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Short summary

The first openly accessible Austrian near-infrared (NIR) Soil Spectral Library was developed, including over 2100 samples

covering all Austrian environmental zones. The-prediction—of soil-properties—via—partial-least squareregression—showe

petentialbut At present, the predictive accuracy for most properties was insufficient compared to routine laboratory analyses;

however, several key properties showed predictive potential. We encourage using the open Library as a foundation for further

spectral analysis and modelling and we support future soil health assessments via spectroscopy.

Abstract

The rise in demand for soil data and information calls for quick and cost-effective methodologies to quantify soil properties.
This is particularly important in the realm of restoring soil health in Europe. Near-infrared (NIR) spectroscopy has
demonstrated the ability to predict specific soil properties with high accuracy whilst being less costly and time-consuming than
traditional methods. To fill gaps in national spectroscopic soil data, we compiled the first Austrian NIR Soil Spectral Library
(680-2500 nm) based on legacy samples (n = 2129), covering all environmental zones of Austria. We then appliedemployed
partial least square regression (PLSR) modelling to test the usability of the dataset for soil health assessments at its current

stage. Our analysis revealed that_the; application of the PLSR is not suitable for accurately estimating soil health indicators

compared to routine laboratory analysis. ¢

>y—Nevertheless, among the 14 soil properties tested, total nitrogen, CaCOs,

soil organic carbon and clay shewed-exhibited satisfactory-moderate predictive results-accuracy (R > 0.7). Most importantly,

the dataset containing sample meta-data (e.g., land use type, environmental zone or zip code), laboratory reference values and
NIR spectra with 1 nm resolution can be used as a foundation for further spectral analysis and modelling. We make this work
openly accessible to actively contribute to closing soil data gaps and promote the expansion of soil spectral libraries as a basis

for soil health assessments.
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1 Introduction

In 2021, the European Commission published the renewed Soil Strategy (European Commission, 2021), in which the vision
for healthy soil ecosystems by 2030 was presented. Soil health, defined as “the continued capacity of soils to provide ecological
functions for all forms of life, in line with the Sustainable Development Goals and the Green Deal” (European Commission et
al., 2020), is still an evolving term and concept. It received heightened attention since the implementation of the EU Mission:
A Soil Deal for Europe (European Commission et al., 2020) and particularly the discussed Soil Monitoring Law (European
Commission, 2023). Narrowing down the definition of soil health and, most importantly, quantifying it has therefore become
a key issue for soil scientists. Characterizing soil health in the form of multiple indicators and creating a “soil health index”
(Lehmann et al., 2020) suitable to measure and monitor soil health in the EU (European Commission, 2023; Matson et al.,
2024) are pivotal in achieving healthy soils until 2030. Efforts to define such an index are multi-fold (Matson et al., 2024;
Wade et al., 2022; Rinot et al., 2019), but generally they agree on including chemical, physical and biological indicators that
go beyond crop production to encompass soil ecosystem services (Shen and Teng, 2023). Properties such as soil organic carbon
(SOC), soil nutrients, pH or cation-exchange capacity (CEC) are frequently included in soil health assessments (Lehmann et
al., 2020). These properties are routinely analyzed in laboratories with traditional methods but are often time-consuming and
require resources such as expensive equipment and chemicals. Based—en—tThe increasing requirements for soil health
assessments and monitoring posed by the Soil Monitoring Law_are creating a demand for; less cost-intensive alternative

methods are-in-demand-(Safanelli et al., 2025).

The application of soil visible (vis) and near infrared (NIR) spectroscopy to predict soil properties, particularly chemical ones,
using statistical and machine learning methods has increased rapidly in recent decades (Viscarra Rossel et al., 2011; Gholizadeh
et al., 2013; Stenberg et al., 2010). Spectroscopy was shown to generate fairly to very accurate estimates of e.g., total carbon
(Ma et al., 2023), SOC (Guerrero et al., 2016) and its fractions (Jaconi et al., 2019b), as well as soil texture, specifically clay
(Jaconi et al., 2019a), and carbonates (Tavakoli et al., 2023). This approach also bears great potential for soil fertility
assessments of total nitrogen (Park et al., 2024) along with total and critical available phosphorus (Recena et al., 2019).
Compared to traditional laboratory analyses, spectroscopy has many advantages because it is fast, simple, cost-effective,
reproducible, repeatable, non-destructive and environmentally friendly (Viscarra Rossel et al., 2006; Nocita et al., 2015;
Soriano-Disla et al., 2013). To improve predictions and fill data gaps, large reference training data sets, so-called soil spectral
libraries (SSL), are being built and often made freely available. These extend from local, regional to national and even global
scale (Fao, 2022), thereby helping to describe soils and their health whilst improving soil data availability (Cornu et al., 2023).
Nevertheless, large areas without available data in the global coverage of NIR SSL remain, calling for active participation to
fill these gaps (Viscarra Rossel et al., 2016; Safanelli et al., 2025). This is necessary because the predictive capacity of models
relies on the number and diversity of soil samples and conditions represented in the spectra. Concurrently, new methods for
coordinating existing SSL are being developed, enabling interoperability between labs, data harmonization, engagement of

communities and model development (Safanelli et al., 2025; Peng et al., 2025).



70

75

80

85

The application of NIR spectroscopy for Austrian soils is limited so far. Beyond sample analysis within the LUCAS inventory
(Fernandez Ugalde et al., 2022), Ludwig et al. (2023) tested the suitability of vis-NIR and MIR (mid infrared) spectroscopy
for forest soils whilst comparing different modelling approaches. Moreover, the suitability of vis-NIR for measuring soil
carbon contents and the effects of agricultural management methods was analyzed by Bieber (2023) on a regional scale. To
date, no national SSL for Austria is openly available. By using available legacy soil samples, including their results from
chemical and physical analysis, we wanted to fill this gap and analyzed them via NIR spectroscopy. Therefore, the objectives
of this study were (i) to provide a first dataset on Austrian NIR soil spectra and reference laboratory analysis for several soil
health properties, covering all Austrian environmental zones and (ii) to apply partial least square regression (PLSR) for model

calibration and validation and test the model’s applicability for national soil health assessments.

2 Soil sample selection

The selection of soil samples for the Austrian NIR Soil Spectral Library was based on a wide distribution of soils with different
properties to strengthen the dataset usability and predictive power of applied models. The dataset includes legacy soil samples
(analyzed and stored in the AGES archive) from several long-term field experiments, different project campaigns and from
farmers’ land. Moreover, samples from the so-called AGES “soil box” (Ages, 2025), which are sent in by private persons,
were included. The soil box allows individuals to have their soils analyzed for common properties such as pH, SOC and
phosphorus. These samples are special because they stem from a wide range of land uses including grassland, arable land,
forests, orchards, hedges or lawn, but also compost or garden soils. This particularly promotes the diversity of included soils
and enhances the geographical distribution and coverage throughout Austria. All included samples were collected between
2016 and 2023 and soil sampling depth ranged between 0 cm down to a maximum of 110 cm (mean: 24.5 cm). This yielded a
total of 2129 samples which were considered for the soil spectral library. ;eeveringallenvironmental zones-of Austria{Fig:
H-Most samples represent the Pannonian zone (n = 1059), followed by the Continental (n = 778), Alpine South (n = 286) and
Mediterranean Mountains (n = 5) zones_(Fig. 1). For one sample, the location and environmental zone are unknown

(Sample_number 743), hence it is not included in Figure 1.
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Figure 1: The environmental zones in Austria according to Metzger et al. (2018; 2005) with sampling locations of the NIR spectral
library (n = 2128) sampled between 2016 and 2023. Circle size indicates the number of soil samples per municipality.

3 Dataset creation and description

Information about the soil samples included in the dataset was extracted from the AGES internal database “LISA”. Missing
data regarding zip codes and land-use type was gathered by contacting responsible persons within and outside of AGES. MS
Excel® (version 2410) and the statistical programming language R within the RStudio interface (version 2024.04.0) were used
for data processing. The dataset contains 1846 columns, of which columns 1 to 11 provide information on the soil sample,
columns 12 to 25 contain chemical and physical reference analysis results, and columns 26 to 1846 contain the measured
absorbance from 680 nm to 2500 nm for every nm. Column “Sample number” assigns each sample a number, starting from
one, and column “Sampling year” shows the year of soil sampling. In column “Experiment number” the samples were
grouped into experiments which indicate that samples were collected on the same site. When several samples were sent in
together but originated from different sites (e.g., many sites sampled within one research project), this was indicated by an
underscore (e.g., 9 1,9 2). Column “Sample source” provides information on the source of the soil sample, e.g. whether it
was taken from a long-term experiment (LTE), part of a research project sampling campaign, or submitted by a private person
or advisor for analysis. The columns “Zip _code” and “Municipality code” indicate the location of the sampling site, which in

some cases needed to be approximated due to limited location information. For the majority of samples, coordinates were not
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available, as they were either sent by private individuals and farming advisers, or were taken by other research facilities than

AGES. Therefore, only zip and municipality codes are provided in our dataset. Previding-coordinates-was-notpessible-beeause

dataset-includes-samples-sentin-by private-individuals-and-thereby—elassifies m-as-sensitive-data—The environmental

zone (Metzger et al., 2005; Metzger, 2018) of the sampling location is shown in column “Environmental zone”. Sampling

depths (sampling_depth from and sampling_depth to) are reported in columns 8 and 9, respectively, and land use types in

column 10. Most samples were taken from arable land (n = 1485), followed by vegetable plots (n = 202) and lawn (n = 174).
Other land use types (orchards, forests, grassland, hedges, ornamental plants and vineyards) were sampled less than 100 times.
For 73 samples the land use type was unknown. Lastly, column 11 indicates whether samples were sent in for analysis with a
“soil box”. As these samples are taken and submitted by private individuals, the land use type defined by those individuals
might not always be accurate. Finally, such samples may contain artificial substrate, high amounts of compost or fertilizers.
Regarding the chemical and physical reference analysis and NIR spectroscopy, the methodologies and results are described in

detail in the following sections. The dataset is available at https://zenodo.org/ in the form of an excel file, which is accompanied

by document metadata and a legend (Fohrafellner et al., 2025).

4 Analysis of soil
4.1 Chemical and physical reference analysis

Chemical and physical soil properties were analyzed in the AGES soil laboratory for all soil samples (Table 1). The samples
were air-dried at maximum 40°C for at least two days and sieved through a 2 mm stainless steel sieve (ONORM L 1053:2012-
04-15). Soil organic carbon (SOC) and total carbon (TC) were analyzed by dry combustion in a LECO TruMac CN (LECO
Corp., St. Joseph, M1, United States) at 650°C and 1250°C, respectively (ONORM L 1080:2013-03-15). The labile carbon
was determined according to Tatzber et al. (2015). The carbonate content (CaCO3) was measured gas-volumetrically according
to the “Scheibler method” (CO; evolution; ONORM L 1084:2016-07-01). Total N (TN) was determined via elemental analysis
using a LECO Trumac CN at 1250° C (ONORM EN 16168:2012-10-01). Plant available phosphorus (hereafter referred to as
“Phosphorus™) was determined by calcium-acetate-lactate (CAL) extraction (ONORM L 1087:2012-12-01). Soil pH was
measured electrochemically (pH/mV Pocket Meter pH 340i, WTW, Weilheim, Germany) in 0.01 M CaCl, at a soil-to-solution
ratio of 1:5 (ONORM EN 15933:2012-10-01) and in calcium acetate (Vdlufa, 1991) to compare the suitability of NIRS to
predict the results of these methods. The cation exchange capacity (CEC) was determined by extracting the effective
exchangeable cations Ca™, K+, Mg™, Na" and A", Fe™™*, Mn™ and H" in barium chloride solution (ONORM L 1086-1:2014-
03-15). Texture was determined according to ONORM L 1061-2:2002-02-01, and clay was further analyzed by density in soil
suspension (ONORM EN ISO 17892-4).

The models for calibration and validation (section 5 “Spectroscopic modelling”) for each soil property were tested with the
full range of SOC values, but also with subsets containing only samples with SOC values below 7%, as this is the upper limit

for most agricultural mineral soils in Austria. The modelling results revealed that using only the latter subsets generated better
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estimates the properties SOC, SOC/clay ratio and TC. We therefore provide the summary statistics for these properties using
all samples or only samples with less than 7% SOC (Table 1).

Table 1: Summary statistics of the measured soil properties of the Austrian NIR Soil Spectral Library for all samples and for the
subset of samples with SOC below 7%. SOC is soil organic carbon, TC is total carbon, TN is total nitrogen, and CEC is the cation
exchange capacity.

Property n Min Max Median Mean SD Skewness

All samples
SOC (%) 2112 0.02 44.8 1.96 2.76 3.20 6.45
SOC/clay ratio 534 0.0009 1.59 0.103 0.199 0.241 2.37
TC (%) 92 1 39.1 4.90 6.54 6.23 2.79
Labile carbon (mg kg!) 567 47 1516 558 600 194 1.57
CaCO3 (%) 327 0.01 81.9 9.7 133 12.6 1.90
TN (%) 1036 0.029 242 0.192 0.253 0.206 3.95
Phosphorus (mg kg™!) 1643 1 1624 78 113 137 4.20
pH (CaCl2) 1917 3.18 7.93 7.26 6.92 0.848 -1.58
pH (Acetate) 304 5.59 7.42 6.48 6.53 0.391 0.29
CEC (cmolc kg™ 641 2.88 85.4 21.0 20.9 8.75 2.33
Sand (%) 562 5.6 92.5 322 36.2 18.7 0.59
Silt (%) 562 5 75.7 47.1 45.7 14.3 -0.37
Clay (%) 534 1.5 47.1 17.3 18 9.05 0.50
Clay in suspension (%) 381 10 40 20 214 5.19 0.77

SOC < 7%
SOC (%) 1997 0.02 6.94 1.91 2.20 1.17 1.60
SOC/clay ratio 518 0.0009 1.25 0.0978 0.182 0.214 2.37
TC (%) 71 1 8.82 3.93 3.92 1.68 0.229

4.2 Spectral measurement and preprocessing

The legacy soil samples from the AGES soil archive were prepared as for previous reference analysis and measured with the

SpectraStar™ XL near-infrared spectrometer from Unity Scientific (Brookfield, CT, USA) (Fig. 2) between the range 680 to

2500 nm. This instrument was equipped with 2 detectors and provided a spectral resolution of 1.0 nm, with the sensor switch
being between 1340 and 1341 nm. A matte-surface gold-plated metal reflector was used as an internal reference. The sample
cup (8.5 cm diameter) was filled up to about one third with a soil sample and covered with the reflective lid, which was pressed
slightly onto the sample. Each sample was scanned 24 times, and a mean was calculated. The same soil sample was then

transferred to a new sample cup and the scanning was repeated. A mean was calculated from these two repetitions. The standard



used was White Sand (Lucky Bay, Australia), which enables harmonizing results from different near-infrared spectrometers

155 used within the ProbeField project.

Figure 2: SpectraStar™ XL near-infrared spectrometer from Unity Scientific loaded with a soil sample.

|160 The accompanying UCal™ Chemometric Software (Unity Scientific, Brookfield, CT, USA) was used to pre-process the
spectra. The reflectance (R) spectra were converted to absorbance (A4) spectra by A = logio(1/R) (Fig. 3). Scatter correction

was achieved by standard normal variate (SNV) transformation and detrending (Barnes et al., 1989). The first forward

| derivative was applied to remove neisebaseline shifts and to increase the resolution of superposed peaks (Duckworth, 2004).
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Figure 3: Raw near-infrared soil spectra excluding standards (n = 2129) with mean spectrum (dark line).

5 Spectroscopic modelling

The Kennard—Stone algorithm (Kennard and Stone, 1969) of the “prospectr” package (version 0.2.7) (Stevens and Ramirez-

Lopez, 2024) package-in R Studio (version 2024.04.0) was used for calibration and validation set sampling, as it allows to

create sets that have a flat distribution over the spectral space (Stevens and Ramirez-Lopez, 2025). The dataset was split into

80% calibration and 20% validation samples. To avoid pseudo-independence of spectra, grouped samples from the same sites
were either assigned to the calibration or validation set via the algorithm. Simultaneously, a uniform hemegeneeus-distribution

of samples was ensured by applying the Mahalanobis distance, which first performs a PCA on the input data and computes the

Euclidean distance (Stevens and Ramirez-Lopez, 2024). As these settings generated a very small validation set for clay in

suspension (n = 7), a separate split using only samples with data of this soil property was conducted. Here, the Euclidean

distance, which selects points which are the farthest apart from its closest neighbor (Stevens and Ramirez-Lopez, 2024), -was

used because the Mahalanobis distance requires more samples than individual spectra for point distance computation. The

UCal™ Chemometric Software (Unity Scientific, Brookfield, CT, USA) was then used to apply the partial least square

regression (PLSR) for model calibration and validation. A maximum of 15 factors were set, and outlier detection and removal
were performed by calculating the Mahalanobis distance, which was set to a maximum global distance of 13 and 3 for the
calibration and validation sets, respectively. The spectra were trimmed to the range of 780-2400 nm and sensor switches
between 1330-1350 nm were removed. After model calibration, predictions were generated based on the validation set for each

8
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soil property. Models were tested for all samples or for subsets, i.e., SOC values below 7%, as described in section 4.1. Tthis

was done as is-the modelling results revealed that using subsets with SOC < 7% generated better estimates of the properties

SOC, SOC/clay ratio and TC, as it is the upper limit for most agricultural mineral soils in Austria. Statistical measures used to

determine the performance of the model were the standard error of prediction (SEP) and the coefficient of determination (R?)

from linear regression_as well as the ratio of performance to inter-quartile distance (RPIQ) (Bellon-Maurel et al., 2010).

6 Model performance

NIR estimates of the 14 soil health indicators (Table 2 and Figure 4) revealed that PLSR explained total nitrogen contents (TN)
best (R? = 0.9, SEP = 0.05), followed by CaCO; (R? = 0.89, SEP = 3.95), soil organic carbon (SOC) (R? = 0.82, SEP = 0.45)
and clay (R? = 0.74, SEP = 4.35). Nonetheless, the standard error of prediction was large for these properties. This is a common
issue in larger-scale spectral libraries because they can comprise a wide range of soils with high mineralogical variability
(Nocita et al., 2015; Stenberg et al., 2010), as it is the case for Austria. Regarding SOC, the regression shows that up to
concentrations of 4%, the model predicted SOC well, but with increasing concentrations it underestimated NIR predictions
due to the limited number of samples. Such limited numbers of samples for “extreme” values impacted the predictive quality
of several other soil parameters, particularly phosphorus or sand content. Although SOC and clay results were sufficient, the
SOC-to-clay ratio was not well estimated by the model (R? = 0.49, SEP = 0.08); only narrow ratios showed good prediction
by NIR spectroscopy. For total carbon (TC), only a small sample size for validation (n = 30) was available, which nevertheless
revealed potential for accurate prediction by NIR (R = 0.68, SEP = 1.02). Labile C had few low and high reference values,
which impacted the prediction on NIR negatively (R? = 0.54, SEP = 83.79). When comparing the results for soil pH, pH in
acetate achieved better estimates than pH in CaCl, (R?=0.67, SEP = 0.2 and R?> = 0.61, SEP = 0.61, respectively). Phosphorus
values above 200 mg kg™ were underestimated by NIR, yielding overall poor model results (R? = 0.2, SEP = 82.84). Clay
analyzed in suspension had a small-moderate coefficient of determination (R? = 0.58, SEP = 2.71). Other soil properties, i.e.,
cation exchange capacity (CEC), sand and silt, achieved R? below 0.5.

We also calculated ratio of performance to inter-quartile distance (RPIQ) for all 14 soil health indicators. The proposed

threshold for satisfactory model performance of a RPIQ of >1.89 (Ludwig et al., 2019) was used. Based on this metric, CaCO3
(RPIQ = 5.06) performed best, followed by TC (RPIQ = 3.33), clay (RPIQ = 2.52), clay in suspension (RPIQ = 2.21), pH in
CaCL, (RPIQ = 2.20), SOC (RPIQ = 2.09) and TN (RPIQ = 1.95). The other properties achieved RPIQs below 1.89. As

previously described by Ludwig et al. (2019), it should be acknowledged that the threshold of 1.89 is predicated on the work

by Chang et al. (2001), whose values were not based on theory or experiment, and that model performance must be evaluated

according to the specific context. When assessing the suitability of NIR as a substitute for routine laboratory measurements

particular attention should be given to the SEP, since even high R? or RPIQ values cannot compensate for a large SEP that

indicates limited precision. Accordingly, we concentrated our assessment on R? and SEP as key indicators of model

performance.



215 Table 2: Validated NIR estimates (780—2400 nm) of 14 soil properties derived from PLSR. SOC is soil organic carbon, TC is total carbon, TN is total nitrogen, CEC is the cation exchange capacity, SEP is
the standard error of prediction and GD is the global distance.

) Labile C Phosphorus CEC (cmol
SOC (%) SOC/clay ratio  TC (%) | CaCOs (%) TN (%) . pH CaClz pH Acetate |
(mg kg™) (mg kg™) kg™)
Training
SOC<7 SOC<7 SOC<7 All samples All samples All samples All samples All samples All samples All samples
strategy
n initial 405 160 30 161 89 247 315 424 124 173
n kept 367 118 30 160 78 238 304 411 123 166
Number of
9 12 2 8 5 9 5 6 7 3
factors
Range of
reference 0.15-6.85 0.03-0.78 1.54-6.17 87-1188 0.1-33.7 0.04-0.76 3-674 3.98-7.87 5.89-7.41 6.67-43.46
values
SEP 0.45 0.08 1.02 83.79 3.95 0.05 82.84 0.61 0.20 4.65
R? 0.82 0.49 0.68 0.54 0.89 0.90 0.20 0.61 0.67 0.40
RPIQ 2.09 0.97 3.33 1.34 5.06 1.95 1.00 2.20 1.85 1.63
Mean GD 1.17 0.58 0.32 0.75 0.95 0.96 1.16 0.99 0.60 0.42
Sand (%) Silt (%) Clay (%) Clay in suspension (%)
Training
All samples  All samples  All samples ~ All samples
strategy
n initial 178 178 166 76
n kept 176 176 164 75
Number of
6 7 6 8
factors
| Range 7.7-68.7 20.8-757 2.8-47.1 14-36
SEP 11.06 9.82 4.35 2.71
R? 0.40 0.41 0.74 0.58
‘ RPIQ 1.50 173 2.5 221
Mean GD 0.72 0.75 0.75 0.75
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Figure 4: Validation of the observed (y) versus predicted (¥) soil properties of the soil spectral library. SOC is soil organic carbon,
TC is total carbon, TN is total nitrogen, CEC is the cation exchange capacity and SEP is the standard error of prediction. Blue line

is the fitted line, while the red dashed line shows a regression of 1.

7 Usability of the Austrian NIR Soil Spectral Library and recommendations

The results of data validation show that applying partial least square regression to the Austrian NIR Soil Spectral Library yields
estimates of TN, CaCOs, SOC and clay contents with medivmmoderate, and other properties with low accuracy. Although
several properties were predicted with an R? > 0.7, standard errors of prediction were generally high. Considering the
applicability for routine soil health analyses and monitoring, the predictive quality is currently insufficient compared to
standard reutine-laboratory analyses. Nevertheless, in cases where funding is limited or rough estimates are sufficient, the
tested models could be of benefit. Other user-cases might include the validation of citizen science data or the estimation of soil
texture, as laboratory analysis is a tedious process. Increasing the sample number, particularly in the Alpine South, and
including samples with “extreme” values, could improve the predictions and reduce standard errors. Grouping by
environmental zones or according to the parent material are further options to assess for model improvement. Testing the
performance of other models, particularly more advanced machine learning algorithms such as random forest, cubist, artificial

neural networks or support vector regression (Viscarra Rossel et al., 2016; Minasny et al., 2024; Minasny and Mcbratney,

11
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2008), could further enhance the useability of the Austrian NIR Soil Spectral Library. Lastly, we encourage merging with other
SSLs, for example by using transfer functions (e.g., calibration transfer (Feudale et al., 2002), harmonization functions
(Francos et al., 2023)) or spiking for adaptation of models to the characteristics of the target sites (Guerrero et al., 2016) and
using them for developing localized calibration sets for specified contexts and pedologic domains (Viscarra Rossel et al.,

2022)._A weakness of our dataset is the missing coordinates, which, due to inclusion of soil samples taken by private

individuals, farming advisors, and external research organizations, were not available.

8 Data availability

The dataset described in this manuscript can be accessed at the repository https://zenodo.org/ under the DOI
10.5281/zenodo.16261617 (Fohrafellner et al., 2025) and can be cited as follows: Fohrafellner, J., Lippl, M., Bajraktarevic,
A., Baumgarten, A., Spiegel, H., Korner, R., and Sandén, T.: Dataset to: Austrian NIR Soil Spectral Library for Soil Health
Assessments (Version 3) [dataset], 10.5281/zenodo.16261617, 2025.

9 Conclusions

We present a first Austrian near-infrared (NIR) Soil Spectral Library with over 2100 legacy samples and test the performance
of the partial least square regression (PLSR) to predict 14 chemical and physical soil health indicators. Several properties, i.e.,
total nitrogen, soil organic carbon, CaCOs and clay were estimated with medism-moderate accuracy, whereas the potential for
predicting other indicators varied. We conclude that applying the PLSR to the Austrian NIR Soil Spectral Library is currently

not suitable for precisely estimating soil properties_compared to routine laboratory analysis, but that the library presents a

valuable foundation for future soil health assessments. Enlarging the spectral library would no doubt improve the predictions,
specifically by including extreme values outside of common ranges and by including data from the Alpine South. Moreover,
testing novel models using machine learning algorithms to train and validate the spectral library, for example, could improve
predictions of soil health indicators. We therefore encourage the use of this open dataset and of merging the spectra with other
existing or forthcoming libraries. This effort is an important step forward in supporting the expansion of soil spectral libraries

globally, facilitating the amplification of NIR analysis as a fast and simple method to assess, monitor and map soil health.
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