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Abstract. Microbial decomposition of soil organic carbon (SOC) is a major source of atmospheric CO2 and a key component 10 

of climate-carbon feedbacks. Understanding how SOC mineralization responds to temperature is essential for improving 

climate projections. Here, we compiled a global dataset of laboratory incubation experiments measuring SOC mineralization 

across diverse soils and temperature regimes. The dataset reveals that 84% of samples originated from surface soils (0–30 cm), 

and 50% of incubations lasted fewer than 50 days. Incubation temperatures ranged from –10 to 60 °C, with temperature 

intervals used to estimate temperature sensitivity (Q10) spanning 2–40 °C; notably, 81% of Q10 estimates were based on 15 

intervals exceeding 5 °C. Moreover, in 61% of cases, the lower incubation temperature for Q10 estimation differed from the 

mean annual temperature at the sampling site by more than 5 °C, indicating a mismatch with in situ conditions. Our analysis 

highlights critical gaps in current experimental designs, particularly the underrepresentation of subsoils (>30 cm) and the use 

of temperature ranges that deviate from field conditions. We further evaluated the ability of 16 temperature response functions 

used in 69 land surface and/or carbon models to capture SOC mineralization patterns. Most models failed to reproduce 20 

empirical temperature response, especially at higher temperatures, albeit multi-term exponential functions showed relatively 

better performance. By coupling our dataset with a two-pool carbon model, we found that external environmental constraints 

and the intrinsic temperature response (including SOC decomposability and microbial processes) similarly influence the 

temperature sensitivity of SOC mineralization at the global scale, with their relative importance varying across ecosystem 

types. Our findings underscore the need for incubation experiments that better represent field conditions—both in depth and 25 

temperature range—and call for improved model parameterizations to enhance SOC feedback projections under future climate 

scenarios. The dataset is archived and publicly available at https://doi.org/10.6084/m9.figshare.25808698 (Zhang et al., 2025). 

1 INTRODUCTION 

Soils annually release approximately five times more CO2-C to the atmosphere via microbial mineralization of soil organic 

carbon (SOC) than all anthropogenic fossil fuel emissions combined (Tang et al., 2020). As a key flux in the global carbon 30 
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cycle, this soil-derived CO2 efflux is projected to intensify under global warming (Lei et al., 2021; Wang et al., 2022) due to 

the inherent temperature sensitivity of microbial decomposition (Davidson & Janssens, 2006). Yet, the magnitude and 

mechanisms of this feedback remain contentious (Crowther et al., 2016; Soong et al., 2021), posing a critical uncertainty in 

Earth System Models (ESMs) projections of future climate-carbon dynamics. 

The temperature sensitivity of SOC mineralization is commonly expressed as Q10—the factor by which the mineralization 35 

rate increases for every 10 °C rise in temperature. Q10 is typically calculated following Eq.(1): 

𝑄10 = (
𝑅𝑇2

𝑅𝑇1
)

10

𝑇2−𝑇1
 ,           (1) 

where 𝑅𝑇1  and 𝑅𝑇2 are the SOC mineralization (often microbial respiration) rates at low temperature (𝑇1 ) and high (𝑇2 ) 

temperatures, respectively. Most ESMs adopt a constant or temperature-dependent Q10 value (Luo et al., 2016; Luo, Luo, 

Wang, Xia, & Peng, 2020), but empirical Q10 estimates vary widely due to numerous influencing factors (Haaf, Six, & Doetterl, 40 

2021; Patel et al., 2022), including calculation approaches (Hamdi, Moyano, Sall, Bernoux, & Chevallier, 2013), 

environmental constraints such as soil pH (Craine, Fierer, & McLauchlan, 2010) and clay content (Hartley, Hill, Chadburn, & 

Hugelius, 2021), climatic conditions like precipitation (Li, Pei, Pendall, Fang, & Nie, 2020), and microbial community traits 

(Wang et al., 2021). These controls can be grouped into three primary mechanisms: (1) Carbon pool quality: the chemical 

composition of SOC influences its thermodynamic properties and decomposability (Haddix et al., 2011); (2) Microbial 45 

community structure and function: Variations in microbial traits affect SOC decomposition efficiency and enzyme production 

(Karhu et al., 2014; Xiao et al., 2023); and (3) Physicochemical protection and accessibility: Soil texture, aggregation, and 

mineral interactions modulate the accessibility of SOC to microbial enzymes (Gershenson, Bader, & Cheng, 2009). While 

these mechanisms are often discussed independently, their relative contributions and interactions remain poorly understood at 

the global scale (Jones, Cox, & Huntingford, 2003). 50 

Temperature sensitivity is typically assessed via either field or laboratory incubation experiments. Field studies reflect in 

situ conditions but are confounded by numerous environmental variables (e.g., plant inputs, soil moisture variability), and it is 

difficult to separate root and microbial respiration. Moreover, field measurements are challenging to conduct continuously, 

especially in remote ecosystems. Laboratory incubations, while simplified and often subject to preparation artifacts (e.g., 

sieving, drying, rewetting), offer controlled conditions that isolate specific mechanisms and allow for systematic comparisons 55 

across soils and temperatures (Zhang, Yu, Lin, & Zhu, 2020). Importantly, although many laboratory studies have yielded 

mechanistic insights, they are often limited in spatial scope or designed to test specific hypotheses. Yet, taken together, the 

body of global incubation data represents an underutilized resource for addressing broad-scale questions about SOC 

temperature sensitivity. 

Here, we compile and synthesize a global dataset of time-series measurements of SOC mineralization under controlled 60 

laboratory incubation conditions, encompassing diverse soil types, climatic zones, and incubation protocols. The dataset is 

valuable for characterizing SOC mineralization processes and their response to temperature in relation to various soil properties 

and incubation conditions. To showcase the dataset’s utility and scientific potential, we used it in a soil carbon model as a case 
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study. This analysis demonstrates its applicability to process-based modeling and its contribution to understanding soil carbon 

dynamics. Specially, we evaluate the performance of temperature response functions currently used in land surface and/or 65 

carbon models (hereafter referred to as carbon models) against observed Q10 values estimated using Eq. (1), and use a two-

pool carbon model to simulate SOC mineralization and assess the relative influence of different regulatory mechanisms on 

temperature sensitivity. By integrating empirical observations with process-based modeling, our study provides mechanistic 

insights into the drivers of SOC temperature sensitivity and informs efforts to improve Earth system model projections under 

climate change.  70 

2 THE DATA 

We compiled a global dataset of laboratory incubation experiments to investigate the temperature sensitivity of SOC 

mineralization. Literature searches were conducted using the Web of Science and the Chinese National Knowledge 

Infrastructure (CNKI). The search terms included: 

“soil AND (respir* OR ((carbon OR CO2 OR carbon dioxide OR organic matter) AND (flux OR efflux OR emission OR release 75 

OR loss OR mineraliz* OR decompos*))) AND (temperature OR warm* OR cool*) AND incubat*”  

In addition to dataset queries, we screened all studies cited in five previous synthesis papers on temperature sensitivity of SOC 

mineralization (Fierer, Colman, Schimel, & Jackson, 2006; Hamdi et al., 2013; Ren et al., 2020; Christina Schädel et al., 2020; 

Wang et al., 2019). To be included in our dataset, studies had to meet the following criteria:  

1) The incubated soil must be sampled from the mineral layer; 80 

2) Each experiment must incubate the same soil at two or more temperatures;  

3) All other incubation conditions (e.g., moisture) must be identical across temperature treatments and maintained 

throughout the incubation; and  

4) Time-series data of carbon mineralization rates or cumulative carbon mineralization must be reported.  

Using these criteria, we identified 191 publications, encompassing 721 distinct soils and totaling 21,979 data points on SOC 85 

mineralization (Fig. 1).  
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Figure 1: Geographic distribution of soil samples. A, soil sample locations; B, distribution across climate conditions and ecosystems. 

Numbers in parentheses show the sample size in the specified ecosystem. 

When available, numerical data were directly extracted from the publications, and graphical data were digitized using the 90 

WebPlotDigitizer (Burda, O'Connor, Webber, Redmond, & Perdue, 2017). SOC mineralization rates were standardized to g 

CO2-C kg-1 SOC d-1 and g CO2-C kg-1 soil d-1. Cumulative mineralization was also recorded as g CO2-C kg-1 SOC and g CO2-

C kg-1 soil, corresponding to the total mineralized carbon over the duration of the incubation. We also compiled ancillary 

information when available, including soil properties [e.g., pH, total nitrogen (TN), carbon-to-nitrogen ratio (C:N), soil bulk 

density (BD), and texture)], site characteristics (geographic coordinates and ecosystem type), and experimental design 95 

(incubation temperature, duration, moisture condition, and pretreatment) (Table 1). Based on the recorded geographic 

coordinates of sampling locations, we extracted 19 climate variables from WorldClim V2.0 at a spatial resolution of 1 km2 

(Fick & Hijmans, 2017). All complied data are deposited to https://doi.org/10.6084/m9.figshare.25808698 (Zhang et al., 2025) 

and are publicly accessible. 

Table 1: Variables included in the dataset. 100 

Variable Description Units 

Publication information 

Reference_ID Reference ID - 

First_author First author of the publication - 

Publication_year Publication year Year 

Sampling_year Sampling year Year 

Journal Journal name of the publication - 

Title Title of the article - 

DOIs Digital object identifier of the publication - 

Site information 

Latitude Latitude, positive = North, negative = South Decimal 
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Longitude Longitude, positive = East, negative = West Decimal 

MAT Mean annual temperature, extracted from WorldClim 2.1 based on 

the latitude and longitude of soil sampling sites, the data is the 30-

year mean value from 1970 to 2000 

℃ 

MAP Mean annual precipitation, extracted from WorldClim 2.1 based on 

the latitude and longitude of soil sampling sites, the data is the 30-

year mean value from 1970 to 2000 

mm 

Elevation Elevation, extracted from WorldClim 2.1 based on the latitude and 

longitude of soil sampling sites 

m 

Eco_type Ecosystem type (grassland, forest, etc.) - 

Species The aboveground plant species at the sampling site - 

Soil_ID Soil ID - 

Profile_ID Profile ID - 

Soil_depth The top and bottom depths of the sampled soil (0_10, 0_20, etc.). 

Some studies only provide the horizon of the soil profile, such as A 

horizon, B horizon 

cm 

Soil characteristics 

SOC Initial soil organic carbon content % 

TN Initial soil total nitrogen content % 

C:N Soil carbon:nitrogen ratio - 

pH Initial soil pH - 

BD Soil bulk density g·cm-3 

Soil texture Clay, silt, and sand % 

Incubation information 

Incu_duration Incubation duration Day 

Incu_temp Incubation temperature ℃ 

Soil_mass The dry weight of the incubated soil g 

C_input Carbon input at the beginning of incubation (biochar, glucose, etc.) - 

Input_amount The amount of carbon input at the beginning of the incubation 

expressed as a percentage of the initial soil organic carbon content 

% 

Measure_day Measurement day for carbon mineralization Day 

FC Soil moisture content is expressed as a percentage of field capacity 

(e.g., 60% FC indicates 60% of the maximum field capacity). 

% 

Gravity Soil gravity water content % 

Pre_incubation Pre-incubation duration Day 

Pre_treatment Pre-treatment before the beginning of the incubation (e.g., fresh 

homogenized, air-dried, etc.) 

- 
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Sieve The sieving size prior to the beginning of the incubation mm 

CO2_method Determination method of mineralized CO2, including gas 

chromatograph, alkali absorption, and infrared gas analysis 

- 

Exp_ID Experiment ID. The same ID includes mineralization data of the 

same soil at different incubation temperatures, and other incubation 

conditions were identical at different temperatures 

- 

n Number of replicates of a incubation - 

Mineralization information 

Rate_soil Time-course carbon mineralization rate, which was normalized to 

per kilogram of soil 

mg CO2-C kg-1 soil d-1 

SD_rate_soil The standard deviation of Rate_soil mg CO2-C kg-1 soil d-1 

Rate_SOC Time-course carbon mineralization rate, which was normalized to 

per kilogram of SOC 

g CO2-C kg-1 SOC d-1 

SD_rate_SOC The standard deviation of Rate_SOC g CO2-C kg-1 SOC d-1 

Cumu_soil Time-course cumulative carbon mineralization, which was 

normalized to per kilogram of soil 

mg CO2-C kg-1 soil 

SD_cumu_soil The standard deviation of Cumu_soil mg CO2-C kg-1 soil 

Cumu_SOC Time-course cumulative carbon mineralization, which was 

normalized to per kilogram of SOC 

g CO2-C kg-1 SOC 

SD_cumu_SOC The standard deviation of Cumu_SOC g CO2-C kg-1 SOC 

3 INSIGHTS FROM THE DATASET 

3.1 Spatial coverage 

Our dataset captures a broad global distribution of soil incubation experiments, with sampling sites concentrated in China, 

Europe, and the United States (Fig. 1A). However, samples are relatively sparse in Australia, Canada, and Russia, with almost 

absent in Africa. This geographic imbalance is particularly concerning given the importance of tropical and high-latitude cold 105 

regions for global carbon storage and their heightened vulnerability to climate change. Addressing these data gaps is critical 

for improving the accuracy of global SOC-climate feedback projections.  

The dataset covers major terrestrial ecosystems (Fig. 1B), including croplands (226 sites), forests (199), and grasslands 

(184), but includes relatively few samples from tundra (43), wetlands (53), and deserts (16). Yet, tundra and wetland soils are 

known for their high SOC content and may exhibit distinct temperature responses due to unique environmental conditions 110 

(Wang et al., 2022). In tundra ecosystems, SOC is dominated by particulate organic carbon, which is more sensitive to warming 

than mineral-associated organic carbon (Georgiou et al., 2024). Moreover, freeze-thaw cycles can disrupt microbial and 

physical protection mechanisms, altering SOC turnover (Schuur et al., 2009). Similarly, wetland soils experience fluctuating 
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redox conditions driven by water table changes, potentially leading to nonlinear SOC responses to warming (Wang, Wang, 

He, & Feng, 2017). These complexities reinforce the need for targeted studies in underrepresented ecosystems. 115 

SOC content in the dataset ranges from 0.04% to 58.85%, with a median of 2.48% (Fig. 2A). Notably, 73% of samples 

contain less than 5% SOC, with higher values mostly occurring in wetland soils. Incubation temperatures range from –10 to 

60 °C, with a median of 17 °C and frequent use of standard temperatures such as 5 °C, 15 °C, and 25 °C (Fig. 2B). Q10 values, 

calculated from paired temperature treatments, are most derived from 15–25 °C (Fig. 2E), with 10 °C temperature difference 

(i.e., ΔT, the difference between T2 and T1 in equation 1) accounting for 34 % of cases (Fig. 2F). However, only 19% of 120 

experiments used ΔT ≤5 °C, a range more reflective of projected climate warming (IPCC, 2023). 

 

Figure 2: Basic characteristics of the incubation dataset. The distribution (frequency or density) of soil organic carbon content (A), 

incubation temperature (B), soil sampling depth (C), incubation duration (D), temperature range (T1 and T2 in equation 1) used for Q10 

estimation (E), absolute temperature range (|T2 – T1|) (F), temperature difference between the low incubation temperature (T1 in equation 1) 125 
and the local mean annual temperature (MAT) at the sampling site (G), absolute temperature difference (|MAT – T1|) (H). In panels E and 

G, the blue circles represent the low incubation temperature (T1 in equation 1), the red circles indicate the high incubation temperature (T2 

in equation 1), and the yellow circles correspond to the mean annual temperature at the sampling site. Note the log10 scale of the y-axis in 

panels E and G. Most of the data points in panel E fall within the temperature ranges of 15-25 °C, 5-15 °C, 5-25 °C, 15-35 °C, and 25-35 °C. 

3.2 Incubation temperature 130 

While laboratory incubations allow precise control of environmental variables, their ecological relevance depends critically 

on the selection of incubation temperatures. SOC mineralization often responds nonlinearly to warming (Melillo et al., 2017), 

especially in cold ecosystems where small temperature increases can trigger large CO2 emissions (Turetsky et al., 2020). 

However, many studies apply large ΔT values (>10 °C), which may obscure subtle thresholds, suppress key microbial 

feedbacks, and limit the transferability of findings to field conditions. 135 

This limitation is compounded by the mismatch between incubation temperature and field conditions. We compared the 

low incubation temperature (i.e., T1 in equation 1) used for estimation to the local mean annual temperature (MAT) at each 
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sampling sites (Fig. 2G). In 61% of the cases, the absolute difference between T1 and MAT exceeded 5 °C (Fig. 2H), potentially 

biasing Q10 estimates, as temperature sensitivity is itself temperature-dependent (Alster et al., 2023; Hamdi et al., 2013; Patel 

et al., 2022). To enhance ecological validity, we recommend future studies align incubation temperatures more closely with 140 

local MATs, particularly when estimating Q10. 

Most soil samples were collected from surface layers: 84% originate from the 0–30 cm depth (Fig. 2C). However, subsoils 

(>30 cm) store more than twice the SOC of topsoil globally (Jobbágy & Jackson, 2000), and emerging evidence suggests they 

are not inert, but can respond sensitively to warming (Hicks Pries, Castanha, Porras, & Torn, 2017; Hicks Pries et al., 2023). 

SOC dynamics in deeper layers are governed by different stabilization processes and environmental controls, including lower 145 

oxygen availability, reduced root inputs, and greater mineral association (Jia et al., 2019; Xu et al., 2021). These vertical 

gradients shape SOC quality, microbial access, and thus, temperature sensitivity. Current underrepresentation of deep soils in 

incubation experiments limits our ability to predict long-term carbon–climate feedbacks and highlights the need for deeper 

sampling in future work. 

3.3 Incubation duration 150 

Incubation durations vary widely across studies. While some experiments extend for several years, 80% of the incubations 

lasted <113 days, and half were <54 days (Fig. 2D). Short-term incubations are efficient and cost-effective, and are well suited 

for capturing the dynamics of labile carbon pools that dominate initial CO2 release (Schädel et al., 2020). They also minimize 

microbial adaptation and maintain more natural soil structure. However, they may overlook the slower dynamics of recalcitrant 

carbon pools, which contribute substantially to long-term SOC persistence and climate feedbacks (Schmidt et al., 2011). 155 

In contrast, long-term incubations are essential for capturing the decomposition of slow-cycling SOC fractions, especially 

in the absence of new carbon inputs. As labile carbon is depleted, persistent carbon pools increasingly dominate respiration, 

providing insights into intrinsic SOC stability (Schädel et al., 2020). Long-term studies also enable assessment of microbial 

community shifts and potential feedbacks under sustained warming (Guan et al., 2022; Jerry M Melillo et al., 2017). Yet, they 

also introduce new complexities, including potential changes in soil structure, microbial acclimation, and moisture loss, which 160 

may confound temperature effects (Kirschbaum, 2006). We advocate for a combined approach that integrates both short- and 

long-term incubations. This dual strategy can capture early-stage microbial dynamics, as well as long-term decomposition 

pathways of stable carbon pools. By leveraging both timescales, researchers can better disentangle microbial versus 

physiochemical controls and derive more robust parameter estimates for Earth system models. 

4 COMPARISON WITH TEMPERATURE RESPONSE FUNCTIONS 165 

Earth System Models (ESMs) are key tools for projecting SOC dynamics under climate change, yet their predictive accuracy 

hinges on the reliability of temperature response functions for SOC mineralization. We examined 69 models, including those 

from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) and several widely used carbon models, and identified 16 
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distinct temperature response functions (Fig. 3; Table 2 and Table S1). These functions differ markedly in structure, 

particularly at temperatures above 20 °C, where predicted mineralization rates diverge substantially (Fig. 3A). Most functions 170 

are empirical in nature and fall into four broad categories (Table 2):  

1) Simple exponential models – assume fixed temperature sensitivity (e.g., constant Q10 or classical Arrhenius); 

2) Flexible Q10 models – allow Q10 to vary with temperature, typically through parameterized functions; 

3) Non-linear empirical models – capture physiological thresholds, saturation effects, or inhibition at high temperatures; 

and 175 

4) Hybrid/adjusted exponential models – incorporate additional terms to improve empirical fits (e.g., multi-term 

exponential or polynomial-exponential hybrids). 

 

Figure 3: Performance of soil carbon temperature response functions. Temperature response functions of soil organic carbon 

mineralization (A), temperature sensitivity (Q10) predicted by the temperature response functions (B), and function performance by 180 
comparing function predicted and observed Q10 (C). Gray open points in panel B represent observed Q10 values at different temperatures, 

while the black dashed curve shows the best-fit relationship between Q10 and temperature based on locally weighted polynomial regression. 

Red points indicate the mean values under the corresponding temperatures, and error bars represent one standard error of the observations. 
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Panel C compares the observed mean Q10 values at different temperatures with the Q10 values predicted by the temperature response functions, 

presented for both global average and subsets grouped by ecosystem type. In panel C, numbers outside the parentheses represent the 185 
coefficient of determination (R2), while numbers inside the parentheses indicate the root mean square error. Grey grids represent cases where 

R2 could not be calculated due to constant Q10 values defined by the respective temperature response functions. 

Table 2: Temperature response functions used in 69 carbon models. Q10_mod was estimated based on its definition, using the following 

equation: 𝑸𝟏𝟎_𝒎𝒐𝒅 = 𝒇(𝑻 + 𝟏𝟎) 𝒇(𝑻)⁄ . Carbon models simulate carbon cycling process and, in some cases, the associated energy and water 

exchanges, while land carbon models are their submodules specifically representing terrestrial carbon cycling processes. 190 

Types Temperature response functions 
Land carbon 

models 
Carbon models Models References 

1 
𝑓(𝑇) = 1. 5

𝑇−25
10  CLM5 CLM5 CESM2 Emmons et al. (2020) 

𝑓(𝑇) = 2
𝑇−30
10  ISBA-CTRIP ISBA-CTRIP CNRM-ESM2-1 Séférian et al. (2019) 

𝑓(𝑇) = 2
𝑇−25
10  JULES-ES-1.0 JULES-ES-1.0 UKESM1-0-LL Good et al. (2019) 

𝑓(𝑇) = 2
𝑇−10
10  INM-LND1 INM-LND1 INM-CM5-0 Volodin et al. (2017) 

𝑓(𝑇) = 1.71
𝑇−35
10  CASA-CNP 

CABLE2.4+CASA-

CNP 
ACCESS-ESM1.5 Ziehn et al. (2019) 

2 
𝑓(𝑇) = 0.0326 + 0.00351 ∙ 𝑇1.652 − (

𝑇

41.748
)
7.19

 LPJ-GUESS LPJ-GUESS EC-Earth3-CC Smith et al. (2014) 

𝑓(𝑇) =
47.9

1 + 𝑒𝑥𝑝 (
106

𝑇 + 18.3
)
 RothC RothC RothC 

Coleman and Jenkinson 

(1996) 

𝑓(𝑇) = {2.1
𝑇−35
10 ,    𝑇 ≤ 35

1.0,            𝑇 > 35
 CANDY CANDY CANDY 

Franko, Oelschlägel, and 

Schenk (1995) 

3 

𝑓(𝑇) =

{
 
 
 

 
 
 
0.01,                                                − 5 ≥ 𝑇
0.04,                                       − 5 < 𝑇 ≤ 0
0.04 + 0.06 ∙ 𝑇,                         0 < 𝑇 ≤ 5
0.07 + 0.016 ∙ (𝑇 − 5),         5 < 𝑇 ≤ 10

0.15 + 0.03 ∙ (𝑇 − 10),      10 < 𝑇 ≤ 35
0.95,                                        35 < 𝑇 ≤ 40
0.95 − 0.135 ∙ (𝑇 − 40),   40 < 𝑇 ≤ 47
0,                                                        47 < 𝑇

 AVIM2 BCC-AVIM2 BCC-CSM2-MR Ji and Yu (1999) 

𝑓(𝑇) = 0.56 + 0.465 

                ∙ 𝑎𝑟𝑐𝑡𝑎𝑛(0.097 ∙ (𝑇 − 15.7)) 

CENTURY CENTURY CENTURY 
Parton, Schimel, Cole, 

and Ojima (1987) 

𝑓(𝑇) = 𝑄10

𝑇−15
10  

𝑄10 = 1.44 + 0.56 ∙ 𝑡𝑎𝑛ℎ(0.075 ∙ (46 − 𝑇)) 

CLASS-CTEM CLASS-CTEM CanESM5 Swart et al. (2019) 

𝑓(𝑇) = 𝑇1
0.2 ∙ 𝑇2 

𝑇1 =
45−𝑇

10
，𝑇2 = exp (0.076 ∙ (1 − 𝑇1

2.63)) 

LM3 GFDL-ESM2M GFDL-ESM2M Shevliakova et al. (2009) 

𝑓(𝑇) = 0.68 ∙ 𝑒𝑥𝑝(0.1 ∙ (𝑇 − 7.1)) PnET PnET-CN 
PnET-CN Aber, Ollinger, and 

Driscoll (1997) 
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This diversity reflects both the absence of a mechanistic consensus on temperature sensitivity and the trade-offs between 

functional realism, parameter interpretability, and computational efficiency.  

Across all model types, a consistent feature is the prediction of lower SOC mineralization rates at lower temperatures (Fig. 

3A). This conforms with known biological constraints – low temperatures suppress microbial activity and freeze liquid water, 195 

thereby restricting substrate diffusion and microbial access. However, substantial uncertainty persists regarding mineralization 

responses at elevated temperatures. Specifically, the temperature response functions yield three distinct response patterns:  

1) Monotonic increase – mineralization rates rise continuously with temperature (e.g., classic Arrhenius behaviour; (Fang, 

Singh, Matta, Cowie, & Van Zwieten, 2017)); 

2) Plateau – mineralization rates increase to an asymptote beyond which additional warming has little effect; and 200 

3) Peak followed by decline – mineralization rates increase to an optimum and then drop due to thermal inhibition of 

enzymes, microbial stress, or substrate exhaustion. 

Empirical studies support all three behaviours under different contexts, highlighting the need for flexible models that can 

accommodate nonlinearities and thresholds in warming responses (Alster et al., 2023). 

To evaluate model performance, we calculated observed Q10 (Q10_obs) using Eq. (1) from our global incubation dataset 205 

using Equation (1), and compared them to modelled Q10 values (Q10_mod) derived from each function. Q10_obs was computed for 

each experiment, then aggregated by incubation temperature (T1) to derive the global mean Q10_obs at each temperature. There 

were then compared to Q10_mod at corresponding temperatures for each model function (Fig. 3B-C). The results indicate that 

Q10_obs varies widely but exhibits a nonlinear decline with increasing temperature (Fig. 3B), consistent with metabolic theory 

and enzyme kinetics (Gillooly, Brown, West, Savage, & Charnov, 2001). Among the 16 tested functions, Type 4 210 

(hybrid/adjusted exponential) functions performed best, with R2 values of > 0.4 and rooted mean square errors (RMSE) < 1.2 

(Fig. 3C). Type 1 (simple exponential) functions ranked second in performance, while Type 2 (flexible Q10) functions 

consistently underperformed (R2 < 0.2). Notably, all functions performed adequately within the 10–30 °C range – where most 

Q10_obs values clustered around 2 – but were less reliable below 10 °C or above 30 °C (Fig. 3B), where sample sizes were 

limited and biological responses are less predictable. 215 

4 
𝑓(𝑇) = 𝑒𝑥𝑝(3.36 ∙ (

𝑇 − 40

𝑇 + 46.05
)) K2000 K2000 K2000 Kirschbaum (2000) 

𝑓(𝑇) = 𝑒𝑥𝑝(
𝐸 ∙ (𝑇 − 𝑇20)

𝑅 ∙ (273.15 + 𝑇) ∙ (273.15 + 𝑇20)
) 

𝑅 = 8.314 𝐽 𝐾−1 𝑚𝑜𝑙−1, 

𝐸 = 55.5 𝑘𝐽 𝑚𝑜𝑙−1, 

𝑇20 = 20 ℃ 

SOILCO2 SOILCO2 SOILCO2 
Šimůnek and Suarez 

(1993) 

𝑓(𝑇) = 𝑒𝑥𝑝(308.56 ∙ (
1

56.02
−

1

𝑇 + 46.02
)) LPJ MRI-LCCM2 MRI-ESM-2.0 Yukimoto et al. (2019) 
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Ecosystem-specific performance varied substantially (Fig. 3C and S1). In forest ecosystems, Type 4 and Type 3 functions 

performed best, capturing both the magnitude and temperature dependency of Q10_obs, while models such as CLASS-CTEM 

consistently underpredicted sensitivity. Wetland soils also showed good agreement with most functions (except AVIM2), 

although the small number of observations and narrow temperature range warrant caution. In croplands and grasslands, Q10_obs 

values remained relatively stable (~2) across all temperatures (Fig. S1), likely due to uniform substrate quality, frequent 220 

anthropogenic disturbances (e.g., tillage, fertilization), and homogenized microbial communities, which dampen temperature 

responsiveness. Accordingly, Type 1 models—emphasizing constant Q10—performed best in these systems. However, data 

scarcity remains a limiting factor for evaluating model performance in tundra, desert, and high-latitude cold systems. These 

ecosystems, while storing vast amounts of SOC and being highly sensitive to warming, remain underrepresented in both 

incubation data and model calibration. Their unique dynamics—driven by freeze–thaw cycles, moisture constraints, and slow 225 

microbial turnover—may necessitate tailored temperature response formulations not currently embedded in most ESMs. 

Taken together, our results highlight that: (1) no single temperature response function captures Q10_obs variability across 

all ecosystems and temperature ranges; (2) simple and hybrid exponential functions show relatively robust performance, 

particularly in cropland, grassland, and forest soils; (3) high-latitude, subsoil, and high-temperature responses remain poorly 

constrained due to data limitations; (4) expanding observational datasets across diverse ecosystems—especially in extreme 230 

environments—is essential for improving the realism and generalizability of temperature response functions in ESMs. 

Ultimately, our comparison provides a benchmark for refining temperature sensitivity formulations in soil carbon models, 

emphasizing the need for ecosystem-specific calibration and incorporation of nonlinear temperature effects to reduce 

uncertainty in future carbon-climate feedback projections. 

5 COMBINING THE DATA WITH CARBON MODELS 235 

The extensive spatial and environmental coverage of our global SOC mineralization dataset offer a unique opportunity to 

explore the mechanisms regulating the temperature sensitivity of microbial decomposition. To fully harness this potential, 

mechanistically-informed modelling approaches are essential. Here, we integrate the dataset with commonly used pool-based 

carbon models to test the relative contributions of different regulatory mechanisms. SOC mineralization is controlled by both 

intrinsic and extrinsic factors. Intrinsic factors include the chemical decomposability of SOC pools and the thermal traits of 240 

microbial communities – collectively referred to as the inherent temperature response (Davidson & Janssens, 2006). These 

control the baseline temperature dependence of microbial activity and carbon use efficiency. In contrast, extrinsic factors – 

such as mineral associations, aggregate occlusion, moisture limitation, and oxygen availability – operate as external 

environmental constraints, restricting microbial access to otherwise decomposable organic matter (Dungait, Hopkins, Gregory, 

& Whitmore, 2012). Separating these two mechanisms is critical, as they operate on different scales and are likely to respond 245 

differently to climate change. We propose a modelling framework in which SOC temperature sensitivity is divided into these 

two components, allowing us to quantify their relative contributions (Fig. 4). 
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Figure 4: The data-model integration framework to distinguish the importance of intrinsic temperature responses and extrinsic 

environmental constraints. The framework illustrates the data-model fusion process employed to verify the regulatory mechanisms 250 
underlying the temperature sensitivity of soil organic carbon mineralization. M1, intrinsic temperature response, associated with the chemical 

decomposability of SOC pools and the thermal traits of microbial communities; M2, extrinsic environmental constraints, referring to factors 

such as mineral associations, aggregate occlusion, moisture limitation, and oxygen availability that restrict microbial access to otherwise 

decomposable organic matter. kf,LT and ks,LT represent the decomposition rates (d-1) of the fast (ff) and slow (fs) carbon pools, respectively at 

the lowest incubation temperature within the same trial. Q10_fast and Q10_slow are the temperature sensitivity of fast and slow carbon pools, 255 
respectively. Th and Tl denote the higher and lower incubation temperatures, respectively. In EXP. 1, kf and ks at the lowest temperature of 

each trial were optimized and then were scaled to other temperatures using Q10_fast and Q10_slow, which were also optimized. The pool size (f) 

and decomposition rates (kf and ks) at the lowest temperature from EXP. 1 were applied in EXP. 2 and EXP. 3. 

5.1 A two-pool model of SOC mineralization 

To represent SOC heterogeneity and its decomposition dynamics, we adopt a two-pool first-order model, distinguishing 260 

between fast- and slow-cycling carbon pools. The mineralization rate Rt (g CO2-C kg-1 SOC d-1) at time t is expressed following 

Eq.(2): 

𝑅𝑡 = 𝑘𝑓 ∙ 𝑓𝑓 ∙ 𝐶0 ∙ 𝑒
−𝑘𝑓∙𝑡 + 𝑘𝑠 ∙ (1 − 𝑓𝑓) ∙ 𝐶0 ∙ 𝑒

−𝑘𝑠∙𝑡 ,         (2) 

where 𝑘𝑓 and 𝑘𝑠 are the decomposition rate constants (d-1) for the fast and slow pools, respectively; 𝑓𝑓 is the initial fraction of 

the fast pool in initial total SOC (𝐶0); t is time in days. Temperature sensitivity is introduced via a Q10 formulation following 265 

Eq.(3): 

𝑘𝑇 = 𝑘𝑟𝑒𝑓 ∙ 𝑄10

𝑇−𝑇𝑟𝑒𝑓

10  ,             (3) 

where 𝑘𝑇 is the decomposition rate of a carbon pool at incubation temperature T (°C); 𝑘𝑟𝑒𝑓  is the decomposition rate of the 

pool at a defined reference temperature (Tref); 𝑄10 is the temperature sensitivity factor. 
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5.2 Simulation experiments 270 

We conducted three simulation experiments to assess how well different regulatory mechanisms explain the observed 

temperature sensitivity of SOC mineralization. In all experiments, model parameters were optimized by minimizing RMSE 

between observed and modeled SOC mineralization rates using the DEoptim package in R4.0.3. Prior parameter ranges were 

set to 0.1–0.7 for kf, 0–0.01 for ks, and 0–0.2 for ff, following Schädel et al. (Schädel, Luo, David Evans, Fei, & Schaeffer, 

2013). A detailed description about the optimization procedure can be found in Zhang et al. (2024). 275 

EXP.1. Best-fit model (full optimization). In this baseline simulation, all model parameters – kf, ks, and ff – were freely 

optimized for each temperature treatment within each incubation trial. The optimized parameters therefore capture the 

combined effects of intrinsic substrate-microbe interactions and extrinsic environmental constraints. However, within a given 

trial, the same  ff value was shared across different incubation temperatures to ensure consistent carbon pool partitioning as the 

same soil was incubated. This “full optimization” represents the best-case model performance and serves as the baseline for 280 

comparison. 

EXP.2. Inherent temperature response. To isolate the intrinsic component of temperature sensitivity, we fixed the 

decomposition rates 𝑘𝑓 and 𝑘𝑠 and pool size (f) to those optimized at the lowest incubation temperature in EXP.1. A single 

optimized Q10 value was then used to scale decomposition rates across higher temperatures using Eq.(3) within each trial. The 

response of a specific SOC pool to temperature depends on its chemical decomposability and the thermal traits of the associated 285 

microbial community. Forcing the temperature sensitivities to be the same (i.e., a single Q10) across carbon pools effectively 

eliminates these distinct responses, thereby isolating the effect of microbial and substrate-related intrinsic temperature response. 

EXP.3. External environmental constraints. In this experiment, 𝑘f and ks were again fixed at the values from the lowest 

incubation temperature, and f values were taken from EXP.1. Instead of optimizing Q10 for each trial, globally averaged Q10 

values (derived from the empirical dataset) were uniformly applied across all soils to scale decomposition rates at higher 290 

temperatures. This approach standardizes the inherent temperature sensitivity of SOC decomposition, such that deviation 

between modeled and observed SOC mineralization rates primarily reflect site-specific external constraints on microbial access 

to SOC. 

Comparing the model performance among EXP. 1–3 allows us to quantify the relative explanatory power of intrinsic and 

extrinsic regulatory mechanisms. Specifically, reductions in model performance when moving from EXP. 1 to EXP. 2 and 295 

from EXP. 2 to EXP. 3 correspond to the contribution of intrinsic and extrinsic effects, respectively. To evaluate the 

contribution of each mechanism to model performance, we calculated their relative importance following Eq.(4-8) (Grömping, 

2007): 

𝐼1 = 𝑅𝐸𝑋𝑃.1
2 − 𝑅𝐸𝑋𝑃.2

2  (𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) ,         (4) 

𝐼2 = 𝑅𝐸𝑋𝑃.2
2 − 𝑅𝐸𝑋𝑃.3

2  (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) ,         (5) 300 

𝑃1 =
𝐼1

𝐼1+𝐼2
∙ 𝑅𝐸𝑋𝑃.1

2  ,            (6) 

𝑃2 =
𝐼2

𝐼1+𝐼2
∙ 𝑅𝐸𝑋𝑃.1

2  ,            (7) 
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𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 1 − 𝑅𝐸𝑋𝑃.1
2  ,           (8) 

where 𝐼1 and 𝐼2 represent the importance of inherent temperature response and external environmental constraints, respectively; 

𝑃1 and 𝑃2 denote the relative importance of two mechanisms, respectively; 𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 indicate the unexplained portion of 305 

total variation. We applied bootstrap resampling (n = 5,000) to estimate the mean and 95% confidence interval (CI) for the 

relative importance of each mechanism across all incubation trials. For pairwise comparisons among ecosystems and soil 

depths, the mean difference was calculated for each bootstrap resample, and the 95% CI of the difference was derived from 

the bootstrap distribution. A difference was considered statistically significant if the 95% CI of the bootstrap samples did not 

include zero (Efron & Tibshirani, 1994). 310 

5.3 Simulation results 

The modeling experiments revealed distinct contributions of intrinsic and extrinsic mechanisms to the temperature sensitivity 

of SOC mineralization. The model explained, on average, 80%, 71%, and 61% of the variance in SOC mineralization for 

EXP.1, EXP.2, and EXP.3, respectively (Fig. 5A). RMSE increased accordingly across the three experiments (Fig. S2). 

Relative to EXP.1, model performance in EXP.2 showed a decline ranging from +0.1% to –62.6% with an average of –11.1%. 315 

Relative to EXP.2, model performance in EXP.3 exhibited changes from +18.3% to -99.9% with an average of –15.4% (Fig. 

5B). Overall, intrinsic temperature response and extrinsic environmental constraints contributed comparably at the global scale, 

with intrinsic response accounting for 41% with a 95% confidence interval (CI) of 38%–43% and environmental constraints 

contributing 39% (95% CI: 37%–42%) to the total variance (Fig. 5C). However, substantial variation emerged across 

ecosystems. In croplands, intrinsic temperature response was dominant, contributing 50% (95% CI: 45%–54%), whereas 320 

environmental constraints accounted for a smaller share (33% with the 95% CI of 28%–37%). In contrast, wetlands exhibited 

the opposite pattern, with environmental constraints contributing 52% (95% CI: 44%–61%) and intrinsic temperature response 

contributing only 30% (95% CI: 22%–38%). 
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Figure 5: The relative importance of intrinsic temperature responses and external environmental constraints. Panels A and B show 325 
the determination coefficients (R2) and the corresponding percentage changes in R2, respectively, for the three simulation experiments. 

Panels C and D represent relative importance of the two mechanisms categorized by ecosystem type and soil depth, respectively. B, the 

percentage change in R2 of EXP. 2 relative to EXP. 1, and the percentage change in R2 of EXP. 3 relative to EXP. 2. Error bars in panels C 

and D represent the 95% confidence intervals based on 5,000 bootstrap resamples of the original relative importance. EXP. 1 represents the 

best-fit model and serves as the baseline for comparison, EXP. 2 aims to assess the relative importance of the intrinsic temperature response, 330 
and EXP. 3 aims to assess the relative importance of external environmental constraints. Different letters in panels A, C, and D indicate 

significant difference (p<0.05). 

These contrasting patterns reflect ecosystem-specific controls on the temperature sensitivity of SOC mineralization. In 

croplands, frequent soil disturbances such as tillage, fertilization, and residue management likely enhance substrate availability 

and microbial activity, thereby amplifying the role of intrinsic biological and chemical processes (Chen et al., 2019). In 335 

wetlands, by contrast, saturated conditions impose strong oxygen limitations and redox constraints on microbial activity, 

making abiotic environmental factors the primary regulator of SOC turnover (Chen, Zou, Cui, Nie, & Fang, 2018). These 

findings underscore the importance of incorporating ecosystem-specific mechanisms into ESMs – particularly in systems 
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shaped by hydrological regimes or intensive management – is critical for improving projections of soil carbon-climate 

feedbacks under global warming. 340 

There were no significant differences of the relative importance of the two regulatory mechanisms across soil depths (Fig. 

5D). However, it should be noted that subsoil layers was underrepresented, particularly for layers between 0.5 m (Fig. 2C). 

Together, our results highlight the importance of integrating both intrinsic and extrinsic mechanisms into understanding 

temperature response functions. These case study results underscore the potential of the dataset for facilitating model-data 

integration, exploring the mechanisms underlying SOC dynamics in response to climate change, and refining model 345 

representations under future warming. 

However, it is critical to acknowledge that the “intrinsic temperature response” in our modelling framework encompasses 

both SOC chemical decomposability and microbial metabolic activity, as these processes are inherently intertwined in carbon 

turnover (Conant et al., 2011). For example, an increase in the decomposition rate constant (k) with temperature could reflect 

enhanced microbial enzyme kinetics, but may also be driven by temperature-induced changes in substrate availability via 350 

increased diffusion or depolymerization of complex carbon compounds (Conant et al., 2011). Similarly, shifts in the fraction 

of fast-cycling carbon (ff) may not solely indicate a change in carbon pool composition, but also microbial substrate preferences 

or physiological adjustments that alter carbon allocation between biomass production and respiration (Zheng et al., 2025). 

These caveats underscore the need for more detailed, trait-explicit models that separately track microbial physiology, substrate 

quality, and abiotic accessibility (Zhang et al., 2024). 355 

6 CONCLUSIONS AND FUTURE VISION 

SOC dynamics are central to predicting terrestrial carbon–climate feedbacks, yet remain a major source of uncertainty in ESMs. 

By synthesizing a comprehensive global dataset of SOC mineralization under controlled incubation conditions, this study 

provides a robust framework to evaluate the temperature sensitivity of SOC decomposition and the mechanisms that govern 

it. Our findings highlight that external environmental constraints—such as physicochemical protection and substrate 360 

accessibility—and intrinsic SOC decomposability play similarly important roles in shaping temperature responses, but their 

relative influence is ecosystem-dependent. Moreover, we demonstrate that widely used temperature response functions in 

carbon models often fail to capture observed patterns, particularly under temperature extremes or in specific ecosystems. 

Based on our analyses, we propose following priorities for advancing SOC-climate research:  

1) Expand spatial and vertical coverage of soil sampling  365 

Despite the growing number of incubation studies, current datasets remain heavily biased toward surface soils, mid-

latitude systems, and short-term incubations. Particularly underrepresented are data from extreme environments (e.g., tundra, 

wetlands, deserts), subsoil layers, and high or low incubation temperatures—all of which are crucial for understanding carbon–

climate feedbacks in vulnerable or carbon-dense regions. Addressing these gaps through targeted sampling campaigns and 

standardized data collection would enhance model calibration, validation, and transferability across scales. 370 
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2) Align incubation design with ecologically relevant temperature scenarios  

Laboratory incubation conditions – although valuable for isolating mechanisms – may fail to replicate the complexity of 

natural systems. Field conditions introduce fluctuating moisture regimes, plant-microbe interactions, freeze-thaw cycles, and 

other dynamic processes that strongly mediate SOC responses. We advocate for hybrid approaches that combine laboratory 

incubation data with in situ measurements (e.g., eddy covariance fluxes, carbon isotope tracing) and long-term warming 375 

experiments to ground-truth model behaviour and improve ecological relevance.  

3) Integrate mechanistic constraints into models  

Most SOC temperature response functions currently used in carbon models are based on simplified relationships that fail 

to incorporate critical regulatory mechanisms. Our findings clearly demonstrate that these simplified functions often 

underperform when applied to real-world data, particularly across diverse ecosystems and temperature regimes. Embedding 380 

mechanistic constraints, such as mineral protection, oxygen limitation, and depth-specific carbon turnover, into temperature 

response formulations (Bradford et al., 2016) could substantially improve the fidelity of SOC projections under future climate 

scenarios.  

4)  Advance spatial scaling 

Most carbon models still apply uniform temperature response functions across broad geographic regions, neglecting site-385 

specific variability in soil properties, mineralogy, hydrology, and microbial ecology. Our findings argue for a more spatially 

explicit representation of SOC temperature responses. Advances in machine learning, data assimilation, and remote sensing 

provide promising tools for spatial upscaling of temperature response parameters, enabling site-specific calibration of carbon 

models. Integrating knowledge-guided machine learning with mechanistic soil biogeochemistry models (Liu et al., 2024) 

would significantly enhance predictive accuracy and reduce uncertainty in regional and global carbon-climate feedback 390 

estimates. 

Together, these priorities call for a more mechanistic, depth-aware, and spatially explicit framework for investigating 

SOC mineralization. By coupling empirical datasets with process-based modelling and machine learning, the soil carbon 

research community can significantly reduce uncertainty in carbon–climate feedbacks and improve projections of SOC 

stability in a warming world. 395 



19 

 

ACKNOWLEDGMENTS: This study is financially supported by the National Natural Science Foundation of China (grant 

no. 32171639) and the China National Postdoctoral Program (grant no. BX20240324). 

CONFLICT OF INTEREST: The authors declare no competing financial interests. 

AUTHORSHIP: Z.L. conceived the study; S.Z. led data collection, assessed the data, and wrote the first draft; Z.L. revised 

the manuscript and led results interpretation with the contribution of all authors. 400 

DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available in Figshare at: 

https://doi.org/10.6084/m9.figshare.25808698 (Zhang et al., 2025). 

References 

Aber, J. D., Ollinger, S. V., and Driscoll, C. T.: Modeling nitrogen saturation in forest ecosystems in response to land use and 

atmospheric deposition, Ecol. Model., 101, 61-78, https://doi.org/10.1016/S0304-3800(97)01953-4, 1997. 405 

Alster, C. J., Van de Laar, A., Goodrich, J. P., Arcus, V. L., Deslippe, J. R., Marshall, A. J., and Schipper, L. A.: Quantifying 

thermal adaptation of soil microbial respiration, Nat. Commun., 14, 5459, https://doi.org/10.1038/s41467-023-41096-x, 

2023. 

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and Crowther, T. W.: Managing uncertainty in soil 

carbon feedbacks to climate change, Nat. Clim. Change, 6, 751-758, https://doi.org/10.1038/nclimate3071, 2016. 410 

Burda, B. U., O'Connor, E. A., Webber, E. M., Redmond, N., and Perdue, L. A.: Estimating data from figures with a Web ‐

based program: Considerations for a systematic review, Res. Synth. methods, 8, 258-262, 

https://doi.org/10.1002/jrsm.1232, 2017. 

Chen, H., Zou, J., Cui, J., Nie, M., and Fang, C.: Wetland drying increases the temperature sensitivity of soil respiration, Soil 

Biol.  Biochem., 120, 24-27, https://doi.org/10.1016/j.soilbio.2018.01.035, 2018. 415 

Chen, Z., Xu, Y., Castellano, M. J., Fontaine, S., Wang, W., and Ding, W.: Soil Respiration Components and their Temperature 

Sensitivity Under Chemical Fertilizer and Compost Application: The Role of Nitrogen Supply and Compost Substrate 

Quality, J. Geophys. Res-Biogeo., 124, 556-571, https://doi.org/10.1029/2018JG004771, 2019. 

Coleman, K. and Jenkinson, D.: RothC-26.3-A Model for the turnover of carbon in soil, in: Evaluation of soil organic matter 

models: Using existing long-term datasets, Springer, 237-246, https://doi.org/10.1007/978-3-642-61094-3_17, 1996. 420 

Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. 

P., and Hopkins, F. M.: Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a 

way forward, Glob. Change Biol., 17, 3392-3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011. 

Craine, J. M., Fierer, N., and McLauchlan, K. K.: Widespread coupling between the rate and temperature sensitivity of organic 

matter decay, Nat. Geosci., 3, 854-857, https://doi.org/10.1038/ngeo1009, 2010. 425 



20 

 

Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B., Fang, S., 

Zhou, G., and Allison, S. D.: Quantifying global soil carbon losses in response to warming, Nature, 540, 104-108, 

https://doi.org/10.1038/nature20150, 2016. 

Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, 

Nature, 440, 165-173, https://doi.org/10.1038/nature04514, 2006. 430 

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil organic matter turnover is governed by 

accessibility not recalcitrance, Glob. Change Biol., 18, 1781-1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x, 

2012. 

Emmons, L., Schwantes, R., Orlando, J., Tyndall, G., Kinnison, D., Lamarque, J., Marsh, D., Mills, M., Tilmes, S., and Bardeen, 

C.: The Chemistry Mechanism 590 in the Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth 435 

Sy., 12, e2019MS001882, https://doi.org/10.1029/2019MS001882, 2020. 

Fang, Y., Singh, B. P., Matta, P., Cowie, A. L., and Van Zwieten, L.: Temperature sensitivity and priming of organic matter 

with different stabilities in a Vertisol with aged biochar, Soil Biol. Biochem., 115, 346-356, 

https://doi.org/10.1016/j.soilbio.2017.09.004, 2017. 

Fierer, N., Colman, B. P., Schimel, J. P., and Jackson, R. B.: Predicting the temperature dependence of microbial respiration 440 

in soil: A continental‐scale analysis, Glob. Biogeochem. Cy., 20, https://doi.org/10.1029/2005GB002644, 2006. 

Franko, U., Oelschlägel, B., and Schenk, S.: Simulation of temperature-, water-and nitrogen dynamics using the model 

CANDY, Ecol. Model., 81, 213-222, https://doi.org/10.1016/0304-3800(94)00172-E, 1995. 

Georgiou, K., Koven, C. D., Wieder, W. R., Hartman, M. D., Riley, W. J., Pett-Ridge, J., Bouskill, N. J., Abramoff, R. Z., 

Slessarev, E. W., and Ahlström, A.: Emergent temperature sensitivity of soil organic carbon driven by mineral 445 

associations, Nat. Geosci., 17, 205-212, https://doi.org/10.1038/s41561-024-01384-7, 2024. 

Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic 

matter decomposition, Glob. Change Biol., 15, 176-183, https://doi.org/10.1111/j.1365-2486.2008.01827.x, 2009. 

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L.: Effects of Size and Temperature on Metabolic 

Rate, Science, 293, 2248-2251, https://doi.org/10.1126/science.1061967, 2001. 450 

Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., and Kuhlbrodt, T.: MOHC UKESM1. 0-LL model output 

prepared for CMIP6 ScenarioMIP ssp585, (No Title), https://doi.org/10.22033/esgf/cmip6.6405, 2019. 

Grömping, U.: Relative importance for linear regression in R: the package relaimpo, J. stat. softw., 17, 1-27, 

https://doi.org/10.18637/jss.v017.i01, 2007. 

Guan, X., Jiang, J., Jing, X., Feng, W., Luo, Z., Wang, Y., Xu, X., and Luo, Y.: Optimizing duration of incubation experiments 455 

for understanding soil carbon decomposition, Geoderma, 428, 116225, https://doi.org/10.1016/j.geoderma.2022.116225, 

2022. 

Haaf, D., Six, J., and Doetterl, S.: Global patterns of geo-ecological controls on the response of soil respiration to warming, 

Nat. Clim. Change, 11, 623-627, https://doi.org/10.1038/s41558-021-01068-9, 2021. 



21 

 

Haddix, M. L., Plante, A. F., Conant, R. T., Six, J., Steinweg, J. M., Magrini-Bair, K., Drijber, R. A., Morris, S. J., and Paul, 460 

E. A.: The role of soil characteristics on temperature sensitivity of soil organic matter, Soil Sci. Soc. Am. J., 75, 56-68, 

https://doi.org/10.2136/sssaj2010.0118, 2011. 

Hamdi, S., Moyano, F., Sall, S., Bernoux, M., and Chevallier, T.: Synthesis analysis of the temperature sensitivity of soil 

respiration from laboratory studies in relation to incubation methods and soil conditions, Soil Biol. Biochem., 58, 115-

126, https://doi.org/10.1016/j.soilbio.2012.11.012, 2013. 465 

Hartley, I. P., Hill, T. C., Chadburn, S. E., and Hugelius, G.: Temperature effects on carbon storage are controlled by soil 

stabilisation capacities, Nat. Commun., 12, 6713, https://doi.org/10.1038/s41467-021-27101-1, 2021. 

Hicks Pries, C. E., Castanha, C., Porras, R., and Torn, M.: The whole-soil carbon flux in response to warming, Science, 355, 

1420-1423, https://doi.org/10.1126/science.aal1319, 2017. 

Hicks Pries, C. E., Ryals, R., Zhu, B., Min, K., Cooper, A., Goldsmith, S., Pett-Ridge, J., Torn, M., and Berhe, A. A.: The 470 

deep soil organic carbon response to global change, Annu. Rev. Ecol. Evol. S., 54, 375-401, 

https://doi.org/10.1146/annurev-ecolsys-102320-085332, 2023. 

IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report 

of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, 

Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023. 475 

Ji, J. and Yu, L.: A simulation study of coupled feedback mechanism between physical and biogeochemical processes at the 

surface, Chin. J. Atmos. Sci., 23, 448-459, http://www.iapjournals.ac.cn/dqkx/article/doi/10.3878/j.issn.1006-

9895.1999.04.07, 1999. 

Jia, J., Cao, Z., Liu, C., Zhang, Z., Lin, L., Wang, Y., Haghipour, N., Wacker, L., Bao, H., and Dittmar, T.: Climate warming 

alters subsoil but not topsoil carbon dynamics in alpine grassland, Glob. Change Biol., 25, 4383-4393, 480 

https://doi.org/10.1111/gcb.14823, 2019. 

Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to climate and vegetation, 

Ecol. Appl., 10, 423-436, https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2, 2000. 

Jones, C. D., Cox, P., and Huntingford, C.: Uncertainty in climate’carbon-cycle projections associated with the sensitivity of 

soil respiration to temperature, Tellus B., 55, 642-648, https://doi.org/10.3402/tellusb.v55i2.16760, 2003. 485 

Karhu, K., Auffret, M. D., Dungait, J. A., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J.-A., Wookey, P. A., Ågren, G. 

I., and Sebastia, M.-T.: Temperature sensitivity of soil respiration rates enhanced by microbial community response, 

Nature, 513, 81-84, https://doi.org/10.1038/nature13604, 2014. 

Kirschbaum, M. U.: Will changes in soil organic carbon act as a positive or negative feedback on global warming?, 

Biogeochemistry, 48, 21-51, https://doi.org/10.1023/A:1006238902976, 2000. 490 

Kirschbaum, M. U. F.: The temperature dependence of organic-matter decomposition—still a topic of debate, Soil Biol. 

Biochem., 38, 2510-2518, https://doi.org/10.1016/j.soilbio.2006.01.030, 2006. 



22 

 

Lei, J., Guo, X., Zeng, Y., Zhou, J., Gao, Q., and Yang, Y.: Temporal changes in global soil respiration since 1987, Nat . 

Commun., 12, 403, https://doi.org/10.1038/s41467-020-20616-z, 2021. 

Li, J., Pei, J., Pendall, E., Fang, C., and Nie, M.: Spatial heterogeneity of temperature sensitivity of soil respiration: A global 495 

analysis of field observations, Soil Biol. and Biochem., 141, 107675, https://doi.org/10.1016/j.soilbio.2019.107675, 2020. 

Liu, L., Zhou, W., Guan, K., Peng, B., Xu, S., Tang, J., Zhu, Q., Till, J., Jia, X., Jiang, C., Wang, S., Qin, Z., Kong, H., Grant, 

R., Mezbahuddin, S., Kumar, V., and Jin, Z.: Knowledge-guided machine learning can improve carbon cycle 

quantification in agroecosystems, Nat. Commun., 15, 357, https://doi.org/10.1038/s41467-023-43860-5, 2024. 

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., and 500 

Finzi, A.: Toward more realistic projections of soil carbon dynamics by Earth system models, Glob. Biogeochem. Cy., 

30, 40-56, https://doi.org/10.1002/2015GB005239, 2016. 

Luo, Z., Luo, Y., Wang, G., Xia, J., and Peng, C.: Warming‐induced global soil carbon loss attenuated by downward carbon 

movement, Glob. Change Biol., 26, 7242-7254, https://doi.org/10.1111/gcb.15370, 2020. 

Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., and Grandy, 505 

A. S.: Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world, Science, 358, 

101-105, https://doi.org/10.1126/science.aan287, 2017. 

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of factors controlling soil organic matter levels in Great 

Plains grasslands, Soil Sci. Soc. Am. J., 51, 1173-1179, https://doi.org/10.2136/sssaj1987.03615995005100050015x, 

1987. 510 

Patel, K. F., Bond-Lamberty, B., Jian, J., Morris, K. A., McKever, S. A., Norris, C. G., Zheng, J., and Bailey, V. L.: Carbon 

flux estimates are sensitive to data source: a comparison of field and lab temperature sensitivity data, Environ. Res. Lett., 

17, 113003, https://doi.org/10.1088/1748-9326/ac9aca, 2022. 

Ren, S., Ding, J., Yan, Z., Cao, Y., Li, J., Wang, Y., Liu, D., Zeng, H., and Wang, T.: Higher temperature sensitivity of soil C 

release to atmosphere from northern permafrost soils as indicated by a meta‐analysis, Glob. Biogeochem. Cy., 34, 515 

e2020GB006688, https://doi.org/10.1029/2020GB006688, 2020. 

Schädel, C., Luo, Y., David Evans, R., Fei, S., and Schaeffer, S. M.: Separating soil CO2 efflux into C-pool-specific decay 

rates via inverse analysis of soil incubation data, Oecologia, 171, 721-732, https://doi.org/10.1007/s00442-012-2577-4, 

2013. 

Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C. E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, 520 

S., Treat, C. C., and Sierra, C. A.: Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, 

version 1.0) and guidance for incubation procedures, Earth Syst. Sci. Data, 12, 1511-1524, https://doi.org/10.5194/essd-

12-1511-2020, 2020. 

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., 

Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic 525 

matter as an ecosystem property, Nature, 478, 49-56, https://doi.org/10.1038/nature10386, 2011. 



23 

 

Schuur, E. A., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp, T.: The effect of permafrost thaw on 

old carbon release and net carbon exchange from tundra, Nature, 459, 556-559, https://doi.org/10.1038/nature08031, 2009. 

Séférian, R., Nabat, P., Michou, M., Saint‐Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., and 

Chevallier, M.: Evaluation of CNRM Earth system model, CNRM‐ESM2‐1: Role of Earth system processes in present‐530 

day and future climate, J. Adv. Model. Earth Sy., 11, 4182-4227, https://doi.org/10.1029/2019MS001791, 2019. 

Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C., Milly, P., Caspersen, J. P., Sentman, L. T., Fisk, J. P., Wirth, C., 

and Crevoisier, C.: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink, 

Glob. Biogeochem. Cy., 23, https://doi.org/10.1029/2007GB003176, 2009. 

Šimůnek, J. and Suarez, D. L.: Modeling of carbon dioxide transport and production in soil: 1. Model development, Water 535 

Resour. Res., 29, 487-497, https://doi.org/10.1029/92WR02225, 1993. 

Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling 

and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027-

2054, https://doi.org/10.5194/bg-11-2027-2014, 2014. 

Soong, J. L., Castanha, C., Hicks Pries, C. E., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W., and Torn, M. S.: Five 540 

years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux, Sci. Adv., 7, eabd1343, 

https://doi.org/10.1126/sciadv.abd1343, 2021. 

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., and 

Hanna, S.: The Canadian earth system model version 5 (CanESM5. 0.3), Geosci. Model Dev., 12, 4823-4873, 

https://doi.org/10.5194/gmd-12-4823-2019, 2019. 545 

Tang, X., Fan, S., Du, M., Zhang, W., Gao, S., Liu, S., Chen, G., Yu, Z., and Yang, W.: Spatial and temporal patterns of global 

soil heterotrophic respiration in terrestrial ecosystems, Earth Syst. Sci. Data, 12, 1037-1051, https://doi.org/10.5194/essd-

12-1037-2020, 2020. 

Efron B., Tibshirani R J.: An introduction to the bootstrap, New York: Chapman & Hall/CRC. 

https://doi.org/10.1201/9780429246593, 1994. 550 

Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A., Grosse, G., Kuhry, P., Hugelius, 

G., and Koven, C.: Carbon release through abrupt permafrost thaw, Nat. Geosci., 13, 138-143, 

https://doi.org/10.1038/s41561-019-0526-0, 2020. 

Volodin, E., Mortikov, E., Kostrykin, S., Galin, V. Y., Lykossov, V., Gritsun, A., Diansky, N., Gusev, A., and Iakovlev, N.: 

Simulation of the present-day climate with the climate model INMCM5, Clim. Dynam., 49, 3715-3734, 555 

https://doi.org/10.1007/s00382-017-3539-7, 2017. 

Wang, C., Morrissey, E. M., Mau, R. L., Hayer, M., Piñeiro, J., Mack, M. C., Marks, J. C., Bell, S. L., Miller, S. N., and 

Schwartz, E.: The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization, ISME J., 15, 

2738-2747, https://doi.org/10.1038/s41396-021-00959-1, 2021. 



24 

 

Wang, M., Guo, X., Zhang, S., Xiao, L., Mishra, U., Yang, Y., Zhu, B., Wang, G., Mao, X., and Qian, T.: Global soil profiles 560 

indicate depth-dependent soil carbon losses under a warmer climate, Nat. Commun., 13, 5514, 

https://doi.org/10.1038/s41467-022-33278-w, 2022. 

Wang, Q., Zhao, X., Chen, L., Yang, Q., Chen, S., and Zhang, W.: Global synthesis of temperature sensitivity of soil organic 

carbon decomposition: Latitudinal patterns and mechanisms, Funct. Ecol., 33, 514-523, https://doi.org/10.1111/1365-

2435.13256, 2019. 565 

Wang, Y., Wang, H., He, J.-S., and Feng, X.: Iron-mediated soil carbon response to water-table decline in an alpine wetland, 

Nat. Commun., 8, 15972, https://doi.org/10.1038/ncomms15972, 2017. 

Xiao, K.-Q., Zhao, Y., Liang, C., Zhao, M., Moore, O. W., Otero-Fariña, A., Zhu, Y.-G., Johnson, K., and Peacock, C. L.: 

Introducing the soil mineral carbon pump, Nat. Rev. Earth Env., 4, 135-136, https://doi.org/10.1038/s43017-023-00396-

y, 2023. 570 

Xu, M., Li, X., Kuyper, T. W., Xu, M., Li, X., and Zhang, J.: High microbial diversity stabilizes the responses of soil organic 

carbon decomposition to warming in the subsoil on the Tibetan Plateau, Glob. Change Biol., 27, 2061-2075, 

https://doi.org/10.1111/gcb.15553, 2021. 

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., and Hosaka, 

M.: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic 575 

evaluation of the physical component, J. Meteorol. Soc. Jpn. Ser. II, 97, 931-965, https://doi.org/10.2151/jmsj.2019-051, 

2019. 

Zhang, S., Wang M., Zheng, J., and Luo, Z.: A global dataset of soil organic carbon mineralization in response to incubation 

temperature changes, Figshare, https://doi.org/10.6084/m9.figshare.25808698, 2025. 

Zhang, S., Yu, Z., Lin, J., and Zhu, B.: Responses of soil carbon decomposition to drying-rewetting cycles: a meta-analysis, 580 

Geoderma, 361, 114069, https://doi.org/10.1016/j.geoderma.2019.114069, 2020. 

Zhang, S., Wang, M., Xiao, L., Guo, X., Zheng, J., Zhu, B., and Luo, Z.: Reconciling carbon quality with availability predicts 

temperature sensitivity of global soil carbon mineralization, P. Natl. Acad. Sci. Usa, 121, e2313842121, 

https://doi.org/10.1073/pnas.231384212, 2024. 

Zheng, J., van Groenigen, K. J., Hartley, I. P., Xue, R., Wang, M., Zhang, S., Sun, T., Yu, W., Ma, B., Luo, Y., Shi, Z., and 585 

Luo, Z.: Temperature sensitivity of bacterial species-level preferences of soil carbon pools, Geoderma, 456, 117268, 

https://doi.org/10.1016/j.geoderma.2025.117268, 2025. 

Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., and Stevens, 

L.: CSIRO ACCESS-ESM1. 5 model output prepared for CMIP6 ScenarioMIP, 

https://doi.org/10.22033/esgf/cmip6.4333, 2019. 590 


