Response to referee #1

Referee #1:

Comments:

[Comment 1] Nominally (see below), this manuscript describes a dataset of soil incubations focusing on carbon mineralization and temperature sensitivity (Q10) calculation. This is interesting and important for reasons well laid out in the introduction, as such incubations have been a major source of information about this process and informed models and understanding at many scales; an analysis-ready dataset of incubations is valuable. The authors' dataset is publicly posted, has almost 22,000 rows, and seems clearly laid out (although see #2 below).

Response: We thank the reviewer for the thoughtful review and are grateful for these positive comments.

[Comment 2] That said, there are several significant problems here. First, the ms is oddly structured. It essentially has three parts: (i) a description of the dataset; (ii) data summaries and comparison with ancillary data (in particular, incubation temperatures compared with the mean annual temperature of sampling location); and, very unexpectedly, (iii) an extended summary of earth system model approaches to decomposition and simple modeling exercise involving the dataset. From https://www.earth-system-science-data.net/about/aims_and_scope.html, the scope of ESSD is "Articles in the data section may pertain to the planning, instrumentation, and execution of experiments or collection of data. Any interpretation of data is outside the scope of regular articles." Based on this, I think that (iii) above is clearly out of scope; it's extremely odd to find this ESM algorithm analysis in an ESSD ms, and it should be removed. Even (ii) strikes me as marginal in terms of scope—it's analysis, not data description!

Response: We appreciate the reviewer's concern regarding the alignment of our manuscript with the scope of ESSD. Our intention with point (ii) was not to perform independent analyses, but rather to highlight gaps between laboratory incubation settings and real-world conditions. Identifying these gaps provides important context for users, helps clarify potential limitations when applying the dataset, and offers practical recommendations for designing more realistic future experiments. We believe this enhances the utility of the dataset rather than extending beyond ESSD's scope.

Regarding point (iii), our simple modeling exercises are presented as case studies to demonstrate how the dataset can be applied, particularly with models. These are not meant as stand-alone scientific interpretations, but as illustrations of data use in model frameworks. Such case studies are common in ESSD papers, where they help maximize dataset impact. For example, Schädel et al. (2020) combined SIDb with five carbon models to compare model performance and to illustrate the dataset's utility for constraining model representations of soil carbon turnover. Ménard et al. (2019) explicitly compared their meteorological dataset against snow model outputs to illustrate utility for model benchmarking, while Hong et al. (2022) used their dataset to analyze terrestrial surface temperature trends from 2003 to 2019. These studies

demonstrate that data-model integration is within ESSD's practice when it illustrates dataset utility.

To address the reviewer's concerns, we have expanded relevant clarifications in the ending paragraph of the Introduction and in the section of "Simulation results" to point out that these analyses are presented as demonstrations of dataset applicability: "To showcase the dataset's utility and scientific potential, we used it in a soil carbon model as a case study. This analysis demonstrates its applicability to process-based modeling and its contribution to understanding soil carbon dynamics" (lines 63-65); "These case study results underscore the potential of the dataset for facilitating model-data integration, exploring the mechanisms underlying SOC dynamics in response to climate change, and refining model representations under future warming." (lines 344-346).

References:

Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C. E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., and Sierra, C. A.: Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures, Earth Syst. Sci. Data, 12, 1511–1524, https://doi.org/10.5194/essd-12-1511-2020, 2020.

Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., Fierz, C., Kim, H., Kontu, A., Lejeune, Y., Marks, D., Niwano, M., Raleigh, M., Wang, L., and Wever, N.: Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, 2019.

Hong, F., Zhan, W., Göttsche, F.-M., Liu, Z., Dong, P., Fu, H., Huang, F., and Zhang, X.: A global dataset of spatiotemporally seamless daily mean land surface temperatures: generation, validation, and analysis, Earth Syst. Sci. Data, 14, 3091–3113, https://doi.org/10.5194/essd-14-3091-2022, 2022.

[Comment 3] Second, there's no mention of SIDb (https://soilbgc-datashare.github.io/sidb/). The SIDb paper (Schädel et al. 2020) is cited but it's bizarre not to note and discuss *at length* this pre-existing and seemingly very similar effort. How much overlap is there between the authors' work and SIDb? Why not contribute these data to SIDb, rather than duplicate work and confuse researchers?

Response: We agree that SIDb (Schädel et al. 2020) is an important and valuable dataset, and we have cited it in our main manuscript. However, our dataset differs in focus and structure:

- Scientific scope. SIDb dataset compiles data to track soil carbon mineralization dynamics over time, whereas our dataset is specifically designed around experiments where the same soil was incubated at two or more temperatures. This structure allows direct assessment of temperature sensitivity, which is the central focus of our study.
- 2. Coverage. SIDb includes 31 studies, 11 of which overlap with ours. Our dataset incorporates 192 studies, substantially expanding the scope.

3. Auxiliary information. Our dataset includes extensive experimental details (e.g., sieving, pretreatment, soil moisture, soil mass), soil profile information, , and site characteristics (e.g., vegetation species, coordinates). These additional variables are not available for SIDB and increase the dataset's valuable for model calibration and mechanistic assessment of soil carbon dynamics.

For these reasons, we see the two datasets as complementary rather than duplicative. We believe that maintaining ours as a stand-alone, thematically focused dataset maximizes visibility and usability for the research community.

In addition, to address the reviewer's concern and clarify the novelty of our study, we have revised the title from "A global dataset of soil organic carbon mineralization under various incubation conditions" to "A global dataset of soil organic carbon mineralization in response to incubation temperature changes." This modification underscores that our work specifically targets the temperature response of soil carbon mineralization, distinguishing it clearly from SIDb focusing on broader incubation conditions.

[Comment 4] Finally, as already noted I have concerns about the structure of the data and how it doesn't support easy reproducibility in terms of finding the source studies.

Response: Thank you for this point. Please refer to the response to Comment 7 for clarification on how reproducibility and traceability of source studies are ensured.

[Comment 5] In summary, while I appreciate the large amount of work here, and believe this dataset will be valuable, the current ms should be rejected or subject to fundamental revisions.

Response: We thank the reviewer for recognizing the value of our dataset. We have carefully revised the manuscript, clarified scope issues, and improved transparency to address the concerns raised. We believe these clarifications and revisions substantially strengthen the manuscript and bring it in line with ESSD's expectations.

Specific comments:

[Comment 6] Line 35: "expressed as"

Response: Thank you for the careful review. Corrected.

[Comment 7] The dataset structure as posted on Figshare is a little odd. The study information is combined with the observational data, i.e. it's all in a single CSV file, so many rows are duplicated; having separate "data" and "studies" files might be clearer and cleaner. In addition, there's no DOI, URL, or volume/issue information...to find a paper, are users supposed to search the title? Having a machine-searchable link or DOI seems crucial.

Response: We appreciate the reviewer's suggestion regarding dataset structure. Our initial decision to combine all data in a single CSV file was deliberate, as it allowed researchers to access metadata and measurements in one place, facilitating analysis without repeatedly merging multiple files. Although this approach introduces some repeated metadata entries, it is a common practice in large datasets and does not hinger usability when the metadata are well organized. This structure also enables flexible querying. For example, users can easily filter carbon mineralization rates for a specific

study, soil, or incubation temperatures.

That said, we agree that separating study-level and data-level information will improve clarity and reproducibility. In the revised version, we now provide two files: *data.csv*, which contains only observational data, and *studies.csv*, which contains study-level metadata. We have also added DOIs for all studies in *studies.csv* to ensure that sources are easily identifiable and machine-searchable.

[Comment 8] 492-498: duplicated reference

Response: Corrected.