Dear Editor and Reviewers:

On behalf of my co-authors, we sincerely appreciate the opportunity to revise our
manuscript entitled “National-Scale Sub-meter Mapping of Spartina alterniflora
in Mainland China 2020 (Manuscript Number: essd-2025-436). We are grateful
for the thoughtful and constructive comments provided, which have significantly

strengthened the scientific rigor, clarity, and overall quality of our work.

In response, we have carefully revised the manuscript, with all changes
highlighted for clarity. Additionally, we provide a point-by-point response to all

reviewer comments, addressing all concerns in detail.

Thank you very much for your thoughtful consideration.

Yours faithfully,

Jinyan Tian, on behalf of all authors
Associate Professor, College of Resource Environment and Tourism
Capital Normal University, Beijing, China

Email: tjyremote@126.com



Referee#1

Overall comment:
The manuscript presents a significant and novel contribution by producing the
first sub-meter resolution map of Spartina alterniflora for mainland China. The
proposed OSPPF method effectively integrates multi-source data and object-based
analysis to address critical limitations of existing products. The study is
well-structured, the methodology is sound, and the dataset is highly valuable for
the community. However, several major and minor points require clarification and
improvement before the manuscript can be considered for publication.
Thank you for your positive evaluation and for the detailed, constructive feedback.
We greatly appreciate your insights, which have been invaluable in refining our
manuscript. Below, we provide a comprehensive response to each of your
comments.
Main comments:
The use of Google Earth imagery from 2019 and 2021 alongside 2020
Sentinel-2 data introduces a potential source of error. S. alterniflora dynamics
can be rapid. Please quantify the extent (e.g., percentage of area) where
non-2020 imagery was used and discuss the potential impact of this temporal
mismatch on classification accuracy and the final area estimate. A sensitivity
analysis in these areas would significantly strengthen the manuscript.
Response: In the data processing, we prioritized the use of 2020 Sentinel-2 and
Google Earth (GE) imagery. For a small number of areas where 2020 imagery
was missing or of low quality, GE imagery from 2019 or 2021 were used.
When selecting this temporally mismatched imagery, we compared the 2019
and 2021 imagery to not only choose the highest-quality imagery but also
assess the distribution of S. alterniflora across different years. The results
indicate that in the vast majority of areas, the spatial distribution of S.
alterniflora remained largely unchanged, suggesting that temporal dynamics

during this period had minimal impact on the mapping results. Furthermore,



statistical analysis shows that the S. alterniflora area in these temporally
mismatched regions accounts for only 2.20 % of the total study area; therefore,
their influence on classification accuracy and total area estimation is negligible.
In Section 4.3 of the revised manuscript, we have made the following revisions:
“First, temporal inconsistency among imagery sources may lead to
classification errors. Although a comparison with imagery from adjacent years
confirmed that the spatiotemporal dynamics of S. alterniflora were minor in
most areas, and regions with temporal discrepancies accounted for only 2.20 %
of the total area, temporal inconsistencies in imagery may still introduce slight
errors. To address this issue, the integration of multi-source remote sensing data
could be explored in future studies to mitigate the impact of temporal
mismatches and further reduce classification errors.”

The final manual refinement, while understandable for a first-of-its-kind map,
introduces subjectivity. Please describe the protocol followed for this manual
correction (e.g., number of interpreters, ruleset used, process for resolving
disagreements) to ensure consistency. Discussing the potential magnitude of
error or bias introduced by this step is crucial for assessing the dataset's
reliability.

Response: The manual refinement in this study was carried out by three
researchers with extensive field experience and expertise in visual
interpretation of remote sensing imagery. To minimize subjectivity, a clear
protocol was established: the interpretation was adopted when at least two of
the three interpreters agreed; in cases where none of the three were fully
confident, a joint discussion was conducted until a consensus was reached. This
procedure effectively standardized the decision-making process, reducing
individual bias and ensuring reliability of the manual corrections. In addition,
the accuracy of the initial classification results (ICM-SSM) was assessed, as
detailed in Section 3.2.1 of the manuscript:

“Table 5 presents the accuracy assessment of three products (CMSA,

ICM-SSM, and CM-SSM) based on validation samples (see Sect. 2.2.3).



Among them, CM-SSM achieved the best classification performance, with OA
and F1 scores of 96.76% and 0.95, respectively. ICM-SSM also performed well,
with an OA of 93.36% and an F1 score of 0.90, although slightly lower than
those of CM-SSM. This difference is mainly attributed to the manual
refinement, which improved boundary delineation and the identification of

small patches.”

Table 5 Classification accuracy assessment results of CMSA, ICM-SSM and
CM-SSM.

Product Class PA (%) UA (%) F1 OA (%)
S. alterniflora 80.85 62.87 0.71 82.16
CMSA
Non-S. alterniflora 82.64 92.23
S. alterniflora 93.68 86.47 0.90 93.36
ICM-SSM
Non-S. alterniflora 93.21 96.95
S. alterniflora 97.58 92.84 0.95 96.76
CM-SSM

Non-S. alterniflora 96.36 98.80

3. The method relies on existing products (CMSA) for defining the study area and

segmentation buffers. This limits its application to regions or time periods
where such prior maps are unavailable or inaccurate. Please discuss the
transferability of the OSPPF method to other regions without relying on
existing S. alterniflora products. Could the method be adapted to be more
automated and independent?
Response: In the revised manuscript, we have further discussed the
transferability of applying the OSPPF method to other regions without relying
on existing S. alterniflora products. We believe that the OSPPF method has
potential to be more automated and independent. The relevant discussion has
been added to Section 4.3 of the manuscript, as follows:

“Third, the object-based classification incorporating multi-scale optimized



segmentation still relies on existing large-scale S. alterniflora products during

implementation. When applied to global-scale or long-term mapping, the

reliance on global reference products presents a key limitation. To improve the
transferability of the OSPPF method in regions lacking prior S. alterniflora

products, alternative approaches can be adopted, such as generating an initial S.

alterniflora mask using vegetation indices (e.g., NDVI, EVI), or automatically

identifying potential distribution areas based on tidal zones, topography, and
other environmental variables.”

The authors rightly identify DL as a promising future direction and even note

that CM-SSM could serve as training data. Given that DL models (e.g., U-Net,

Transformers) are now state-of-the-art for many fine-scale land cover mapping

tasks, a discussion on why an object-based RF was chosen over a DL approach

is necessary. A direct comparison, even on a subset, would greatly strengthen
the methodological justification, or the limitations of not using DL should be
explicitly acknowledged.

Response: In our previous study, we applied improved DeepLabv3+ model to

produce a sub-meter mapping of S. alterniflora in the Beibu Gulf, Guangxi,

China. In that study, we discussed the limitations of applying deep learning at

the national scale, which are mainly reflected in the following two aspects:

1) Insufficient high-quality training samples: The superior performance of
deep learning models relies on large volumes of reliable training data for
pre-training and model optimization. Prior to generating the sub-meter S.
alterniflora map for mainland China in this study, obtaining such
high-quality samples required experienced researchers to manually interpret
imagery, a time-consuming and labor-intensive process that is difficult to
scale nationally. In contrast, the object-based RF classifier has lower
requirements and acquisition costs for training samples, making it more
suitable under the current data conditions.

2) Limited model generalization due to image quality differences: Owing

to weather conditions and satellite imaging variations, GE imagery exhibits



inconsistencies in spectral and radiometric quality across regions.
Consequently, deep learning models trained in one area often suffer from
reduced generalization when applied to other regions, leading to decreased
cross-regional classification accuracy. The object-based RF classifier used
in this study mitigates the impact of image discrepancies by aggregating
neighboring similar pixels, demonstrating greater robustness when handling
variations in image quality across different regions.

Therefore, in this study we chose the object-based RF classifier to ensure
more robust results at the national scale. We have revised Section 2.3.4 of
the manuscript to clarify this point as follows:

“Although deep learning has shown potential for sub-meter mapping of S.
alterniflora at the local scale, its reliance on high-quality training samples
and the limited generalization ability of models constrain its application at
the national scale (Zhou et al., 2024). In contrast, the object-based RF
classifier integrates spectral, textural, and spatial contextual features,
demonstrating higher stability and classification accuracy in identifying S.
alterniflora. Moreover, it outperforms the pixel-based RF method in
mapping S. alterniflora (Tian et al., 2020b; Yan et al., 2021). Therefore, we

used the object-based RF classifier in eCognition.”

The reported improvements in OA and Fl-score are substantial. However,
please support these claims with a statistical test (e.g., McNemar's test) to
confirm that the difference in accuracy between CMSA and CM-SSM is
statistically significant and not due to chance.

Response: Following your suggestion, we conducted McNemar's test to

evaluate whether the accuracy improvement of CM-SSM over CMSA is



statistically significant. The test results indicate a statistically significant
difference (y*> = 820.22, p < 0.05). We have added these results to the revised
manuscript (Section 3.2.1):

“To further assess whether the accuracy improvement of CM-SSM over CMSA
is statistically significant, we applied McNemar's test based on validation
samples. The results indicated a statistically significant difference (y*> = 820.22,
p < 0.05), confirming the robustness of the improvements in OA and F1 scores

(McNemar, 1947).”

The SOC comparison is a compelling application but is briefly described.
Please provide more detail on the methodology: How was the "unified
provincial-level SOC unit storage coefficient" derived? Was it based on field
measurements? A table of these coefficients and a reference to the method
(Zhang et al., 2024) should be included in the main text or supplement. This is
critical for readers to assess the validity of the 706.69 Gg difference.

Response: Zhang et al. (2024) derived the provincial-level SOC unit storage
coefficients for China from 1990 to 2020 by integrating field measurements and
applying spatial interpolation. In this study, we directly adopted the 2020
provincial-level SOC unit storage coefficients reported by Zhang et al. (2024).
In the revised manuscript, Section 4.2 has been updated to describe the sources
of the SOC unit storage coefficients, and a table listing these coefficients has
been added to the Supplementary Material. The revisions are summarized as
follows:

“In this study, Soil Organic Carbon (SOC) storage was estimated using both
CM-SSM and a multi-temporal 30 m dataset developed by Mao et al. (2019),
based on the unified provincial-level SOC unit storage coefficient for S.
alterniflora in 2020, as established by Zhang et al. (2024) through the

integration of field measurements and spatial interpolation (Table S6 in the



Supplement).”
Table S6 Mean SOC stock per unit area of S. alterniflora across China in 2020

(mean + SE, Standard Error).

Province SOC stock (Mg ha-1)
Hebei 59.242.3
Tianjin 46.3+1.3
Shandong 44.0+1.4
Jiangsu 56.945.5
Shanghai 80.4+2.9
Zhejiang 60.6+2.3
Fujian 50.1+2.7
Guangdong 72.5+8.1
Guangxi 33.3%£1.5

The Random Forest classifier provides the valuable ability to rank feature
importance. An analysis showing which features (e.g., Sentinel-2 phenological
bands, GE texture features, RGB indices) were most important for the
classification would provide deeper insight into the ecology of S. alternifiora
and validate the design choices of the OSPPF method.

Response: We have added a feature importance analysis using the Random
Forest classifier, which is described in Section 3.1 of the revised manuscript.
The updated content is as follows:

“To assess the contribution of GE imagery to classification performance, S.
alterniflora mapping was conducted using two methods in the Dandou Sea: (1)
Object-based PPF (OPPF) classification using resampled Sentinel-2 imagery
alone, and (2) OSPPF classification integrating both Sentinel-2 and GE imagery.



As shown in Fig. 6(a), classification based solely on Sentinel-2 imagery was
able to capture the general outline of S. alterniflora communities but failed to
effectively delineate open spaces within the patches. In addition, Fig. 6(b)
demonstrates that small, fragmented S. alterniflora patches were poorly
detected, and the boundaries between S. alterniflora and mangroves were
inaccurately represented. In contrast, the CM-SSM generated using fused GE
imagery exhibited superior spatial detail, successfully identifying small patches
and internal details, as well as accurately delineating boundaries between S.
alterniflora and co-occurring species. Furthermore, we conducted a feature
importance analysis using the RF classifier (Zhang et al., 2022b). As shown in
Fig. 5, spectral and texture features derived from GE imagery consistently
contributed highly to the classification of S. alterniflora. This can be primarily
attributed to the rich spatial texture information provided by GE imagery,
which effectively complements the phenological features and thereby enhances

classification accuracy.”
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Figure 5: The importance of multi-sourced features derived from the RF

classifier.

New reference: Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J.,
and Liu, W.: GWL FCS30: global 30 m wetland map with fine classification

system using multi-sourced and time-series remote sensing imagery in 2020,



The manuscript mentions masking water pixels (SCL=6) to reduce tidal effects.
However, tidal state can significantly influence the appearance and detectability
of S. alterniflora. Please clarify if the Sentinel-2 compositing process
considered tidal height information to select images from a consistent low-tide
period, or discuss the potential residual impact of tidal variability on the
phenological feature compositing.

Response: In the Sentinel-2 compositing process, we carefully considered the
influence of tidal variability on the detection of S. alterniflora. Specifically,
during image selection, we prioritized Sentinel-2 observations acquired under
consistent low-tide conditions to exclude the interference of high-tide imagery
in subsequent phenological feature compositing. Furthermore, we employed the
pixel-based compositing approach proposed by Tian et al. (2020a). In this
method, water pixels (SCL = 6) and cloudy pixels were masked to ensure that
only valid, high-quality pixels were used within each phenological period. This
strategy not only effectively mitigated the adverse effects of cloudy and rainy
conditions in intertidal zones but also substantially reduced the residual
influence of tidal variability on the phenological composites, ensuring that the

resulting imagery best represents low-tide and cloud-free conditions.

The text describing the workflow (Figure 2) could be more precise. Please
explicitly state the final number of bands in the PPF, SPPF, and OSPPF feature
sets. A clear listing of all input features for the RF model would improve
reproducibility.

Response: To address this point, we have added clarifications in the manuscript



as follows:

1)

2)

In Section 2.3.1, we had already described that the PPF feature set was
constructed from the original spectral bands and vegetation indices of two
phenological periods:

“Based on the two identified phenological periods, the PPF was constructed
by integrating vegetation indices and original spectral bands. Specifically,
five indices were selected to characterize the phenological periods (Table 3):
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), Plant Senescence Reflectance Index (PSRI), Normalized
Difference Water Index (NDWI), and Land Surface Water Index (LSWI).
NDVI, EVI, and NDWI were used during the green period, while PSRI and
LSWI characterized the senescence period.”

“In addition, five original bands of Sentinel-2 were selected for both
phenological periods: B2 (blue), B3 (green), B4 (red), B8 (NIR) and B11
(SWIR 1).”

However, the final number of bands was not explicitly stated in the original
text. We have now added the following clarification in Section 2.3.1:
“Finally, the vegetation indices and selected spectral bands for both
phenological periods (a total of 15 bands) were integrated to construct the
PPF composite images.”

In Section 2.3.2, we had already specified that the SPPF feature set consists
of 24 bands, including the 15 upsampled PPF bands, two spectral indices,
four texture features, and the RGB bands extracted from GE imagery. The
corresponding description is as follows:

“First, spectral and texture features were extracted from GE imagery. For
spectral features, the Normalized Green-Blue Difference Index (NGBDI)
and the Normalized Green-Red Difference Index (NGRDI), derived from
the RGB bands (Table 4), have proven effective for wetland vegetation
classification (Zheng et al., 2022). Texture features were computed from the

red band using the GLCM method (Haralick et al., 2007), extracting four



second-order statistics commonly used in vegetation classification: contrast,
entropy, correlation, and homogeneity (Wang et al., 2015b).”

“Second, enabling effective integration of multi-source data required
resampling to a common resolution and geometric registration. The
Sentinel-2 spectral bands and associated vegetation index images (10-20 m)
were resampled using cubic convolution to match the 0.9 m GE imagery.
Then, GE imagery was used as the reference to selecting evenly distributed
and clearly identifiable control points from both image sources (e.g., tidal
creek intersections, aquaculture pond corners, and vegetation patch
boundaries). These points were used to construct a polynomial
transformation model for registering the Sentinel-2 imagery. Finally,
phenological features derived from Sentinel-2 were integrated with the
spectral, texture, and RGB features extracted from GE imagery to construct
the SPPF composite images consisting of 24 bands.”

3) The OSPPF feature set also consists of 24 bands, but unlike the SPPF, these
are object-based features. This was described in the manuscript as follows:
“Considering the complex boundaries and homogeneous interiors of S.
alterniflora patches, accurately delineating their edges remains challenging
when using pixel-based features. Therefore, we developed an object-based
feature extraction method that incorporated a multi-scale optimized
segmentation strategy, enabling the effective integration of spatial context
and pixel neighborhood relationships for improved boundary detection.”
“Based on the determined scale parameters, object-based segmentation was
performed on the SPPF composite imagery in eCognition, producing the
OSPPF for subsequent classification.”

10. Figures 8, 9, and 10 are critical but lack clarity. The y-axis labels in Fig. 8 are
cut off. Fig. 9's Venn diagram is simple but effective; ensure the values are
clearly visible.

Response: In response to comment 7, we added Figure 5 to illustrate the

importance of different classification features. Accordingly, Figures 8, 9, and



10 in the original manuscript have been renumbered as Figures 9, 10, and 11 in

the revised version.

1) Regarding Fig. 9, the y-axis labels appear truncated because the two
subplots share the same axis. Specifically, both panels summarize statistics
of patch area and patch number within identical intervals. This has been
clarified in Section 3.2.3 of the manuscript: “To further compare patch size
and area differences between the two products, statistics were summarized
across six area classes defined by the minimum mapping unit of CMSA (i.e.,
one 10 m pixel). These intervals included: 0.01 ha (1 pixel), 0.1 ha (10
pixels), 1 ha (100 pixels), 100 ha (10,000 pixels), 1,000 ha (100,000 pixels),
and greater than 1,000 ha (Fig. 9).”

2) In addition, Figures 9, 10, and 11 have been replaced with higher-resolution
versions, and the values in the Venn diagram of Fig. 10 are now clearly
visible. The revised figures are shown below.
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Figure 9: Zonal statistics of the number and area of S. alterniflora patches identified

by CM-SSM and CMSA.
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Figure 10: Spatial distribution difference statistics of S. alterniflora identified by

CM-SSM and CMSA.
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Figure 11: Using CM-SSM as the reference, the commission and omission of S.

alterniflora area by province were calculated for CMSA.

11. The captions for Figures 5, 6, and 7 should explicitly state that the OSPPF

result is the final, manually refined CM-SSM product for clarity.

Response: In response to comment 7, we added Figure 5 to illustrate the

importance of different classification features. Accordingly, Figures 5, 6, and 7

in the original manuscript have been renumbered as Figures 6, 7, and 8 in the



revised version.

1) We have revised the captions of Figures 6 and 7 as suggested. The updated
captions are as follows:

“Figure 6: Comparison of classification results using OPPF and OSPPF
methods in Dandou Sea. The result generated by the OSPPF method is the
final, manually refined CM-SSM product. The VHR imagery in the figure
is from © Google Earth 2020.”

“Figure 7: Comparison of classification results using SPPF and OSPPF
methods in Dandou Sea. The result generated by the OSPPF method is the
final, manually refined CM-SSM product. The VHR imagery in the figure
is from © Google Earth 2020.”

2) In addition, Section 2.3.4 of the manuscript already states: “To enhance
accuracy, experienced researchers visually interpreted GE imagery and
corrected the ICM-SSM. Consequently, the final Sub-meter S. alterniflora
Map of Mainland China (CM-SSM) was generated.” This clearly indicates
that CM-SSM is the final product after manual refinement. The original
caption of Fig. 8 is: “Figure 8: Spatial detail comparison between CM-SSM
and CMSA in typical cases. The VHR imagery in the figure is from ©
Google Earth 2020.” Since Fig. 8 directly compares CM-SSM with CMSA,
we believe no additional modification to the caption is necessary.

12. The term "sub-meter" is used throughout, but the actual resolution of the final
CM-SSM product should be explicitly stated early in the abstract and method
(it is 0.9m, as mentioned later). Briefly justify why this specific resolution from
GE was chosen.

Response: According to your suggestion, we have made the following

revisions:

1) In the revised abstract, we have explicitly stated that the final CM-SSM
product has a spatial resolution of 0.9 m, as follows:

“To this end, this study produced the first 2020 national-scale Sub-meter

(0.9 m) S. alterniflora Map of Mainland China (CM-SSM), using an



2)

object- and sub-meter-enhanced pixel-based phenological feature
composite method.”

In Section 2.3, we further clarified that the adopted GE imagery has a
spatial resolution of 0.9 m, as shown below:

“This study proposed an Object- and Sub-meter-enhanced Pixel-based
Phenological Feature (OSPPF) composite method for mapping S.
alterniflora, including four steps (Fig. 2). First, a Pixel-based Phenological
Feature (PPF) was constructed using Sentinel-2 imagery (10 m). Second,
spatial and texture features extracted from GE imagery (0.9 m) were
integrated to enhance the PPF, resulting in the Sub-meter-enhanced PPF
(SPPF). Third, a multi-scale object-based segmentation strategy was used
to extract the OSPPF. Finally, a RF classifier was applied to generate the
initial result, which was then manually refined to generate the final S.
alterniflora distribution map.”

Our choice of the 0.9 m resolution was based on two main considerations.
First, the 0.9 m resolution is sufficient to effectively capture the small
patches and boundary details of S. alterniflora, meeting the sub-meter
spatial detail required for this study. Although using imagery with even
higher resolution could provide finer spatial details, it would substantially
increase data redundancy as well as computational and storage costs.
Second, our previous study has produced a national-scale mangrove
mapping product at a spatial resolution of 0.9 m (Tian et al., 2025). To
ensure spatial consistency in the construction of a coastal wetland
vegetation dataset and to facilitate subsequent research based on this
dataset, the same resolution of 0.9 m was adopted in this study for the

mapping of S. alterniflora.

Reference: Tian, J., Wang, L., Diao, C., Zhang, Y., Jia, M., Zhu, L., Xu, M., Li,

X.,

and Gong, H.: National scale sub-meter mangrove mapping using an



augmented border training sample method, ISPRS J. Photogramm. Remote

Sens., 220, 156 - 171, doi:10.1016/j.isprsjprs.2024.12.009, 2025.



