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Abstract. Microbial decomposition of soil organic carbon (SOC) is a major source of atmospheric CO, and a key component
of climate-carbon feedbacks. Understanding how SOC mineralization responds to temperature is essential for improving
climate projections. Here, we compiled a global dataset of laboratory incubation experiments measuring SOC mineralization
across diverse soils and temperature regimes. The dataset reveals that 84% of samples originated from surface soils (0-30 cm),
and 50% of incubations lasted fewer than 50 days. Incubation temperatures ranged from —10 to 60 °C, with temperature
intervals used to estimate temperature sensitivity (Qio) spanning 2—40 °C; notably, 81% of Qio estimates were based on
intervals exceeding 5 °C. Moreover, in 61% of cases, the lower incubation temperature for Qo estimation differed from the
mean annual temperature at the sampling site by more than 5 °C, indicating a mismatch with in situ conditions. Our analysis
highlights critical gaps in current experimental designs, particularly the underrepresentation of subsoils (>30 cm) and the use
of temperature ranges that deviate from field conditions. We further evaluated the ability of 16 temperature response functions
used in 69 land surface and/or carbon models to capture SOC mineralization patterns. Most models failed to reproduce
empirical temperature response, especially at higher temperatures, albeit multi-term exponential functions showed relatively
better performance. By coupling our dataset with a two-pool carbon model, we found that external environmental constraints
and the intrinsic temperature response (including SOC decomposability and microbial processes) similarly influence the
temperature sensitivity of SOC mineralization at the global scale, with their relative importance varying across ecosystem
types. Our findings underscore the need for incubation experiments that better represent field conditions—both in depth and
temperature range—and call for improved model parameterizations to enhance SOC feedback projections under future climate

scenarios. The dataset is archived and publicly available at https://doi.org/10.6084/m9.figshare.25808698 (Zhang et al., 2025).

1 INTRODUCTION

Soils annually release approximately five times more CO,-C to the atmosphere via microbial mineralization of soil organic

carbon (SOC) than all anthropogenic fossil fuel emissions combined (Tang et al., 2020). As a key flux in the global carbon
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cycle, this soil-derived CO; efflux is projected to intensify under global warming (Lei et al., 2021; Wang et al., 2022) due to
the inherent temperature sensitivity of microbial decomposition (Davidson & Janssens, 2006). Yet, the magnitude and
mechanisms of this feedback remain contentious (Crowther et al., 2016; Soong et al., 2021), posing a critical uncertainty in
Earth System Models (ESMs) projections of future climate-carbon dynamics.

The temperature sensitivity of SOC mineralization is commonly expressed as Qo—the factor by which the mineralization

rate increases for every 10 °C rise in temperature. Qo is typically calculated following Eq.(1):
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where Ry, and Ry, are the SOC mineralization (often microbial respiration) rates at low temperature (T;) and high (T,)
temperatures, respectively. Most ESMs adopt a constant or temperature-dependent Qio value (Luo et al., 2016; Luo, Luo,
Wang, Xia, & Peng, 2020), but empirical Q1o estimates vary widely due to numerous influencing factors (Haaf, Six, & Doetterl,
2021; Patel et al., 2022), including calculation approaches (Hamdi, Moyano, Sall, Bernoux, & Chevallier, 2013),
environmental constraints such as soil pH (Craine, Fierer, & McLauchlan, 2010) and clay content (Hartley, Hill, Chadburn, &
Hugelius, 2021), climatic conditions like precipitation (Li, Pei, Pendall, Fang, & Nie, 2020), and microbial community traits
(Wang et al., 2021). These controls can be grouped into three primary mechanisms: (1) Carbon pool quality: the chemical
composition of SOC influences its thermodynamic properties and decomposability (Haddix et al., 2011); (2) Microbial
community structure and function: Variations in microbial traits affect SOC decomposition efficiency and enzyme production
(Karhu et al., 2014; Xiao et al., 2023); and (3) Physicochemical protection and accessibility: Soil texture, aggregation, and
mineral interactions modulate the accessibility of SOC to microbial enzymes (Gershenson, Bader, & Cheng, 2009). While
these mechanisms are often discussed independently, their relative contributions and interactions remain poorly understood at
the global scale (Jones, Cox, & Huntingford, 2003).

Temperature sensitivity is typically assessed via either field or laboratory incubation experiments. Field studies reflect in
situ conditions but are confounded by numerous environmental variables (e.g., plant inputs, soil moisture variability), and it is
difficult to separate root and microbial respiration. Moreover, field measurements are challenging to conduct continuously,
especially in remote ecosystems. Laboratory incubations, while simplified and often subject to preparation artifacts (e.g.,
sieving, drying, rewetting), offer controlled conditions that isolate specific mechanisms and allow for systematic comparisons
across soils and temperatures (Zhang, Yu, Lin, & Zhu, 2020). Importantly, although many laboratory studies have yielded
mechanistic insights, they are often limited in spatial scope or designed to test specific hypotheses. Yet, taken together, the
body of global incubation data represents an underutilized resource for addressing broad-scale questions about SOC
temperature sensitivity.

Here, we compile and synthesize a global dataset of time-series measurements of SOC mineralization under controlled
laboratory incubation conditions, encompassing diverse soil types, climatic zones, and incubation protocols. The dataset is
valuable for characterizing SOC mineralization processes and their response to temperature in relation to various soil properties

and incubation conditions. To showcase the dataset’s utility and scientific potential, we used it in a soil carbon model as a case
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study. This analysis demonstrates its applicability to process-based modeling and its contribution to understanding soil carbon
dynamics. Specially, we evaluate the performance of temperature response functions currently used in land surface and/or
carbon models (hereafter referred to as carbon models) against observed Qo values estimated using Eq. (1), and use a two-
pool carbon model to simulate SOC mineralization and assess the relative influence of different regulatory mechanisms on
temperature sensitivity. By integrating empirical observations with process-based modeling, our study provides mechanistic
insights into the drivers of SOC temperature sensitivity and informs efforts to improve Earth system model projections under

climate change.

2 THE DATA

We compiled a global dataset of laboratory incubation experiments to investigate the temperature sensitivity of SOC
mineralization. Literature searches were conducted using the Web of Science and the Chinese National Knowledge
Infrastructure (CNKI). The search terms included:
“soil AND (respir* OR ((carbon OR CO; OR carbon dioxide OR organic matter) AND (flux OR efflux OR emission OR release
OR loss OR mineraliz* OR decompos*))) AND (temperature OR warm™® OR cool*) AND incubat*”
In addition to dataset queries, we screened all studies cited in five previous synthesis papers on temperature sensitivity of SOC
mineralization (Fierer, Colman, Schimel, & Jackson, 2006; Hamdi et al., 2013; Ren et al., 2020; Christina Schidel et al., 2020;
Wang et al., 2019). To be included in our dataset, studies had to meet the following criteria:

1) The incubated soil must be sampled from the mineral layer;

2) Each experiment must incubate the same soil at two or more temperatures;

3) All other incubation conditions (e.g., moisture) must be identical across temperature treatments and maintained
throughout the incubation; and

4) Time-series data of carbon mineralization rates or cumulative carbon mineralization must be reported.
Using these criteria, we identified 191 publications, encompassing 721 distinct soils and totaling 21,979 data points on SOC

mineralization (Fig. 1).
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Figure 1: Geographic distribution of soil samples. A, soil sample locations; B, distribution across climate conditions and ecosystems.
Numbers in parentheses show the sample size in the specified ecosystem.

90 When available, numerical data were directly extracted from the publications, and graphical data were digitized using the
WebPlotDigitizer (Burda, O'Connor, Webber, Redmond, & Perdue, 2017). SOC mineralization rates were standardized to g
CO,-C kg SOC d! and g CO»-C kg™! soil d"!. Cumulative mineralization was also recorded as g CO»-C kg! SOC and g CO,-
C kg'! soil, corresponding to the total mineralized carbon over the duration of the incubation. We also compiled ancillary
information when available, including soil properties [e.g., pH, total nitrogen (TN), carbon-to-nitrogen ratio (C:N), soil bulk

95 density (BD), and texture)], site characteristics (geographic coordinates and ecosystem type), and experimental design
(incubation temperature, duration, moisture condition, and pretreatment) (Table 1). Based on the recorded geographic
coordinates of sampling locations, we extracted 19 climate variables from WorldClim V2.0 at a spatial resolution of 1 km?
(Fick & Hijmans, 2017). All complied data are deposited to https://doi.org/10.6084/m9.figshare.25808698 (Zhang et al., 2025)
and are publicly accessible.

100  Table 1: Variables included in the dataset.

Variable Description Units

Publication information

Reference ID Reference ID -
First_author First author of the publication -
Publication_year Publication year Year
Sampling_year Sampling year Year
Journal Journal name of the publication -
Title Title of the article -
DOIs Digital object identifier of the publication -

Site information

Latitude Latitude, positive = North, negative = South Decimal



Longitude Longitude, positive = East, negative = West Decimal
MAT Mean annual temperature, extracted from WorldClim 2.1 based on  °C
the latitude and longitude of soil sampling sites, the data is the 30-
year mean value from 1970 to 2000
MAP Mean annual precipitation, extracted from WorldClim 2.1 based on mm
the latitude and longitude of soil sampling sites, the data is the 30-
year mean value from 1970 to 2000
Elevation Elevation, extracted from WorldClim 2.1 based on the latitude and m
longitude of soil sampling sites
Eco_type Ecosystem type (grassland, forest, etc.) -
Species The aboveground plant species at the sampling site -
Soil_ID Soil ID -
Profile ID Profile ID -
Soil_depth The top and bottom depths of the sampled soil (0_10, 0 20, etc.). cm
Some studies only provide the horizon of the soil profile, such as A
horizon, B horizon
Soil characteristics
SOC Initial soil organic carbon content %
N Initial soil total nitrogen content %
C:N Soil carbon:nitrogen ratio -
pH Initial soil pH -
BD Soil bulk density g-cm’
Soil texture Clay, silt, and sand %
Incubation information
Incu_duration Incubation duration Day
Incu_temp Incubation temperature °C
Soil mass The dry weight of the incubated soil g
C input Carbon input at the beginning of incubation (biochar, glucose, etc.) -
Input_amount The amount of carbon input at the beginning of the incubation %
expressed as a percentage of the initial soil organic carbon content
Measure day Measurement day for carbon mineralization Day
FC Soil moisture content is expressed as a percentage of field capacity %
(e.g., 60% FC indicates 60% of the maximum field capacity).
Gravity Soil gravity water content %
Pre_incubation Pre-incubation duration Day

Pre treatment

Pre-treatment before the beginning of the incubation (e.g., fresh

homogenized, air-dried, etc.)
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Sieve The sieving size prior to the beginning of the incubation mm

CO2_method Determination method of mineralized CO2, including gas -
chromatograph, alkali absorption, and infrared gas analysis

Exp ID Experiment ID. The same ID includes mineralization data of the -
same soil at different incubation temperatures, and other incubation
conditions were identical at different temperatures

n Number of replicates of a incubation -

Mineralization information

Rate_soil Time-course carbon mineralization rate, which was normalized to mg CO>-C kg™ soil d’!

per kilogram of soil

SD _rate_soil The standard deviation of Rate soil mg CO2-C kg soil d”!

Rate SOC Time-course carbon mineralization rate, which was normalized to g CO2-C kg™! SOC d-!
per kilogram of SOC

SD rate_ SOC The standard deviation of Rate SOC g COx-Ckg' SOC d!

Cumu_soil Time-course cumulative carbon mineralization, which was mg CO:-C kg™! soil

normalized to per kilogram of soil
SD_cumu_soil The standard deviation of Cumu_soil mg CO»2-C kg soil
Cumu_SOC Time-course cumulative carbon mineralization, which was g CO2-C kg'! SOC
normalized to per kilogram of SOC

SD_cumu_SOC The standard deviation of Cumu_SOC g COx-Ckg' SOC

3 INSIGHTS FROM THE DATASET
3.1 Spatial coverage

Our dataset captures a broad global distribution of soil incubation experiments, with sampling sites concentrated in China,
Europe, and the United States (Fig. 1A). However, samples are relatively sparse in Australia, Canada, and Russia, with almost
absent in Africa. This geographic imbalance is particularly concerning given the importance of tropical and high-latitude cold
regions for global carbon storage and their heightened vulnerability to climate change. Addressing these data gaps is critical
for improving the accuracy of global SOC-climate feedback projections.

The dataset covers major terrestrial ecosystems (Fig. 1B), including croplands (226 sites), forests (199), and grasslands
(184), but includes relatively few samples from tundra (43), wetlands (53), and deserts (16). Yet, tundra and wetland soils are
known for their high SOC content and may exhibit distinct temperature responses due to unique environmental conditions
(Wang et al., 2022). In tundra ecosystems, SOC is dominated by particulate organic carbon, which is more sensitive to warming
than mineral-associated organic carbon (Georgiou et al., 2024). Moreover, freeze-thaw cycles can disrupt microbial and

physical protection mechanisms, altering SOC turnover (Schuur et al., 2009). Similarly, wetland soils experience fluctuating
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redox conditions driven by water table changes, potentially leading to nonlinear SOC responses to warming (Wang, Wang,
He, & Feng, 2017). These complexities reinforce the need for targeted studies in underrepresented ecosystems.

SOC content in the dataset ranges from 0.04% to 58.85%, with a median of 2.48% (Fig. 2A). Notably, 73% of samples
contain less than 5% SOC, with higher values mostly occurring in wetland soils. Incubation temperatures range from —10 to
60 °C, with a median of 17 °C and frequent use of standard temperatures such as 5 °C, 15 °C, and 25 °C (Fig. 2B). Q¢ values,
calculated from paired temperature treatments, are most derived from 15-25 °C (Fig. 2E), with 10 °C temperature difference
(i.e., AT, the difference between T, and T, in equation 1) accounting for 34 % of cases (Fig. 2F). However, only 19% of

experiments used AT <5 °C, a range more reflective of projected climate warming (IPCC, 2023).
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Figure 2: Basic characteristics of the incubation dataset. The distribution (frequency or density) of soil organic carbon content (A),
incubation temperature (B), soil sampling depth (C), incubation duration (D), temperature range (T1 and T2 in equation 1) used for Qio
estimation (E), absolute temperature range (|T2 — T1|) (F), temperature difference between the low incubation temperature (T1 in equation 1)
and the local mean annual temperature (MAT) at the sampling site (G), absolute temperature difference ((MAT — Ti[) (H). In panels E and
G, the blue circles represent the low incubation temperature (T in equation 1), the red circles indicate the high incubation temperature (T2
in equation 1), and the yellow circles correspond to the mean annual temperature at the sampling site. Note the logio scale of the y-axis in
panels E and G. Most of the data points in panel E fall within the temperature ranges of 15-25 °C, 5-15 °C, 5-25 °C, 15-35 °C, and 25-35 °C.

3.2 Incubation temperature

While laboratory incubations allow precise control of environmental variables, their ecological relevance depends critically
on the selection of incubation temperatures. SOC mineralization often responds nonlinearly to warming (Melillo et al., 2017),
especially in cold ecosystems where small temperature increases can trigger large CO, emissions (Turetsky et al., 2020).
However, many studies apply large AT values (>10 °C), which may obscure subtle thresholds, suppress key microbial
feedbacks, and limit the transferability of findings to field conditions.

This limitation is compounded by the mismatch between incubation temperature and field conditions. We compared the

low incubation temperature (i.e., T| in equation 1) used for estimation to the local mean annual temperature (MAT) at each
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sampling sites (Fig. 2G). In 61% of the cases, the absolute difference between T and MAT exceeded 5 °C (Fig. 2H), potentially
biasing Qo estimates, as temperature sensitivity is itself temperature-dependent (Alster et al., 2023; Hamdi et al., 2013; Patel
et al., 2022). To enhance ecological validity, we recommend future studies align incubation temperatures more closely with
local MATS, particularly when estimating Q0.

Most soil samples were collected from surface layers: 84% originate from the 0-30 cm depth (Fig. 2C). However, subsoils
(>30 cm) store more than twice the SOC of topsoil globally (Jobbagy & Jackson, 2000), and emerging evidence suggests they
are not inert, but can respond sensitively to warming (Hicks Pries, Castanha, Porras, & Torn, 2017; Hicks Pries et al., 2023).
SOC dynamics in deeper layers are governed by different stabilization processes and environmental controls, including lower
oxygen availability, reduced root inputs, and greater mineral association (Jia et al., 2019; Xu et al., 2021). These vertical
gradients shape SOC quality, microbial access, and thus, temperature sensitivity. Current underrepresentation of deep soils in
incubation experiments limits our ability to predict long-term carbon—climate feedbacks and highlights the need for deeper

sampling in future work.

3.3 Incubation duration

Incubation durations vary widely across studies. While some experiments extend for several years, 80% of the incubations
lasted <113 days, and half were <54 days (Fig. 2D). Short-term incubations are efficient and cost-effective, and are well suited
for capturing the dynamics of labile carbon pools that dominate initial CO, release (Schidel et al., 2020). They also minimize
microbial adaptation and maintain more natural soil structure. However, they may overlook the slower dynamics of recalcitrant
carbon pools, which contribute substantially to long-term SOC persistence and climate feedbacks (Schmidt et al., 2011).

In contrast, long-term incubations are essential for capturing the decomposition of slow-cycling SOC fractions, especially
in the absence of new carbon inputs. As labile carbon is depleted, persistent carbon pools increasingly dominate respiration,
providing insights into intrinsic SOC stability (Schédel et al., 2020). Long-term studies also enable assessment of microbial
community shifts and potential feedbacks under sustained warming (Guan et al., 2022; Jerry M Melillo et al., 2017). Yet, they
also introduce new complexities, including potential changes in soil structure, microbial acclimation, and moisture loss, which
may confound temperature effects (Kirschbaum, 2006). We advocate for a combined approach that integrates both short- and
long-term incubations. This dual strategy can capture early-stage microbial dynamics, as well as long-term decomposition
pathways of stable carbon pools. By leveraging both timescales, researchers can better disentangle microbial versus

physiochemical controls and derive more robust parameter estimates for Earth system models.

4 COMPARISON WITH TEMPERATURE RESPONSE FUNCTIONS

Earth System Models (ESMs) are key tools for projecting SOC dynamics under climate change, yet their predictive accuracy
hinges on the reliability of temperature response functions for SOC mineralization. We examined 69 models, including those

from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) and several widely used carbon models, and identified 16
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distinct temperature response functions (Fig. 3; Table 2 and Table S1). These functions differ markedly in structure,
particularly at temperatures above 20 °C, where predicted mineralization rates diverge substantially (Fig. 3A). Most functions
are empirical in nature and fall into four broad categories (Table 2):

1) Simple exponential models — assume fixed temperature sensitivity (e.g., constant Q1o or classical Arrhenius);

2) Flexible Q1o models — allow Qo to vary with temperature, typically through parameterized functions;

3) Non-linear empirical models — capture physiological thresholds, saturation effects, or inhibition at high temperatures;
and

4) Hybrid/adjusted exponential models — incorporate additional terms to improve empirical fits (e.g., multi-term
exponential or polynomial-exponential hybrids).
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Figure 3: Performance of soil carbon temperature response functions. Temperature response functions of soil organic carbon
mineralization (A), temperature sensitivity (Qio) predicted by the temperature response functions (B), and function performance by
comparing function predicted and observed Q1o (C). Gray open points in panel B represent observed Q1o values at different temperatures,
while the black dashed curve shows the best-fit relationship between Q1o and temperature based on locally weighted polynomial regression.
Red points indicate the mean values under the corresponding temperatures, and error bars represent one standard error of the observations.

9



185

190

Panel C compares the observed mean Q1o values at different temperatures with the Q1o values predicted by the temperature response functions,
presented for both global average and subsets grouped by ecosystem type. In panel C, numbers outside the parentheses represent the
coefficient of determination (R?), while numbers inside the parentheses indicate the root mean square error. Grey grids represent cases where
R? could not be calculated due to constant Q1o values defined by the respective temperature response functions.

Table 2: Temperature response functions used in 69 carbon models. Q10 mod Was estimated based on its definition, using the following
equation: Q19 meq = f(T + 10)/f(T). Carbon models simulate carbon cycling process and, in some cases, the associated energy and water
exchanges, while land carbon models are their submodules specifically representing terrestrial carbon cycling processes.

Land carbon

Types Temperature response functions Carbon models Models References
models
L FT) =151 CLMs CLMs CESM2 Emmons et al. (2020)
FT) =210 ISBA-CTRIP ISBA-CTRIP CNRM-ESM2-1 Séférian et al. (2019)
) =210 JULES-ES-1.0 JULES-ES-1.0 UKESMI-0-LL Good et al. (2019)
=21 INM-LNDI INM-LNDI INM-CMS5-0 Volodin et al. (2017)
I35 CASA-CNP CABLEZ41CASA- ACCESS-ESM1.5 Ziehn et al. (2019)
= 10 - - . lehn et al.
f(T)y=17110 NP
2 T 7.19
F(T) = 0.0326 + 0.00351 - T1652 _ (41 748) LPJ-GUESS LPJ-GUESS EC-Earth3-CC Smith et al. (2014)

£(T) = 4 Coleman and Jenkinson
- 1 106 RothC RothC RothC
+ew (75153) (1996)
T-35 Franko, Oelschlégel, and
f = {2-1 o, T<35 CANDY CANDY CANDY
1.0, T>35 Schenk (1995)
3 0.01, -5=T
0.04, -5<T<0
0.04+0.06-T, 0<T<5

0.07 + 0.016 - (T = 5), 5<T<10

() = 0154003 (T —10), 10<T <35 AVIM2 BCC-AVIM2 BCC-CSM2-MR Jiand Yu (1999)
0.95, 35<T <40
0.95—0.135- (T —40), 40 <T <47
0, 47<T

T) = 0.56 + 0.465
f(T) Parton, Schimel, Cole,

CENTURY CENTURY CENTURY 4 Otima (1987
-arctan(0.097 - (T — 15.7)) and Ojima (1987)
T-15

(1) =0Q,°

CLASS-CTEM CLASS-CTEM CanESM5 Swart et al. (2019)
Q10 = 144 + 0.56 - tanh(0.075 - (46 — T))
f(M) =12 T,

LM3 GFDL-ESM2M GFDL-ESM2M Shevliakova et al. (2009)
T, = % T, = exp (0.076 - (1 — TZ63))

PnET-CN Aber, Ollinger, and

f(T) = 0.68 - exp(0.1- (T — 7.1)) PnET PnET-CN

Driscoll (1997)
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This diversity reflects both the absence of a mechanistic consensus on temperature sensitivity and the trade-offs between
functional realism, parameter interpretability, and computational efficiency.

Across all model types, a consistent feature is the prediction of lower SOC mineralization rates at lower temperatures (Fig.
3A). This conforms with known biological constraints — low temperatures suppress microbial activity and freeze liquid water,
thereby restricting substrate diffusion and microbial access. However, substantial uncertainty persists regarding mineralization
responses at elevated temperatures. Specifically, the temperature response functions yield three distinct response patterns:

1) Monotonic increase — mineralization rates rise continuously with temperature (e.g., classic Arrhenius behaviour; (Fang,
Singh, Matta, Cowie, & Van Zwieten, 2017));

2) Plateau — mineralization rates increase to an asymptote beyond which additional warming has little effect; and

3) Peak followed by decline — mineralization rates increase to an optimum and then drop due to thermal inhibition of
enzymes, microbial stress, or substrate exhaustion.

Empirical studies support all three behaviours under different contexts, highlighting the need for flexible models that can
accommodate nonlinearities and thresholds in warming responses (Alster et al., 2023).

To evaluate model performance, we calculated observed Q1o (Q1o_obs) using Eq. (1) from our global incubation dataset
using Equation (1), and compared them to modelled Q1o values (Q1o_mod) derived from each function. Q1o _obs Was computed for
each experiment, then aggregated by incubation temperature (T1) to derive the global mean Q1o _ops at each temperature. There
were then compared to Q1o mod at corresponding temperatures for each model function (Fig. 3B-C). The results indicate that
Q1o obs varies widely but exhibits a nonlinear decline with increasing temperature (Fig. 3B), consistent with metabolic theory
and enzyme kinetics (Gillooly, Brown, West, Savage, & Charnov, 2001). Among the 16 tested functions, Type 4
(hybrid/adjusted exponential) functions performed best, with R? values of > 0.4 and rooted mean square errors (RMSE) < 1.2
(Fig. 3C). Type 1 (simple exponential) functions ranked second in performance, while Type 2 (flexible Qi) functions
consistently underperformed (R? < 0.2). Notably, all functions performed adequately within the 10-30 °C range — where most
Q1o obs values clustered around 2 — but were less reliable below 10 °C or above 30 °C (Fig. 3B), where sample sizes were

limited and biological responses are less predictable.
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Ecosystem-specific performance varied substantially (Fig. 3C and S1). In forest ecosystems, Type 4 and Type 3 functions
performed best, capturing both the magnitude and temperature dependency of Q1o obs, While models such as CLASS-CTEM
consistently underpredicted sensitivity. Wetland soils also showed good agreement with most functions (except AVIM?2),
although the small number of observations and narrow temperature range warrant caution. In croplands and grasslands, Q19 obs
values remained relatively stable (~2) across all temperatures (Fig. S1), likely due to uniform substrate quality, frequent
anthropogenic disturbances (e.g., tillage, fertilization), and homogenized microbial communities, which dampen temperature
responsiveness. Accordingly, Type 1 models—emphasizing constant Qo—performed best in these systems. However, data
scarcity remains a limiting factor for evaluating model performance in tundra, desert, and high-latitude cold systems. These
ecosystems, while storing vast amounts of SOC and being highly sensitive to warming, remain underrepresented in both
incubation data and model calibration. Their unique dynamics—driven by freeze—thaw cycles, moisture constraints, and slow
microbial turnover—may necessitate tailored temperature response formulations not currently embedded in most ESMs.

Taken together, our results highlight that: (1) no single temperature response function captures Q1o obs variability across
all ecosystems and temperature ranges; (2) simple and hybrid exponential functions show relatively robust performance,
particularly in cropland, grassland, and forest soils; (3) high-latitude, subsoil, and high-temperature responses remain poorly
constrained due to data limitations; (4) expanding observational datasets across diverse ecosystems—especially in extreme
environments—is essential for improving the realism and generalizability of temperature response functions in ESMs.
Ultimately, our comparison provides a benchmark for refining temperature sensitivity formulations in soil carbon models,
emphasizing the need for ecosystem-specific calibration and incorporation of nonlinear temperature effects to reduce

uncertainty in future carbon-climate feedback projections.

5 COMBINING THE DATA WITH CARBON MODELS

The extensive spatial and environmental coverage of our global SOC mineralization dataset offer a unique opportunity to
explore the mechanisms regulating the temperature sensitivity of microbial decomposition. To fully harness this potential,
mechanistically-informed modelling approaches are essential. Here, we integrate the dataset with commonly used pool-based
carbon models to test the relative contributions of different regulatory mechanisms. SOC mineralization is controlled by both
intrinsic and extrinsic factors. Intrinsic factors include the chemical decomposability of SOC pools and the thermal traits of
microbial communities — collectively referred to as the inherent temperature response (Davidson & Janssens, 2006). These
control the baseline temperature dependence of microbial activity and carbon use efficiency. In contrast, extrinsic factors —
such as mineral associations, aggregate occlusion, moisture limitation, and oxygen availability — operate as external
environmental constraints, restricting microbial access to otherwise decomposable organic matter (Dungait, Hopkins, Gregory,
& Whitmore, 2012). Separating these two mechanisms is critical, as they operate on different scales and are likely to respond
differently to climate change. We propose a modelling framework in which SOC temperature sensitivity is divided into these

two components, allowing us to quantify their relative contributions (Fig. 4).
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Figure 4: The data-model integration framework to distinguish the importance of intrinsic temperature responses and extrinsic
environmental constraints. The framework illustrates the data-model fusion process employed to verify the regulatory mechanisms
underlying the temperature sensitivity of soil organic carbon mineralization. M1, intrinsic temperature response, associated with the chemical
decomposability of SOC pools and the thermal traits of microbial communities; M2, extrinsic environmental constraints, referring to factors
such as mineral associations, aggregate occlusion, moisture limitation, and oxygen availability that restrict microbial access to otherwise
decomposable organic matter. kzz7 and ks 17 represent the decomposition rates (d-!) of the fast () and slow (f;) carbon pools, respectively at
the lowest incubation temperature within the same trial. Q1o fast and Qio_siow are the temperature sensitivity of fast and slow carbon pools,
respectively. 7, and 77 denote the higher and lower incubation temperatures, respectively. In EXP. 1, krand £; at the lowest temperature of
each trial were optimized and then were scaled to other temperatures using Q1o_fast and Q1o_slow, Which were also optimized. The pool size (f)
and decomposition rates (krand k) at the lowest temperature from EXP. 1 were applied in EXP. 2 and EXP. 3.

5.1 A two-pool model of SOC mineralization

To represent SOC heterogeneity and its decomposition dynamics, we adopt a two-pool first-order model, distinguishing
between fast- and slow-cycling carbon pools. The mineralization rate R, (g CO»-C kg™! SOC d™!) at time ¢ is expressed following
Eq.(2):

Ri=kpfr-Core ™t +kg-(1—f) Core st )
where kg and kg are the decomposition rate constants (d™') for the fast and slow pools, respectively; f; is the initial fraction of
the fast pool in initial total SOC (Cy); ¢ is time in days. Temperature sensitivity is introduced via a Qo formulation following

Eq.(3):
T_Tref

kr = kref Qi 0, 3)

where k7 is the decomposition rate of a carbon pool at incubation temperature 7 (°C); ks is the decomposition rate of the

pool at a defined reference temperature (7,/); Q14 is the temperature sensitivity factor.
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5.2 Simulation experiments

We conducted three simulation experiments to assess how well different regulatory mechanisms explain the observed
temperature sensitivity of SOC mineralization. In all experiments, model parameters were optimized by minimizing RMSE
between observed and modeled SOC mineralization rates using the DEoptim package in R4.0.3. Prior parameter ranges were
set to 0.1-0.7 for k; 0-0.01 for ks, and 0-0.2 for f;, following Schidel et al. (Schédel, Luo, David Evans, Fei, & Schaeffer,
2013). A detailed description about the optimization procedure can be found in Zhang et al. (2024).

EXP.1. Best-fit model (full optimization). In this baseline simulation, all model parameters — &y, k;, and f;— were freely
optimized for each temperature treatment within each incubation trial. The optimized parameters therefore capture the
combined effects of intrinsic substrate-microbe interactions and extrinsic environmental constraints. However, within a given
trial, the same f;value was shared across different incubation temperatures to ensure consistent carbon pool partitioning as the
same soil was incubated. This “full optimization” represents the best-case model performance and serves as the baseline for
comparison.

EXP.2. Inherent temperature response. To isolate the intrinsic component of temperature sensitivity, we fixed the
decomposition rates kf and ks and pool size (f) to those optimized at the lowest incubation temperature in EXP.1. A single
optimized Q1o value was then used to scale decomposition rates across higher temperatures using Eq.(3) within each trial. The
response of a specific SOC pool to temperature depends on its chemical decomposability and the thermal traits of the associated
microbial community. Forcing the temperature sensitivities to be the same (i.e., a single Q1o) across carbon pools effectively
eliminates these distinct responses, thereby isolating the effect of microbial and substrate-related intrinsic temperature response.

EXP.3. External environmental constraints. In this experiment, krand &, were again fixed at the values from the lowest
incubation temperature, and f values were taken from EXP.1. Instead of optimizing Qo for each trial, globally averaged Q1o
values (derived from the empirical dataset) were uniformly applied across all soils to scale decomposition rates at higher
temperatures. This approach standardizes the inherent temperature sensitivity of SOC decomposition, such that deviation
between modeled and observed SOC mineralization rates primarily reflect site-specific external constraints on microbial access
to SOC.

Comparing the model performance among EXP. 1-3 allows us to quantify the relative explanatory power of intrinsic and
extrinsic regulatory mechanisms. Specifically, reductions in model performance when moving from EXP. 1 to EXP. 2 and
from EXP. 2 to EXP. 3 correspond to the contribution of intrinsic and extrinsic effects, respectively. To evaluate the
contribution of each mechanism to model performance, we calculated their relative importance following Eq.(4-8) (Gromping,

2007):

I, = R2yp, — R2yp, (inherent response) , 4)

I, = R%yp, — R:yp 5 (external constraints), %)
i

P = ﬁ RExp1 » (6)
I

P, = 11312 ' RIZ;"XP.I , (N
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Unexplained = 1 — Réyp 4, (8)
where I; and I, represent the importance of inherent temperature response and external environmental constraints, respectively;
P; and P, denote the relative importance of two mechanisms, respectively; Unexplained indicate the unexplained portion of
total variation. We applied bootstrap resampling (n = 5,000) to estimate the mean and 95% confidence interval (CI) for the
relative importance of each mechanism across all incubation trials. For pairwise comparisons among ecosystems and soil
depths, the mean difference was calculated for each bootstrap resample, and the 95% CI of the difference was derived from
the bootstrap distribution. A difference was considered statistically significant if the 95% CI of the bootstrap samples did not
include zero (Efron & Tibshirani, 1994).

5.3 Simulation results

The modeling experiments revealed distinct contributions of intrinsic and extrinsic mechanisms to the temperature sensitivity
of SOC mineralization. The model explained, on average, 80%, 71%, and 61% of the variance in SOC mineralization for
EXP.1, EXP.2, and EXP.3, respectively (Fig. 5A). RMSE increased accordingly across the three experiments (Fig. S2).
Relative to EXP.1, model performance in EXP.2 showed a decline ranging from +0.1% to —62.6% with an average of —11.1%.
Relative to EXP.2, model performance in EXP.3 exhibited changes from +18.3% to -99.9% with an average of —15.4% (Fig.
5B). Overall, intrinsic temperature response and extrinsic environmental constraints contributed comparably at the global scale,
with intrinsic response accounting for 41% with a 95% confidence interval (CI) of 38%-43% and environmental constraints
contributing 39% (95% CI: 37%—42%) to the total variance (Fig. 5C). However, substantial variation emerged across
ecosystems. In croplands, intrinsic temperature response was dominant, contributing 50% (95% CI: 45%—54%), whereas
environmental constraints accounted for a smaller share (33% with the 95% CI of 28%—-37%). In contrast, wetlands exhibited
the opposite pattern, with environmental constraints contributing 52% (95% CI: 44%—61%) and intrinsic temperature response

contributing only 30% (95% CI: 22%—-38%).
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Figure 5: The relative importance of intrinsic temperature responses and external environmental constraints. Panels A and B show
the determination coefficients (R?) and the corresponding percentage changes in R, respectively, for the three simulation experiments.
Panels C and D represent relative importance of the two mechanisms categorized by ecosystem type and soil depth, respectively. B, the
percentage change in R? of EXP. 2 relative to EXP. 1, and the percentage change in R? of EXP. 3 relative to EXP. 2. Error bars in panels C
and D represent the 95% confidence intervals based on 5,000 bootstrap resamples of the original relative importance. EXP. 1 represents the
best-fit model and serves as the baseline for comparison, EXP. 2 aims to assess the relative importance of the intrinsic temperature response,
and EXP. 3 aims to assess the relative importance of external environmental constraints. Different letters in panels A, C, and D indicate
significant difference (p<0.05).

These contrasting patterns reflect ecosystem-specific controls on the temperature sensitivity of SOC mineralization. In
croplands, frequent soil disturbances such as tillage, fertilization, and residue management likely enhance substrate availability
and microbial activity, thereby amplifying the role of intrinsic biological and chemical processes (Chen et al., 2019). In
wetlands, by contrast, saturated conditions impose strong oxygen limitations and redox constraints on microbial activity,
making abiotic environmental factors the primary regulator of SOC turnover (Chen, Zou, Cui, Nie, & Fang, 2018). These

findings underscore the importance of incorporating ecosystem-specific mechanisms into ESMs — particularly in systems
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shaped by hydrological regimes or intensive management — is critical for improving projections of soil carbon-climate
feedbacks under global warming.

There were no significant differences of the relative importance of the two regulatory mechanisms across soil depths (Fig.
5D). However, it should be noted that subsoil layers was underrepresented, particularly for layers between 0.5 m (Fig. 2C).
Together, our results highlight the importance of integrating both intrinsic and extrinsic mechanisms into understanding
temperature response functions. These case study results underscore the potential of the dataset for facilitating model-data
integration, exploring the mechanisms underlying SOC dynamics in response to climate change, and refining model
representations under future warming.

However, it is critical to acknowledge that the “intrinsic temperature response” in our modelling framework encompasses
both SOC chemical decomposability and microbial metabolic activity, as these processes are inherently intertwined in carbon
turnover (Conant et al., 2011). For example, an increase in the decomposition rate constant (k) with temperature could reflect
enhanced microbial enzyme kinetics, but may also be driven by temperature-induced changes in substrate availability via
increased diffusion or depolymerization of complex carbon compounds (Conant et al., 2011). Similarly, shifts in the fraction
of fast-cycling carbon (f) may not solely indicate a change in carbon pool composition, but also microbial substrate preferences
or physiological adjustments that alter carbon allocation between biomass production and respiration (Zheng et al., 2025).
These caveats underscore the need for more detailed, trait-explicit models that separately track microbial physiology, substrate

quality, and abiotic accessibility (Zhang et al., 2024).

6 CONCLUSIONS AND FUTURE VISION

SOC dynamics are central to predicting terrestrial carbon—climate feedbacks, yet remain a major source of uncertainty in ESMs.
By synthesizing a comprehensive global dataset of SOC mineralization under controlled incubation conditions, this study
provides a robust framework to evaluate the temperature sensitivity of SOC decomposition and the mechanisms that govern
it. Our findings highlight that external environmental constraints—such as physicochemical protection and substrate
accessibility—and intrinsic SOC decomposability play similarly important roles in shaping temperature responses, but their
relative influence is ecosystem-dependent. Moreover, we demonstrate that widely used temperature response functions in
carbon models often fail to capture observed patterns, particularly under temperature extremes or in specific ecosystems.

Based on our analyses, we propose following priorities for advancing SOC-climate research:

1) Expand spatial and vertical coverage of soil sampling

Despite the growing number of incubation studies, current datasets remain heavily biased toward surface soils, mid-
latitude systems, and short-term incubations. Particularly underrepresented are data from extreme environments (e.g., tundra,
wetlands, deserts), subsoil layers, and high or low incubation temperatures—all of which are crucial for understanding carbon—
climate feedbacks in vulnerable or carbon-dense regions. Addressing these gaps through targeted sampling campaigns and

standardized data collection would enhance model calibration, validation, and transferability across scales.
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2) Align incubation design with ecologically relevant temperature scenarios

Laboratory incubation conditions — although valuable for isolating mechanisms — may fail to replicate the complexity of
natural systems. Field conditions introduce fluctuating moisture regimes, plant-microbe interactions, freeze-thaw cycles, and
other dynamic processes that strongly mediate SOC responses. We advocate for hybrid approaches that combine laboratory
incubation data with in situ measurements (e.g., eddy covariance fluxes, carbon isotope tracing) and long-term warming
experiments to ground-truth model behaviour and improve ecological relevance.

3) Integrate mechanistic constraints into models

Most SOC temperature response functions currently used in carbon models are based on simplified relationships that fail
to incorporate critical regulatory mechanisms. Our findings clearly demonstrate that these simplified functions often
underperform when applied to real-world data, particularly across diverse ecosystems and temperature regimes. Embedding
mechanistic constraints, such as mineral protection, oxygen limitation, and depth-specific carbon turnover, into temperature
response formulations (Bradford et al., 2016) could substantially improve the fidelity of SOC projections under future climate
scenarios.

4)  Advance spatial scaling

Most carbon models still apply uniform temperature response functions across broad geographic regions, neglecting site-
specific variability in soil properties, mineralogy, hydrology, and microbial ecology. Our findings argue for a more spatially
explicit representation of SOC temperature responses. Advances in machine learning, data assimilation, and remote sensing
provide promising tools for spatial upscaling of temperature response parameters, enabling site-specific calibration of carbon
models. Integrating knowledge-guided machine learning with mechanistic soil biogeochemistry models (Liu et al., 2024)
would significantly enhance predictive accuracy and reduce uncertainty in regional and global carbon-climate feedback
estimates.

Together, these priorities call for a more mechanistic, depth-aware, and spatially explicit framework for investigating
SOC mineralization. By coupling empirical datasets with process-based modelling and machine learning, the soil carbon
research community can significantly reduce uncertainty in carbon—climate feedbacks and improve projections of SOC

stability in a warming world.
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