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Yours faithfully,

Jinyan Tian, on behalf of all authors
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Capital Normal University, Beijing, China

Email: tjyremote@126.com



Referee#1

Overall comment:

The manuscript presents a significant and novel contribution by producing the

first sub-meter resolution map of Spartina alterniflora for mainland China. The

proposed OSPPF method effectively integrates multi-source data and object-based

analysis to address critical limitations of existing products. The study is

well-structured, the methodology is sound, and the dataset is highly valuable for

the community. However, several major and minor points require clarification and

improvement before the manuscript can be considered for publication.

Thank you for your positive evaluation and for the detailed, constructive feedback.

We greatly appreciate your insights, which have been invaluable in refining our

manuscript. Below, we provide a comprehensive response to each of your

comments.

Main comments:

1. The use of Google Earth imagery from 2019 and 2021 alongside 2020

Sentinel-2 data introduces a potential source of error. S. alterniflora dynamics

can be rapid. Please quantify the extent (e.g., percentage of area) where

non-2020 imagery was used and discuss the potential impact of this temporal

mismatch on classification accuracy and the final area estimate. A sensitivity

analysis in these areas would significantly strengthen the manuscript.

Response: In the data processing, we prioritized the use of 2020 Sentinel-2 and

Google Earth (GE) imagery. For a small number of areas where 2020 imagery

was missing or of low quality, GE imagery from 2019 or 2021 were used.

When selecting this temporally mismatched imagery, we compared the 2019

and 2021 imagery to not only choose the highest-quality imagery but also

assess the distribution of S. alterniflora across different years. The results

indicate that in the vast majority of areas, the spatial distribution of S.

alterniflora remained largely unchanged, suggesting that temporal dynamics

during this period had minimal impact on the mapping results. Furthermore,



statistical analysis shows that the S. alterniflora area in these temporally

mismatched regions accounts for only 2.20 % of the total study area; therefore,

their influence on classification accuracy and total area estimation is negligible.

In Section 4.3 of the revised manuscript, we have made the following revisions:

“First, temporal inconsistency among imagery sources may lead to

classification errors. Although a comparison with imagery from adjacent years

confirmed that the spatiotemporal dynamics of S. alterniflora were minor in

most areas, and regions with temporal discrepancies accounted for only 2.20 %

of the total area, temporal inconsistencies in imagery may still introduce slight

errors. To address this issue, the integration of multi-source remote sensing data

could be explored in future studies to mitigate the impact of temporal

mismatches and further reduce classification errors.”

2. The final manual refinement, while understandable for a first-of-its-kind map,

introduces subjectivity. Please describe the protocol followed for this manual

correction (e.g., number of interpreters, ruleset used, process for resolving

disagreements) to ensure consistency. Discussing the potential magnitude of

error or bias introduced by this step is crucial for assessing the dataset's

reliability.

Response: The manual refinement in this study was carried out by three

researchers with extensive field experience and expertise in visual

interpretation of remote sensing imagery. To minimize subjectivity, a clear

protocol was established: the interpretation was adopted when at least two of

the three interpreters agreed; in cases where none of the three were fully

confident, a joint discussion was conducted until a consensus was reached. This

procedure effectively standardized the decision-making process, reducing

individual bias and ensuring reliability of the manual corrections. In addition,

the accuracy of the initial classification results (ICM-SSM) was assessed, as

detailed in Section 3.2.1 of the manuscript:

“Table 5 presents the accuracy assessment of three products (CMSA,

ICM-SSM, and CM-SSM) based on validation samples (see Sect. 2.2.3).



Among them, CM-SSM achieved the best classification performance, with OA

and F1 scores of 96.76% and 0.95, respectively. ICM-SSM also performed well,

with an OA of 93.36% and an F1 score of 0.90, although slightly lower than

those of CM-SSM. This difference is mainly attributed to the manual

refinement, which improved boundary delineation and the identification of

small patches.”
Table 5 Classification accuracy assessment results of CMSA, ICM-SSM and
CM-SSM.

Product Class PA (%) UA (%) F1 OA (%)

CMSA
S. alterniflora 80.85 62.87 0.71 82.16

Non-S. alterniflora 82.64 92.23

ICM-SSM
S. alterniflora 93.68 86.47 0.90 93.36

Non-S. alterniflora 93.21 96.95

CM-SSM
S. alterniflora 97.58 92.84 0.95 96.76

Non-S. alterniflora 96.36 98.80

3. The method relies on existing products (CMSA) for defining the study area and

segmentation buffers. This limits its application to regions or time periods

where such prior maps are unavailable or inaccurate. Please discuss the

transferability of the OSPPF method to other regions without relying on

existing S. alterniflora products. Could the method be adapted to be more

automated and independent?

Response: In the revised manuscript, we have further discussed the

transferability of applying the OSPPF method to other regions without relying

on existing S. alterniflora products. We believe that the OSPPF method has

potential to be more automated and independent. The relevant discussion has

been added to Section 4.3 of the manuscript, as follows:

“Third, the object-based classification incorporating multi-scale optimized



segmentation still relies on existing large-scale S. alterniflora products during

implementation. When applied to global-scale or long-term mapping, the

reliance on global reference products presents a key limitation. To improve the

transferability of the OSPPF method in regions lacking prior S. alterniflora

products, alternative approaches can be adopted, such as generating an initial S.

alterniflora mask using vegetation indices (e.g., NDVI, EVI), or automatically

identifying potential distribution areas based on tidal zones, topography, and

other environmental variables.”

4. The authors rightly identify DL as a promising future direction and even note

that CM-SSM could serve as training data. Given that DL models (e.g., U-Net,

Transformers) are now state-of-the-art for many fine-scale land cover mapping

tasks, a discussion on why an object-based RF was chosen over a DL approach

is necessary. A direct comparison, even on a subset, would greatly strengthen

the methodological justification, or the limitations of not using DL should be

explicitly acknowledged.

Response: In our previous study, we applied improved DeepLabv3+ model to

produce a sub-meter mapping of S. alterniflora in the Beibu Gulf, Guangxi,

China. In that study, we discussed the limitations of applying deep learning at

the national scale, which are mainly reflected in the following two aspects:

1) Insufficient high-quality training samples: The superior performance of

deep learning models relies on large volumes of reliable training data for

pre-training and model optimization. Prior to generating the sub-meter S.

alterniflora map for mainland China in this study, obtaining such

high-quality samples required experienced researchers to manually interpret

imagery, a time-consuming and labor-intensive process that is difficult to

scale nationally. In contrast, the object-based RF classifier has lower

requirements and acquisition costs for training samples, making it more

suitable under the current data conditions.

2) Limited model generalization due to image quality differences: Owing

to weather conditions and satellite imaging variations, GE imagery exhibits



inconsistencies in spectral and radiometric quality across regions.

Consequently, deep learning models trained in one area often suffer from

reduced generalization when applied to other regions, leading to decreased

cross-regional classification accuracy. The object-based RF classifier used

in this study mitigates the impact of image discrepancies by aggregating

neighboring similar pixels, demonstrating greater robustness when handling

variations in image quality across different regions.

Therefore, in this study we chose the object-based RF classifier to ensure

more robust results at the national scale. We have revised Section 2.3.4 of

the manuscript to clarify this point as follows:

“Although deep learning has shown potential for sub-meter mapping of S.

alterniflora at the local scale, its reliance on high-quality training samples

and the limited generalization ability of models constrain its application at

the national scale (Zhou et al., 2024). In contrast, the object-based RF

classifier integrates spectral, textural, and spatial contextual features,

demonstrating higher stability and classification accuracy in identifying S.

alterniflora. Moreover, it outperforms the pixel-based RF method in

mapping S. alterniflora (Tian et al., 2020b; Yan et al., 2021). Therefore, we

used the object-based RF classifier in eCognition.”

Reference: Zhou, B., Xu, M., Tian, J., Huang, Y., Song, J., Zhu, L., Zhu, X., Qu,

X., Zhang, L., Li, X., and Gong, H.: Mapping the invasive Spartina alterniflora

in sub-meter level with improved phenological spectral features and deep

learning method, Int. J. Digital Earth, 17, 2434634,

doi:10.1080/17538947.2024.2434634, 2024.

5. The reported improvements in OA and F1-score are substantial. However,

please support these claims with a statistical test (e.g., McNemar's test) to

confirm that the difference in accuracy between CMSA and CM-SSM is

statistically significant and not due to chance.

Response: Following your suggestion, we conducted McNemar's test to

evaluate whether the accuracy improvement of CM-SSM over CMSA is



statistically significant. The test results indicate a statistically significant

difference (χ² = 820.22, p < 0.05). We have added these results to the revised

manuscript (Section 3.2.1):

“To further assess whether the accuracy improvement of CM-SSM over CMSA

is statistically significant, we applied McNemar's test based on validation

samples. The results indicated a statistically significant difference (χ² = 820.22,

p < 0.05), confirming the robustness of the improvements in OA and F1 scores

(McNemar, 1947).”

New reference: McNemar, Q.: Note on the sampling error of the difference

between correlated proportions or percentages, Psychometrika., 12(2), 153-157,

doi:10.1007/BF02295996, 1947.

6. The SOC comparison is a compelling application but is briefly described.

Please provide more detail on the methodology: How was the "unified

provincial-level SOC unit storage coefficient" derived? Was it based on field

measurements? A table of these coefficients and a reference to the method

(Zhang et al., 2024) should be included in the main text or supplement. This is

critical for readers to assess the validity of the 706.69 Gg difference.

Response: Zhang et al. (2024) derived the provincial-level SOC unit storage

coefficients for China from 1990 to 2020 by integrating field measurements and

applying spatial interpolation. In this study, we directly adopted the 2020

provincial-level SOC unit storage coefficients reported by Zhang et al. (2024).

In the revised manuscript, Section 4.2 has been updated to describe the sources

of the SOC unit storage coefficients, and a table listing these coefficients has

been added to the Supplementary Material. The revisions are summarized as

follows:

“In this study, Soil Organic Carbon (SOC) storage was estimated using both

CM-SSM and a multi-temporal 30 m dataset developed by Mao et al. (2019),

based on the unified provincial-level SOC unit storage coefficient for S.

alterniflora in 2020, as established by Zhang et al. (2024) through the

integration of field measurements and spatial interpolation (Table S6 in the



Supplement).”

Table S6 Mean SOC stock per unit area of S. alterniflora across China in 2020

(mean ± SE, Standard Error).

Province SOC stock (Mg ha-1)

Hebei 59.2±2.3

Tianjin 46.3±1.3

Shandong 44.0±1.4

Jiangsu 56.9±5.5

Shanghai 80.4±2.9

Zhejiang 60.6±2.3

Fujian 50.1±2.7

Guangdong 72.5±8.1

Guangxi 33.3±1.5

Reference: Zhang, J., Mao, D., Liu, J., Chen, Y., Kirwan, M., Sanders, C., Zhou,

J., Lu, Z., Qin, G., Huang, X., Li, H., Yan, H., Jiao, N., Su, J., and Wang, F.:

Spartina alterniflora invasion benefits blue carbon sequestration in China, Sci.

Bull., 69, 1991–2000, doi:10.1016/j.scib.2024.04.049, 2024.

7. The Random Forest classifier provides the valuable ability to rank feature

importance. An analysis showing which features (e.g., Sentinel-2 phenological

bands, GE texture features, RGB indices) were most important for the

classification would provide deeper insight into the ecology of S. alterniflora

and validate the design choices of the OSPPF method.

Response: We have added a feature importance analysis using the Random

Forest classifier, which is described in Section 3.1 of the revised manuscript.

The updated content is as follows:

“To assess the contribution of GE imagery to classification performance, S.

alterniflora mapping was conducted using two methods in the Dandou Sea: (1)

Object-based PPF (OPPF) classification using resampled Sentinel-2 imagery

alone, and (2) OSPPF classification integrating both Sentinel-2 and GE imagery.



As shown in Fig. 6(a), classification based solely on Sentinel-2 imagery was

able to capture the general outline of S. alterniflora communities but failed to

effectively delineate open spaces within the patches. In addition, Fig. 6(b)

demonstrates that small, fragmented S. alterniflora patches were poorly

detected, and the boundaries between S. alterniflora and mangroves were

inaccurately represented. In contrast, the CM-SSM generated using fused GE

imagery exhibited superior spatial detail, successfully identifying small patches

and internal details, as well as accurately delineating boundaries between S.

alterniflora and co-occurring species. Furthermore, we conducted a feature

importance analysis using the RF classifier (Zhang et al., 2022b). As shown in

Fig. 5, spectral and texture features derived from GE imagery consistently

contributed highly to the classification of S. alterniflora. This can be primarily

attributed to the rich spatial texture information provided by GE imagery,

which effectively complements the phenological features and thereby enhances

classification accuracy.”

Figure 5: The importance of multi-sourced features derived from the RF

classifier.

New reference: Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J.,

and Liu, W.: GWL_FCS30: global 30 m wetland map with fine classification

system using multi-sourced and time-series remote sensing imagery in 2020,



Earth Syst. Sci. Data, 1-31,doi:10.5194/essd-15-265-2023, 2022b.

8. The manuscript mentions masking water pixels (SCL=6) to reduce tidal effects.

However, tidal state can significantly influence the appearance and detectability

of S. alterniflora. Please clarify if the Sentinel-2 compositing process

considered tidal height information to select images from a consistent low-tide

period, or discuss the potential residual impact of tidal variability on the

phenological feature compositing.

Response: In the Sentinel-2 compositing process, we carefully considered the

influence of tidal variability on the detection of S. alterniflora. Specifically,

during image selection, we prioritized Sentinel-2 observations acquired under

consistent low-tide conditions to exclude the interference of high-tide imagery

in subsequent phenological feature compositing. Furthermore, we employed the

pixel-based compositing approach proposed by Tian et al. (2020a). In this

method, water pixels (SCL = 6) and cloudy pixels were masked to ensure that

only valid, high-quality pixels were used within each phenological period. This

strategy not only effectively mitigated the adverse effects of cloudy and rainy

conditions in intertidal zones but also substantially reduced the residual

influence of tidal variability on the phenological composites, ensuring that the

resulting imagery best represents low-tide and cloud-free conditions.

Reference: Tian, J., Wang, L., Yin, D., Li, X., Diao, C., Gong, H., Shi, C.,

Menenti, M., Ge, Y., Nie, S., Ou, Y., Song, X., and Liu, X.: Development of

spectral-phenological features for deep learning to understand Spartina

alterniflora invasion, Remote Sens. Environ., 242, 111745,

doi:10.1016/j.rse.2020.111745, 2020a.

9. The text describing the workflow (Figure 2) could be more precise. Please

explicitly state the final number of bands in the PPF, SPPF, and OSPPF feature

sets. A clear listing of all input features for the RF model would improve

reproducibility.

Response: To address this point, we have added clarifications in the manuscript



as follows:

1) In Section 2.3.1, we had already described that the PPF feature set was

constructed from the original spectral bands and vegetation indices of two

phenological periods:

“Based on the two identified phenological periods, the PPF was constructed

by integrating vegetation indices and original spectral bands. Specifically,

five indices were selected to characterize the phenological periods (Table 3):

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation

Index (EVI), Plant Senescence Reflectance Index (PSRI), Normalized

Difference Water Index (NDWI), and Land Surface Water Index (LSWI).

NDVI, EVI, and NDWI were used during the green period, while PSRI and

LSWI characterized the senescence period.”

“In addition, five original bands of Sentinel-2 were selected for both

phenological periods: B2 (blue), B3 (green), B4 (red), B8 (NIR) and B11

(SWIR 1).”

However, the final number of bands was not explicitly stated in the original

text. We have now added the following clarification in Section 2.3.1:

“Finally, the vegetation indices and selected spectral bands for both

phenological periods (a total of 15 bands) were integrated to construct the

PPF composite images.”

2) In Section 2.3.2, we had already specified that the SPPF feature set consists

of 24 bands, including the 15 upsampled PPF bands, two spectral indices,

four texture features, and the RGB bands extracted from GE imagery. The

corresponding description is as follows:

“First, spectral and texture features were extracted from GE imagery. For

spectral features, the Normalized Green-Blue Difference Index (NGBDI)

and the Normalized Green-Red Difference Index (NGRDI), derived from

the RGB bands (Table 4), have proven effective for wetland vegetation

classification (Zheng et al., 2022). Texture features were computed from the

red band using the GLCM method (Haralick et al., 2007), extracting four



second-order statistics commonly used in vegetation classification: contrast,

entropy, correlation, and homogeneity (Wang et al., 2015b).”

“Second, enabling effective integration of multi-source data required

resampling to a common resolution and geometric registration. The

Sentinel-2 spectral bands and associated vegetation index images (10–20 m)

were resampled using cubic convolution to match the 0.9 m GE imagery.

Then, GE imagery was used as the reference to selecting evenly distributed

and clearly identifiable control points from both image sources (e.g., tidal

creek intersections, aquaculture pond corners, and vegetation patch

boundaries). These points were used to construct a polynomial

transformation model for registering the Sentinel-2 imagery. Finally,

phenological features derived from Sentinel-2 were integrated with the

spectral, texture, and RGB features extracted from GE imagery to construct

the SPPF composite images consisting of 24 bands.”

3) The OSPPF feature set also consists of 24 bands, but unlike the SPPF, these

are object-based features. This was described in the manuscript as follows:

“Considering the complex boundaries and homogeneous interiors of S.

alterniflora patches, accurately delineating their edges remains challenging

when using pixel-based features. Therefore, we developed an object-based

feature extraction method that incorporated a multi-scale optimized

segmentation strategy, enabling the effective integration of spatial context

and pixel neighborhood relationships for improved boundary detection.”

“Based on the determined scale parameters, object-based segmentation was

performed on the SPPF composite imagery in eCognition, producing the

OSPPF for subsequent classification.”

10. Figures 8, 9, and 10 are critical but lack clarity. The y-axis labels in Fig. 8 are

cut off. Fig. 9's Venn diagram is simple but effective; ensure the values are

clearly visible.

Response: In response to comment 7, we added Figure 5 to illustrate the

importance of different classification features. Accordingly, Figures 8, 9, and



10 in the original manuscript have been renumbered as Figures 9, 10, and 11 in

the revised version.

1) Regarding Fig. 9, the y-axis labels appear truncated because the two

subplots share the same axis. Specifically, both panels summarize statistics

of patch area and patch number within identical intervals. This has been

clarified in Section 3.2.3 of the manuscript: “To further compare patch size

and area differences between the two products, statistics were summarized

across six area classes defined by the minimum mapping unit of CMSA (i.e.,

one 10 m pixel). These intervals included: 0.01 ha (1 pixel), 0.1 ha (10

pixels), 1 ha (100 pixels), 100 ha (10,000 pixels), 1,000 ha (100,000 pixels),

and greater than 1,000 ha (Fig. 9).”

2) In addition, Figures 9, 10, and 11 have been replaced with higher-resolution

versions, and the values in the Venn diagram of Fig. 10 are now clearly

visible. The revised figures are shown below.

Figure 9: Zonal statistics of the number and area of S. alterniflora patches identified

by CM-SSM and CMSA.



Figure 10: Spatial distribution difference statistics of S. alterniflora identified by

CM-SSM and CMSA.

Figure 11: Using CM-SSM as the reference, the commission and omission of S.

alterniflora area by province were calculated for CMSA.

11. The captions for Figures 5, 6, and 7 should explicitly state that the OSPPF

result is the final, manually refined CM-SSM product for clarity.

Response: In response to comment 7, we added Figure 5 to illustrate the

importance of different classification features. Accordingly, Figures 5, 6, and 7

in the original manuscript have been renumbered as Figures 6, 7, and 8 in the



revised version.

1) We have revised the captions of Figures 6 and 7 as suggested. The updated

captions are as follows:

“Figure 6: Comparison of classification results using OPPF and OSPPF

methods in Dandou Sea. The result generated by the OSPPF method is the

final, manually refined CM-SSM product. The VHR imagery in the figure

is from © Google Earth 2020.”

“Figure 7: Comparison of classification results using SPPF and OSPPF

methods in Dandou Sea. The result generated by the OSPPF method is the

final, manually refined CM-SSM product. The VHR imagery in the figure

is from © Google Earth 2020.”

2) In addition, Section 2.3.4 of the manuscript already states: “To enhance

accuracy, experienced researchers visually interpreted GE imagery and

corrected the ICM-SSM. Consequently, the final Sub-meter S. alterniflora

Map of Mainland China (CM-SSM) was generated.” This clearly indicates

that CM-SSM is the final product after manual refinement. The original

caption of Fig. 8 is: “Figure 8: Spatial detail comparison between CM-SSM

and CMSA in typical cases. The VHR imagery in the figure is from ©

Google Earth 2020.” Since Fig. 8 directly compares CM-SSM with CMSA,

we believe no additional modification to the caption is necessary.

12. The term "sub-meter" is used throughout, but the actual resolution of the final

CM-SSM product should be explicitly stated early in the abstract and method

(it is 0.9m, as mentioned later). Briefly justify why this specific resolution from

GE was chosen.

Response: According to your suggestion, we have made the following

revisions:

1) In the revised abstract, we have explicitly stated that the final CM-SSM

product has a spatial resolution of 0.9 m, as follows:

“To this end, this study produced the first 2020 national-scale Sub-meter

(0.9 m) S. alterniflora Map of Mainland China (CM-SSM), using an



object- and sub-meter-enhanced pixel-based phenological feature

composite method.”

In Section 2.3, we further clarified that the adopted GE imagery has a

spatial resolution of 0.9 m, as shown below:

“This study proposed an Object- and Sub-meter-enhanced Pixel-based

Phenological Feature (OSPPF) composite method for mapping S.

alterniflora, including four steps (Fig. 2). First, a Pixel-based Phenological

Feature (PPF) was constructed using Sentinel-2 imagery (10 m). Second,

spatial and texture features extracted from GE imagery (0.9 m) were

integrated to enhance the PPF, resulting in the Sub-meter-enhanced PPF

(SPPF). Third, a multi-scale object-based segmentation strategy was used

to extract the OSPPF. Finally, a RF classifier was applied to generate the

initial result, which was then manually refined to generate the final S.

alterniflora distribution map.”

2) Our choice of the 0.9 m resolution was based on two main considerations.

First, the 0.9 m resolution is sufficient to effectively capture the small

patches and boundary details of S. alterniflora, meeting the sub-meter

spatial detail required for this study. Although using imagery with even

higher resolution could provide finer spatial details, it would substantially

increase data redundancy as well as computational and storage costs.

Second, our previous study has produced a national-scale mangrove

mapping product at a spatial resolution of 0.9 m (Tian et al., 2025). To

ensure spatial consistency in the construction of a coastal wetland

vegetation dataset and to facilitate subsequent research based on this

dataset, the same resolution of 0.9 m was adopted in this study for the

mapping of S. alterniflora.

Reference: Tian, J., Wang, L., Diao, C., Zhang, Y., Jia, M., Zhu, L., Xu, M., Li,

X., and Gong, H.: National scale sub-meter mangrove mapping using an



augmented border training sample method, ISPRS J. Photogramm. Remote

Sens., 220, 156–171, doi:10.1016/j.isprsjprs.2024.12.009, 2025.



Referee#2

Overall comment:

The manuscript presents an OSPPF method that effectively integrates

multi-source data to generate a sub-meter resolution distribution map of Spartina

alterniflora. The work is thorough, the methodology is reliable and rigorous, and

the resulting dataset holds significant value for the scientific community. However,

several issues require clarification or improvement:

Thank you for your positive evaluation and for the detailed, constructive feedback.

We greatly appreciate your insights, which have been invaluable in refining our

manuscript. Below, we provide a comprehensive response to each of your

comments.

Main comments:

1. The authors determine phenological transitions based on NDVI and propose

thresholds of 0.3 and 0.5. However, in Figure 3, the Y-axis lacks tick marks

corresponding to these threshold values. The authors are advised to add tick

marks or include horizontal reference lines to improve readability.

Response: In Figure 3, we have added horizontal reference lines at NDVI

values of 0.3 and 0.5 to indicate the thresholds. The revised Figure 3 is shown

below.



Figure 3: NDVI time series analysis of the S. alterniflora in JSCZ. Point

density is represented using hexagonal binning, with color intensity indicating

the concentration of data points.

2. How were the thresholds of NDVI < 0.3 for the senescence period and NDVI >

0.5 for the green period determined? Were they derived from statistical

distributions, field observations, or a specific phenological model? Clarification

on the rationale behind these thresholds is needed.

Response: Tian et al. (2020a) constructed an annual NDVI time series for S.

alterniflora in the Beibu Gulf and identified two key phenological periods.

Before day 132 of the year, NDVI values were consistently below 0.3,

representing the senescence period, while during days 164–260, NDVI values

were higher than 0.4, corresponding to the green period. Similarly, this study

constructed an NDVI-based phenological curve for S. alterniflora along the

Jiangsu Coastal Zone (JSCZ), showing a consistent temporal pattern with that

reported by Tian et al. (2020a) (Fig. 3). To determine NDVI thresholds suitable

for this study area, we plotted the NDVI frequency distribution histogram and its

first derivative curve for S. alterniflora in the JSCZ. Based on the statistical



distribution characteristics and previous research experience, thresholds of 0.3

and 0.5 were selected (Fig. S1). The rationale is as follows:

1) Senescence period threshold (NDVI < 0.3): In the NDVI range of 0.28–0.3,

the first derivative declines rapidly to its lowest value, indicating a

transition in phenological characteristics. If the threshold were set higher

than 0.3, transitional pixels would be included, introducing analytical

uncertainty. Thus, NDVI < 0.3 was defined as the senescence period

threshold to ensure phenological representativeness of the selected pixels.

2) Green period threshold (NDVI > 0.5): In the NDVI range of 0.5–0.52, the

first derivative increases sharply, indicating a rapid rise in the number of

pixels with NDVI values above 0.5. These pixels correspond to dense and

healthy S. alterniflora stands. Therefore, NDVI > 0.5 was defined as the

green period threshold to represent the vigorous growth stage.

We have added an explanation of the basis for threshold selection in Section

2.3.1 of the revised manuscript, as shown below:

“As shown in Fig. 3, the NDVI time series of JSCZ exhibited a phenological

pattern consistent with that reported by Tian et al. (2020a). To determine the two

key phenological periods of S. alterniflora in the JSCZ, the annual NDVI

frequency distribution histogram and its first derivative curve were generated

based on 175 pure S. alterniflora pixels (Fig. S1 in the Supplement). As shown in

Fig. S1, the NDVI values exhibited a marked decline around 0.3 and a sharp

increase around 0.5, corresponding to the transitions from the senescence to the

transitional period and from the transitional to the green period, respectively.

Therefore, NDVI values below 0.3 during DoY 1–125 indicated the senescence

period, whereas values above 0.5 during DoY 190–325 corresponded to the green

period.”



Figure 3: NDVI time series analysis of the S. alterniflora in JSCZ. Point

density is represented using hexagonal binning, with color intensity indicating

the concentration of data points.

Figure S1: NDVI frequency distribution and first derivative curve for

determining key phenological thresholds of S. alterniflora along the Jiangsu

Coastal Zone.



Reference: Tian, J., Wang, L., Yin, D., Li, X., Diao, C., Gong, H., Shi, C.,

Menenti, M., Ge, Y., Nie, S., Ou, Y., Song, X., and Liu, X.: Development of

spectral-phenological features for deep learning to understand Spartina

alterniflora invasion, Remote Sens. Environ., 242, 111745,

doi:10.1016/j.rse.2020.111745, 2020a.

3. Table 5 shows that CM-SSM achieves significant improvements over CMSA in

terms of F1 score and overall accuracy (OA). However, the current evaluation

of classification accuracy relies on a limited set of metrics. It is recommended

that the authors construct confusion matrices to compare the composition of

error types (e.g., omission and commission errors) between the two methods,

thereby providing deeper insight into the specific aspects in which CM-SSM

outperforms CMSA.

Response: Following your suggestion, we have added the confusion matrices

of CM-SSM and CMSA in Section 3.2.1 (see Table 6) and provided further

explanations. The newly added content in the manuscript is as follows:

“The superior performance of CM-SSM is mainly due to its reduction in both

omission and commission errors, which contributed to the higher OA and F1

scores, as shown in Table 6.”

Table 6 Confusion matrices of CM-SSM and CMSA based on validation samples.

Product Reference class
Predicted class

Total
S. alterniflora Non-S. alterniflora

CMSA
S. alterniflora 1993 1177 3170

Non-S. alterniflora 472 5603 6075

CM-SSM
S. alterniflora 2943 227 3170

Non-S. alterniflora 73 6002 6075

4. Given that the study area spans a considerable latitudinal range, there may be

substantial heterogeneity in phenological characteristics across regions.



Consequently, spatial variability in classification performance should be

considered. Currently, the evaluation appears to rely solely on CM-SSM as a

reference for calculating omission and commission errors for CMSA. The

authors are encouraged to establish a validation dataset spanning multiple

latitudinal zones and use it to comparatively assess the performance of

CM-SSM and CMSA, demonstrating whether CM-SSM exhibits

generalizability across diverse geographical regions.

Response: We conducted an additional accuracy assessment to examine the

spatial variability of classification performance across different latitudinal

regions. Specifically, we evaluated the accuracy of CMSA and CM-SSM using

validation samples from five subregions. The corresponding results are

presented in the Supplementary Material (Tables S1–S5), and the revised

manuscript (Section 3.2.1) has been updated accordingly. The updated content

is as follows:

“Given the wide latitudinal span of the study area, the spatial variability in

classification performance was further examined by evaluating CMSA and

CM-SSM across five subregions using validation samples. The results show

that CM-SSM consistently achieved superior performance, with OA exceeding

95.00% and F1 scores above 0.90 in all subregions (Tables S1–S5 in the

Supplement).”

Table S1 Classification accuracy assessment results of CMSA and CM-SSM in the

Northern Coastal Zone.

Product Class PA (%) UA (%) F1 OA (%)

CMSA
S. alterniflora 84.00 72.41 0.78 87.63

Non-S. alterniflora 88.89 94.12

CM-SSM
S. alterniflora 96.30 89.66 0.93 95.88

Non-S. alterniflora 95.71 98.53



Table S2 Classification accuracy assessment results of CMSA and CM-SSM in the

Yellow River Delta Coastal Zone.

Product Class PA (%) UA (%) F1 OA (%)

CMSA
S. alterniflora 86.43 72.89 0.79 86.83

Non-S. alterniflora 86.99 94.06

CM-SSM
S. alterniflora 98.11 93.98 0.96 97.33

Non-S. alterniflora 96.94 99.06

Table S3 Classification accuracy assessment results of CMSA and CM-SSM in the

Jiangsu Coastal Zone.

Product Class PA (%) UA (%) F1 OA (%)

CMSA
S. alterniflora 64.67 59.33 0.62 77.45

Non-S. alterniflora 82.50 85.54

CM-SSM
S. alterniflora 93.77 92.05 0.93 95.66

Non-S. alterniflora 96.48 97.27

Table S4 Classification accuracy assessment results of CMSA and CM-SSM in the

Yangtze River Estuary Coastal Zone.

Product Class PA (%) UA (%) F1 OA (%)

CMSA
S. alterniflora 83.33 8.40 0.15 72.11

Non-S. alterniflora 71.76 99.28

CM-SSM
S. alterniflora 99.02 84.87 0.91 95.23

Non-S. alterniflora 93.92 99.64



Table S5 Classification accuracy assessment results of CMSA and CM-SSM in the

Southern Coastal Zone.

Product Class PA (%) UA (%) F1 OA (%)

CMSA
S. alterniflora 80.47 55.56 0.66 79.66

Non-S. alterniflora 79.41 92.71

CM-SSM
S. alterniflora 97.99 92.76 0.95 96.79

Non-S. alterniflora 96.20 98.97

5. While the authors employ a variety of features for classification, they do not

discuss the relative contribution of each feature to classification performance. It

is recommended to analyze and report feature importance using the built-in

measures from the Random Forest classifier. Such an analysis would enhance

understanding of the key factors driving Spartina alterniflora identification and

provide valuable insights for future method development.

Response: We have added a feature importance analysis using the Random

Forest classifier, which is described in Section 3.1 of the revised manuscript.

The updated content is as follows:

“To assess the contribution of GE imagery to classification performance, S.

alterniflora mapping was conducted using two methods in the Dandou Sea: (1)

Object-based PPF (OPPF) classification using resampled Sentinel-2 imagery

alone, and (2) OSPPF classification integrating both Sentinel-2 and GE imagery.

As shown in Fig. 6(a), classification based solely on Sentinel-2 imagery was

able to capture the general outline of S. alterniflora communities but failed to

effectively delineate open spaces within the patches. In addition, Fig. 6(b)

demonstrates that small, fragmented S. alterniflora patches were poorly

detected, and the boundaries between S. alterniflora and mangroves were

inaccurately represented. In contrast, the CM-SSM generated using fused GE

imagery exhibited superior spatial detail, successfully identifying small patches

and internal details, as well as accurately delineating boundaries between S.



alterniflora and co-occurring species. Furthermore, we conducted a feature

importance analysis using the RF classifier (Zhang et al., 2022b). As shown in

Fig. 5, spectral and texture features derived from GE imagery consistently

contributed highly to the classification of S. alterniflora. This can be primarily

attributed to the rich spatial texture information provided by GE imagery,

which effectively complements the phenological features and thereby enhances

classification accuracy.”

Figure 5: The importance of multi-sourced features derived from the RF

classifier.


