Formula Reference

NGBDI (Green - Blue) / (Green + Blue) Du and Noguchi. (2017)

NGRDI (Green - Red) / (Green + Red) Gitelson et al. (2002)

2.3.3 Integration of object-based spatial features in SPPF245

Considering the complex boundaries and homogeneous interiors of S. alterniflora patches, accurately delineating their edges

remains challenging when using pixel-based features. Therefore, we developed an object-based feature extraction method

that incorporated a multi-scale optimized segmentation strategy, enabling the effective integration of spatial context and

pixel neighborhood relationships for improved boundary detection. The method included two key steps: identifying the

boundary regions of S. alterniflora patches and determining the optimal multi-scale segmentation parameters.250
To delineate patch boundaries, each patch identified from the CMSA was expanded outward and contracted inward by 10 m,

corresponding to the spatial resolution of the CMSA. This process resulted in a 20 m annular buffer zone that captures the

complex transitional areas along the edges of S. alterniflora patches while minimizing the inclusion of non-target features,

thereby ensuring both the accuracy and representativeness of boundary identification. To implement the multi-scale

optimized segmentation strategy, the Estimation of Scale Parameter (ESP) method was applied to identify the optimal scales255
for both edge-complex and interior-homogeneous regions. ESP quantifies image region homogeneity by computing Local

Variance (LV) and its Rate of Change (ROC) across multiple scales, with ROC peaks typically indicating optimal

segmentation (Drǎguţ et al., 2010). To improve scale representativeness, one typical region was selected from each of the

five subregions (see Sect. 2.1), and GE imagery was segmented to calculate LV and ROC. Following Wang et al. (2021), the

scale range was set to 4-60 with a step of 1. The shape and compactness parameters were set to 0.1 and 0.5, respectively260
(Wan et al., 2014). As shown in Fig. 4(a), the mean ROC curve across the five regions exhibited multiple peaks, indicating
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several candidate optimal scales. Based on these peaks, a series of segmentation results were visually interpreted. Scale 16

was optimal for capturing fine details in boundary-complex regions, while scale 24 was better represented the homogeneous

interior, balancing spatial coherence with processing efficiency. Segmentation results for both scales are shown in Figs. 4(b)

and 4(c). Based on the determined scale parameters, object-based segmentation was performed on the SPPF composite265
imagery in eCognition, producing the OSPPF for subsequent classification.

Figure 4: (a) Variation of Local Variance (LV) and Rate of Change (ROC) with Scale Parameter. (b) Segmentation results with
scale parameter of 16. (c) Segmentation results with scale parameter of 24. The VHR imagery in the figure is from © Google Earth
2020.270

2.3.4 Classifier selection and parameterization

Although deep learning has shown potential for sub-meter mapping of S. alterniflora at the local scale, its reliance on high-

quality training samples and the limited generalization ability of models constrain its application at the national scale (Zhou
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et al., 2024). In contrast, the object-based RF classifier integrates spectral, textural, and spatial contextual features,

demonstrating higher stability and classification accuracy in identifying S. alterniflora. Moreover, it outperforms the pixel-275
based RF method in mapping S. alterniflora (Tian et al., 2020b; Yan et al., 2021). Therefore, we used the object-based RF

classifier in eCognition. The RF algorithm aggregates predictions from multiple decision trees, with the number of trees

being a key parameter influencing classification performance (Breiman et al., 2001). To determine the optimal number of

trees, a sensitivity analysis was conducted using the training and validation datasets (see Sect. 2.2.3), varying the tree count

from 50 to 500 at intervals of 50. The results indicated that 200 trees yielded the highest overall accuracy on the validation280
set. The multi-source features and training samples were then input into the object-based RF classifier to produce the Initial

Sub-meter S. alterniflora Map of Mainland China (ICM-SSM). To enhance accuracy, experienced researchers visually

interpreted GE imagery and corrected the ICM-SSM. Consequently, the final Sub-meter S. alterniflora Map of Mainland

China (CM-SSM) was generated.

2.4 Accuracy assessment285

To assess the mapping effectiveness of the OSPPF method for S. alterniflora, two sets of comparative experiments were

designed in typical area to generate comparative results. Each result was compared with the CM-SSM generated by OSPPF,

focusing on boundary delineation, small patch detection, and internal structure extraction. Classification accuracy of the CM-

SSM was quantitatively assessed using confusion matrix-based metrics. Producer accuracy (PA), user accuracy (UA),

overall accuracy (OA), and the F1 score were calculated using the validation dataset, which comprised 3,170 positive and290
6,075 negative samples (see Sect. 2.2.3). To further evaluate the performance of CM-SSM, a comparative analysis was

conducted against the CMSA. The comparison included both classification detail and overall statistics. At the detail level,

attention was paid to differences in edge, internal structure, and small patch. At the statistical level, we quantified differences

in total area, number of patches, and spatial distribution of S. alterniflora.

3 Result295

3.1 Performance of OSPPF

To assess the contribution of GE imagery to classification performance, S. alterniflora mapping was conducted using two

methods in the Dandou Sea: (1) Object-based PPF (OPPF) classification using resampled Sentinel-2 imagery alone, and (2)

OSPPF classification integrating both Sentinel-2 and GE imagery. As shown in Fig. 6(a), classification based solely on

Sentinel-2 imagery was able to capture the general outline of S. alterniflora communities but failed to effectively delineate300
open spaces within the patches. In addition, Fig. 6(b) demonstrates that small, fragmented S. alterniflora patches were poorly

detected, and the boundaries between S. alterniflora and mangroves were inaccurately represented. In contrast, the CM-SSM

generated using fused GE imagery exhibited superior spatial detail, successfully identifying small patches and internal

details, as well as accurately delineating boundaries between S. alterniflora and co-occurring species. Furthermore, we
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conducted a feature importance analysis using the RF classifier (Zhang et al., 2022b). As shown in Fig. 5, spectral and305
texture features derived from GE imagery consistently contributed highly to the classification of S. alterniflora. This can be

primarily attributed to the rich spatial texture information provided by GE imagery, which effectively complements the

phenological features and thereby enhances classification accuracy.

To further compare pixel-based and object-based classification methods in S. alterniflora mapping, the SPPF and OSPPF

methods were applied in the Dandou Sea. As illustrated in Fig. 7, the CM-SSM generated using object-based classification310
accurately extracted the boundaries between S. alterniflora and surrounding land cover types such as mudflats and

mangroves, whereas the pixel-based method showed poor boundary delineation. Moreover, Fig. 7 indicates that the pixel-

based result suffered from salt-and-pepper noise, particularly within and along the edges of S. alterniflora patches. In

contrast, the CM-SSM demonstrated a smoother spatial distribution and effectively suppressed such noise.

315
Figure 5: The importance of multi-sourced features derived from the RF classifier.
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Figure 6: Comparison of classification results using OPPF and OSPPF methods in Dandou Sea. The result generated by the
OSPPF method is the final, manually refined CM-SSM product. The VHR imagery in the figure is from © Google Earth 2020.
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320
Figure 7: Comparison of classification results using SPPF and OSPPF methods in Dandou Sea. The result generated by the
OSPPF method is the final, manually refined CM-SSM product. The VHR imagery in the figure is from © Google Earth 2020.

3.2 Comparison with the latest 10 m product

3.2.1 Accuracy assessment

Table 5 presents the accuracy assessment of three products (CMSA, ICM-SSM, and CM-SSM) based on validation samples325
(see Sect. 2.2.3). Among them, CM-SSM achieved the best classification performance, with OA and F1 scores of 96.76 %

and 0.95, respectively. ICM-SSM also performed well, with an OA of 93.36 % and an F1 score of 0.90, although slightly

lower than those of CM-SSM. This difference is mainly attributed to the manual refinement, which improved boundary

delineation and the identification of small patches. In contrast, CMSA exhibited the lowest accuracy, with OA and F1 scores

14.60 % and 0.24 lower than those of CM-SSM, respectively. Given the wide latitudinal span of the study area, the spatial330
variability in classification performance was further examined by evaluating CMSA and CM-SSM across five subregions

using validation samples. The results show that CM-SSM consistently achieved superior performance, with OA exceeding

95.00 % and F1 scores above 0.90 in all subregions (Tables S1–S5 in the Supplement). To further assess whether the



17

accuracy improvement of CM-SSM over CMSA is statistically significant, we applied McNemar's test based on validation

samples. The results indicated a statistically significant difference (χ² = 820.22, p < 0.05), confirming the robustness of the335
improvements in OA and F1 scores (McNemar, 1947). The superior performance of CM-SSM is mainly due to its reduction

in both omission and commission errors, which contributed to the higher OA and F1 scores, as shown in Table 6.
Table 5 Classification accuracy assessment results of CMSA, ICM-SSM and CM-SSM.

Product Class PA (%) UA (%) F1 OA (%)

CMSA
S. alterniflora 80.85 62.87 0.71 82.16

Non-S. alterniflora 82.64 92.23

ICM-SSM
S. alterniflora 93.68 86.47 0.90 93.36

Non-S. alterniflora 93.21 96.95

CM-SSM
S. alterniflora 97.58 92.84 0.95 96.76

Non-S. alterniflora 96.36 98.80

Table 6 Confusion matrices of CM-SSM and CMSA based on validation samples.340

Product Reference class
Predicted class

Total
S. alterniflora Non-S. alterniflora

CMSA
S. alterniflora 1993 1177 3170

Non-S. alterniflora 472 5603 6075

CM-SSM
S. alterniflora 2943 227 3170

Non-S. alterniflora 73 6002 6075

3.2.2 Spatial details

To reveal the difference between CM-SSM and CMSA, a comparative analysis focusing on small patches, boundaries, and

internal structural features of S. alterniflora communities was conducted (Fig. 8). First, given the fragmented distribution of

S. alterniflora, numerous small patches are typically present. CM-SSM effectively detected nearly all of them, whereas345
CMSA missed most. Second, S. alterniflora often encroaches upon mangrove habitats due to its aggressive spread,
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increasing boundary complexity. CM-SSM showed superior delineation of the interface between the two species, clearly

depicting invasion fronts that CMSA did not capture effectively. Finally, intertidal S. alterniflora communities often include

internal features like creeks and open spaces. CM-SSM successfully resolved open spaces and narrow creeks, while CMSA

lacked the spatial detail to do so.350

Figure 8: Spatial detail comparison between CM-SSM and CMSA in typical cases. The VHR imagery in the figure is from ©
Google Earth 2020.

3.2.3 Spatial distribution statistics

A total of 148,072 patches were identified in CM-SSM, approximately 17 times more than CMSA. The total mapped area of355
CM-SSM reached 59,371 ha, exceeding that of CMSA by 1,365 ha. To further compare patch size and area differences

between the two products, statistics were summarized across six area classes defined by the minimum mapping unit of

CMSA (i.e., one 10 m pixel). These intervals included: 0.01 ha (1 pixel), 0.1 ha (10 pixels), 1 ha (100 pixels), 100 ha (10,000

pixels), 1,000 ha (100,000 pixels), and greater than 1,000 ha (Fig. 9). In addition, to assess spatial distribution differences, an

overlay analysis was conducted using CM-SSM as the reference (Figs. 10 and 11).360
As shown in Fig. 9, when patch area was no greater than 0.1 ha, CM-SSM detected 44 times more patches than CMSA, with

a total area 14 times larger. This notable difference underscores CM-SSM's superior ability to capture small and fragmented

S. alterniflora communities. In CM-SSM, such small patches accounted for 90.48 % of the total patch count but only 2.25 %
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of the total area. CMSA reported 35.15 % and 0.16 % for the same class. These results are consistent with the highly

fragmented spatial distribution of S. alterniflora. In terms of large patches exceeding 100 ha, both products demonstrated365
similar performance. In CM-SSM, these patches represented just 0.05 % of the total number but contributed 52.99 % of the

total area, while in CMSA the corresponding proportions were 0.87 % and 62.96 %.

Figure 9: Zonal statistics of the number and area of S. alterniflora patches identified by CM-SSM and CMSA.

When benchmarked against CM-SSM, CMSA exhibited 16,454 ha of commission and 17,819 ha of omission, resulting in a370
total spatial mismatch of 34,273 ha (Fig. 10). Notably, the overall area difference between the two products was small

because the commission and omission nearly offset each other. To further explore spatial discrepancies, a province-level

analysis was conducted. As shown in Fig. 11, both the pattern and magnitude of these differences varied across provinces.

For example, in Shanghai, omission was the primary contributor to spatial disagreement, whereas in Jiangsu, commission

and omission were more balanced, together accounting for 7,760 ha difference.375



20

Figure 10: Spatial distribution difference statistics of S. alterniflora identified by CM-SSM and CMSA.

Figure 11: Using CM-SSM as the reference, the commission and omission of S. alterniflora area by province were calculated for
CMSA.380
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3.3 Mapping results of mainland China

Figure 12(a) illustrates the 2020 distribution of S. alterniflora across mainland China based on CM-SSM. The results

indicate that S. alterniflora was densely distributed along the coasts of Fujian, Zhejiang, Shanghai, and Jiangsu, where nearly

all large-scale communities were located. These four provinces also reported the largest total areas, together accounting for

94.08 % of the total in mainland China (Fig. 13). In Guangxi, large patches were primarily distributed around the Beibu Gulf,385
while in Guangdong, S. alterniflora appeared more scattered and patchier. In northern provinces such as Shandong, Hebei,

and Tianjin, S. alterniflora communities were generally small in size and spatially fragmented. To better illustrate spatial

patterns across ecosystems, three representative regions were selected. As shown in Figs. 12(b) and 12(d), Dandou Sea and

the Zhangjiang Estuary reflect zones of S. alterniflora-mangrove coexistence, where S. alterniflora is gradually encroaching

into mangrove habitats. In contrast, Fig. 12(c) highlights northern Jiangsu's mudflats, where S. alterniflora has colonized390
unvegetated mudflats and formed expansive stands, demonstrating strong invasiveness and ecological adaptability.
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Figure 12: (a) Spatial distribution of S. alterniflora in mainland China for 2020, derived from the CM-SSM, with each grid cell
representing the total S. alterniflora area within a 10 km × 10 km unit; (b–d) CM-SSM distribution map in typical areas, including
(b) Dandou Sea, (c) mudflats of northern Jiangsu, and (d) Zhangjiang Estuary. The background imagery is provided by Esri395
(https://www.esri.com) and its data partners. The VHR imagery in the figure is from © Google Earth 2020.
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Figure 13: Provincial statistics of S. alterniflora area identified by CM-SSM.

4 Discussion

4.1 The advantages of the OSPPF400

This study proposed a novel OSPPF composite method that enhanced the PPF by integrating GE imagery and object-based

classification. Previous studies have demonstrated that PPF improves the spectral separability of S. alterniflora by utilizing

dual-phase phenological information (Tian et al., 2020a; Li et al., 2024). However, PPF based solely on Sentinel-2 imagery

is limited in capturing spatial detail due to its 10 m resolution, despite providing rich phenological information. To overcome

this limitation, GE imagery was integrated to enhance spatial detail (Fig. 6), offering two key advantages. First, GE imagery405
mitigates the mixed-pixel problem. Patch-level statistics show that 100,455 patches are smaller than 100 m², accounting for

67.84 % of all patches (Fig. 9). These patches are often overlooked in Sentinel-2 classifications due to mixed-pixel problem,

yet they are critical indicators of early-stage invasion. In contrast, the sub-meter resolution of GE imagery allows clear

visualization of S. alterniflora texture and structure, facilitating the accurate delineation of boundaries, internal structure, and

small patches. Second, GE imagery provides a more robust foundation for object-based classification. The object-based410
classification method used in this study relies on OBIA for effective image segmentation, and the quality of segmentation

directly affects classification accuracy (Hao et al., 2021). Compared with Sentinel-2, GE imagery more accurately delineates

object boundaries and internal structure, enabling the construction of clearly defined and spatially consistent segments that

provide a superior basis for classification.

Moreover, the object-based classification applied in this study outperformed the pixel-based method in both accuracy and415
boundary delineation (Fig. 7). On the one hand, object-based classification reduces uncertainty in identifying S. alterniflora.
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The GE imagery contains complex spectral and texture information, which increases salt-and-pepper noise and reduces the

reliability of pixel-level classification. By aggregating spectrally, texturally, and spatially consistent pixels, object-based

classification reduces intra-class noise, improving both robustness and accuracy. On the other hand, the multi-scale

optimized segmentation enhanced boundary delineation. The coexistence of S. alterniflora with native vegetation such as420
mangroves and Phragmites australis causes spectral mixing at patch edges, which pixel-based methods struggle to resolve.

Although object-based methods improve boundary delineation, segmentation quality remains critical to classification

accuracy. Therefore, we proposed a multi-scale optimized segmentation strategy designed to address the spectral

heterogeneity at patch boundaries and spectral homogeneity within interiors, aiming to enhance the precision of boundary

extraction. Specifically, a coarse scale was applied to homogeneous interiors, while a finer scale was used for complex425
boundaries. This strategy improves boundary delineation and avoids over-segmentation in uniform areas, enhancing both

classification efficiency and accuracy.

4.2 The advantages of CM-SSM

This study produced the first Sub-meter S. alterniflora Map for Mainland China in 2020 (CM-SSM). Compared with the

latest 10 m product (CMSA), CM-SSM demonstrated superior performance in classification accuracy, spatial detail430
representation, and spatial distribution statistics. Specifically, CM-SSM achieved higher classification accuracy, with OA

and F1-score improved by 14.60 % and 0.24, respectively (Table 5). These advancements are primarily attributed to the

development of sub-meter phenological features for S. alterniflora and the adoption of an object-based classification strategy

(see Sect. 4.1).

CM-SSM also exhibited significant advantages in spatial detail extraction. Previous studies have indicated that S.435
alterniflora tends to exhibit a fragmented distribution pattern, where numerous small patches are often overlooked due to the

limitations of 10 m resolution imagery (Zhou et al., 2024). Additionally, the species is often associated with diverse

companion species and interspersed with narrow tidal creeks, which are difficult to distinguish using 10 m resolution due to

the mixed pixel problem (Li et al., 2024). By increasing the mapping resolution to 0.9 m, CM-SSM effectively alleviated the

impact of mixed pixels, enabling the accurate identification of small S. alterniflora patches, as well as their boundaries and440
internal structures (Fig. 8). This capability provides critical support for developing invasive species management strategies.

For example, areas with dense small patches typically present higher risks of spread, and prioritizing these regions for

control measures may help suppress expansion trends (Liu et al., 2016). Furthermore, CM-SSM's ability to delineate growth

boundaries between S. alterniflora and companion species offers valuable insights into its invasion processes and potential

threats to native species, such as mangroves (Chen and Shi, 2023). In addition, the accurate recognition of tidal creeks within445
S. alterniflora communities provides a data foundation for analyzing the relationship between creek morphology and spatial

expansion (Kearney and Fagherazzi, 2016; Sanderson et al., 2000).

In terms of spatial distribution statistics, CM-SSM demonstrated higher accuracy. As shown in Sect. 3.2.3, although CM-

SSM identified a significantly greater number of small S. alterniflora patches than CMSA, both products exhibited high
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consistency in detecting large S. alterniflora communities, resulting in a relatively small difference of only 1,365 ha in total450
area (Fig. 9). However, spatial overlay analysis revealed a substantial spatial discrepancy of up to 34,273 ha between the two

products, accounting for 57.73 % of the total CM-SSM area (Figs. 10 and 11). This discrepancy is primarily due to the

limited spatial resolution of CMSA, which introduces classification errors. On the one hand, mixed pixels result in

misclassification of other land types (e.g., creeks and open spaces) as S. alterniflora, leading to area overestimation. On the

other hand, the failure to detect highly fragmented small patches leads to area underestimation. These findings underscore455
the critical role of spatial resolution in accurately capturing the distribution of S. alterniflora and highlight the limitations of

relying solely on total area statistics, which may obscure substantial differences between products.

Accurate spatial distribution data of S. alterniflora are essential for the reliable quantification of its carbon storage (Xia et al.,

2021; Xu et al., 2022). In this study, Soil Organic Carbon (SOC) storage was estimated using both CM-SSM and a multi-

temporal 30 m dataset developed by Mao et al. (2019), based on the unified provincial-level SOC unit storage coefficient for460
S. alterniflora in 2020, as established by Zhang et al. (2024) through the integration of field measurements and spatial

interpolation (Table S6 in the Supplement). The results indicated that the total SOC storage estimated from CM-SSM

reached 3,767.69 Gg, which is 706.69 Gg higher than the estimate derived from the 30 m product, with particularly notable

differences observed in Shanghai, Zhejiang, and Shandong (Fig. 14). The primary reason for this discrepancy lies in the

resolution limitations of the 30 m product, which resulted in omission of small patches and misclassification at the edges,465
thereby reducing mapping accuracy. In contrast, CM-SSM provided a more accurate representation of the invasion pattern of

S. alterniflora, leading to more reliable SOC estimates. This result highlights the value of fine-scale mapping in improving

the accuracy of SOC storage estimation.
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Figure 14: Estimated SOC stock in the 0–1 m soil layer of S. alterniflora across coastal provinces of mainland China in 2020 based470
on SpProduct_30m and CM-SSM.

4.3 Limitations and prospects

Although this study proposed the OSPPF method and successfully produced the first Sub-meter S. alterniflora Map in

Mainland China for the year 2020 (CM-SSM), several limitations remain. The OSPPF method has three main limitations.

First, the automation of sample points generation requires further improvement. In this study, sample points were generated475
through visual interpretation based on field surveys and VHR imagery. However, this process is highly dependent on the

expertise of researchers and is time-consuming, particularly for large-scale mapping. Although the ASC-CKM method

proposed by Tian et al. (2025) leveraged the CascadeKMeans algorithm and the Mangrove Vegetation Index (MVI) for

automated sample generation and achieved success in sub-meter mangrove mapping across China, an efficient and widely

accepted classification index specific to S. alterniflora is currently lacking, which limits the direct transferability of this480
approach. Future research could focus on developing a highly discriminative spectral index tailored for S. alterniflora, with

potential to support automated sample generation.

Additionally, the reliance on high-quality GE imagery constrains the broader applicability of the method. The frequent cloud

cover of intertidal zones poses significant challenges to acquiring high-quality GE imagery at global scales or over long time

series for sub-meter mapping of S. alterniflora. To address this issue, super-resolution techniques, which reconstruct high-485
resolution details from low-resolution imagery, have shown promising potential (Chen et al., 2024).
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Third, the object-based classification incorporating multi-scale optimized segmentation still relies on existing large-scale S.

alterniflora products during implementation. When applied to global-scale or long-term mapping, the reliance on global

reference products presents a key limitation. To improve the transferability of the OSPPF method in regions lacking prior S.

alterniflora products, alternative approaches can be adopted, such as generating an initial S. alterniflora mask using490
vegetation indices (e.g., NDVI, EVI), or automatically identifying potential distribution areas based on tidal zones,

topography, and other environmental variables. In addition, future research may explore the application of deep learning

models to S. alterniflora mapping, potentially replacing the object-based approach (Li et al., 2024). It is worth noting that the

CM-SSM product developed in this study has the potential to serve as a valuable benchmark dataset for the training and

evaluation of deep learning models.495
The CM-SSM product has two limitations. First, temporal inconsistency among imagery sources may lead to classification

errors. Although a comparison with imagery from adjacent years confirmed that the spatiotemporal dynamics of S.

alterniflora were minor in most areas, and regions with temporal discrepancies accounted for only 2.20 % of the total area,

temporal inconsistencies in imagery may still introduce slight errors. To address this issue, the integration of multi-source

remote sensing data could be explored in future studies to mitigate the impact of temporal mismatches and further reduce500
classification errors. Second, manual visual interpretation introduces subjectivity, which may result in minor inaccuracies.

Although this study utilized VHR imagery for visual interpretation to optimize the mapping product, differences in S.

alterniflora texture, morphology, and spectral appearance across climate zones posed challenges for consistent manual

interpretation. Future research could explore semi-automated methods or interpretation strategies supported by deep learning

to reduce uncertainties arising from human intervention.505

5 Data availability

The 2020 Sub-meter S. alterniflora Map of Mainland China (CM-SSM) generated by this study is openly available at

https://doi.org/10.5281/zenodo.16296823 (Xu et al., 2025).

6 Conclusion

This study proposed a novel Object- and Sub-meter-enhanced Pixel-based Phenological Feature (OSPPF) composite method510
to generate the first 2020 Sub-meter S. alterniflora Map of Mainland China (CM-SSM). The OSPPF method integrates

multi-source remote sensing imagery and employs an object-based classification method with a multi-scale optimized

segmentation strategy, effectively addressing limitations of existing methods in delineating small patches, boundaries, and

internal details of S. alterniflora. Compared with the latest 10 m resolution S. alterniflora map (CMSA), the CM-SSM shows

significant improvements in classification accuracy, spatial detail, and spatial distribution statistics. Specifically, OA and F1515
score of CM-SSM are 14.60 % and 0.24 higher than those of CMSA, respectively. While the total area difference between
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the two products is only 2.30 %, spatial distribution discrepancies reach 57.73 %, and the number of detected patches in CM-

SSM is 17 times greater than in CMSA. The CM-SSM product and its underlying OSPPF method provide high-precision

baseline data for monitoring S. alterniflora, and offer a scalable framework for future sub-meter mapping at broader spatial

and temporal scales. These advancements hold substantial potential for supporting S. alterniflora management effectiveness520
assessments and blue carbon stock estimations.
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